| 1 |
769 |
jeremybenn |
/* FIPS186.java --
|
| 2 |
|
|
Copyright 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is a part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
| 9 |
|
|
your option) any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; if not, write to the Free Software
|
| 18 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
| 19 |
|
|
USA
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
package gnu.java.security.key.dss;
|
| 40 |
|
|
|
| 41 |
|
|
import gnu.java.security.hash.Sha160;
|
| 42 |
|
|
import gnu.java.security.util.PRNG;
|
| 43 |
|
|
|
| 44 |
|
|
import java.math.BigInteger;
|
| 45 |
|
|
import java.security.SecureRandom;
|
| 46 |
|
|
|
| 47 |
|
|
/**
|
| 48 |
|
|
* An implementation of the DSA parameters generation as described in FIPS-186.
|
| 49 |
|
|
* <p>
|
| 50 |
|
|
* References:
|
| 51 |
|
|
* <p>
|
| 52 |
|
|
* <a href="http://www.itl.nist.gov/fipspubs/fip186.htm">Digital Signature
|
| 53 |
|
|
* Standard (DSS)</a>, Federal Information Processing Standards Publication
|
| 54 |
|
|
* 186. National Institute of Standards and Technology.
|
| 55 |
|
|
*/
|
| 56 |
|
|
public class FIPS186
|
| 57 |
|
|
{
|
| 58 |
|
|
public static final int DSA_PARAMS_SEED = 0;
|
| 59 |
|
|
|
| 60 |
|
|
public static final int DSA_PARAMS_COUNTER = 1;
|
| 61 |
|
|
|
| 62 |
|
|
public static final int DSA_PARAMS_Q = 2;
|
| 63 |
|
|
|
| 64 |
|
|
public static final int DSA_PARAMS_P = 3;
|
| 65 |
|
|
|
| 66 |
|
|
public static final int DSA_PARAMS_E = 4;
|
| 67 |
|
|
|
| 68 |
|
|
public static final int DSA_PARAMS_G = 5;
|
| 69 |
|
|
|
| 70 |
|
|
/** The BigInteger constant 2. */
|
| 71 |
|
|
private static final BigInteger TWO = BigInteger.valueOf(2L);
|
| 72 |
|
|
|
| 73 |
|
|
private static final BigInteger TWO_POW_160 = TWO.pow(160);
|
| 74 |
|
|
|
| 75 |
|
|
/** The SHA instance to use. */
|
| 76 |
|
|
private Sha160 sha = new Sha160();
|
| 77 |
|
|
|
| 78 |
|
|
/** The length of the modulus of DSS keys generated by this instance. */
|
| 79 |
|
|
private int L;
|
| 80 |
|
|
|
| 81 |
|
|
/** The optional {@link SecureRandom} instance to use. */
|
| 82 |
|
|
private SecureRandom rnd = null;
|
| 83 |
|
|
|
| 84 |
|
|
/** Our default source of randomness. */
|
| 85 |
|
|
private PRNG prng = null;
|
| 86 |
|
|
|
| 87 |
|
|
public FIPS186(int L, SecureRandom rnd)
|
| 88 |
|
|
{
|
| 89 |
|
|
super();
|
| 90 |
|
|
|
| 91 |
|
|
this.L = L;
|
| 92 |
|
|
this.rnd = rnd;
|
| 93 |
|
|
}
|
| 94 |
|
|
|
| 95 |
|
|
/**
|
| 96 |
|
|
* This method generates the DSS <code>p</code>, <code>q</code>, and
|
| 97 |
|
|
* <code>g</code> parameters only when <code>L</code> (the modulus length)
|
| 98 |
|
|
* is not one of the following: <code>512</code>, <code>768</code> and
|
| 99 |
|
|
* <code>1024</code>. For those values of <code>L</code>, this
|
| 100 |
|
|
* implementation uses pre-computed values of <code>p</code>,
|
| 101 |
|
|
* <code>q</code>, and <code>g</code> given in the document <i>CryptoSpec</i>
|
| 102 |
|
|
* included in the security guide documentation of the standard JDK
|
| 103 |
|
|
* distribution.
|
| 104 |
|
|
* <p>
|
| 105 |
|
|
* The DSS requires two primes , <code>p</code> and <code>q</code>,
|
| 106 |
|
|
* satisfying the following three conditions:
|
| 107 |
|
|
* <ul>
|
| 108 |
|
|
* <li><code>2<sup>159</sup> < q < 2<sup>160</sup></code></li>
|
| 109 |
|
|
* <li><code>2<sup>L-1</sup> < p < 2<sup>L</sup></code> for a
|
| 110 |
|
|
* specified <code>L</code>, where <code>L = 512 + 64j</code> for some
|
| 111 |
|
|
* <code>0 <= j <= 8</code></li>
|
| 112 |
|
|
* <li>q divides p - 1.</li>
|
| 113 |
|
|
* </ul>
|
| 114 |
|
|
* The algorithm used to find these primes is as described in FIPS-186,
|
| 115 |
|
|
* section 2.2: GENERATION OF PRIMES. This prime generation scheme starts by
|
| 116 |
|
|
* using the {@link Sha160} and a user supplied <i>SEED</i> to construct a
|
| 117 |
|
|
* prime, <code>q</code>, in the range 2<sup>159</sup> < q < 2<sup>160</sup>.
|
| 118 |
|
|
* Once this is accomplished, the same <i>SEED</i> value is used to construct
|
| 119 |
|
|
* an <code>X</code> in the range <code>2<sup>L-1
|
| 120 |
|
|
* </sup> < X < 2<sup>L</sup>. The prime, <code>p</code>, is then
|
| 121 |
|
|
* formed by rounding <code>X</code> to a number congruent to <code>1 mod
|
| 122 |
|
|
* 2q</code>. In this implementation we use the same <i>SEED</i> value given
|
| 123 |
|
|
* in FIPS-186, Appendix 5.
|
| 124 |
|
|
*/
|
| 125 |
|
|
public BigInteger[] generateParameters()
|
| 126 |
|
|
{
|
| 127 |
|
|
int counter, offset;
|
| 128 |
|
|
BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g;
|
| 129 |
|
|
byte[] a, u;
|
| 130 |
|
|
byte[] kb = new byte[20]; // to hold 160 bits of randomness
|
| 131 |
|
|
|
| 132 |
|
|
// Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160.
|
| 133 |
|
|
int b = (L - 1) % 160;
|
| 134 |
|
|
int n = (L - 1 - b) / 160;
|
| 135 |
|
|
BigInteger[] V = new BigInteger[n + 1];
|
| 136 |
|
|
algorithm: while (true)
|
| 137 |
|
|
{
|
| 138 |
|
|
step1: while (true)
|
| 139 |
|
|
{
|
| 140 |
|
|
// 1. Choose an arbitrary sequence of at least 160 bits and
|
| 141 |
|
|
// call it SEED.
|
| 142 |
|
|
nextRandomBytes(kb);
|
| 143 |
|
|
SEED = new BigInteger(1, kb).setBit(159).setBit(0);
|
| 144 |
|
|
// Let g be the length of SEED in bits. here always 160
|
| 145 |
|
|
// 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]
|
| 146 |
|
|
alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160);
|
| 147 |
|
|
synchronized (sha)
|
| 148 |
|
|
{
|
| 149 |
|
|
a = SEED.toByteArray();
|
| 150 |
|
|
sha.update(a, 0, a.length);
|
| 151 |
|
|
a = sha.digest();
|
| 152 |
|
|
u = alpha.toByteArray();
|
| 153 |
|
|
sha.update(u, 0, u.length);
|
| 154 |
|
|
u = sha.digest();
|
| 155 |
|
|
}
|
| 156 |
|
|
for (int i = 0; i < a.length; i++)
|
| 157 |
|
|
a[i] ^= u[i];
|
| 158 |
|
|
|
| 159 |
|
|
U = new BigInteger(1, a);
|
| 160 |
|
|
// 3. Form q from U by setting the most significant bit (the
|
| 161 |
|
|
// 2**159 bit) and the least significant bit to 1. In terms of
|
| 162 |
|
|
// boolean operations, q = U OR 2**159 OR 1. Note that
|
| 163 |
|
|
// 2**159 < q < 2**160.
|
| 164 |
|
|
q = U.setBit(159).setBit(0);
|
| 165 |
|
|
// 4. Use a robust primality testing algorithm to test whether
|
| 166 |
|
|
// q is prime(1). A robust primality test is one where the
|
| 167 |
|
|
// probability of a non-prime number passing the test is at
|
| 168 |
|
|
// most 1/2**80.
|
| 169 |
|
|
// 5. If q is not prime, go to step 1.
|
| 170 |
|
|
if (q.isProbablePrime(80))
|
| 171 |
|
|
break step1;
|
| 172 |
|
|
} // step1
|
| 173 |
|
|
// 6. Let counter = 0 and offset = 2.
|
| 174 |
|
|
counter = 0;
|
| 175 |
|
|
offset = 2;
|
| 176 |
|
|
while (true)
|
| 177 |
|
|
{
|
| 178 |
|
|
OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL);
|
| 179 |
|
|
SEED_PLUS_OFFSET = SEED.add(OFFSET);
|
| 180 |
|
|
// 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g].
|
| 181 |
|
|
synchronized (sha)
|
| 182 |
|
|
{
|
| 183 |
|
|
for (int k = 0; k <= n; k++)
|
| 184 |
|
|
{
|
| 185 |
|
|
a = SEED_PLUS_OFFSET
|
| 186 |
|
|
.add(BigInteger.valueOf(k & 0xFFFFFFFFL))
|
| 187 |
|
|
.mod(TWO_POW_160).toByteArray();
|
| 188 |
|
|
sha.update(a, 0, a.length);
|
| 189 |
|
|
V[k] = new BigInteger(1, sha.digest());
|
| 190 |
|
|
}
|
| 191 |
|
|
}
|
| 192 |
|
|
// 8. Let W be the integer:
|
| 193 |
|
|
// V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160)
|
| 194 |
|
|
// and let : X = W + 2**(L-1).
|
| 195 |
|
|
// Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L.
|
| 196 |
|
|
W = V[0];
|
| 197 |
|
|
for (int k = 1; k < n; k++)
|
| 198 |
|
|
W = W.add(V[k].multiply(TWO.pow(k * 160)));
|
| 199 |
|
|
|
| 200 |
|
|
W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n * 160)));
|
| 201 |
|
|
X = W.add(TWO.pow(L - 1));
|
| 202 |
|
|
// 9. Let c = X mod 2q and set p = X - (c - 1).
|
| 203 |
|
|
// Note that p is congruent to 1 mod 2q.
|
| 204 |
|
|
c = X.mod(TWO.multiply(q));
|
| 205 |
|
|
p = X.subtract(c.subtract(BigInteger.ONE));
|
| 206 |
|
|
// 10. If p < 2**(L-1), then go to step 13.
|
| 207 |
|
|
if (p.compareTo(TWO.pow(L - 1)) >= 0)
|
| 208 |
|
|
{
|
| 209 |
|
|
// 11. Perform a robust primality test on p.
|
| 210 |
|
|
// 12. If p passes the test performed in step 11, go to step 15.
|
| 211 |
|
|
if (p.isProbablePrime(80))
|
| 212 |
|
|
break algorithm;
|
| 213 |
|
|
}
|
| 214 |
|
|
// 13. Let counter = counter + 1 and offset = offset + n + 1.
|
| 215 |
|
|
counter++;
|
| 216 |
|
|
offset += n + 1;
|
| 217 |
|
|
// 14. If counter >= 4096 go to step 1, otherwise go to step 7.
|
| 218 |
|
|
if (counter >= 4096)
|
| 219 |
|
|
continue algorithm;
|
| 220 |
|
|
} // step7
|
| 221 |
|
|
} // algorithm
|
| 222 |
|
|
// compute g. from FIPS-186, Appendix 4:
|
| 223 |
|
|
// 1. Generate p and q as specified in Appendix 2.
|
| 224 |
|
|
// 2. Let e = (p - 1) / q
|
| 225 |
|
|
BigInteger e = p.subtract(BigInteger.ONE).divide(q);
|
| 226 |
|
|
BigInteger h = TWO;
|
| 227 |
|
|
BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
|
| 228 |
|
|
g = TWO;
|
| 229 |
|
|
// 3. Set h = any integer, where 1 < h < p - 1 and
|
| 230 |
|
|
// h differs from any value previously tried
|
| 231 |
|
|
for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
|
| 232 |
|
|
{
|
| 233 |
|
|
// 4. Set g = h**e mod p
|
| 234 |
|
|
g = h.modPow(e, p);
|
| 235 |
|
|
// 5. If g = 1, go to step 3
|
| 236 |
|
|
if (! g.equals(BigInteger.ONE))
|
| 237 |
|
|
break;
|
| 238 |
|
|
}
|
| 239 |
|
|
return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
|
| 240 |
|
|
}
|
| 241 |
|
|
|
| 242 |
|
|
/**
|
| 243 |
|
|
* Fills the designated byte array with random data.
|
| 244 |
|
|
*
|
| 245 |
|
|
* @param buffer the byte array to fill with random data.
|
| 246 |
|
|
*/
|
| 247 |
|
|
private void nextRandomBytes(byte[] buffer)
|
| 248 |
|
|
{
|
| 249 |
|
|
if (rnd != null)
|
| 250 |
|
|
rnd.nextBytes(buffer);
|
| 251 |
|
|
else
|
| 252 |
|
|
getDefaultPRNG().nextBytes(buffer);
|
| 253 |
|
|
}
|
| 254 |
|
|
|
| 255 |
|
|
private PRNG getDefaultPRNG()
|
| 256 |
|
|
{
|
| 257 |
|
|
if (prng == null)
|
| 258 |
|
|
prng = PRNG.getInstance();
|
| 259 |
|
|
|
| 260 |
|
|
return prng;
|
| 261 |
|
|
}
|
| 262 |
|
|
}
|