OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [external/] [jsr166/] [java/] [util/] [ArrayDeque.java] - Blame information for rev 768

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 768 jeremybenn
/*
2
 * Written by Josh Bloch of Google Inc. and released to the public domain,
3
 * as explained at http://creativecommons.org/licenses/publicdomain.
4
 */
5
 
6
package java.util;
7
import java.io.*;
8
 
9
/**
10
 * Resizable-array implementation of the {@link Deque} interface.  Array
11
 * deques have no capacity restrictions; they grow as necessary to support
12
 * usage.  They are not thread-safe; in the absence of external
13
 * synchronization, they do not support concurrent access by multiple threads.
14
 * Null elements are prohibited.  This class is likely to be faster than
15
 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
16
 * when used as a queue.
17
 *
18
 * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
19
 * Exceptions include {@link #remove(Object) remove}, {@link
20
 * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
21
 * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
22
 * iterator.remove()}, and the bulk operations, all of which run in linear
23
 * time.
24
 *
25
 * <p>The iterators returned by this class's <tt>iterator</tt> method are
26
 * <i>fail-fast</i>: If the deque is modified at any time after the iterator
27
 * is created, in any way except through the iterator's own <tt>remove</tt>
28
 * method, the iterator will generally throw a {@link
29
 * ConcurrentModificationException}.  Thus, in the face of concurrent
30
 * modification, the iterator fails quickly and cleanly, rather than risking
31
 * arbitrary, non-deterministic behavior at an undetermined time in the
32
 * future.
33
 *
34
 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
35
 * as it is, generally speaking, impossible to make any hard guarantees in the
36
 * presence of unsynchronized concurrent modification.  Fail-fast iterators
37
 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
38
 * Therefore, it would be wrong to write a program that depended on this
39
 * exception for its correctness: <i>the fail-fast behavior of iterators
40
 * should be used only to detect bugs.</i>
41
 *
42
 * <p>This class and its iterator implement all of the
43
 * <em>optional</em> methods of the {@link Collection} and {@link
44
 * Iterator} interfaces.
45
 *
46
 * <p>This class is a member of the
47
 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
48
 * Java Collections Framework</a>.
49
 *
50
 * @author  Josh Bloch and Doug Lea
51
 * @since   1.6
52
 * @param <E> the type of elements held in this collection
53
 */
54
public class ArrayDeque<E> extends AbstractCollection<E>
55
                           implements Deque<E>, Cloneable, Serializable
56
{
57
    /**
58
     * The array in which the elements of the deque are stored.
59
     * The capacity of the deque is the length of this array, which is
60
     * always a power of two. The array is never allowed to become
61
     * full, except transiently within an addX method where it is
62
     * resized (see doubleCapacity) immediately upon becoming full,
63
     * thus avoiding head and tail wrapping around to equal each
64
     * other.  We also guarantee that all array cells not holding
65
     * deque elements are always null.
66
     */
67
    private transient E[] elements;
68
 
69
    /**
70
     * The index of the element at the head of the deque (which is the
71
     * element that would be removed by remove() or pop()); or an
72
     * arbitrary number equal to tail if the deque is empty.
73
     */
74
    private transient int head;
75
 
76
    /**
77
     * The index at which the next element would be added to the tail
78
     * of the deque (via addLast(E), add(E), or push(E)).
79
     */
80
    private transient int tail;
81
 
82
    /**
83
     * The minimum capacity that we'll use for a newly created deque.
84
     * Must be a power of 2.
85
     */
86
    private static final int MIN_INITIAL_CAPACITY = 8;
87
 
88
    // ******  Array allocation and resizing utilities ******
89
 
90
    /**
91
     * Allocate empty array to hold the given number of elements.
92
     *
93
     * @param numElements  the number of elements to hold
94
     */
95
    private void allocateElements(int numElements) {
96
        int initialCapacity = MIN_INITIAL_CAPACITY;
97
        // Find the best power of two to hold elements.
98
        // Tests "<=" because arrays aren't kept full.
99
        if (numElements >= initialCapacity) {
100
            initialCapacity = numElements;
101
            initialCapacity |= (initialCapacity >>>  1);
102
            initialCapacity |= (initialCapacity >>>  2);
103
            initialCapacity |= (initialCapacity >>>  4);
104
            initialCapacity |= (initialCapacity >>>  8);
105
            initialCapacity |= (initialCapacity >>> 16);
106
            initialCapacity++;
107
 
108
            if (initialCapacity < 0)   // Too many elements, must back off
109
                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
110
        }
111
        elements = (E[]) new Object[initialCapacity];
112
    }
113
 
114
    /**
115
     * Double the capacity of this deque.  Call only when full, i.e.,
116
     * when head and tail have wrapped around to become equal.
117
     */
118
    private void doubleCapacity() {
119
        assert head == tail;
120
        int p = head;
121
        int n = elements.length;
122
        int r = n - p; // number of elements to the right of p
123
        int newCapacity = n << 1;
124
        if (newCapacity < 0)
125
            throw new IllegalStateException("Sorry, deque too big");
126
        Object[] a = new Object[newCapacity];
127
        System.arraycopy(elements, p, a, 0, r);
128
        System.arraycopy(elements, 0, a, r, p);
129
        elements = (E[])a;
130
        head = 0;
131
        tail = n;
132
    }
133
 
134
    /**
135
     * Copies the elements from our element array into the specified array,
136
     * in order (from first to last element in the deque).  It is assumed
137
     * that the array is large enough to hold all elements in the deque.
138
     *
139
     * @return its argument
140
     */
141
    private <T> T[] copyElements(T[] a) {
142
        if (head < tail) {
143
            System.arraycopy(elements, head, a, 0, size());
144
        } else if (head > tail) {
145
            int headPortionLen = elements.length - head;
146
            System.arraycopy(elements, head, a, 0, headPortionLen);
147
            System.arraycopy(elements, 0, a, headPortionLen, tail);
148
        }
149
        return a;
150
    }
151
 
152
    /**
153
     * Constructs an empty array deque with an initial capacity
154
     * sufficient to hold 16 elements.
155
     */
156
    public ArrayDeque() {
157
        elements = (E[]) new Object[16];
158
    }
159
 
160
    /**
161
     * Constructs an empty array deque with an initial capacity
162
     * sufficient to hold the specified number of elements.
163
     *
164
     * @param numElements  lower bound on initial capacity of the deque
165
     */
166
    public ArrayDeque(int numElements) {
167
        allocateElements(numElements);
168
    }
169
 
170
    /**
171
     * Constructs a deque containing the elements of the specified
172
     * collection, in the order they are returned by the collection's
173
     * iterator.  (The first element returned by the collection's
174
     * iterator becomes the first element, or <i>front</i> of the
175
     * deque.)
176
     *
177
     * @param c the collection whose elements are to be placed into the deque
178
     * @throws NullPointerException if the specified collection is null
179
     */
180
    public ArrayDeque(Collection<? extends E> c) {
181
        allocateElements(c.size());
182
        addAll(c);
183
    }
184
 
185
    // The main insertion and extraction methods are addFirst,
186
    // addLast, pollFirst, pollLast. The other methods are defined in
187
    // terms of these.
188
 
189
    /**
190
     * Inserts the specified element at the front of this deque.
191
     *
192
     * @param e the element to add
193
     * @throws NullPointerException if the specified element is null
194
     */
195
    public void addFirst(E e) {
196
        if (e == null)
197
            throw new NullPointerException();
198
        elements[head = (head - 1) & (elements.length - 1)] = e;
199
        if (head == tail)
200
            doubleCapacity();
201
    }
202
 
203
    /**
204
     * Inserts the specified element at the end of this deque.
205
     *
206
     * <p>This method is equivalent to {@link #add}.
207
     *
208
     * @param e the element to add
209
     * @throws NullPointerException if the specified element is null
210
     */
211
    public void addLast(E e) {
212
        if (e == null)
213
            throw new NullPointerException();
214
        elements[tail] = e;
215
        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
216
            doubleCapacity();
217
    }
218
 
219
    /**
220
     * Inserts the specified element at the front of this deque.
221
     *
222
     * @param e the element to add
223
     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
224
     * @throws NullPointerException if the specified element is null
225
     */
226
    public boolean offerFirst(E e) {
227
        addFirst(e);
228
        return true;
229
    }
230
 
231
    /**
232
     * Inserts the specified element at the end of this deque.
233
     *
234
     * @param e the element to add
235
     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
236
     * @throws NullPointerException if the specified element is null
237
     */
238
    public boolean offerLast(E e) {
239
        addLast(e);
240
        return true;
241
    }
242
 
243
    /**
244
     * @throws NoSuchElementException {@inheritDoc}
245
     */
246
    public E removeFirst() {
247
        E x = pollFirst();
248
        if (x == null)
249
            throw new NoSuchElementException();
250
        return x;
251
    }
252
 
253
    /**
254
     * @throws NoSuchElementException {@inheritDoc}
255
     */
256
    public E removeLast() {
257
        E x = pollLast();
258
        if (x == null)
259
            throw new NoSuchElementException();
260
        return x;
261
    }
262
 
263
    public E pollFirst() {
264
        int h = head;
265
        E result = elements[h]; // Element is null if deque empty
266
        if (result == null)
267
            return null;
268
        elements[h] = null;     // Must null out slot
269
        head = (h + 1) & (elements.length - 1);
270
        return result;
271
    }
272
 
273
    public E pollLast() {
274
        int t = (tail - 1) & (elements.length - 1);
275
        E result = elements[t];
276
        if (result == null)
277
            return null;
278
        elements[t] = null;
279
        tail = t;
280
        return result;
281
    }
282
 
283
    /**
284
     * @throws NoSuchElementException {@inheritDoc}
285
     */
286
    public E getFirst() {
287
        E x = elements[head];
288
        if (x == null)
289
            throw new NoSuchElementException();
290
        return x;
291
    }
292
 
293
    /**
294
     * @throws NoSuchElementException {@inheritDoc}
295
     */
296
    public E getLast() {
297
        E x = elements[(tail - 1) & (elements.length - 1)];
298
        if (x == null)
299
            throw new NoSuchElementException();
300
        return x;
301
    }
302
 
303
    public E peekFirst() {
304
        return elements[head]; // elements[head] is null if deque empty
305
    }
306
 
307
    public E peekLast() {
308
        return elements[(tail - 1) & (elements.length - 1)];
309
    }
310
 
311
    /**
312
     * Removes the first occurrence of the specified element in this
313
     * deque (when traversing the deque from head to tail).
314
     * If the deque does not contain the element, it is unchanged.
315
     * More formally, removes the first element <tt>e</tt> such that
316
     * <tt>o.equals(e)</tt> (if such an element exists).
317
     * Returns <tt>true</tt> if this deque contained the specified element
318
     * (or equivalently, if this deque changed as a result of the call).
319
     *
320
     * @param o element to be removed from this deque, if present
321
     * @return <tt>true</tt> if the deque contained the specified element
322
     */
323
    public boolean removeFirstOccurrence(Object o) {
324
        if (o == null)
325
            return false;
326
        int mask = elements.length - 1;
327
        int i = head;
328
        E x;
329
        while ( (x = elements[i]) != null) {
330
            if (o.equals(x)) {
331
                delete(i);
332
                return true;
333
            }
334
            i = (i + 1) & mask;
335
        }
336
        return false;
337
    }
338
 
339
    /**
340
     * Removes the last occurrence of the specified element in this
341
     * deque (when traversing the deque from head to tail).
342
     * If the deque does not contain the element, it is unchanged.
343
     * More formally, removes the last element <tt>e</tt> such that
344
     * <tt>o.equals(e)</tt> (if such an element exists).
345
     * Returns <tt>true</tt> if this deque contained the specified element
346
     * (or equivalently, if this deque changed as a result of the call).
347
     *
348
     * @param o element to be removed from this deque, if present
349
     * @return <tt>true</tt> if the deque contained the specified element
350
     */
351
    public boolean removeLastOccurrence(Object o) {
352
        if (o == null)
353
            return false;
354
        int mask = elements.length - 1;
355
        int i = (tail - 1) & mask;
356
        E x;
357
        while ( (x = elements[i]) != null) {
358
            if (o.equals(x)) {
359
                delete(i);
360
                return true;
361
            }
362
            i = (i - 1) & mask;
363
        }
364
        return false;
365
    }
366
 
367
    // *** Queue methods ***
368
 
369
    /**
370
     * Inserts the specified element at the end of this deque.
371
     *
372
     * <p>This method is equivalent to {@link #addLast}.
373
     *
374
     * @param e the element to add
375
     * @return <tt>true</tt> (as specified by {@link Collection#add})
376
     * @throws NullPointerException if the specified element is null
377
     */
378
    public boolean add(E e) {
379
        addLast(e);
380
        return true;
381
    }
382
 
383
    /**
384
     * Inserts the specified element at the end of this deque.
385
     *
386
     * <p>This method is equivalent to {@link #offerLast}.
387
     *
388
     * @param e the element to add
389
     * @return <tt>true</tt> (as specified by {@link Queue#offer})
390
     * @throws NullPointerException if the specified element is null
391
     */
392
    public boolean offer(E e) {
393
        return offerLast(e);
394
    }
395
 
396
    /**
397
     * Retrieves and removes the head of the queue represented by this deque.
398
     *
399
     * This method differs from {@link #poll poll} only in that it throws an
400
     * exception if this deque is empty.
401
     *
402
     * <p>This method is equivalent to {@link #removeFirst}.
403
     *
404
     * @return the head of the queue represented by this deque
405
     * @throws NoSuchElementException {@inheritDoc}
406
     */
407
    public E remove() {
408
        return removeFirst();
409
    }
410
 
411
    /**
412
     * Retrieves and removes the head of the queue represented by this deque
413
     * (in other words, the first element of this deque), or returns
414
     * <tt>null</tt> if this deque is empty.
415
     *
416
     * <p>This method is equivalent to {@link #pollFirst}.
417
     *
418
     * @return the head of the queue represented by this deque, or
419
     *         <tt>null</tt> if this deque is empty
420
     */
421
    public E poll() {
422
        return pollFirst();
423
    }
424
 
425
    /**
426
     * Retrieves, but does not remove, the head of the queue represented by
427
     * this deque.  This method differs from {@link #peek peek} only in
428
     * that it throws an exception if this deque is empty.
429
     *
430
     * <p>This method is equivalent to {@link #getFirst}.
431
     *
432
     * @return the head of the queue represented by this deque
433
     * @throws NoSuchElementException {@inheritDoc}
434
     */
435
    public E element() {
436
        return getFirst();
437
    }
438
 
439
    /**
440
     * Retrieves, but does not remove, the head of the queue represented by
441
     * this deque, or returns <tt>null</tt> if this deque is empty.
442
     *
443
     * <p>This method is equivalent to {@link #peekFirst}.
444
     *
445
     * @return the head of the queue represented by this deque, or
446
     *         <tt>null</tt> if this deque is empty
447
     */
448
    public E peek() {
449
        return peekFirst();
450
    }
451
 
452
    // *** Stack methods ***
453
 
454
    /**
455
     * Pushes an element onto the stack represented by this deque.  In other
456
     * words, inserts the element at the front of this deque.
457
     *
458
     * <p>This method is equivalent to {@link #addFirst}.
459
     *
460
     * @param e the element to push
461
     * @throws NullPointerException if the specified element is null
462
     */
463
    public void push(E e) {
464
        addFirst(e);
465
    }
466
 
467
    /**
468
     * Pops an element from the stack represented by this deque.  In other
469
     * words, removes and returns the first element of this deque.
470
     *
471
     * <p>This method is equivalent to {@link #removeFirst()}.
472
     *
473
     * @return the element at the front of this deque (which is the top
474
     *         of the stack represented by this deque)
475
     * @throws NoSuchElementException {@inheritDoc}
476
     */
477
    public E pop() {
478
        return removeFirst();
479
    }
480
 
481
    private void checkInvariants() {
482
        assert elements[tail] == null;
483
        assert head == tail ? elements[head] == null :
484
            (elements[head] != null &&
485
             elements[(tail - 1) & (elements.length - 1)] != null);
486
        assert elements[(head - 1) & (elements.length - 1)] == null;
487
    }
488
 
489
    /**
490
     * Removes the element at the specified position in the elements array,
491
     * adjusting head and tail as necessary.  This can result in motion of
492
     * elements backwards or forwards in the array.
493
     *
494
     * <p>This method is called delete rather than remove to emphasize
495
     * that its semantics differ from those of {@link List#remove(int)}.
496
     *
497
     * @return true if elements moved backwards
498
     */
499
    private boolean delete(int i) {
500
        checkInvariants();
501
        final E[] elements = this.elements;
502
        final int mask = elements.length - 1;
503
        final int h = head;
504
        final int t = tail;
505
        final int front = (i - h) & mask;
506
        final int back  = (t - i) & mask;
507
 
508
        // Invariant: head <= i < tail mod circularity
509
        if (front >= ((t - h) & mask))
510
            throw new ConcurrentModificationException();
511
 
512
        // Optimize for least element motion
513
        if (front < back) {
514
            if (h <= i) {
515
                System.arraycopy(elements, h, elements, h + 1, front);
516
            } else { // Wrap around
517
                System.arraycopy(elements, 0, elements, 1, i);
518
                elements[0] = elements[mask];
519
                System.arraycopy(elements, h, elements, h + 1, mask - h);
520
            }
521
            elements[h] = null;
522
            head = (h + 1) & mask;
523
            return false;
524
        } else {
525
            if (i < t) { // Copy the null tail as well
526
                System.arraycopy(elements, i + 1, elements, i, back);
527
                tail = t - 1;
528
            } else { // Wrap around
529
                System.arraycopy(elements, i + 1, elements, i, mask - i);
530
                elements[mask] = elements[0];
531
                System.arraycopy(elements, 1, elements, 0, t);
532
                tail = (t - 1) & mask;
533
            }
534
            return true;
535
        }
536
    }
537
 
538
    // *** Collection Methods ***
539
 
540
    /**
541
     * Returns the number of elements in this deque.
542
     *
543
     * @return the number of elements in this deque
544
     */
545
    public int size() {
546
        return (tail - head) & (elements.length - 1);
547
    }
548
 
549
    /**
550
     * Returns <tt>true</tt> if this deque contains no elements.
551
     *
552
     * @return <tt>true</tt> if this deque contains no elements
553
     */
554
    public boolean isEmpty() {
555
        return head == tail;
556
    }
557
 
558
    /**
559
     * Returns an iterator over the elements in this deque.  The elements
560
     * will be ordered from first (head) to last (tail).  This is the same
561
     * order that elements would be dequeued (via successive calls to
562
     * {@link #remove} or popped (via successive calls to {@link #pop}).
563
     *
564
     * @return an iterator over the elements in this deque
565
     */
566
    public Iterator<E> iterator() {
567
        return new DeqIterator();
568
    }
569
 
570
    public Iterator<E> descendingIterator() {
571
        return new DescendingIterator();
572
    }
573
 
574
    private class DeqIterator implements Iterator<E> {
575
        /**
576
         * Index of element to be returned by subsequent call to next.
577
         */
578
        private int cursor = head;
579
 
580
        /**
581
         * Tail recorded at construction (also in remove), to stop
582
         * iterator and also to check for comodification.
583
         */
584
        private int fence = tail;
585
 
586
        /**
587
         * Index of element returned by most recent call to next.
588
         * Reset to -1 if element is deleted by a call to remove.
589
         */
590
        private int lastRet = -1;
591
 
592
        public boolean hasNext() {
593
            return cursor != fence;
594
        }
595
 
596
        public E next() {
597
            if (cursor == fence)
598
                throw new NoSuchElementException();
599
            E result = elements[cursor];
600
            // This check doesn't catch all possible comodifications,
601
            // but does catch the ones that corrupt traversal
602
            if (tail != fence || result == null)
603
                throw new ConcurrentModificationException();
604
            lastRet = cursor;
605
            cursor = (cursor + 1) & (elements.length - 1);
606
            return result;
607
        }
608
 
609
        public void remove() {
610
            if (lastRet < 0)
611
                throw new IllegalStateException();
612
            if (delete(lastRet)) { // if left-shifted, undo increment in next()
613
                cursor = (cursor - 1) & (elements.length - 1);
614
                fence = tail;
615
            }
616
            lastRet = -1;
617
        }
618
    }
619
 
620
    private class DescendingIterator implements Iterator<E> {
621
        /*
622
         * This class is nearly a mirror-image of DeqIterator, using
623
         * tail instead of head for initial cursor, and head instead of
624
         * tail for fence.
625
         */
626
        private int cursor = tail;
627
        private int fence = head;
628
        private int lastRet = -1;
629
 
630
        public boolean hasNext() {
631
            return cursor != fence;
632
        }
633
 
634
        public E next() {
635
            if (cursor == fence)
636
                throw new NoSuchElementException();
637
            cursor = (cursor - 1) & (elements.length - 1);
638
            E result = elements[cursor];
639
            if (head != fence || result == null)
640
                throw new ConcurrentModificationException();
641
            lastRet = cursor;
642
            return result;
643
        }
644
 
645
        public void remove() {
646
            if (lastRet < 0)
647
                throw new IllegalStateException();
648
            if (!delete(lastRet)) {
649
                cursor = (cursor + 1) & (elements.length - 1);
650
                fence = head;
651
            }
652
            lastRet = -1;
653
        }
654
    }
655
 
656
    /**
657
     * Returns <tt>true</tt> if this deque contains the specified element.
658
     * More formally, returns <tt>true</tt> if and only if this deque contains
659
     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
660
     *
661
     * @param o object to be checked for containment in this deque
662
     * @return <tt>true</tt> if this deque contains the specified element
663
     */
664
    public boolean contains(Object o) {
665
        if (o == null)
666
            return false;
667
        int mask = elements.length - 1;
668
        int i = head;
669
        E x;
670
        while ( (x = elements[i]) != null) {
671
            if (o.equals(x))
672
                return true;
673
            i = (i + 1) & mask;
674
        }
675
        return false;
676
    }
677
 
678
    /**
679
     * Removes a single instance of the specified element from this deque.
680
     * If the deque does not contain the element, it is unchanged.
681
     * More formally, removes the first element <tt>e</tt> such that
682
     * <tt>o.equals(e)</tt> (if such an element exists).
683
     * Returns <tt>true</tt> if this deque contained the specified element
684
     * (or equivalently, if this deque changed as a result of the call).
685
     *
686
     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
687
     *
688
     * @param o element to be removed from this deque, if present
689
     * @return <tt>true</tt> if this deque contained the specified element
690
     */
691
    public boolean remove(Object o) {
692
        return removeFirstOccurrence(o);
693
    }
694
 
695
    /**
696
     * Removes all of the elements from this deque.
697
     * The deque will be empty after this call returns.
698
     */
699
    public void clear() {
700
        int h = head;
701
        int t = tail;
702
        if (h != t) { // clear all cells
703
            head = tail = 0;
704
            int i = h;
705
            int mask = elements.length - 1;
706
            do {
707
                elements[i] = null;
708
                i = (i + 1) & mask;
709
            } while (i != t);
710
        }
711
    }
712
 
713
    /**
714
     * Returns an array containing all of the elements in this deque
715
     * in proper sequence (from first to last element).
716
     *
717
     * <p>The returned array will be "safe" in that no references to it are
718
     * maintained by this deque.  (In other words, this method must allocate
719
     * a new array).  The caller is thus free to modify the returned array.
720
     *
721
     * <p>This method acts as bridge between array-based and collection-based
722
     * APIs.
723
     *
724
     * @return an array containing all of the elements in this deque
725
     */
726
    public Object[] toArray() {
727
        return copyElements(new Object[size()]);
728
    }
729
 
730
    /**
731
     * Returns an array containing all of the elements in this deque in
732
     * proper sequence (from first to last element); the runtime type of the
733
     * returned array is that of the specified array.  If the deque fits in
734
     * the specified array, it is returned therein.  Otherwise, a new array
735
     * is allocated with the runtime type of the specified array and the
736
     * size of this deque.
737
     *
738
     * <p>If this deque fits in the specified array with room to spare
739
     * (i.e., the array has more elements than this deque), the element in
740
     * the array immediately following the end of the deque is set to
741
     * <tt>null</tt>.
742
     *
743
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
744
     * array-based and collection-based APIs.  Further, this method allows
745
     * precise control over the runtime type of the output array, and may,
746
     * under certain circumstances, be used to save allocation costs.
747
     *
748
     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
749
     * The following code can be used to dump the deque into a newly
750
     * allocated array of <tt>String</tt>:
751
     *
752
     * <pre>
753
     *     String[] y = x.toArray(new String[0]);</pre>
754
     *
755
     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
756
     * <tt>toArray()</tt>.
757
     *
758
     * @param a the array into which the elements of the deque are to
759
     *          be stored, if it is big enough; otherwise, a new array of the
760
     *          same runtime type is allocated for this purpose
761
     * @return an array containing all of the elements in this deque
762
     * @throws ArrayStoreException if the runtime type of the specified array
763
     *         is not a supertype of the runtime type of every element in
764
     *         this deque
765
     * @throws NullPointerException if the specified array is null
766
     */
767
    public <T> T[] toArray(T[] a) {
768
        int size = size();
769
        if (a.length < size)
770
            a = (T[])java.lang.reflect.Array.newInstance(
771
                    a.getClass().getComponentType(), size);
772
        copyElements(a);
773
        if (a.length > size)
774
            a[size] = null;
775
        return a;
776
    }
777
 
778
    // *** Object methods ***
779
 
780
    /**
781
     * Returns a copy of this deque.
782
     *
783
     * @return a copy of this deque
784
     */
785
    public ArrayDeque<E> clone() {
786
        try {
787
            ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
788
            // Classpath local: we don't have Arrays.copyOf yet.
789
            // result.elements = Arrays.copyOf(elements, elements.length);
790
            result.elements = (E[]) elements.clone();
791
            return result;
792
 
793
        } catch (CloneNotSupportedException e) {
794
            throw new AssertionError();
795
        }
796
    }
797
 
798
    /**
799
     * Appease the serialization gods.
800
     */
801
    private static final long serialVersionUID = 2340985798034038923L;
802
 
803
    /**
804
     * Serialize this deque.
805
     *
806
     * @serialData The current size (<tt>int</tt>) of the deque,
807
     * followed by all of its elements (each an object reference) in
808
     * first-to-last order.
809
     */
810
    private void writeObject(ObjectOutputStream s) throws IOException {
811
        s.defaultWriteObject();
812
 
813
        // Write out size
814
        s.writeInt(size());
815
 
816
        // Write out elements in order.
817
        int mask = elements.length - 1;
818
        for (int i = head; i != tail; i = (i + 1) & mask)
819
            s.writeObject(elements[i]);
820
    }
821
 
822
    /**
823
     * Deserialize this deque.
824
     */
825
    private void readObject(ObjectInputStream s)
826
            throws IOException, ClassNotFoundException {
827
        s.defaultReadObject();
828
 
829
        // Read in size and allocate array
830
        int size = s.readInt();
831
        allocateElements(size);
832
        head = 0;
833
        tail = size;
834
 
835
        // Read in all elements in the proper order.
836
        for (int i = 0; i < size; i++)
837
            elements[i] = (E)s.readObject();
838
    }
839
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.