1 |
769 |
jeremybenn |
/* FIPS186.java --
|
2 |
|
|
Copyright 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is a part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
9 |
|
|
your option) any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
19 |
|
|
USA
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
package gnu.java.security.key.dss;
|
40 |
|
|
|
41 |
|
|
import gnu.java.security.hash.Sha160;
|
42 |
|
|
import gnu.java.security.util.PRNG;
|
43 |
|
|
|
44 |
|
|
import java.math.BigInteger;
|
45 |
|
|
import java.security.SecureRandom;
|
46 |
|
|
|
47 |
|
|
/**
|
48 |
|
|
* An implementation of the DSA parameters generation as described in FIPS-186.
|
49 |
|
|
* <p>
|
50 |
|
|
* References:
|
51 |
|
|
* <p>
|
52 |
|
|
* <a href="http://www.itl.nist.gov/fipspubs/fip186.htm">Digital Signature
|
53 |
|
|
* Standard (DSS)</a>, Federal Information Processing Standards Publication
|
54 |
|
|
* 186. National Institute of Standards and Technology.
|
55 |
|
|
*/
|
56 |
|
|
public class FIPS186
|
57 |
|
|
{
|
58 |
|
|
public static final int DSA_PARAMS_SEED = 0;
|
59 |
|
|
|
60 |
|
|
public static final int DSA_PARAMS_COUNTER = 1;
|
61 |
|
|
|
62 |
|
|
public static final int DSA_PARAMS_Q = 2;
|
63 |
|
|
|
64 |
|
|
public static final int DSA_PARAMS_P = 3;
|
65 |
|
|
|
66 |
|
|
public static final int DSA_PARAMS_E = 4;
|
67 |
|
|
|
68 |
|
|
public static final int DSA_PARAMS_G = 5;
|
69 |
|
|
|
70 |
|
|
/** The BigInteger constant 2. */
|
71 |
|
|
private static final BigInteger TWO = BigInteger.valueOf(2L);
|
72 |
|
|
|
73 |
|
|
private static final BigInteger TWO_POW_160 = TWO.pow(160);
|
74 |
|
|
|
75 |
|
|
/** The SHA instance to use. */
|
76 |
|
|
private Sha160 sha = new Sha160();
|
77 |
|
|
|
78 |
|
|
/** The length of the modulus of DSS keys generated by this instance. */
|
79 |
|
|
private int L;
|
80 |
|
|
|
81 |
|
|
/** The optional {@link SecureRandom} instance to use. */
|
82 |
|
|
private SecureRandom rnd = null;
|
83 |
|
|
|
84 |
|
|
/** Our default source of randomness. */
|
85 |
|
|
private PRNG prng = null;
|
86 |
|
|
|
87 |
|
|
public FIPS186(int L, SecureRandom rnd)
|
88 |
|
|
{
|
89 |
|
|
super();
|
90 |
|
|
|
91 |
|
|
this.L = L;
|
92 |
|
|
this.rnd = rnd;
|
93 |
|
|
}
|
94 |
|
|
|
95 |
|
|
/**
|
96 |
|
|
* This method generates the DSS <code>p</code>, <code>q</code>, and
|
97 |
|
|
* <code>g</code> parameters only when <code>L</code> (the modulus length)
|
98 |
|
|
* is not one of the following: <code>512</code>, <code>768</code> and
|
99 |
|
|
* <code>1024</code>. For those values of <code>L</code>, this
|
100 |
|
|
* implementation uses pre-computed values of <code>p</code>,
|
101 |
|
|
* <code>q</code>, and <code>g</code> given in the document <i>CryptoSpec</i>
|
102 |
|
|
* included in the security guide documentation of the standard JDK
|
103 |
|
|
* distribution.
|
104 |
|
|
* <p>
|
105 |
|
|
* The DSS requires two primes , <code>p</code> and <code>q</code>,
|
106 |
|
|
* satisfying the following three conditions:
|
107 |
|
|
* <ul>
|
108 |
|
|
* <li><code>2<sup>159</sup> < q < 2<sup>160</sup></code></li>
|
109 |
|
|
* <li><code>2<sup>L-1</sup> < p < 2<sup>L</sup></code> for a
|
110 |
|
|
* specified <code>L</code>, where <code>L = 512 + 64j</code> for some
|
111 |
|
|
* <code>0 <= j <= 8</code></li>
|
112 |
|
|
* <li>q divides p - 1.</li>
|
113 |
|
|
* </ul>
|
114 |
|
|
* The algorithm used to find these primes is as described in FIPS-186,
|
115 |
|
|
* section 2.2: GENERATION OF PRIMES. This prime generation scheme starts by
|
116 |
|
|
* using the {@link Sha160} and a user supplied <i>SEED</i> to construct a
|
117 |
|
|
* prime, <code>q</code>, in the range 2<sup>159</sup> < q < 2<sup>160</sup>.
|
118 |
|
|
* Once this is accomplished, the same <i>SEED</i> value is used to construct
|
119 |
|
|
* an <code>X</code> in the range <code>2<sup>L-1
|
120 |
|
|
* </sup> < X < 2<sup>L</sup>. The prime, <code>p</code>, is then
|
121 |
|
|
* formed by rounding <code>X</code> to a number congruent to <code>1 mod
|
122 |
|
|
* 2q</code>. In this implementation we use the same <i>SEED</i> value given
|
123 |
|
|
* in FIPS-186, Appendix 5.
|
124 |
|
|
*/
|
125 |
|
|
public BigInteger[] generateParameters()
|
126 |
|
|
{
|
127 |
|
|
int counter, offset;
|
128 |
|
|
BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g;
|
129 |
|
|
byte[] a, u;
|
130 |
|
|
byte[] kb = new byte[20]; // to hold 160 bits of randomness
|
131 |
|
|
|
132 |
|
|
// Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160.
|
133 |
|
|
int b = (L - 1) % 160;
|
134 |
|
|
int n = (L - 1 - b) / 160;
|
135 |
|
|
BigInteger[] V = new BigInteger[n + 1];
|
136 |
|
|
algorithm: while (true)
|
137 |
|
|
{
|
138 |
|
|
step1: while (true)
|
139 |
|
|
{
|
140 |
|
|
// 1. Choose an arbitrary sequence of at least 160 bits and
|
141 |
|
|
// call it SEED.
|
142 |
|
|
nextRandomBytes(kb);
|
143 |
|
|
SEED = new BigInteger(1, kb).setBit(159).setBit(0);
|
144 |
|
|
// Let g be the length of SEED in bits. here always 160
|
145 |
|
|
// 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]
|
146 |
|
|
alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160);
|
147 |
|
|
synchronized (sha)
|
148 |
|
|
{
|
149 |
|
|
a = SEED.toByteArray();
|
150 |
|
|
sha.update(a, 0, a.length);
|
151 |
|
|
a = sha.digest();
|
152 |
|
|
u = alpha.toByteArray();
|
153 |
|
|
sha.update(u, 0, u.length);
|
154 |
|
|
u = sha.digest();
|
155 |
|
|
}
|
156 |
|
|
for (int i = 0; i < a.length; i++)
|
157 |
|
|
a[i] ^= u[i];
|
158 |
|
|
|
159 |
|
|
U = new BigInteger(1, a);
|
160 |
|
|
// 3. Form q from U by setting the most significant bit (the
|
161 |
|
|
// 2**159 bit) and the least significant bit to 1. In terms of
|
162 |
|
|
// boolean operations, q = U OR 2**159 OR 1. Note that
|
163 |
|
|
// 2**159 < q < 2**160.
|
164 |
|
|
q = U.setBit(159).setBit(0);
|
165 |
|
|
// 4. Use a robust primality testing algorithm to test whether
|
166 |
|
|
// q is prime(1). A robust primality test is one where the
|
167 |
|
|
// probability of a non-prime number passing the test is at
|
168 |
|
|
// most 1/2**80.
|
169 |
|
|
// 5. If q is not prime, go to step 1.
|
170 |
|
|
if (q.isProbablePrime(80))
|
171 |
|
|
break step1;
|
172 |
|
|
} // step1
|
173 |
|
|
// 6. Let counter = 0 and offset = 2.
|
174 |
|
|
counter = 0;
|
175 |
|
|
offset = 2;
|
176 |
|
|
while (true)
|
177 |
|
|
{
|
178 |
|
|
OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL);
|
179 |
|
|
SEED_PLUS_OFFSET = SEED.add(OFFSET);
|
180 |
|
|
// 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g].
|
181 |
|
|
synchronized (sha)
|
182 |
|
|
{
|
183 |
|
|
for (int k = 0; k <= n; k++)
|
184 |
|
|
{
|
185 |
|
|
a = SEED_PLUS_OFFSET
|
186 |
|
|
.add(BigInteger.valueOf(k & 0xFFFFFFFFL))
|
187 |
|
|
.mod(TWO_POW_160).toByteArray();
|
188 |
|
|
sha.update(a, 0, a.length);
|
189 |
|
|
V[k] = new BigInteger(1, sha.digest());
|
190 |
|
|
}
|
191 |
|
|
}
|
192 |
|
|
// 8. Let W be the integer:
|
193 |
|
|
// V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160)
|
194 |
|
|
// and let : X = W + 2**(L-1).
|
195 |
|
|
// Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L.
|
196 |
|
|
W = V[0];
|
197 |
|
|
for (int k = 1; k < n; k++)
|
198 |
|
|
W = W.add(V[k].multiply(TWO.pow(k * 160)));
|
199 |
|
|
|
200 |
|
|
W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n * 160)));
|
201 |
|
|
X = W.add(TWO.pow(L - 1));
|
202 |
|
|
// 9. Let c = X mod 2q and set p = X - (c - 1).
|
203 |
|
|
// Note that p is congruent to 1 mod 2q.
|
204 |
|
|
c = X.mod(TWO.multiply(q));
|
205 |
|
|
p = X.subtract(c.subtract(BigInteger.ONE));
|
206 |
|
|
// 10. If p < 2**(L-1), then go to step 13.
|
207 |
|
|
if (p.compareTo(TWO.pow(L - 1)) >= 0)
|
208 |
|
|
{
|
209 |
|
|
// 11. Perform a robust primality test on p.
|
210 |
|
|
// 12. If p passes the test performed in step 11, go to step 15.
|
211 |
|
|
if (p.isProbablePrime(80))
|
212 |
|
|
break algorithm;
|
213 |
|
|
}
|
214 |
|
|
// 13. Let counter = counter + 1 and offset = offset + n + 1.
|
215 |
|
|
counter++;
|
216 |
|
|
offset += n + 1;
|
217 |
|
|
// 14. If counter >= 4096 go to step 1, otherwise go to step 7.
|
218 |
|
|
if (counter >= 4096)
|
219 |
|
|
continue algorithm;
|
220 |
|
|
} // step7
|
221 |
|
|
} // algorithm
|
222 |
|
|
// compute g. from FIPS-186, Appendix 4:
|
223 |
|
|
// 1. Generate p and q as specified in Appendix 2.
|
224 |
|
|
// 2. Let e = (p - 1) / q
|
225 |
|
|
BigInteger e = p.subtract(BigInteger.ONE).divide(q);
|
226 |
|
|
BigInteger h = TWO;
|
227 |
|
|
BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
|
228 |
|
|
g = TWO;
|
229 |
|
|
// 3. Set h = any integer, where 1 < h < p - 1 and
|
230 |
|
|
// h differs from any value previously tried
|
231 |
|
|
for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
|
232 |
|
|
{
|
233 |
|
|
// 4. Set g = h**e mod p
|
234 |
|
|
g = h.modPow(e, p);
|
235 |
|
|
// 5. If g = 1, go to step 3
|
236 |
|
|
if (! g.equals(BigInteger.ONE))
|
237 |
|
|
break;
|
238 |
|
|
}
|
239 |
|
|
return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
|
240 |
|
|
}
|
241 |
|
|
|
242 |
|
|
/**
|
243 |
|
|
* Fills the designated byte array with random data.
|
244 |
|
|
*
|
245 |
|
|
* @param buffer the byte array to fill with random data.
|
246 |
|
|
*/
|
247 |
|
|
private void nextRandomBytes(byte[] buffer)
|
248 |
|
|
{
|
249 |
|
|
if (rnd != null)
|
250 |
|
|
rnd.nextBytes(buffer);
|
251 |
|
|
else
|
252 |
|
|
getDefaultPRNG().nextBytes(buffer);
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
private PRNG getDefaultPRNG()
|
256 |
|
|
{
|
257 |
|
|
if (prng == null)
|
258 |
|
|
prng = PRNG.getInstance();
|
259 |
|
|
|
260 |
|
|
return prng;
|
261 |
|
|
}
|
262 |
|
|
}
|