1 |
769 |
jeremybenn |
/* RFC2631.java --
|
2 |
|
|
Copyright (C) 2003, 2006 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is a part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
9 |
|
|
your option) any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
19 |
|
|
USA
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
package gnu.javax.crypto.key.dh;
|
40 |
|
|
|
41 |
|
|
import gnu.java.security.hash.Sha160;
|
42 |
|
|
import gnu.java.security.util.PRNG;
|
43 |
|
|
|
44 |
|
|
import java.math.BigInteger;
|
45 |
|
|
import java.security.SecureRandom;
|
46 |
|
|
|
47 |
|
|
/**
|
48 |
|
|
* An implementation of the Diffie-Hellman parameter generation as defined in
|
49 |
|
|
* RFC-2631.
|
50 |
|
|
* <p>
|
51 |
|
|
* Reference:
|
52 |
|
|
* <ol>
|
53 |
|
|
* <li><a href="http://www.ietf.org/rfc/rfc2631.txt">Diffie-Hellman Key
|
54 |
|
|
* Agreement Method</a><br>
|
55 |
|
|
* Eric Rescorla.</li>
|
56 |
|
|
* </ol>
|
57 |
|
|
*/
|
58 |
|
|
public class RFC2631
|
59 |
|
|
{
|
60 |
|
|
public static final int DH_PARAMS_SEED = 0;
|
61 |
|
|
public static final int DH_PARAMS_COUNTER = 1;
|
62 |
|
|
public static final int DH_PARAMS_Q = 2;
|
63 |
|
|
public static final int DH_PARAMS_P = 3;
|
64 |
|
|
public static final int DH_PARAMS_J = 4;
|
65 |
|
|
public static final int DH_PARAMS_G = 5;
|
66 |
|
|
private static final BigInteger TWO = BigInteger.valueOf(2L);
|
67 |
|
|
/** The SHA instance to use. */
|
68 |
|
|
private Sha160 sha = new Sha160();
|
69 |
|
|
/** Length of private modulus and of q. */
|
70 |
|
|
private int m;
|
71 |
|
|
/** Length of public modulus p. */
|
72 |
|
|
private int L;
|
73 |
|
|
/** The optional {@link SecureRandom} instance to use. */
|
74 |
|
|
private SecureRandom rnd = null;
|
75 |
|
|
/** Our default source of randomness. */
|
76 |
|
|
private PRNG prng = null;
|
77 |
|
|
|
78 |
|
|
public RFC2631(int m, int L, SecureRandom rnd)
|
79 |
|
|
{
|
80 |
|
|
super();
|
81 |
|
|
|
82 |
|
|
this.m = m;
|
83 |
|
|
this.L = L;
|
84 |
|
|
this.rnd = rnd;
|
85 |
|
|
}
|
86 |
|
|
|
87 |
|
|
public BigInteger[] generateParameters()
|
88 |
|
|
{
|
89 |
|
|
int i, j, counter;
|
90 |
|
|
byte[] u1, u2, v;
|
91 |
|
|
byte[] seedBytes = new byte[m / 8];
|
92 |
|
|
BigInteger SEED, U, q, R, V, W, X, p, g;
|
93 |
|
|
// start by genrating p and q, where q is of length m and p is of length L
|
94 |
|
|
// 1. Set m' = m/160 where / represents integer division with rounding
|
95 |
|
|
// upwards. I.e. 200/160 = 2.
|
96 |
|
|
int m_ = (m + 159) / 160;
|
97 |
|
|
// 2. Set L'= L/160
|
98 |
|
|
int L_ = (L + 159) / 160;
|
99 |
|
|
// 3. Set N'= L/1024
|
100 |
|
|
int N_ = (L + 1023) / 1024;
|
101 |
|
|
algorithm: while (true)
|
102 |
|
|
{
|
103 |
|
|
step4: while (true)
|
104 |
|
|
{
|
105 |
|
|
// 4. Select an arbitrary bit string SEED such that length of
|
106 |
|
|
// SEED >= m
|
107 |
|
|
nextRandomBytes(seedBytes);
|
108 |
|
|
SEED = new BigInteger(1, seedBytes).setBit(m - 1).setBit(0);
|
109 |
|
|
// 5. Set U = 0
|
110 |
|
|
U = BigInteger.ZERO;
|
111 |
|
|
// 6. For i = 0 to m' - 1
|
112 |
|
|
// U = U + (SHA1[SEED + i] XOR SHA1[(SEED + m' + i)) * 2^(160 * i)
|
113 |
|
|
// Note that for m=160, this reduces to the algorithm of FIPS-186
|
114 |
|
|
// U = SHA1[SEED] XOR SHA1[(SEED+1) mod 2^160 ].
|
115 |
|
|
for (i = 0; i < m_; i++)
|
116 |
|
|
{
|
117 |
|
|
u1 = SEED.add(BigInteger.valueOf(i)).toByteArray();
|
118 |
|
|
u2 = SEED.add(BigInteger.valueOf(m_ + i)).toByteArray();
|
119 |
|
|
sha.update(u1, 0, u1.length);
|
120 |
|
|
u1 = sha.digest();
|
121 |
|
|
sha.update(u2, 0, u2.length);
|
122 |
|
|
u2 = sha.digest();
|
123 |
|
|
for (j = 0; j < u1.length; j++)
|
124 |
|
|
u1[j] ^= u2[j];
|
125 |
|
|
U = U.add(new BigInteger(1, u1).multiply(TWO.pow(160 * i)));
|
126 |
|
|
}
|
127 |
|
|
// 5. Form q from U by computing U mod (2^m) and setting the most
|
128 |
|
|
// significant bit (the 2^(m-1) bit) and the least significant
|
129 |
|
|
// bit to 1. In terms of boolean operations, q = U OR 2^(m-1) OR
|
130 |
|
|
// 1. Note that 2^(m-1) < q < 2^m
|
131 |
|
|
q = U.setBit(m - 1).setBit(0);
|
132 |
|
|
// 6. Use a robust primality algorithm to test whether q is prime.
|
133 |
|
|
// 7. If q is not prime then go to 4.
|
134 |
|
|
if (q.isProbablePrime(80))
|
135 |
|
|
break step4;
|
136 |
|
|
}
|
137 |
|
|
// 8. Let counter = 0
|
138 |
|
|
counter = 0;
|
139 |
|
|
while (true)
|
140 |
|
|
{
|
141 |
|
|
// 9. Set R = seed + 2*m' + (L' * counter)
|
142 |
|
|
R = SEED
|
143 |
|
|
.add(BigInteger.valueOf(2 * m_))
|
144 |
|
|
.add(BigInteger.valueOf(L_ * counter));
|
145 |
|
|
// 10. Set V = 0
|
146 |
|
|
V = BigInteger.ZERO;
|
147 |
|
|
// 12. For i = 0 to L'-1 do: V = V + SHA1(R + i) * 2^(160 * i)
|
148 |
|
|
for (i = 0; i < L_; i++)
|
149 |
|
|
{
|
150 |
|
|
v = R.toByteArray();
|
151 |
|
|
sha.update(v, 0, v.length);
|
152 |
|
|
v = sha.digest();
|
153 |
|
|
V = V.add(new BigInteger(1, v).multiply(TWO.pow(160 * i)));
|
154 |
|
|
}
|
155 |
|
|
// 13. Set W = V mod 2^L
|
156 |
|
|
W = V.mod(TWO.pow(L));
|
157 |
|
|
// 14. Set X = W OR 2^(L-1)
|
158 |
|
|
// Note that 0 <= W < 2^(L-1) and hence X >= 2^(L-1)
|
159 |
|
|
X = W.setBit(L - 1);
|
160 |
|
|
// 15. Set p = X - (X mod (2*q)) + 1
|
161 |
|
|
p = X.add(BigInteger.ONE).subtract(X.mod(TWO.multiply(q)));
|
162 |
|
|
// 16. If p > 2^(L-1) use a robust primality test to test whether p
|
163 |
|
|
// is prime. Else go to 18.
|
164 |
|
|
// 17. If p is prime output p, q, seed, counter and stop.
|
165 |
|
|
if (p.isProbablePrime(80))
|
166 |
|
|
{
|
167 |
|
|
break algorithm;
|
168 |
|
|
}
|
169 |
|
|
// 18. Set counter = counter + 1
|
170 |
|
|
counter++;
|
171 |
|
|
// 19. If counter < (4096 * N) then go to 8.
|
172 |
|
|
// 20. Output "failure"
|
173 |
|
|
if (counter >= 4096 * N_)
|
174 |
|
|
continue algorithm;
|
175 |
|
|
}
|
176 |
|
|
}
|
177 |
|
|
// compute g. from FIPS-186, Appendix 4:
|
178 |
|
|
// 1. Generate p and q as specified in Appendix 2.
|
179 |
|
|
// 2. Let e = (p - 1) / q
|
180 |
|
|
BigInteger e = p.subtract(BigInteger.ONE).divide(q);
|
181 |
|
|
BigInteger h = TWO;
|
182 |
|
|
BigInteger p_minus_1 = p.subtract(BigInteger.ONE);
|
183 |
|
|
g = TWO;
|
184 |
|
|
// 3. Set h = any integer, where 1 < h < p - 1 and h differs from any
|
185 |
|
|
// value previously tried
|
186 |
|
|
for (; h.compareTo(p_minus_1) < 0; h = h.add(BigInteger.ONE))
|
187 |
|
|
{
|
188 |
|
|
// 4. Set g = h**e mod p
|
189 |
|
|
g = h.modPow(e, p);
|
190 |
|
|
// 5. If g = 1, go to step 3
|
191 |
|
|
if (! g.equals(BigInteger.ONE))
|
192 |
|
|
break;
|
193 |
|
|
}
|
194 |
|
|
return new BigInteger[] { SEED, BigInteger.valueOf(counter), q, p, e, g };
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/**
|
198 |
|
|
* Fills the designated byte array with random data.
|
199 |
|
|
*
|
200 |
|
|
* @param buffer the byte array to fill with random data.
|
201 |
|
|
*/
|
202 |
|
|
private void nextRandomBytes(byte[] buffer)
|
203 |
|
|
{
|
204 |
|
|
if (rnd != null)
|
205 |
|
|
rnd.nextBytes(buffer);
|
206 |
|
|
else
|
207 |
|
|
getDefaultPRNG().nextBytes(buffer);
|
208 |
|
|
}
|
209 |
|
|
|
210 |
|
|
private PRNG getDefaultPRNG()
|
211 |
|
|
{
|
212 |
|
|
if (prng == null)
|
213 |
|
|
prng = PRNG.getInstance();
|
214 |
|
|
|
215 |
|
|
return prng;
|
216 |
|
|
}
|
217 |
|
|
}
|