OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [gnu/] [java/] [security/] [key/] [dss/] [FIPS186.java] - Blame information for rev 775

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 769 jeremybenn
/* FIPS186.java --
2
   Copyright 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
3
 
4
This file is a part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2 of the License, or (at
9
your option) any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; if not, write to the Free Software
18
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
19
USA
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version.  */
37
 
38
 
39
package gnu.java.security.key.dss;
40
 
41
import gnu.java.security.hash.Sha160;
42
import gnu.java.security.util.PRNG;
43
 
44
import java.math.BigInteger;
45
import java.security.SecureRandom;
46
 
47
/**
48
 * An implementation of the DSA parameters generation as described in FIPS-186.
49
 * <p>
50
 * References:
51
 * <p>
52
 * <a href="http://www.itl.nist.gov/fipspubs/fip186.htm">Digital Signature
53
 * Standard (DSS)</a>, Federal Information Processing Standards Publication
54
 * 186. National Institute of Standards and Technology.
55
 */
56
public class FIPS186
57
{
58
  public static final int DSA_PARAMS_SEED = 0;
59
 
60
  public static final int DSA_PARAMS_COUNTER = 1;
61
 
62
  public static final int DSA_PARAMS_Q = 2;
63
 
64
  public static final int DSA_PARAMS_P = 3;
65
 
66
  public static final int DSA_PARAMS_E = 4;
67
 
68
  public static final int DSA_PARAMS_G = 5;
69
 
70
  /** The BigInteger constant 2. */
71
  private static final BigInteger TWO = BigInteger.valueOf(2L);
72
 
73
  private static final BigInteger TWO_POW_160 = TWO.pow(160);
74
 
75
  /** The SHA instance to use. */
76
  private Sha160 sha = new Sha160();
77
 
78
  /** The length of the modulus of DSS keys generated by this instance. */
79
  private int L;
80
 
81
  /** The optional {@link SecureRandom} instance to use. */
82
  private SecureRandom rnd = null;
83
 
84
  /** Our default source of randomness. */
85
  private PRNG prng = null;
86
 
87
  public FIPS186(int L, SecureRandom rnd)
88
  {
89
    super();
90
 
91
    this.L = L;
92
    this.rnd = rnd;
93
  }
94
 
95
  /**
96
   * This method generates the DSS <code>p</code>, <code>q</code>, and
97
   * <code>g</code> parameters only when <code>L</code> (the modulus length)
98
   * is not one of the following: <code>512</code>, <code>768</code> and
99
   * <code>1024</code>. For those values of <code>L</code>, this
100
   * implementation uses pre-computed values of <code>p</code>,
101
   * <code>q</code>, and <code>g</code> given in the document <i>CryptoSpec</i>
102
   * included in the security guide documentation of the standard JDK
103
   * distribution.
104
   * <p>
105
   * The DSS requires two primes , <code>p</code> and <code>q</code>,
106
   * satisfying the following three conditions:
107
   * <ul>
108
   * <li><code>2<sup>159</sup> &lt; q &lt; 2<sup>160</sup></code></li>
109
   * <li><code>2<sup>L-1</sup> &lt; p &lt; 2<sup>L</sup></code> for a
110
   * specified <code>L</code>, where <code>L = 512 + 64j</code> for some
111
   * <code>0 &lt;= j &lt;= 8</code></li>
112
   * <li>q divides p - 1.</li>
113
   * </ul>
114
   * The algorithm used to find these primes is as described in FIPS-186,
115
   * section 2.2: GENERATION OF PRIMES. This prime generation scheme starts by
116
   * using the {@link Sha160} and a user supplied <i>SEED</i> to construct a
117
   * prime, <code>q</code>, in the range 2<sup>159</sup> &lt; q &lt; 2<sup>160</sup>.
118
   * Once this is accomplished, the same <i>SEED</i> value is used to construct
119
   * an <code>X</code> in the range <code>2<sup>L-1
120
   * </sup> &lt; X &lt; 2<sup>L</sup>. The prime, <code>p</code>, is then
121
   * formed by rounding <code>X</code> to a number congruent to <code>1 mod
122
   * 2q</code>. In this implementation we use the same <i>SEED</i> value given
123
   * in FIPS-186, Appendix 5.
124
   */
125
  public BigInteger[] generateParameters()
126
  {
127
    int counter, offset;
128
    BigInteger SEED, alpha, U, q, OFFSET, SEED_PLUS_OFFSET, W, X, p, c, g;
129
    byte[] a, u;
130
    byte[] kb = new byte[20]; // to hold 160 bits of randomness
131
 
132
    // Let L-1 = n*160 + b, where b and n are integers and 0 <= b < 160.
133
    int b = (L - 1) % 160;
134
    int n = (L - 1 - b) / 160;
135
    BigInteger[] V = new BigInteger[n + 1];
136
    algorithm: while (true)
137
      {
138
        step1: while (true)
139
          {
140
            // 1. Choose an arbitrary sequence of at least 160 bits and
141
            // call it SEED.
142
            nextRandomBytes(kb);
143
            SEED = new BigInteger(1, kb).setBit(159).setBit(0);
144
            // Let g be the length of SEED in bits. here always 160
145
            // 2. Compute: U = SHA[SEED] XOR SHA[(SEED+1) mod 2**g]
146
            alpha = SEED.add(BigInteger.ONE).mod(TWO_POW_160);
147
            synchronized (sha)
148
              {
149
                a = SEED.toByteArray();
150
                sha.update(a, 0, a.length);
151
                a = sha.digest();
152
                u = alpha.toByteArray();
153
                sha.update(u, 0, u.length);
154
                u = sha.digest();
155
              }
156
            for (int i = 0; i < a.length; i++)
157
              a[i] ^= u[i];
158
 
159
            U = new BigInteger(1, a);
160
            // 3. Form q from U by setting the most significant bit (the
161
            // 2**159 bit) and the least significant bit to 1. In terms of
162
            // boolean operations, q = U OR 2**159 OR 1. Note that
163
            // 2**159 < q < 2**160.
164
            q = U.setBit(159).setBit(0);
165
            // 4. Use a robust primality testing algorithm to test whether
166
            // q is prime(1). A robust primality test is one where the
167
            // probability of a non-prime number passing the test is at
168
            // most 1/2**80.
169
            // 5. If q is not prime, go to step 1.
170
            if (q.isProbablePrime(80))
171
              break step1;
172
          } // step1
173
        // 6. Let counter = 0 and offset = 2.
174
        counter = 0;
175
        offset = 2;
176
        while (true)
177
          {
178
            OFFSET = BigInteger.valueOf(offset & 0xFFFFFFFFL);
179
            SEED_PLUS_OFFSET = SEED.add(OFFSET);
180
            // 7. For k = 0,...,n let V[k] = SHA[(SEED + offset + k) mod 2**g].
181
            synchronized (sha)
182
              {
183
                for (int k = 0; k <= n; k++)
184
                  {
185
                    a = SEED_PLUS_OFFSET
186
                        .add(BigInteger.valueOf(k & 0xFFFFFFFFL))
187
                        .mod(TWO_POW_160).toByteArray();
188
                    sha.update(a, 0, a.length);
189
                    V[k] = new BigInteger(1, sha.digest());
190
                  }
191
              }
192
            // 8. Let W be the integer:
193
            // V[0]+V[1]*2**160+...+V[n-1]*2**((n-1)*160)+(V[n]mod2**b)*2**(n*160)
194
            // and let : X = W + 2**(L-1).
195
            // Note that 0 <= W < 2**(L-1) and hence 2**(L-1) <= X < 2**L.
196
            W = V[0];
197
            for (int k = 1; k < n; k++)
198
              W = W.add(V[k].multiply(TWO.pow(k * 160)));
199
 
200
            W = W.add(V[n].mod(TWO.pow(b)).multiply(TWO.pow(n * 160)));
201
            X = W.add(TWO.pow(L - 1));
202
            // 9. Let c = X mod 2q and set p = X - (c - 1).
203
            // Note that p is congruent to 1 mod 2q.
204
            c = X.mod(TWO.multiply(q));
205
            p = X.subtract(c.subtract(BigInteger.ONE));
206
            // 10. If p < 2**(L-1), then go to step 13.
207
            if (p.compareTo(TWO.pow(L - 1)) >= 0)
208
              {
209
                // 11. Perform a robust primality test on p.
210
                // 12. If p passes the test performed in step 11, go to step 15.
211
                if (p.isProbablePrime(80))
212
                  break algorithm;
213
              }
214
            // 13. Let counter = counter + 1 and offset = offset + n + 1.
215
            counter++;
216
            offset += n + 1;
217
            // 14. If counter >= 4096 go to step 1, otherwise go to step 7.
218
            if (counter >= 4096)
219
              continue algorithm;
220
          } // step7
221
      } // algorithm
222
    // compute g. from FIPS-186, Appendix 4:
223
    // 1. Generate p and q as specified in Appendix 2.
224
    // 2. Let e = (p - 1) / q
225
    BigInteger e = p.subtract(BigInteger.ONE).divide(q);
226
    BigInteger h = TWO;
227
    BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
228
    g = TWO;
229
    // 3. Set h = any integer, where 1 < h < p - 1 and
230
    // h differs from any value previously tried
231
    for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
232
      {
233
        // 4. Set g = h**e mod p
234
        g = h.modPow(e, p);
235
        // 5. If g = 1, go to step 3
236
        if (! g.equals(BigInteger.ONE))
237
          break;
238
      }
239
    return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
240
  }
241
 
242
  /**
243
   * Fills the designated byte array with random data.
244
   *
245
   * @param buffer the byte array to fill with random data.
246
   */
247
  private void nextRandomBytes(byte[] buffer)
248
  {
249
    if (rnd != null)
250
      rnd.nextBytes(buffer);
251
    else
252
      getDefaultPRNG().nextBytes(buffer);
253
  }
254
 
255
  private PRNG getDefaultPRNG()
256
  {
257
    if (prng == null)
258
      prng = PRNG.getInstance();
259
 
260
    return prng;
261
  }
262
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.