| 1 |
769 |
jeremybenn |
/* RSA.java --
|
| 2 |
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is a part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
| 9 |
|
|
your option) any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; if not, write to the Free Software
|
| 18 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
| 19 |
|
|
USA
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
package gnu.java.security.sig.rsa;
|
| 40 |
|
|
|
| 41 |
|
|
import gnu.java.security.Properties;
|
| 42 |
|
|
import gnu.java.security.util.PRNG;
|
| 43 |
|
|
|
| 44 |
|
|
import java.math.BigInteger;
|
| 45 |
|
|
import java.security.PrivateKey;
|
| 46 |
|
|
import java.security.PublicKey;
|
| 47 |
|
|
import java.security.interfaces.RSAPrivateCrtKey;
|
| 48 |
|
|
import java.security.interfaces.RSAPrivateKey;
|
| 49 |
|
|
import java.security.interfaces.RSAPublicKey;
|
| 50 |
|
|
|
| 51 |
|
|
/**
|
| 52 |
|
|
* Utility methods related to the RSA algorithm.
|
| 53 |
|
|
* <p>
|
| 54 |
|
|
* References:
|
| 55 |
|
|
* <ol>
|
| 56 |
|
|
* <li><a
|
| 57 |
|
|
* href="http://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/rsa-pss.zip">
|
| 58 |
|
|
* RSA-PSS Signature Scheme with Appendix, part B.</a><br>
|
| 59 |
|
|
* Primitive specification and supporting documentation.<br>
|
| 60 |
|
|
* Jakob Jonsson and Burt Kaliski.</li>
|
| 61 |
|
|
* <li><a href="http://www.ietf.org/rfc/rfc3447.txt">Public-Key Cryptography
|
| 62 |
|
|
* Standards (PKCS) #1:</a><br>
|
| 63 |
|
|
* RSA Cryptography Specifications Version 2.1.<br>
|
| 64 |
|
|
* Jakob Jonsson and Burt Kaliski.</li>
|
| 65 |
|
|
* <li><a href="http://crypto.stanford.edu/~dabo/abstracts/ssl-timing.html">
|
| 66 |
|
|
* Remote timing attacks are practical</a><br>
|
| 67 |
|
|
* D. Boneh and D. Brumley.</li>
|
| 68 |
|
|
* </ol>
|
| 69 |
|
|
*/
|
| 70 |
|
|
public class RSA
|
| 71 |
|
|
{
|
| 72 |
|
|
private static final BigInteger ZERO = BigInteger.ZERO;
|
| 73 |
|
|
|
| 74 |
|
|
private static final BigInteger ONE = BigInteger.ONE;
|
| 75 |
|
|
|
| 76 |
|
|
/** Our default source of randomness. */
|
| 77 |
|
|
private static final PRNG prng = PRNG.getInstance();
|
| 78 |
|
|
|
| 79 |
|
|
/** Trivial private constructor to enforce Singleton pattern. */
|
| 80 |
|
|
private RSA()
|
| 81 |
|
|
{
|
| 82 |
|
|
super();
|
| 83 |
|
|
}
|
| 84 |
|
|
|
| 85 |
|
|
/**
|
| 86 |
|
|
* An implementation of the <b>RSASP</b> method: Assuming that the designated
|
| 87 |
|
|
* RSA private key is a valid one, this method computes a <i>signature
|
| 88 |
|
|
* representative</i> for a designated <i>message representative</i> signed
|
| 89 |
|
|
* by the holder of the designated RSA private key.
|
| 90 |
|
|
*
|
| 91 |
|
|
* @param K the RSA private key.
|
| 92 |
|
|
* @param m the <i>message representative</i>: an integer between
|
| 93 |
|
|
* <code>0</code> and <code>n - 1</code>, where <code>n</code>
|
| 94 |
|
|
* is the RSA <i>modulus</i>.
|
| 95 |
|
|
* @return the <i>signature representative</i>, an integer between
|
| 96 |
|
|
* <code>0</code> and <code>n - 1</code>, where <code>n</code>
|
| 97 |
|
|
* is the RSA <i>modulus</i>.
|
| 98 |
|
|
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
| 99 |
|
|
* @throws IllegalArgumentException if <code>m</code> (the <i>message
|
| 100 |
|
|
* representative</i>) is out of range.
|
| 101 |
|
|
*/
|
| 102 |
|
|
public static final BigInteger sign(final PrivateKey K, final BigInteger m)
|
| 103 |
|
|
{
|
| 104 |
|
|
try
|
| 105 |
|
|
{
|
| 106 |
|
|
return RSADP((RSAPrivateKey) K, m);
|
| 107 |
|
|
}
|
| 108 |
|
|
catch (IllegalArgumentException x)
|
| 109 |
|
|
{
|
| 110 |
|
|
throw new IllegalArgumentException("message representative out of range");
|
| 111 |
|
|
}
|
| 112 |
|
|
}
|
| 113 |
|
|
|
| 114 |
|
|
/**
|
| 115 |
|
|
* An implementation of the <b>RSAVP</b> method: Assuming that the designated
|
| 116 |
|
|
* RSA public key is a valid one, this method computes a <i>message
|
| 117 |
|
|
* representative</i> for the designated <i>signature representative</i>
|
| 118 |
|
|
* generated by an RSA private key, for a message intended for the holder of
|
| 119 |
|
|
* the designated RSA public key.
|
| 120 |
|
|
*
|
| 121 |
|
|
* @param K the RSA public key.
|
| 122 |
|
|
* @param s the <i>signature representative</i>, an integer between
|
| 123 |
|
|
* <code>0</code> and <code>n - 1</code>, where <code>n</code>
|
| 124 |
|
|
* is the RSA <i>modulus</i>.
|
| 125 |
|
|
* @return a <i>message representative</i>: an integer between <code>0</code>
|
| 126 |
|
|
* and <code>n - 1</code>, where <code>n</code> is the RSA
|
| 127 |
|
|
* <i>modulus</i>.
|
| 128 |
|
|
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
| 129 |
|
|
* @throws IllegalArgumentException if <code>s</code> (the <i>signature
|
| 130 |
|
|
* representative</i>) is out of range.
|
| 131 |
|
|
*/
|
| 132 |
|
|
public static final BigInteger verify(final PublicKey K, final BigInteger s)
|
| 133 |
|
|
{
|
| 134 |
|
|
try
|
| 135 |
|
|
{
|
| 136 |
|
|
return RSAEP((RSAPublicKey) K, s);
|
| 137 |
|
|
}
|
| 138 |
|
|
catch (IllegalArgumentException x)
|
| 139 |
|
|
{
|
| 140 |
|
|
throw new IllegalArgumentException("signature representative out of range");
|
| 141 |
|
|
}
|
| 142 |
|
|
}
|
| 143 |
|
|
|
| 144 |
|
|
/**
|
| 145 |
|
|
* An implementation of the <code>RSAEP</code> algorithm.
|
| 146 |
|
|
*
|
| 147 |
|
|
* @param K the recipient's RSA public key.
|
| 148 |
|
|
* @param m the message representative as an MPI.
|
| 149 |
|
|
* @return the resulting MPI --an MPI between <code>0</code> and
|
| 150 |
|
|
* <code>n - 1</code> (<code>n</code> being the public shared
|
| 151 |
|
|
* modulus)-- that will eventually be padded with an appropriate
|
| 152 |
|
|
* framing/padding scheme.
|
| 153 |
|
|
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
| 154 |
|
|
* @throws IllegalArgumentException if <code>m</code>, the message
|
| 155 |
|
|
* representative is not between <code>0</code> and
|
| 156 |
|
|
* <code>n - 1</code> (<code>n</code> being the public shared
|
| 157 |
|
|
* modulus).
|
| 158 |
|
|
*/
|
| 159 |
|
|
public static final BigInteger encrypt(final PublicKey K, final BigInteger m)
|
| 160 |
|
|
{
|
| 161 |
|
|
try
|
| 162 |
|
|
{
|
| 163 |
|
|
return RSAEP((RSAPublicKey) K, m);
|
| 164 |
|
|
}
|
| 165 |
|
|
catch (IllegalArgumentException x)
|
| 166 |
|
|
{
|
| 167 |
|
|
throw new IllegalArgumentException("message representative out of range");
|
| 168 |
|
|
}
|
| 169 |
|
|
}
|
| 170 |
|
|
|
| 171 |
|
|
/**
|
| 172 |
|
|
* An implementation of the <code>RSADP</code> algorithm.
|
| 173 |
|
|
*
|
| 174 |
|
|
* @param K the recipient's RSA private key.
|
| 175 |
|
|
* @param c the ciphertext representative as an MPI.
|
| 176 |
|
|
* @return the message representative, an MPI between <code>0</code> and
|
| 177 |
|
|
* <code>n - 1</code> (<code>n</code> being the shared public
|
| 178 |
|
|
* modulus).
|
| 179 |
|
|
* @throws ClassCastException if <code>K</code> is not an RSA one.
|
| 180 |
|
|
* @throws IllegalArgumentException if <code>c</code>, the ciphertext
|
| 181 |
|
|
* representative is not between <code>0</code> and
|
| 182 |
|
|
* <code>n - 1</code> (<code>n</code> being the shared public
|
| 183 |
|
|
* modulus).
|
| 184 |
|
|
*/
|
| 185 |
|
|
public static final BigInteger decrypt(final PrivateKey K, final BigInteger c)
|
| 186 |
|
|
{
|
| 187 |
|
|
try
|
| 188 |
|
|
{
|
| 189 |
|
|
return RSADP((RSAPrivateKey) K, c);
|
| 190 |
|
|
}
|
| 191 |
|
|
catch (IllegalArgumentException x)
|
| 192 |
|
|
{
|
| 193 |
|
|
throw new IllegalArgumentException("ciphertext representative out of range");
|
| 194 |
|
|
}
|
| 195 |
|
|
}
|
| 196 |
|
|
|
| 197 |
|
|
/**
|
| 198 |
|
|
* Converts a <i>multi-precision integer</i> (MPI) <code>s</code> into an
|
| 199 |
|
|
* octet sequence of length <code>k</code>.
|
| 200 |
|
|
*
|
| 201 |
|
|
* @param s the multi-precision integer to convert.
|
| 202 |
|
|
* @param k the length of the output.
|
| 203 |
|
|
* @return the result of the transform.
|
| 204 |
|
|
* @exception IllegalArgumentException if the length in octets of meaningful
|
| 205 |
|
|
* bytes of <code>s</code> is greater than <code>k</code>.
|
| 206 |
|
|
*/
|
| 207 |
|
|
public static final byte[] I2OSP(final BigInteger s, final int k)
|
| 208 |
|
|
{
|
| 209 |
|
|
byte[] result = s.toByteArray();
|
| 210 |
|
|
if (result.length < k)
|
| 211 |
|
|
{
|
| 212 |
|
|
final byte[] newResult = new byte[k];
|
| 213 |
|
|
System.arraycopy(result, 0, newResult, k - result.length, result.length);
|
| 214 |
|
|
result = newResult;
|
| 215 |
|
|
}
|
| 216 |
|
|
else if (result.length > k)
|
| 217 |
|
|
{ // leftmost extra bytes should all be 0
|
| 218 |
|
|
final int limit = result.length - k;
|
| 219 |
|
|
for (int i = 0; i < limit; i++)
|
| 220 |
|
|
{
|
| 221 |
|
|
if (result[i] != 0x00)
|
| 222 |
|
|
throw new IllegalArgumentException("integer too large");
|
| 223 |
|
|
}
|
| 224 |
|
|
final byte[] newResult = new byte[k];
|
| 225 |
|
|
System.arraycopy(result, limit, newResult, 0, k);
|
| 226 |
|
|
result = newResult;
|
| 227 |
|
|
}
|
| 228 |
|
|
return result;
|
| 229 |
|
|
}
|
| 230 |
|
|
|
| 231 |
|
|
private static final BigInteger RSAEP(final RSAPublicKey K, final BigInteger m)
|
| 232 |
|
|
{
|
| 233 |
|
|
// 1. If the representative m is not between 0 and n - 1, output
|
| 234 |
|
|
// "representative out of range" and stop.
|
| 235 |
|
|
final BigInteger n = K.getModulus();
|
| 236 |
|
|
if (m.compareTo(ZERO) < 0 || m.compareTo(n.subtract(ONE)) > 0)
|
| 237 |
|
|
throw new IllegalArgumentException();
|
| 238 |
|
|
// 2. Let c = m^e mod n.
|
| 239 |
|
|
final BigInteger e = K.getPublicExponent();
|
| 240 |
|
|
final BigInteger result = m.modPow(e, n);
|
| 241 |
|
|
// 3. Output c.
|
| 242 |
|
|
return result;
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
private static final BigInteger RSADP(final RSAPrivateKey K, BigInteger c)
|
| 246 |
|
|
{
|
| 247 |
|
|
// 1. If the representative c is not between 0 and n - 1, output
|
| 248 |
|
|
// "representative out of range" and stop.
|
| 249 |
|
|
final BigInteger n = K.getModulus();
|
| 250 |
|
|
if (c.compareTo(ZERO) < 0 || c.compareTo(n.subtract(ONE)) > 0)
|
| 251 |
|
|
throw new IllegalArgumentException();
|
| 252 |
|
|
// 2. The representative m is computed as follows.
|
| 253 |
|
|
BigInteger result;
|
| 254 |
|
|
if (! (K instanceof RSAPrivateCrtKey))
|
| 255 |
|
|
{
|
| 256 |
|
|
// a. If the first form (n, d) of K is used, let m = c^d mod n.
|
| 257 |
|
|
final BigInteger d = K.getPrivateExponent();
|
| 258 |
|
|
result = c.modPow(d, n);
|
| 259 |
|
|
}
|
| 260 |
|
|
else
|
| 261 |
|
|
{
|
| 262 |
|
|
// from [3] p.13 --see class docs:
|
| 263 |
|
|
// The RSA blinding operation calculates x = (r^e) * g mod n before
|
| 264 |
|
|
// decryption, where r is random, e is the RSA encryption exponent, and
|
| 265 |
|
|
// g is the ciphertext to be decrypted. x is then decrypted as normal,
|
| 266 |
|
|
// followed by division by r, i.e. (x^e) / r mod n. Since r is random,
|
| 267 |
|
|
// x is random and timing the decryption should not reveal information
|
| 268 |
|
|
// about the key. Note that r should be a new random number for every
|
| 269 |
|
|
// decryption.
|
| 270 |
|
|
final boolean rsaBlinding = Properties.doRSABlinding();
|
| 271 |
|
|
BigInteger r = null;
|
| 272 |
|
|
BigInteger e = null;
|
| 273 |
|
|
if (rsaBlinding)
|
| 274 |
|
|
{ // pre-decryption
|
| 275 |
|
|
r = newR(n);
|
| 276 |
|
|
e = ((RSAPrivateCrtKey) K).getPublicExponent();
|
| 277 |
|
|
final BigInteger x = r.modPow(e, n).multiply(c).mod(n);
|
| 278 |
|
|
c = x;
|
| 279 |
|
|
}
|
| 280 |
|
|
// b. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i)
|
| 281 |
|
|
// of K is used, proceed as follows:
|
| 282 |
|
|
final BigInteger p = ((RSAPrivateCrtKey) K).getPrimeP();
|
| 283 |
|
|
final BigInteger q = ((RSAPrivateCrtKey) K).getPrimeQ();
|
| 284 |
|
|
final BigInteger dP = ((RSAPrivateCrtKey) K).getPrimeExponentP();
|
| 285 |
|
|
final BigInteger dQ = ((RSAPrivateCrtKey) K).getPrimeExponentQ();
|
| 286 |
|
|
final BigInteger qInv = ((RSAPrivateCrtKey) K).getCrtCoefficient();
|
| 287 |
|
|
// i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
|
| 288 |
|
|
final BigInteger m_1 = c.modPow(dP, p);
|
| 289 |
|
|
final BigInteger m_2 = c.modPow(dQ, q);
|
| 290 |
|
|
// ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
|
| 291 |
|
|
// iii. Let h = (m_1 - m_2) * qInv mod p.
|
| 292 |
|
|
final BigInteger h = m_1.subtract(m_2).multiply(qInv).mod(p);
|
| 293 |
|
|
// iv. Let m = m_2 + q * h.
|
| 294 |
|
|
result = m_2.add(q.multiply(h));
|
| 295 |
|
|
if (rsaBlinding) // post-decryption
|
| 296 |
|
|
result = result.multiply(r.modInverse(n)).mod(n);
|
| 297 |
|
|
}
|
| 298 |
|
|
// 3. Output m
|
| 299 |
|
|
return result;
|
| 300 |
|
|
}
|
| 301 |
|
|
|
| 302 |
|
|
/**
|
| 303 |
|
|
* Returns a random MPI with a random bit-length of the form <code>8b</code>,
|
| 304 |
|
|
* where <code>b</code> is in the range <code>[32..64]</code>.
|
| 305 |
|
|
*
|
| 306 |
|
|
* @return a random MPI whose length in bytes is between 32 and 64 inclusive.
|
| 307 |
|
|
*/
|
| 308 |
|
|
private static final BigInteger newR(final BigInteger N)
|
| 309 |
|
|
{
|
| 310 |
|
|
final int upper = (N.bitLength() + 7) / 8;
|
| 311 |
|
|
final int lower = upper / 2;
|
| 312 |
|
|
final byte[] bl = new byte[1];
|
| 313 |
|
|
int b;
|
| 314 |
|
|
do
|
| 315 |
|
|
{
|
| 316 |
|
|
prng.nextBytes(bl);
|
| 317 |
|
|
b = bl[0] & 0xFF;
|
| 318 |
|
|
}
|
| 319 |
|
|
while (b < lower || b > upper);
|
| 320 |
|
|
final byte[] buffer = new byte[b]; // 256-bit MPI
|
| 321 |
|
|
prng.nextBytes(buffer);
|
| 322 |
|
|
return new BigInteger(1, buffer);
|
| 323 |
|
|
}
|
| 324 |
|
|
}
|