| 1 |
769 |
jeremybenn |
/* Square.java --
|
| 2 |
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is a part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
| 9 |
|
|
your option) any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; if not, write to the Free Software
|
| 18 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
| 19 |
|
|
USA
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
package gnu.javax.crypto.cipher;
|
| 40 |
|
|
|
| 41 |
|
|
import gnu.java.security.Registry;
|
| 42 |
|
|
import gnu.java.security.util.Util;
|
| 43 |
|
|
|
| 44 |
|
|
import java.security.InvalidKeyException;
|
| 45 |
|
|
import java.util.ArrayList;
|
| 46 |
|
|
import java.util.Collections;
|
| 47 |
|
|
import java.util.Iterator;
|
| 48 |
|
|
|
| 49 |
|
|
/**
|
| 50 |
|
|
* Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan
|
| 51 |
|
|
* Daemen, Lars Knudsen and Vincent Rijmen.
|
| 52 |
|
|
* <p>
|
| 53 |
|
|
* References:
|
| 54 |
|
|
* <ol>
|
| 55 |
|
|
* <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block
|
| 56 |
|
|
* cipher Square</a>.<br>
|
| 57 |
|
|
* <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>, <a
|
| 58 |
|
|
* href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and <a
|
| 59 |
|
|
* href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
|
| 60 |
|
|
* </ol>
|
| 61 |
|
|
*/
|
| 62 |
|
|
public final class Square
|
| 63 |
|
|
extends BaseCipher
|
| 64 |
|
|
{
|
| 65 |
|
|
private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes
|
| 66 |
|
|
private static final int DEFAULT_KEY_SIZE = 16; // in bytes
|
| 67 |
|
|
private static final int ROUNDS = 8;
|
| 68 |
|
|
private static final int ROOT = 0x1F5; // for generating GF(2**8)
|
| 69 |
|
|
private static final int[] OFFSET = new int[ROUNDS];
|
| 70 |
|
|
private static final String Sdata =
|
| 71 |
|
|
"\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150"
|
| 72 |
|
|
+ "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E"
|
| 73 |
|
|
+ "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322"
|
| 74 |
|
|
+ "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323"
|
| 75 |
|
|
+ "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B"
|
| 76 |
|
|
+ "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142"
|
| 77 |
|
|
+ "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08"
|
| 78 |
|
|
+ "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26"
|
| 79 |
|
|
+ "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0"
|
| 80 |
|
|
+ "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7"
|
| 81 |
|
|
+ "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328"
|
| 82 |
|
|
+ "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5"
|
| 83 |
|
|
+ "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD"
|
| 84 |
|
|
+ "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666"
|
| 85 |
|
|
+ "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239"
|
| 86 |
|
|
+ "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2";
|
| 87 |
|
|
/** Substitution boxes for encryption and decryption. */
|
| 88 |
|
|
private static final byte[] Se = new byte[256];
|
| 89 |
|
|
private static final byte[] Sd = new byte[256];
|
| 90 |
|
|
/** Transposition boxes for encryption and decryption. */
|
| 91 |
|
|
private static final int[] Te = new int[256];
|
| 92 |
|
|
private static final int[] Td = new int[256];
|
| 93 |
|
|
/**
|
| 94 |
|
|
* KAT vector (from ecb_vk): I=87 KEY=00000000000000000000020000000000
|
| 95 |
|
|
* CT=A9DF031B4E25E89F527EFFF89CB0BEBA
|
| 96 |
|
|
*/
|
| 97 |
|
|
private static final byte[] KAT_KEY =
|
| 98 |
|
|
Util.toBytesFromString("00000000000000000000020000000000");
|
| 99 |
|
|
private static final byte[] KAT_CT =
|
| 100 |
|
|
Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA");
|
| 101 |
|
|
/** caches the result of the correctness test, once executed. */
|
| 102 |
|
|
private static Boolean valid;
|
| 103 |
|
|
static
|
| 104 |
|
|
{
|
| 105 |
|
|
int i, j;
|
| 106 |
|
|
// re-construct Se box values
|
| 107 |
|
|
int limit = Sdata.length();
|
| 108 |
|
|
char c1;
|
| 109 |
|
|
for (i = 0, j = 0; i < limit; i++)
|
| 110 |
|
|
{
|
| 111 |
|
|
c1 = Sdata.charAt(i);
|
| 112 |
|
|
Se[j++] = (byte)(c1 >>> 8);
|
| 113 |
|
|
Se[j++] = (byte) c1;
|
| 114 |
|
|
}
|
| 115 |
|
|
// compute Sd box values
|
| 116 |
|
|
for (i = 0; i < 256; i++)
|
| 117 |
|
|
Sd[Se[i] & 0xFF] = (byte) i;
|
| 118 |
|
|
// generate OFFSET values
|
| 119 |
|
|
OFFSET[0] = 1;
|
| 120 |
|
|
for (i = 1; i < ROUNDS; i++)
|
| 121 |
|
|
{
|
| 122 |
|
|
OFFSET[i] = mul(OFFSET[i - 1], 2);
|
| 123 |
|
|
OFFSET[i - 1] <<= 24;
|
| 124 |
|
|
}
|
| 125 |
|
|
OFFSET[ROUNDS - 1] <<= 24;
|
| 126 |
|
|
// generate Te and Td boxes if we're not reading their values
|
| 127 |
|
|
// Notes:
|
| 128 |
|
|
// (1) The function mul() computes the product of two elements of GF(2**8)
|
| 129 |
|
|
// with ROOT as reduction polynomial.
|
| 130 |
|
|
// (2) the values used in computing the Te and Td are the GF(2**8)
|
| 131 |
|
|
// coefficients of the diffusion polynomial c(x) and its inverse
|
| 132 |
|
|
// (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square
|
| 133 |
|
|
// paper.
|
| 134 |
|
|
for (i = 0; i < 256; i++)
|
| 135 |
|
|
{
|
| 136 |
|
|
j = Se[i] & 0xFF;
|
| 137 |
|
|
Te[i] = (Se[i & 3] == 0) ? 0
|
| 138 |
|
|
: mul(j, 2) << 24
|
| 139 |
|
|
| j << 16
|
| 140 |
|
|
| j << 8
|
| 141 |
|
|
| mul(j, 3);
|
| 142 |
|
|
j = Sd[i] & 0xFF;
|
| 143 |
|
|
Td[i] = (Sd[i & 3] == 0) ? 0
|
| 144 |
|
|
: mul(j, 14) << 24
|
| 145 |
|
|
| mul(j, 9) << 16
|
| 146 |
|
|
| mul(j, 13) << 8
|
| 147 |
|
|
| mul(j, 11);
|
| 148 |
|
|
}
|
| 149 |
|
|
}
|
| 150 |
|
|
|
| 151 |
|
|
/** Trivial 0-arguments constructor. */
|
| 152 |
|
|
public Square()
|
| 153 |
|
|
{
|
| 154 |
|
|
super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
|
| 155 |
|
|
}
|
| 156 |
|
|
|
| 157 |
|
|
private static void square(byte[] in, int i, byte[] out, int j, int[][] K,
|
| 158 |
|
|
int[] T, byte[] S)
|
| 159 |
|
|
{
|
| 160 |
|
|
int a = ((in[i++]) << 24
|
| 161 |
|
|
| (in[i++] & 0xFF) << 16
|
| 162 |
|
|
| (in[i++] & 0xFF) << 8
|
| 163 |
|
|
| (in[i++] & 0xFF) ) ^ K[0][0];
|
| 164 |
|
|
int b = ((in[i++]) << 24
|
| 165 |
|
|
| (in[i++] & 0xFF) << 16
|
| 166 |
|
|
| (in[i++] & 0xFF) << 8
|
| 167 |
|
|
| (in[i++] & 0xFF) ) ^ K[0][1];
|
| 168 |
|
|
int c = ((in[i++]) << 24
|
| 169 |
|
|
| (in[i++] & 0xFF) << 16
|
| 170 |
|
|
| (in[i++] & 0xFF) << 8
|
| 171 |
|
|
| (in[i++] & 0xFF) ) ^ K[0][2];
|
| 172 |
|
|
int d = ((in[i++]) << 24
|
| 173 |
|
|
| (in[i++] & 0xFF) << 16
|
| 174 |
|
|
| (in[i++] & 0xFF) << 8
|
| 175 |
|
|
| (in[i ] & 0xFF) ) ^ K[0][3];
|
| 176 |
|
|
int r, aa, bb, cc, dd;
|
| 177 |
|
|
for (r = 1; r < ROUNDS; r++)
|
| 178 |
|
|
{ // R - 1 full rounds
|
| 179 |
|
|
aa = T[(a >>> 24) ]
|
| 180 |
|
|
^ rot32R(T[(b >>> 24) ], 8)
|
| 181 |
|
|
^ rot32R(T[(c >>> 24) ], 16)
|
| 182 |
|
|
^ rot32R(T[(d >>> 24) ], 24) ^ K[r][0];
|
| 183 |
|
|
bb = T[(a >>> 16) & 0xFF]
|
| 184 |
|
|
^ rot32R(T[(b >>> 16) & 0xFF], 8)
|
| 185 |
|
|
^ rot32R(T[(c >>> 16) & 0xFF], 16)
|
| 186 |
|
|
^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1];
|
| 187 |
|
|
cc = T[(a >>> 8) & 0xFF]
|
| 188 |
|
|
^ rot32R(T[(b >>> 8) & 0xFF], 8)
|
| 189 |
|
|
^ rot32R(T[(c >>> 8) & 0xFF], 16)
|
| 190 |
|
|
^ rot32R(T[(d >>> 8) & 0xFF], 24) ^ K[r][2];
|
| 191 |
|
|
dd = T[ a & 0xFF]
|
| 192 |
|
|
^ rot32R(T[ b & 0xFF], 8)
|
| 193 |
|
|
^ rot32R(T[ c & 0xFF], 16)
|
| 194 |
|
|
^ rot32R(T[ d & 0xFF], 24) ^ K[r][3];
|
| 195 |
|
|
a = aa;
|
| 196 |
|
|
b = bb;
|
| 197 |
|
|
c = cc;
|
| 198 |
|
|
d = dd;
|
| 199 |
|
|
}
|
| 200 |
|
|
// last round (diffusion becomes only transposition)
|
| 201 |
|
|
aa = ((S[(a >>> 24) ] ) << 24
|
| 202 |
|
|
| (S[(b >>> 24) ] & 0xFF) << 16
|
| 203 |
|
|
| (S[(c >>> 24) ] & 0xFF) << 8
|
| 204 |
|
|
| (S[(d >>> 24) ] & 0xFF) ) ^ K[r][0];
|
| 205 |
|
|
bb = ((S[(a >>> 16) & 0xFF] ) << 24
|
| 206 |
|
|
| (S[(b >>> 16) & 0xFF] & 0xFF) << 16
|
| 207 |
|
|
| (S[(c >>> 16) & 0xFF] & 0xFF) << 8
|
| 208 |
|
|
| (S[(d >>> 16) & 0xFF] & 0xFF) ) ^ K[r][1];
|
| 209 |
|
|
cc = ((S[(a >>> 8) & 0xFF] ) << 24
|
| 210 |
|
|
| (S[(b >>> 8) & 0xFF] & 0xFF) << 16
|
| 211 |
|
|
| (S[(c >>> 8) & 0xFF] & 0xFF) << 8
|
| 212 |
|
|
| (S[(d >>> 8) & 0xFF] & 0xFF) ) ^ K[r][2];
|
| 213 |
|
|
dd = ((S[ a & 0xFF] ) << 24
|
| 214 |
|
|
| (S[ b & 0xFF] & 0xFF) << 16
|
| 215 |
|
|
| (S[ c & 0xFF] & 0xFF) << 8
|
| 216 |
|
|
| (S[ d & 0xFF] & 0xFF) ) ^ K[r][3];
|
| 217 |
|
|
out[j++] = (byte)(aa >>> 24);
|
| 218 |
|
|
out[j++] = (byte)(aa >>> 16);
|
| 219 |
|
|
out[j++] = (byte)(aa >>> 8);
|
| 220 |
|
|
out[j++] = (byte) aa;
|
| 221 |
|
|
out[j++] = (byte)(bb >>> 24);
|
| 222 |
|
|
out[j++] = (byte)(bb >>> 16);
|
| 223 |
|
|
out[j++] = (byte)(bb >>> 8);
|
| 224 |
|
|
out[j++] = (byte) bb;
|
| 225 |
|
|
out[j++] = (byte)(cc >>> 24);
|
| 226 |
|
|
out[j++] = (byte)(cc >>> 16);
|
| 227 |
|
|
out[j++] = (byte)(cc >>> 8);
|
| 228 |
|
|
out[j++] = (byte) cc;
|
| 229 |
|
|
out[j++] = (byte)(dd >>> 24);
|
| 230 |
|
|
out[j++] = (byte)(dd >>> 16);
|
| 231 |
|
|
out[j++] = (byte)(dd >>> 8);
|
| 232 |
|
|
out[j ] = (byte) dd;
|
| 233 |
|
|
}
|
| 234 |
|
|
|
| 235 |
|
|
/**
|
| 236 |
|
|
* Applies the Theta function to an input <i>in</i> in order to produce in
|
| 237 |
|
|
* <i>out</i> an internal session sub-key.
|
| 238 |
|
|
* <p>
|
| 239 |
|
|
* Both <i>in</i> and <i>out</i> are arrays of four ints.
|
| 240 |
|
|
* <p>
|
| 241 |
|
|
* Pseudo-code is:
|
| 242 |
|
|
* <pre>
|
| 243 |
|
|
* for (i = 0; i < 4; i++)
|
| 244 |
|
|
* {
|
| 245 |
|
|
* out[i] = 0;
|
| 246 |
|
|
* for (j = 0, n = 24; j < 4; j++, n -= 8)
|
| 247 |
|
|
* {
|
| 248 |
|
|
* k = mul(in[i] >>> 24, G[0][j]) ˆ mul(in[i] >>> 16, G[1][j])
|
| 249 |
|
|
* ˆ mul(in[i] >>> 8, G[2][j]) ˆ mul(in[i], G[3][j]);
|
| 250 |
|
|
* out[i] ˆ= k << n;
|
| 251 |
|
|
* }
|
| 252 |
|
|
* }
|
| 253 |
|
|
* </pre>
|
| 254 |
|
|
*/
|
| 255 |
|
|
private static void transform(int[] in, int[] out)
|
| 256 |
|
|
{
|
| 257 |
|
|
int l3, l2, l1, l0, m;
|
| 258 |
|
|
for (int i = 0; i < 4; i++)
|
| 259 |
|
|
{
|
| 260 |
|
|
l3 = in[i];
|
| 261 |
|
|
l2 = l3 >>> 8;
|
| 262 |
|
|
l1 = l3 >>> 16;
|
| 263 |
|
|
l0 = l3 >>> 24;
|
| 264 |
|
|
m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24;
|
| 265 |
|
|
m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16;
|
| 266 |
|
|
m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8;
|
| 267 |
|
|
m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF);
|
| 268 |
|
|
out[i] = m;
|
| 269 |
|
|
}
|
| 270 |
|
|
}
|
| 271 |
|
|
|
| 272 |
|
|
/**
|
| 273 |
|
|
* Left rotate a 32-bit chunk.
|
| 274 |
|
|
*
|
| 275 |
|
|
* @param x the 32-bit data to rotate
|
| 276 |
|
|
* @param s number of places to left-rotate by
|
| 277 |
|
|
* @return the newly permutated value.
|
| 278 |
|
|
*/
|
| 279 |
|
|
private static int rot32L(int x, int s)
|
| 280 |
|
|
{
|
| 281 |
|
|
return x << s | x >>> (32 - s);
|
| 282 |
|
|
}
|
| 283 |
|
|
|
| 284 |
|
|
/**
|
| 285 |
|
|
* Right rotate a 32-bit chunk.
|
| 286 |
|
|
*
|
| 287 |
|
|
* @param x the 32-bit data to rotate
|
| 288 |
|
|
* @param s number of places to right-rotate by
|
| 289 |
|
|
* @return the newly permutated value.
|
| 290 |
|
|
*/
|
| 291 |
|
|
private static int rot32R(int x, int s)
|
| 292 |
|
|
{
|
| 293 |
|
|
return x >>> s | x << (32 - s);
|
| 294 |
|
|
}
|
| 295 |
|
|
|
| 296 |
|
|
/**
|
| 297 |
|
|
* Returns the product of two binary numbers a and b, using the generator ROOT
|
| 298 |
|
|
* as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable Galois
|
| 299 |
|
|
* Field in GF(2**8).
|
| 300 |
|
|
* <p>
|
| 301 |
|
|
* For best performance call it with abs(b) < abs(a).
|
| 302 |
|
|
*
|
| 303 |
|
|
* @param a operand for multiply.
|
| 304 |
|
|
* @param b operand for multiply.
|
| 305 |
|
|
* @return the result of (a * b) % ROOT.
|
| 306 |
|
|
*/
|
| 307 |
|
|
private static final int mul(int a, int b)
|
| 308 |
|
|
{
|
| 309 |
|
|
if (a == 0)
|
| 310 |
|
|
return 0;
|
| 311 |
|
|
a &= 0xFF;
|
| 312 |
|
|
b &= 0xFF;
|
| 313 |
|
|
int result = 0;
|
| 314 |
|
|
while (b != 0)
|
| 315 |
|
|
{
|
| 316 |
|
|
if ((b & 0x01) != 0)
|
| 317 |
|
|
result ^= a;
|
| 318 |
|
|
b >>>= 1;
|
| 319 |
|
|
a <<= 1;
|
| 320 |
|
|
if (a > 0xFF)
|
| 321 |
|
|
a ^= ROOT;
|
| 322 |
|
|
}
|
| 323 |
|
|
return result & 0xFF;
|
| 324 |
|
|
}
|
| 325 |
|
|
|
| 326 |
|
|
public Object clone()
|
| 327 |
|
|
{
|
| 328 |
|
|
Square result = new Square();
|
| 329 |
|
|
result.currentBlockSize = this.currentBlockSize;
|
| 330 |
|
|
|
| 331 |
|
|
return result;
|
| 332 |
|
|
}
|
| 333 |
|
|
|
| 334 |
|
|
public Iterator blockSizes()
|
| 335 |
|
|
{
|
| 336 |
|
|
ArrayList al = new ArrayList();
|
| 337 |
|
|
al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));
|
| 338 |
|
|
|
| 339 |
|
|
return Collections.unmodifiableList(al).iterator();
|
| 340 |
|
|
}
|
| 341 |
|
|
|
| 342 |
|
|
public Iterator keySizes()
|
| 343 |
|
|
{
|
| 344 |
|
|
ArrayList al = new ArrayList();
|
| 345 |
|
|
al.add(Integer.valueOf(DEFAULT_KEY_SIZE));
|
| 346 |
|
|
|
| 347 |
|
|
return Collections.unmodifiableList(al).iterator();
|
| 348 |
|
|
}
|
| 349 |
|
|
|
| 350 |
|
|
public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
|
| 351 |
|
|
{
|
| 352 |
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
| 353 |
|
|
throw new IllegalArgumentException();
|
| 354 |
|
|
if (uk == null)
|
| 355 |
|
|
throw new InvalidKeyException("Empty key");
|
| 356 |
|
|
if (uk.length != DEFAULT_KEY_SIZE)
|
| 357 |
|
|
throw new InvalidKeyException("Key is not 128-bit.");
|
| 358 |
|
|
int[][] Ke = new int[ROUNDS + 1][4];
|
| 359 |
|
|
int[][] Kd = new int[ROUNDS + 1][4];
|
| 360 |
|
|
int[][] tK = new int[ROUNDS + 1][4];
|
| 361 |
|
|
int i = 0;
|
| 362 |
|
|
Ke[0][0] = (uk[i++] & 0xFF) << 24
|
| 363 |
|
|
| (uk[i++] & 0xFF) << 16
|
| 364 |
|
|
| (uk[i++] & 0xFF) << 8
|
| 365 |
|
|
| (uk[i++] & 0xFF);
|
| 366 |
|
|
tK[0][0] = Ke[0][0];
|
| 367 |
|
|
Ke[0][1] = (uk[i++] & 0xFF) << 24
|
| 368 |
|
|
| (uk[i++] & 0xFF) << 16
|
| 369 |
|
|
| (uk[i++] & 0xFF) << 8
|
| 370 |
|
|
| (uk[i++] & 0xFF);
|
| 371 |
|
|
tK[0][1] = Ke[0][1];
|
| 372 |
|
|
Ke[0][2] = (uk[i++] & 0xFF) << 24
|
| 373 |
|
|
| (uk[i++] & 0xFF) << 16
|
| 374 |
|
|
| (uk[i++] & 0xFF) << 8
|
| 375 |
|
|
| (uk[i++] & 0xFF);
|
| 376 |
|
|
tK[0][2] = Ke[0][2];
|
| 377 |
|
|
Ke[0][3] = (uk[i++] & 0xFF) << 24
|
| 378 |
|
|
| (uk[i++] & 0xFF) << 16
|
| 379 |
|
|
| (uk[i++] & 0xFF) << 8
|
| 380 |
|
|
| (uk[i ] & 0xFF);
|
| 381 |
|
|
tK[0][3] = Ke[0][3];
|
| 382 |
|
|
int j;
|
| 383 |
|
|
for (i = 1, j = 0; i < ROUNDS + 1; i++, j++)
|
| 384 |
|
|
{
|
| 385 |
|
|
tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j];
|
| 386 |
|
|
tK[i][1] = tK[j][1] ^ tK[i][0];
|
| 387 |
|
|
tK[i][2] = tK[j][2] ^ tK[i][1];
|
| 388 |
|
|
tK[i][3] = tK[j][3] ^ tK[i][2];
|
| 389 |
|
|
System.arraycopy(tK[i], 0, Ke[i], 0, 4);
|
| 390 |
|
|
transform(Ke[j], Ke[j]);
|
| 391 |
|
|
}
|
| 392 |
|
|
for (i = 0; i < ROUNDS; i++)
|
| 393 |
|
|
System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4);
|
| 394 |
|
|
transform(tK[0], Kd[ROUNDS]);
|
| 395 |
|
|
return new Object[] { Ke, Kd };
|
| 396 |
|
|
}
|
| 397 |
|
|
|
| 398 |
|
|
public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
|
| 399 |
|
|
{
|
| 400 |
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
| 401 |
|
|
throw new IllegalArgumentException();
|
| 402 |
|
|
int[][] K = (int[][])((Object[]) k)[0];
|
| 403 |
|
|
square(in, i, out, j, K, Te, Se);
|
| 404 |
|
|
}
|
| 405 |
|
|
|
| 406 |
|
|
public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
|
| 407 |
|
|
{
|
| 408 |
|
|
if (bs != DEFAULT_BLOCK_SIZE)
|
| 409 |
|
|
throw new IllegalArgumentException();
|
| 410 |
|
|
int[][] K = (int[][])((Object[]) k)[1];
|
| 411 |
|
|
square(in, i, out, j, K, Td, Sd);
|
| 412 |
|
|
}
|
| 413 |
|
|
|
| 414 |
|
|
public boolean selfTest()
|
| 415 |
|
|
{
|
| 416 |
|
|
if (valid == null)
|
| 417 |
|
|
{
|
| 418 |
|
|
boolean result = super.selfTest(); // do symmetry tests
|
| 419 |
|
|
if (result)
|
| 420 |
|
|
result = testKat(KAT_KEY, KAT_CT);
|
| 421 |
|
|
valid = Boolean.valueOf(result);
|
| 422 |
|
|
}
|
| 423 |
|
|
return valid.booleanValue();
|
| 424 |
|
|
}
|
| 425 |
|
|
}
|