OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [gnu/] [java/] [awt/] [color/] [ColorLookUpTable.java] - Blame information for rev 769

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 769 jeremybenn
/* ColorLookUpTable.java -- ICC v2 CLUT
2
   Copyright (C) 2004 Free Software Foundation
3
 
4
This file is part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2, or (at your option)
9
any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; see the file COPYING.  If not, write to the
18
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19
02110-1301 USA.
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version. */
37
 
38
package gnu.java.awt.color;
39
 
40
import java.awt.color.ColorSpace;
41
import java.awt.color.ICC_Profile;
42
import java.nio.ByteBuffer;
43
 
44
 
45
/**
46
 * ColorLookUpTable handles color lookups through a color lookup table,
47
 * as defined in the ICC specification.
48
 * Both 'mft2' and 'mft1' (8 and 16-bit) type CLUTs are handled.
49
 *
50
 * This will have to be updated later for ICC 4.0.0
51
 *
52
 * @author Sven de Marothy
53
 */
54
public class ColorLookUpTable
55
{
56
  /**
57
   * CIE 1931 D50 white point (in Lab coordinates)
58
   */
59
  private static float[] D50 = { 0.96422f, 1.00f, 0.82521f };
60
 
61
  /**
62
   * Number of input/output channels
63
   */
64
  int nIn;
65
 
66
  /**
67
   * Number of input/output channels
68
   */
69
  int nOut;
70
  int nInTableEntries; // Number of input table entries
71
  int nOutTableEntries; // Number of output table entries
72
  int gridpoints; // Number of gridpoints
73
  int nClut; // This is nOut*(gridpoints**nIn)
74
  double[][] inTable; // 1D input table ([channel][table])
75
  short[][] outTable; // 1D input table ([channel][table])
76
  double[] clut; // The color lookup table
77
  float[][] inMatrix; // input matrix (XYZ only)
78
  boolean useMatrix; // Whether to use the matrix or not.
79
  int[] multiplier;
80
  int[] offsets; // Hypercube offsets
81
  boolean inputLab; // Set if the CLUT input CS is Lab
82
  boolean outputLab; // Set if the CLUT output CS is Lab
83
 
84
  /**
85
   * Constructor
86
   * Requires a profile file to get the CLUT from and the tag of the
87
   * CLUT to create. (icSigXToYZTag where X,Y = [A | B], Z = [0,1,2])
88
   */
89
  public ColorLookUpTable(ICC_Profile profile, int tag)
90
  {
91
    useMatrix = false;
92
 
93
    switch (tag)
94
      {
95
      case ICC_Profile.icSigAToB0Tag:
96
      case ICC_Profile.icSigAToB1Tag:
97
      case ICC_Profile.icSigAToB2Tag:
98
        if (profile.getColorSpaceType() == ColorSpace.TYPE_XYZ)
99
          useMatrix = true;
100
        inputLab = false;
101
        outputLab = (profile.getPCSType() == ColorSpace.TYPE_Lab);
102
        break;
103
      case ICC_Profile.icSigBToA0Tag:
104
      case ICC_Profile.icSigBToA1Tag:
105
      case ICC_Profile.icSigBToA2Tag:
106
        if (profile.getPCSType() == ColorSpace.TYPE_XYZ)
107
          useMatrix = true;
108
        inputLab = (profile.getPCSType() == ColorSpace.TYPE_Lab);
109
        outputLab = false;
110
        break;
111
      default:
112
        throw new IllegalArgumentException("Not a clut-type tag.");
113
      }
114
 
115
    byte[] data = profile.getData(tag);
116
    if (data == null)
117
      throw new IllegalArgumentException("Unsuitable profile, does not contain a CLUT.");
118
 
119
    // check 'mft'
120
    if (data[0] != 0x6d || data[1] != 0x66 || data[2] != 0x74)
121
      throw new IllegalArgumentException("Unsuitable profile, invalid CLUT data.");
122
 
123
    if (data[3] == 0x32)
124
      readClut16(data);
125
    else if (data[3] == 0x31)
126
      readClut8(data);
127
    else
128
      throw new IllegalArgumentException("Unknown/invalid CLUT type.");
129
  }
130
 
131
  /**
132
   * Loads a 16-bit CLUT into our data structures
133
   */
134
  private void readClut16(byte[] data)
135
  {
136
    ByteBuffer buf = ByteBuffer.wrap(data);
137
 
138
    nIn = data[8] & (0xFF);
139
    nOut = data[9] & (0xFF);
140
    nInTableEntries = buf.getShort(48);
141
    nOutTableEntries = buf.getShort(50);
142
    gridpoints = data[10] & (0xFF);
143
 
144
    inMatrix = new float[3][3];
145
    for (int i = 0; i < 3; i++)
146
      for (int j = 0; j < 3; j++)
147
        inMatrix[i][j] = ((float) (buf.getInt(12 + (i * 3 + j) * 4))) / 65536.0f;
148
 
149
    inTable = new double[nIn][nInTableEntries];
150
    for (int channel = 0; channel < nIn; channel++)
151
      for (int i = 0; i < nInTableEntries; i++)
152
        inTable[channel][i] = (double) ((int) buf.getShort(52
153
                                                           + (channel * nInTableEntries
154
                                                           + i) * 2)
155
                              & (0xFFFF)) / 65536.0;
156
 
157
    nClut = nOut;
158
    multiplier = new int[nIn];
159
    multiplier[nIn - 1] = nOut;
160
    for (int i = 0; i < nIn; i++)
161
      {
162
        nClut *= gridpoints;
163
        if (i > 0)
164
          multiplier[nIn - i - 1] = multiplier[nIn - i] * gridpoints;
165
      }
166
 
167
    int clutOffset = 52 + nIn * nInTableEntries * 2;
168
    clut = new double[nClut];
169
    for (int i = 0; i < nClut; i++)
170
      clut[i] = (double) ((int) buf.getShort(clutOffset + i * 2) & (0xFFFF)) / 65536.0;
171
 
172
    outTable = new short[nOut][nOutTableEntries];
173
    for (int channel = 0; channel < nOut; channel++)
174
      for (int i = 0; i < nOutTableEntries; i++)
175
        outTable[channel][i] = buf.getShort(clutOffset
176
                                            + (nClut
177
                                            + channel * nOutTableEntries + i) * 2);
178
 
179
    // calculate the hypercube corner offsets
180
    offsets = new int[(1 << nIn)];
181
    offsets[0] = 0;
182
    for (int j = 0; j < nIn; j++)
183
      {
184
        int factor = 1 << j;
185
        for (int i = 0; i < factor; i++)
186
          offsets[factor + i] = offsets[i] + multiplier[j];
187
      }
188
  }
189
 
190
  /**
191
   * Loads a 8-bit CLUT into our data structures.
192
   */
193
  private void readClut8(byte[] data)
194
  {
195
    ByteBuffer buf = ByteBuffer.wrap(data);
196
 
197
    nIn = (data[8] & (0xFF));
198
    nOut = (data[9] & (0xFF));
199
    nInTableEntries = 256; // always 256
200
    nOutTableEntries = 256; // always 256
201
    gridpoints = (data[10] & (0xFF));
202
 
203
    inMatrix = new float[3][3];
204
    for (int i = 0; i < 3; i++)
205
      for (int j = 0; j < 3; j++)
206
        inMatrix[i][j] = ((float) (buf.getInt(12 + (i * 3 + j) * 4))) / 65536.0f;
207
 
208
    inTable = new double[nIn][nInTableEntries];
209
    for (int channel = 0; channel < nIn; channel++)
210
      for (int i = 0; i < nInTableEntries; i++)
211
        inTable[channel][i] = (double) ((int) buf.get(48
212
                                                      + (channel * nInTableEntries
213
                                                      + i)) & (0xFF)) / 255.0;
214
 
215
    nClut = nOut;
216
    multiplier = new int[nIn];
217
    multiplier[nIn - 1] = nOut;
218
    for (int i = 0; i < nIn; i++)
219
      {
220
        nClut *= gridpoints;
221
        if (i > 0)
222
          multiplier[nIn - i - 1] = multiplier[nIn - i] * gridpoints;
223
      }
224
 
225
    int clutOffset = 48 + nIn * nInTableEntries;
226
    clut = new double[nClut];
227
    for (int i = 0; i < nClut; i++)
228
      clut[i] = (double) ((int) buf.get(clutOffset + i) & (0xFF)) / 255.0;
229
 
230
    outTable = new short[nOut][nOutTableEntries];
231
    for (int channel = 0; channel < nOut; channel++)
232
      for (int i = 0; i < nOutTableEntries; i++)
233
        outTable[channel][i] = (short) (buf.get(clutOffset + nClut
234
                                                + channel * nOutTableEntries
235
                                                + i) * 257);
236
 
237
    // calculate the hypercube corner offsets
238
    offsets = new int[(1 << nIn)];
239
    offsets[0] = 0;
240
    for (int j = 0; j < nIn; j++)
241
      {
242
        int factor = 1 << j;
243
        for (int i = 0; i < factor; i++)
244
          offsets[factor + i] = offsets[i] + multiplier[j];
245
      }
246
  }
247
 
248
  /**
249
   * Performs a lookup through the Color LookUp Table.
250
   * If the CLUT tag type is AtoB the conversion will be from the device
251
   * color space to the PCS, BtoA type goes in the opposite direction.
252
   *
253
   * For convenience, the PCS values for input or output will always be
254
   * CIE XYZ (D50), if the actual PCS is Lab, the values will be converted.
255
   *
256
   * N-dimensional linear interpolation is used.
257
   */
258
  float[] lookup(float[] in)
259
  {
260
    float[] in2 = new float[in.length];
261
    if (useMatrix)
262
      {
263
        for (int i = 0; i < 3; i++)
264
          in2[i] = in[0] * inMatrix[i][0] + in[1] * inMatrix[i][1]
265
                   + in[2] * inMatrix[i][2];
266
      }
267
    else if (inputLab)
268
      in2 = XYZtoLab(in);
269
    else
270
      System.arraycopy(in, 0, in2, 0, in.length);
271
 
272
    // input table
273
    for (int i = 0; i < nIn; i++)
274
      {
275
        int index = (int) Math.floor(in2[i] * (double) (nInTableEntries - 1)); // floor in
276
 
277
        // clip values.
278
        if (index >= nInTableEntries - 1)
279
          in2[i] = (float) inTable[i][nInTableEntries - 1];
280
        else if (index < 0)
281
          in2[i] = (float) inTable[i][0];
282
        else
283
          {
284
            // linear interpolation
285
            double alpha = in2[i] * ((double) nInTableEntries - 1.0) - index;
286
            in2[i] = (float) (inTable[i][index] * (1 - alpha)
287
                     + inTable[i][index + 1] * alpha);
288
          }
289
      }
290
 
291
    // CLUT lookup
292
    double[] output2 = new double[nOut];
293
    double[] weights = new double[(1 << nIn)];
294
    double[] clutalpha = new double[nIn]; // interpolation values
295
    int offset = 0; // = gp
296
    for (int i = 0; i < nIn; i++)
297
      {
298
        int index = (int) Math.floor(in2[i] * ((double) gridpoints - 1.0));
299
        double alpha = in2[i] * ((double) gridpoints - 1.0) - (double) index;
300
 
301
        // clip values.
302
        if (index >= gridpoints - 1)
303
          {
304
            index = gridpoints - 1;
305
            alpha = 1.0;
306
          }
307
        else if (index < 0)
308
          index = 0;
309
        clutalpha[i] = alpha;
310
        offset += index * multiplier[i];
311
      }
312
 
313
    // Calculate interpolation weights
314
    weights[0] = 1.0;
315
    for (int j = 0; j < nIn; j++)
316
      {
317
        int factor = 1 << j;
318
        for (int i = 0; i < factor; i++)
319
          {
320
            weights[factor + i] = weights[i] * clutalpha[j];
321
            weights[i] *= (1.0 - clutalpha[j]);
322
          }
323
      }
324
 
325
    for (int i = 0; i < nOut; i++)
326
      output2[i] = weights[0] * clut[offset + i];
327
 
328
    for (int i = 1; i < (1 << nIn); i++)
329
      {
330
        int offset2 = offset + offsets[i];
331
        for (int f = 0; f < nOut; f++)
332
          output2[f] += weights[i] * clut[offset2 + f];
333
      }
334
 
335
    // output table
336
    float[] output = new float[nOut];
337
    for (int i = 0; i < nOut; i++)
338
      {
339
        int index = (int) Math.floor(output2[i] * ((double) nOutTableEntries
340
                                     - 1.0));
341
 
342
        // clip values.
343
        if (index >= nOutTableEntries - 1)
344
          output[i] = outTable[i][nOutTableEntries - 1];
345
        else if (index < 0)
346
          output[i] = outTable[i][0];
347
        else
348
          {
349
            // linear interpolation
350
            double a = output2[i] * ((double) nOutTableEntries - 1.0)
351
                       - (double) index;
352
            output[i] = (float) ((double) ((int) outTable[i][index] & (0xFFFF)) * (1
353
                        - a)
354
                        + (double) ((int) outTable[i][index + 1] & (0xFFFF)) * a) / 65536f;
355
          }
356
      }
357
 
358
    if (outputLab)
359
      return LabtoXYZ(output);
360
    return output;
361
  }
362
 
363
  /**
364
   * Converts CIE Lab coordinates to (D50) XYZ ones.
365
   */
366
  private float[] LabtoXYZ(float[] in)
367
  {
368
    // Convert from byte-packed format to a
369
    // more convenient one (actual Lab values)
370
    // (See ICC spec for details)
371
    // factor is 100 * 65536 / 65280
372
    in[0] = (float) (100.392156862745 * in[0]);
373
    in[1] = (in[1] * 256.0f) - 128.0f;
374
    in[2] = (in[2] * 256.0f) - 128.0f;
375
 
376
    float[] out = new float[3];
377
 
378
    out[1] = (in[0] + 16.0f) / 116.0f;
379
    out[0] = in[1] / 500.0f + out[1];
380
    out[2] = out[1] - in[2] / 200.0f;
381
 
382
    for (int i = 0; i < 3; i++)
383
      {
384
        double exp = out[i] * out[i] * out[i];
385
        if (exp <= 0.008856)
386
          out[i] = (out[i] - 16.0f / 116.0f) / 7.787f;
387
        else
388
          out[i] = (float) exp;
389
        out[i] = D50[i] * out[i];
390
      }
391
    return out;
392
  }
393
 
394
  /**
395
   * Converts CIE XYZ coordinates to Lab ones.
396
   */
397
  private float[] XYZtoLab(float[] in)
398
  {
399
    float[] temp = new float[3];
400
 
401
    for (int i = 0; i < 3; i++)
402
      {
403
        temp[i] = in[i] / D50[i];
404
 
405
        if (temp[i] <= 0.008856f)
406
          temp[i] = (7.7870689f * temp[i]) + (16f / 116.0f);
407
        else
408
          temp[i] = (float) Math.exp((1.0 / 3.0) * Math.log(temp[i]));
409
      }
410
 
411
    float[] out = new float[3];
412
    out[0] = (116.0f * temp[1]) - 16f;
413
    out[1] = 500.0f * (temp[0] - temp[1]);
414
    out[2] = 200.0f * (temp[1] - temp[2]);
415
 
416
    // Normalize to packed format
417
    out[0] = (float) (out[0] / 100.392156862745);
418
    out[1] = (out[1] + 128f) / 256f;
419
    out[2] = (out[2] + 128f) / 256f;
420
    for (int i = 0; i < 3; i++)
421
      {
422
        if (out[i] < 0f)
423
          out[i] = 0f;
424
        if (out[i] > 1f)
425
          out[i] = 1f;
426
      }
427
    return out;
428
  }
429
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.