1 |
769 |
jeremybenn |
/* UHash32.java --
|
2 |
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is a part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
9 |
|
|
your option) any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; if not, write to the Free Software
|
18 |
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
19 |
|
|
USA
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
package gnu.javax.crypto.mac;
|
40 |
|
|
|
41 |
|
|
import gnu.java.security.prng.IRandom;
|
42 |
|
|
import gnu.java.security.prng.LimitReachedException;
|
43 |
|
|
import gnu.javax.crypto.cipher.IBlockCipher;
|
44 |
|
|
import gnu.javax.crypto.prng.UMacGenerator;
|
45 |
|
|
|
46 |
|
|
import java.io.ByteArrayOutputStream;
|
47 |
|
|
import java.math.BigInteger;
|
48 |
|
|
import java.security.InvalidKeyException;
|
49 |
|
|
import java.util.HashMap;
|
50 |
|
|
import java.util.Map;
|
51 |
|
|
|
52 |
|
|
/**
|
53 |
|
|
* <i>UHASH</i> is a keyed hash function, which takes as input a string of
|
54 |
|
|
* arbitrary length, and produces as output a string of fixed length (such as 8
|
55 |
|
|
* bytes). The actual output length depends on the parameter UMAC-OUTPUT-LEN.
|
56 |
|
|
* <p>
|
57 |
|
|
* <i>UHASH</i> has been shown to be <i>epsilon-ASU</i> ("Almost Strongly
|
58 |
|
|
* Universal"), where epsilon is a small (parameter-dependent) real number.
|
59 |
|
|
* Informally, saying that a keyed hash function is <i>epsilon-ASU</i> means
|
60 |
|
|
* that for any two distinct fixed input strings, the two outputs of the hash
|
61 |
|
|
* function with a random key "look almost like a pair of random strings". The
|
62 |
|
|
* number epsilon measures how non-random the output strings may be.
|
63 |
|
|
* <p>
|
64 |
|
|
* <i>UHASH</i> has been designed to be fast by exploiting several
|
65 |
|
|
* architectural features of modern commodity processors. It was specifically
|
66 |
|
|
* designed for use in <i>UMAC</i>. But <i>UHASH</i> is useful beyond that
|
67 |
|
|
* domain, and can be easily adopted for other purposes.
|
68 |
|
|
* <p>
|
69 |
|
|
* <i>UHASH</i> does its work in three layers. First, a hash function called
|
70 |
|
|
* <code>NH</code> is used to compress input messages into strings which are
|
71 |
|
|
* typically many times smaller than the input message. Second, the compressed
|
72 |
|
|
* message is hashed with an optimized <i>polynomial hash function</i> into a
|
73 |
|
|
* fixed-length 16-byte string. Finally, the 16-byte string is hashed using an
|
74 |
|
|
* <i>inner-product hash</i> into a string of length WORD-LEN bytes. These
|
75 |
|
|
* three layers are repeated (with a modified key) until the outputs total
|
76 |
|
|
* UMAC-OUTPUT-LEN bytes.
|
77 |
|
|
* <p>
|
78 |
|
|
* References:
|
79 |
|
|
* <ol>
|
80 |
|
|
* <li><a href="http://www.ietf.org/internet-drafts/draft-krovetz-umac-01.txt">
|
81 |
|
|
* UMAC</a>: Message Authentication Code using Universal Hashing.<br>
|
82 |
|
|
* T. Krovetz, J. Black, S. Halevi, A. Hevia, H. Krawczyk, and P. Rogaway.</li>
|
83 |
|
|
* </ol>
|
84 |
|
|
*/
|
85 |
|
|
public class UHash32
|
86 |
|
|
extends BaseMac
|
87 |
|
|
{
|
88 |
|
|
// UMAC prime values
|
89 |
|
|
private static final BigInteger PRIME_19 = BigInteger.valueOf(0x7FFFFL);
|
90 |
|
|
private static final BigInteger PRIME_32 = BigInteger.valueOf(0xFFFFFFFBL);
|
91 |
|
|
private static final BigInteger PRIME_36 = BigInteger.valueOf(0xFFFFFFFFBL);
|
92 |
|
|
private static final BigInteger PRIME_64 = new BigInteger(1, new byte[] {
|
93 |
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
94 |
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xC5 });
|
95 |
|
|
private static final BigInteger PRIME_128 = new BigInteger(1, new byte[] {
|
96 |
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
97 |
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
98 |
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
99 |
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0x61 });
|
100 |
|
|
static final BigInteger TWO = BigInteger.valueOf(2L);
|
101 |
|
|
static final long BOUNDARY = TWO.shiftLeft(17).longValue();
|
102 |
|
|
// 2**64 - 2**32
|
103 |
|
|
static final BigInteger LOWER_RANGE = TWO.pow(64).subtract(TWO.pow(32));
|
104 |
|
|
// 2**128 - 2**96
|
105 |
|
|
static final BigInteger UPPER_RANGE = TWO.pow(128).subtract(TWO.pow(96));
|
106 |
|
|
static final byte[] ALL_ZEROES = new byte[32];
|
107 |
|
|
int streams;
|
108 |
|
|
L1Hash32[] l1hash;
|
109 |
|
|
|
110 |
|
|
/** Trivial 0-arguments constructor. */
|
111 |
|
|
public UHash32()
|
112 |
|
|
{
|
113 |
|
|
super("uhash32");
|
114 |
|
|
}
|
115 |
|
|
|
116 |
|
|
/**
|
117 |
|
|
* Private constructor for cloning purposes.
|
118 |
|
|
*
|
119 |
|
|
* @param that the instance to clone.
|
120 |
|
|
*/
|
121 |
|
|
private UHash32(UHash32 that)
|
122 |
|
|
{
|
123 |
|
|
this();
|
124 |
|
|
|
125 |
|
|
this.streams = that.streams;
|
126 |
|
|
if (that.l1hash != null)
|
127 |
|
|
{
|
128 |
|
|
this.l1hash = new L1Hash32[that.streams];
|
129 |
|
|
for (int i = 0; i < that.streams; i++)
|
130 |
|
|
if (that.l1hash[i] != null)
|
131 |
|
|
this.l1hash[i] = (L1Hash32) that.l1hash[i].clone();
|
132 |
|
|
}
|
133 |
|
|
}
|
134 |
|
|
|
135 |
|
|
/**
|
136 |
|
|
* The prime numbers used in UMAC are:
|
137 |
|
|
* <pre>
|
138 |
|
|
* +-----+--------------------+---------------------------------------+
|
139 |
|
|
* | x | prime(x) [Decimal] | prime(x) [Hexadecimal] |
|
140 |
|
|
* +-----+--------------------+---------------------------------------+
|
141 |
|
|
* | 19 | 2^19 - 1 | 0x0007FFFF |
|
142 |
|
|
* | 32 | 2^32 - 5 | 0xFFFFFFFB |
|
143 |
|
|
* | 36 | 2^36 - 5 | 0x0000000F FFFFFFFB |
|
144 |
|
|
* | 64 | 2^64 - 59 | 0xFFFFFFFF FFFFFFC5 |
|
145 |
|
|
* | 128 | 2^128 - 159 | 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFF61 |
|
146 |
|
|
* +-----+--------------------+---------------------------------------+
|
147 |
|
|
*</pre>
|
148 |
|
|
*
|
149 |
|
|
* @param n a number of bits.
|
150 |
|
|
* @return the largest prime number less than 2**n.
|
151 |
|
|
*/
|
152 |
|
|
static final BigInteger prime(int n)
|
153 |
|
|
{
|
154 |
|
|
switch (n)
|
155 |
|
|
{
|
156 |
|
|
case 19:
|
157 |
|
|
return PRIME_19;
|
158 |
|
|
case 32:
|
159 |
|
|
return PRIME_32;
|
160 |
|
|
case 36:
|
161 |
|
|
return PRIME_36;
|
162 |
|
|
case 64:
|
163 |
|
|
return PRIME_64;
|
164 |
|
|
case 128:
|
165 |
|
|
return PRIME_128;
|
166 |
|
|
default:
|
167 |
|
|
throw new IllegalArgumentException("Undefined prime("
|
168 |
|
|
+ String.valueOf(n) + ")");
|
169 |
|
|
}
|
170 |
|
|
}
|
171 |
|
|
|
172 |
|
|
public Object clone()
|
173 |
|
|
{
|
174 |
|
|
return new UHash32(this);
|
175 |
|
|
}
|
176 |
|
|
|
177 |
|
|
public int macSize()
|
178 |
|
|
{
|
179 |
|
|
return UMac32.OUTPUT_LEN;
|
180 |
|
|
}
|
181 |
|
|
|
182 |
|
|
public void init(Map attributes) throws InvalidKeyException,
|
183 |
|
|
IllegalStateException
|
184 |
|
|
{
|
185 |
|
|
byte[] K = (byte[]) attributes.get(MAC_KEY_MATERIAL);
|
186 |
|
|
if (K == null)
|
187 |
|
|
throw new InvalidKeyException("Null Key");
|
188 |
|
|
if (K.length != UMac32.KEY_LEN)
|
189 |
|
|
throw new InvalidKeyException("Invalid Key length: "
|
190 |
|
|
+ String.valueOf(K.length));
|
191 |
|
|
// Calculate iterations needed to make UMAC-OUTPUT-LEN bytes
|
192 |
|
|
streams = (UMac32.OUTPUT_LEN + 3) / 4;
|
193 |
|
|
// Define total key needed for all iterations using UMacGenerator.
|
194 |
|
|
// L1Key and L3Key1 both reuse most key between iterations.
|
195 |
|
|
IRandom kdf1 = new UMacGenerator();
|
196 |
|
|
IRandom kdf2 = new UMacGenerator();
|
197 |
|
|
IRandom kdf3 = new UMacGenerator();
|
198 |
|
|
IRandom kdf4 = new UMacGenerator();
|
199 |
|
|
Map map = new HashMap();
|
200 |
|
|
map.put(IBlockCipher.KEY_MATERIAL, K);
|
201 |
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(0));
|
202 |
|
|
kdf1.init(map);
|
203 |
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(1));
|
204 |
|
|
kdf2.init(map);
|
205 |
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(2));
|
206 |
|
|
kdf3.init(map);
|
207 |
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(3));
|
208 |
|
|
kdf4.init(map);
|
209 |
|
|
// need to generate all bytes for use later in a Toepliz construction
|
210 |
|
|
byte[] L1Key = new byte[UMac32.L1_KEY_LEN + (streams - 1) * 16];
|
211 |
|
|
try
|
212 |
|
|
{
|
213 |
|
|
kdf1.nextBytes(L1Key, 0, L1Key.length);
|
214 |
|
|
}
|
215 |
|
|
catch (LimitReachedException x)
|
216 |
|
|
{
|
217 |
|
|
x.printStackTrace(System.err);
|
218 |
|
|
throw new RuntimeException("KDF for L1Key reached limit");
|
219 |
|
|
}
|
220 |
|
|
|
221 |
|
|
l1hash = new L1Hash32[streams];
|
222 |
|
|
for (int i = 0; i < streams; i++)
|
223 |
|
|
{
|
224 |
|
|
byte[] k1 = new byte[UMac32.L1_KEY_LEN];
|
225 |
|
|
System.arraycopy(L1Key, i * 16, k1, 0, UMac32.L1_KEY_LEN);
|
226 |
|
|
byte[] k2 = new byte[24];
|
227 |
|
|
try
|
228 |
|
|
{
|
229 |
|
|
kdf2.nextBytes(k2, 0, 24);
|
230 |
|
|
}
|
231 |
|
|
catch (LimitReachedException x)
|
232 |
|
|
{
|
233 |
|
|
x.printStackTrace(System.err);
|
234 |
|
|
throw new RuntimeException("KDF for L2Key reached limit");
|
235 |
|
|
}
|
236 |
|
|
byte[] k31 = new byte[64];
|
237 |
|
|
try
|
238 |
|
|
{
|
239 |
|
|
kdf3.nextBytes(k31, 0, 64);
|
240 |
|
|
}
|
241 |
|
|
catch (LimitReachedException x)
|
242 |
|
|
{
|
243 |
|
|
x.printStackTrace(System.err);
|
244 |
|
|
throw new RuntimeException("KDF for L3Key1 reached limit");
|
245 |
|
|
}
|
246 |
|
|
byte[] k32 = new byte[4];
|
247 |
|
|
try
|
248 |
|
|
{
|
249 |
|
|
kdf4.nextBytes(k32, 0, 4);
|
250 |
|
|
}
|
251 |
|
|
catch (LimitReachedException x)
|
252 |
|
|
{
|
253 |
|
|
x.printStackTrace(System.err);
|
254 |
|
|
throw new RuntimeException("KDF for L3Key2 reached limit");
|
255 |
|
|
}
|
256 |
|
|
L1Hash32 mac = new L1Hash32();
|
257 |
|
|
mac.init(k1, k2, k31, k32);
|
258 |
|
|
l1hash[i] = mac;
|
259 |
|
|
}
|
260 |
|
|
}
|
261 |
|
|
|
262 |
|
|
public void update(byte b)
|
263 |
|
|
{
|
264 |
|
|
for (int i = 0; i < streams; i++)
|
265 |
|
|
l1hash[i].update(b);
|
266 |
|
|
}
|
267 |
|
|
|
268 |
|
|
public void update(byte[] b, int offset, int len)
|
269 |
|
|
{
|
270 |
|
|
for (int i = 0; i < len; i++)
|
271 |
|
|
this.update(b[offset + i]);
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
public byte[] digest()
|
275 |
|
|
{
|
276 |
|
|
byte[] result = new byte[UMac32.OUTPUT_LEN];
|
277 |
|
|
for (int i = 0; i < streams; i++)
|
278 |
|
|
{
|
279 |
|
|
byte[] partialResult = l1hash[i].digest();
|
280 |
|
|
System.arraycopy(partialResult, 0, result, 4 * i, 4);
|
281 |
|
|
}
|
282 |
|
|
reset();
|
283 |
|
|
return result;
|
284 |
|
|
}
|
285 |
|
|
|
286 |
|
|
public void reset()
|
287 |
|
|
{
|
288 |
|
|
for (int i = 0; i < streams; i++)
|
289 |
|
|
l1hash[i].reset();
|
290 |
|
|
}
|
291 |
|
|
|
292 |
|
|
public boolean selfTest()
|
293 |
|
|
{
|
294 |
|
|
return true;
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
/**
|
298 |
|
|
* First hash stage of the UHash32 algorithm.
|
299 |
|
|
*/
|
300 |
|
|
class L1Hash32
|
301 |
|
|
implements Cloneable
|
302 |
|
|
{
|
303 |
|
|
private int[] key; // key material as an array of 32-bit ints
|
304 |
|
|
private byte[] buffer; // work buffer L1_KEY_LEN long
|
305 |
|
|
private int count; // meaningful bytes in buffer
|
306 |
|
|
private ByteArrayOutputStream Y;
|
307 |
|
|
private long totalCount;
|
308 |
|
|
private L2Hash32 l2hash;
|
309 |
|
|
private L3Hash32 l3hash;
|
310 |
|
|
|
311 |
|
|
/** Trivial 0-arguments constructor. */
|
312 |
|
|
L1Hash32()
|
313 |
|
|
{
|
314 |
|
|
super();
|
315 |
|
|
|
316 |
|
|
key = new int[UMac32.L1_KEY_LEN / 4];
|
317 |
|
|
buffer = new byte[UMac32.L1_KEY_LEN];
|
318 |
|
|
count = 0;
|
319 |
|
|
Y = new ByteArrayOutputStream();
|
320 |
|
|
totalCount = 0L;
|
321 |
|
|
}
|
322 |
|
|
|
323 |
|
|
/**
|
324 |
|
|
* Private constructor for cloning purposes.
|
325 |
|
|
*
|
326 |
|
|
* @param that the instance to clone.
|
327 |
|
|
*/
|
328 |
|
|
private L1Hash32(L1Hash32 that)
|
329 |
|
|
{
|
330 |
|
|
this();
|
331 |
|
|
|
332 |
|
|
System.arraycopy(that.key, 0, this.key, 0, that.key.length);
|
333 |
|
|
System.arraycopy(that.buffer, 0, this.buffer, 0, that.count);
|
334 |
|
|
this.count = that.count;
|
335 |
|
|
byte[] otherY = that.Y.toByteArray();
|
336 |
|
|
this.Y.write(otherY, 0, otherY.length);
|
337 |
|
|
this.totalCount = that.totalCount;
|
338 |
|
|
if (that.l2hash != null)
|
339 |
|
|
this.l2hash = (L2Hash32) that.l2hash.clone();
|
340 |
|
|
if (that.l3hash != null)
|
341 |
|
|
this.l3hash = (L3Hash32) that.l3hash.clone();
|
342 |
|
|
}
|
343 |
|
|
|
344 |
|
|
public Object clone()
|
345 |
|
|
{
|
346 |
|
|
return new L1Hash32(this);
|
347 |
|
|
}
|
348 |
|
|
|
349 |
|
|
public void init(byte[] k1, byte[] k2, byte[] k31, byte[] k32)
|
350 |
|
|
{
|
351 |
|
|
for (int i = 0, j = 0; i < (UMac32.L1_KEY_LEN / 4); i++)
|
352 |
|
|
key[i] = k1[j++] << 24
|
353 |
|
|
| (k1[j++] & 0xFF) << 16
|
354 |
|
|
| (k1[j++] & 0xFF) << 8
|
355 |
|
|
| (k1[j++] & 0xFF);
|
356 |
|
|
l2hash = new L2Hash32(k2);
|
357 |
|
|
l3hash = new L3Hash32(k31, k32);
|
358 |
|
|
}
|
359 |
|
|
|
360 |
|
|
public void update(byte b)
|
361 |
|
|
{
|
362 |
|
|
// Break M into L1_KEY_LEN byte chunks (final chunk may be shorter)
|
363 |
|
|
|
364 |
|
|
// Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || .. ||
|
365 |
|
|
// M_t, and length(M_i) = L1_KEY_LEN for all 0 < i < t.
|
366 |
|
|
|
367 |
|
|
// For each chunk, except the last: endian-adjust, NH hash
|
368 |
|
|
// and add bit-length. Use results to build Y.
|
369 |
|
|
buffer[count] = b;
|
370 |
|
|
count++;
|
371 |
|
|
totalCount++;
|
372 |
|
|
if (count >= UMac32.L1_KEY_LEN)
|
373 |
|
|
{
|
374 |
|
|
byte[] y = nh32(UMac32.L1_KEY_LEN);
|
375 |
|
|
Y.write(y, 0, 8);
|
376 |
|
|
|
377 |
|
|
count = 0;
|
378 |
|
|
|
379 |
|
|
// For each iteration, extract key and three-layer hash.
|
380 |
|
|
// If length(M) <= L1_KEY_LEN, then skip L2-HASH.
|
381 |
|
|
if (Y.size() == 16) // we already hashed twice L1_KEY_LEN
|
382 |
|
|
{
|
383 |
|
|
byte[] A = Y.toByteArray();
|
384 |
|
|
Y.reset();
|
385 |
|
|
l2hash.update(A, 0, 16);
|
386 |
|
|
}
|
387 |
|
|
}
|
388 |
|
|
}
|
389 |
|
|
|
390 |
|
|
public byte[] digest()
|
391 |
|
|
{
|
392 |
|
|
// For the last chunk: pad to 32-byte boundary, endian-adjust,
|
393 |
|
|
// NH hash and add bit-length. Concatenate the result to Y.
|
394 |
|
|
if (count != 0)
|
395 |
|
|
{
|
396 |
|
|
if (count % 32 != 0)
|
397 |
|
|
{
|
398 |
|
|
int limit = 32 * ((count + 31) / 32);
|
399 |
|
|
System.arraycopy(ALL_ZEROES, 0, buffer, count, limit - count);
|
400 |
|
|
count += limit - count;
|
401 |
|
|
}
|
402 |
|
|
byte[] y = nh32(count);
|
403 |
|
|
Y.write(y, 0, 8);
|
404 |
|
|
}
|
405 |
|
|
byte[] A = Y.toByteArray();
|
406 |
|
|
Y.reset();
|
407 |
|
|
byte[] B;
|
408 |
|
|
if (totalCount <= UMac32.L1_KEY_LEN)
|
409 |
|
|
{
|
410 |
|
|
// we might have 'update'd the bytes already. check
|
411 |
|
|
if (A.length == 0) // we did
|
412 |
|
|
B = l2hash.digest();
|
413 |
|
|
else // did not
|
414 |
|
|
{
|
415 |
|
|
B = new byte[16];
|
416 |
|
|
System.arraycopy(A, 0, B, 8, 8);
|
417 |
|
|
}
|
418 |
|
|
}
|
419 |
|
|
else
|
420 |
|
|
{
|
421 |
|
|
if (A.length != 0)
|
422 |
|
|
l2hash.update(A, 0, A.length);
|
423 |
|
|
B = l2hash.digest();
|
424 |
|
|
}
|
425 |
|
|
byte[] result = l3hash.digest(B);
|
426 |
|
|
reset();
|
427 |
|
|
return result;
|
428 |
|
|
}
|
429 |
|
|
|
430 |
|
|
public void reset()
|
431 |
|
|
{
|
432 |
|
|
count = 0;
|
433 |
|
|
Y.reset();
|
434 |
|
|
totalCount = 0L;
|
435 |
|
|
if (l2hash != null)
|
436 |
|
|
l2hash.reset();
|
437 |
|
|
}
|
438 |
|
|
|
439 |
|
|
/**
|
440 |
|
|
* 5.1 NH-32: NH hashing with a 32-bit word size.
|
441 |
|
|
*
|
442 |
|
|
* @param len count of bytes, divisible by 32, in buffer to process
|
443 |
|
|
* @return Y, string of length 8 bytes.
|
444 |
|
|
*/
|
445 |
|
|
private byte[] nh32(int len)
|
446 |
|
|
{
|
447 |
|
|
// Break M and K into 4-byte chunks
|
448 |
|
|
int t = len / 4;
|
449 |
|
|
// Let M_1, M_2, ..., M_t be 4-byte strings
|
450 |
|
|
// so that M = M_1 || M_2 || .. || M_t.
|
451 |
|
|
// Let K_1, K_2, ..., K_t be 4-byte strings
|
452 |
|
|
// so that K_1 || K_2 || .. || K_t is a prefix of K.
|
453 |
|
|
int[] m = new int[t];
|
454 |
|
|
int i;
|
455 |
|
|
int j = 0;
|
456 |
|
|
for (i = 0, j = 0; i < t; i++)
|
457 |
|
|
m[i] = buffer[j++] << 24
|
458 |
|
|
| (buffer[j++] & 0xFF) << 16
|
459 |
|
|
| (buffer[j++] & 0xFF) << 8
|
460 |
|
|
| (buffer[j++] & 0xFF);
|
461 |
|
|
// Perform NH hash on the chunks, pairing words for multiplication
|
462 |
|
|
// which are 4 apart to accommodate vector-parallelism.
|
463 |
|
|
long result = len * 8L;
|
464 |
|
|
for (i = 0; i < t; i += 8)
|
465 |
|
|
{
|
466 |
|
|
result += ((m[i + 0] + key[i + 0]) & 0xFFFFFFFFL)
|
467 |
|
|
* ((m[i + 4] + key[i + 4]) & 0xFFFFFFFFL);
|
468 |
|
|
result += ((m[i + 1] + key[i + 1]) & 0xFFFFFFFFL)
|
469 |
|
|
* ((m[i + 5] + key[i + 5]) & 0xFFFFFFFFL);
|
470 |
|
|
result += ((m[i + 2] + key[i + 2]) & 0xFFFFFFFFL)
|
471 |
|
|
* ((m[i + 6] + key[i + 6]) & 0xFFFFFFFFL);
|
472 |
|
|
result += ((m[i + 3] + key[i + 3]) & 0xFFFFFFFFL)
|
473 |
|
|
* ((m[i + 7] + key[i + 7]) & 0xFFFFFFFFL);
|
474 |
|
|
}
|
475 |
|
|
return new byte[] {
|
476 |
|
|
(byte)(result >>> 56), (byte)(result >>> 48),
|
477 |
|
|
(byte)(result >>> 40), (byte)(result >>> 32),
|
478 |
|
|
(byte)(result >>> 24), (byte)(result >>> 16),
|
479 |
|
|
(byte)(result >>> 8), (byte) result };
|
480 |
|
|
}
|
481 |
|
|
}
|
482 |
|
|
|
483 |
|
|
/**
|
484 |
|
|
* Second hash stage of the UHash32 algorithm.
|
485 |
|
|
* <p>
|
486 |
|
|
* 5.4 L2-HASH-32: Second-layer hash.
|
487 |
|
|
* <ul>
|
488 |
|
|
* <li>Input:<br>
|
489 |
|
|
* K string of length 24 bytes.<br>
|
490 |
|
|
* M string of length less than 2^64 bytes.</li>
|
491 |
|
|
* <li>Returns:<br>
|
492 |
|
|
* Y, string of length 16 bytes.</li>
|
493 |
|
|
* </ul>
|
494 |
|
|
*/
|
495 |
|
|
class L2Hash32
|
496 |
|
|
implements Cloneable
|
497 |
|
|
{
|
498 |
|
|
private BigInteger k64, k128;
|
499 |
|
|
private BigInteger y;
|
500 |
|
|
private boolean highBound;
|
501 |
|
|
private long bytesSoFar;
|
502 |
|
|
private ByteArrayOutputStream buffer;
|
503 |
|
|
|
504 |
|
|
L2Hash32(byte[] K)
|
505 |
|
|
{
|
506 |
|
|
super();
|
507 |
|
|
|
508 |
|
|
if (K.length != 24)
|
509 |
|
|
throw new ExceptionInInitializerError("K length is not 24");
|
510 |
|
|
// Extract keys and restrict to special key-sets
|
511 |
|
|
// Mask64 = uint2str(0x01FFFFFF01FFFFFF, 8);
|
512 |
|
|
// Mask128 = uint2str(0x01FFFFFF01FFFFFF01FFFFFF01FFFFFF, 16);
|
513 |
|
|
// k64 = str2uint(K[1..8] and Mask64);
|
514 |
|
|
// k128 = str2uint(K[9..24] and Mask128);
|
515 |
|
|
int i = 0;
|
516 |
|
|
k64 = new BigInteger(1, new byte[] {
|
517 |
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
518 |
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
519 |
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
520 |
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF) });
|
521 |
|
|
k128 = new BigInteger(1, new byte[] {
|
522 |
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
523 |
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
524 |
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
525 |
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
526 |
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
527 |
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
528 |
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
529 |
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF) });
|
530 |
|
|
y = BigInteger.ONE;
|
531 |
|
|
highBound = false;
|
532 |
|
|
bytesSoFar = 0L;
|
533 |
|
|
}
|
534 |
|
|
|
535 |
|
|
private L2Hash32(L2Hash32 that)
|
536 |
|
|
{
|
537 |
|
|
super();
|
538 |
|
|
|
539 |
|
|
this.k64 = that.k64;
|
540 |
|
|
this.k128 = that.k128;
|
541 |
|
|
this.y = that.y;
|
542 |
|
|
this.highBound = that.highBound;
|
543 |
|
|
this.bytesSoFar = that.bytesSoFar;
|
544 |
|
|
if (that.buffer != null)
|
545 |
|
|
{
|
546 |
|
|
byte[] thatbuffer = that.buffer.toByteArray();
|
547 |
|
|
this.buffer = new ByteArrayOutputStream();
|
548 |
|
|
this.buffer.write(thatbuffer, 0, thatbuffer.length);
|
549 |
|
|
}
|
550 |
|
|
}
|
551 |
|
|
|
552 |
|
|
public Object clone()
|
553 |
|
|
{
|
554 |
|
|
return new L2Hash32(this);
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
// this is called with either 8-bytes or 16-bytes
|
558 |
|
|
void update(byte[] b, int offset, int len)
|
559 |
|
|
{
|
560 |
|
|
if (len == 0)
|
561 |
|
|
return;
|
562 |
|
|
|
563 |
|
|
if (! highBound) // do the first (only?) 8-bytes
|
564 |
|
|
{
|
565 |
|
|
poly(64, LOWER_RANGE, k64, b, offset, 8);
|
566 |
|
|
bytesSoFar += 8L;
|
567 |
|
|
highBound = (bytesSoFar > BOUNDARY);
|
568 |
|
|
if (highBound) // if we just crossed the limit then process y
|
569 |
|
|
{
|
570 |
|
|
poly(128, UPPER_RANGE, k128, yTo16bytes(), 0, 16);
|
571 |
|
|
buffer = new ByteArrayOutputStream();
|
572 |
|
|
}
|
573 |
|
|
// do the rest if any
|
574 |
|
|
update(b, offset + 8, len - 8);
|
575 |
|
|
}
|
576 |
|
|
else
|
577 |
|
|
{ // we're already beyond the 2**17 bytes size limit
|
578 |
|
|
// process in chuncks of 16
|
579 |
|
|
buffer.write(b, offset, len);
|
580 |
|
|
if (buffer.size() > 16)
|
581 |
|
|
{
|
582 |
|
|
byte[] bb = buffer.toByteArray();
|
583 |
|
|
poly(128, UPPER_RANGE, k128, bb, 0, 16);
|
584 |
|
|
if (bb.length > 16)
|
585 |
|
|
buffer.write(bb, 16, bb.length - 16);
|
586 |
|
|
}
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
byte[] digest()
|
591 |
|
|
{
|
592 |
|
|
// If M no more than 2^17 bytes, hash under 64-bit prime,
|
593 |
|
|
// otherwise, hash first 2^17 bytes under 64-bit prime and
|
594 |
|
|
// remainder under 128-bit prime.
|
595 |
|
|
if (! highBound) // y is up-to-date
|
596 |
|
|
{
|
597 |
|
|
// do nothing
|
598 |
|
|
}
|
599 |
|
|
else // we may have some bytes in buffer
|
600 |
|
|
{
|
601 |
|
|
byte[] bb = buffer.toByteArray();
|
602 |
|
|
byte[] lastBlock = new byte[16];
|
603 |
|
|
System.arraycopy(bb, 0, lastBlock, 0, bb.length);
|
604 |
|
|
lastBlock[bb.length] = (byte) 0x80;
|
605 |
|
|
poly(128, UPPER_RANGE, k128, lastBlock, 0, 16);
|
606 |
|
|
}
|
607 |
|
|
byte[] result = yTo16bytes();
|
608 |
|
|
reset();
|
609 |
|
|
return result;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
void reset()
|
613 |
|
|
{
|
614 |
|
|
y = BigInteger.ONE;
|
615 |
|
|
highBound = false;
|
616 |
|
|
bytesSoFar = 0L;
|
617 |
|
|
if (buffer != null)
|
618 |
|
|
buffer.reset();
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
private byte[] yTo16bytes()
|
622 |
|
|
{
|
623 |
|
|
byte[] yy = y.toByteArray();
|
624 |
|
|
byte[] result = new byte[16];
|
625 |
|
|
if (yy.length > 16)
|
626 |
|
|
System.arraycopy(yy, yy.length - 16, result, 0, 16);
|
627 |
|
|
else
|
628 |
|
|
System.arraycopy(yy, 0, result, 16 - yy.length, yy.length);
|
629 |
|
|
|
630 |
|
|
return result;
|
631 |
|
|
}
|
632 |
|
|
|
633 |
|
|
/**
|
634 |
|
|
* 5.3 POLY: Polynomial hash Function Name: POLY
|
635 |
|
|
*
|
636 |
|
|
* @param wordbits positive integer divisible by 8: called with 64 or 128.
|
637 |
|
|
* @param maxwordrange positive integer less than 2**wordbits.
|
638 |
|
|
* @param k integer in the range 0 .. prime(wordbits) - 1.
|
639 |
|
|
* @param M string with length divisible by (wordbits / 8) bytes. return y,
|
640 |
|
|
* integer in the range 0 .. prime(wordbits) - 1.
|
641 |
|
|
*/
|
642 |
|
|
private void poly(int wordbits, BigInteger maxwordrange, BigInteger k,
|
643 |
|
|
byte[] M, int off, int len)
|
644 |
|
|
{
|
645 |
|
|
byte[] mag = new byte[len];
|
646 |
|
|
System.arraycopy(M, off, mag, 0, len);
|
647 |
|
|
// Define constants used for fixing out-of-range words
|
648 |
|
|
BigInteger p = prime(wordbits);
|
649 |
|
|
BigInteger offset = TWO.pow(wordbits).subtract(p); // 2^wordbits - p;
|
650 |
|
|
BigInteger marker = p.subtract(BigInteger.ONE);
|
651 |
|
|
// Break M into chunks of length wordbytes bytes
|
652 |
|
|
// long n = M.length / wordbytes;
|
653 |
|
|
// Let M_1, M_2, ..., M_n be strings of length wordbytes bytes
|
654 |
|
|
// so that M = M_1 || M_2 || .. || M_n
|
655 |
|
|
|
656 |
|
|
// For each input word, compare it with maxwordrange. If larger
|
657 |
|
|
// then hash the words 'marker' and (m - offset), both in range.
|
658 |
|
|
// for (int i = 0; i < n; i++) {
|
659 |
|
|
BigInteger m = new BigInteger(1, mag);
|
660 |
|
|
if (m.compareTo(maxwordrange) >= 0) // m >= maxwordrange
|
661 |
|
|
{
|
662 |
|
|
y = y.multiply(k).add(marker).mod(p); // (k * y + marker) % p;
|
663 |
|
|
y = y.multiply(k).add(m.subtract(offset)).mod(p); // (k * y + (m - offset)) % p;
|
664 |
|
|
}
|
665 |
|
|
else
|
666 |
|
|
y = y.multiply(k).add(m).mod(p); // (k * y + m) % p;
|
667 |
|
|
}
|
668 |
|
|
}
|
669 |
|
|
|
670 |
|
|
/**
|
671 |
|
|
* Third hash stage of the UHash32 algorithm.
|
672 |
|
|
* <ul>
|
673 |
|
|
* <li>Input:<br/>
|
674 |
|
|
* K1 string of length 64 bytes.<br/>
|
675 |
|
|
* K2 string of length 4 bytes.<br/>
|
676 |
|
|
* M string of length 16 bytes.</li>
|
677 |
|
|
* <li>Returns:<br/>
|
678 |
|
|
* Y, string of length 4 bytes.</li>
|
679 |
|
|
* </ul>
|
680 |
|
|
*/
|
681 |
|
|
class L3Hash32
|
682 |
|
|
implements Cloneable
|
683 |
|
|
{
|
684 |
|
|
private static final long PRIME_36 = 0x0000000FFFFFFFFBL;
|
685 |
|
|
private int[] k = new int[9];
|
686 |
|
|
|
687 |
|
|
/**
|
688 |
|
|
* @param K1 string of length 64 bytes.
|
689 |
|
|
* @param K2 string of length 4 bytes.
|
690 |
|
|
*/
|
691 |
|
|
L3Hash32(byte[] K1, byte[] K2)
|
692 |
|
|
{
|
693 |
|
|
super();
|
694 |
|
|
|
695 |
|
|
// pre-conditions
|
696 |
|
|
if (K1.length != 64)
|
697 |
|
|
throw new ExceptionInInitializerError("K1 length is not 64");
|
698 |
|
|
if (K2.length != 4)
|
699 |
|
|
throw new ExceptionInInitializerError("K2 length is not 4");
|
700 |
|
|
// Break K1 into 8 chunks and convert to integers
|
701 |
|
|
for (int i = 0, j = 0; i < 8; i++)
|
702 |
|
|
{
|
703 |
|
|
long kk = (K1[j++] & 0xFFL) << 56
|
704 |
|
|
| (K1[j++] & 0xFFL) << 48
|
705 |
|
|
| (K1[j++] & 0xFFL) << 40
|
706 |
|
|
| (K1[j++] & 0xFFL) << 32
|
707 |
|
|
| (K1[j++] & 0xFFL) << 24
|
708 |
|
|
| (K1[j++] & 0xFFL) << 16
|
709 |
|
|
| (K1[j++] & 0xFFL) << 8
|
710 |
|
|
| (K1[j++] & 0xFFL);
|
711 |
|
|
k[i] = (int)(kk % PRIME_36);
|
712 |
|
|
}
|
713 |
|
|
k[8] = K2[0] << 24
|
714 |
|
|
| (K2[1] & 0xFF) << 16
|
715 |
|
|
| (K2[2] & 0xFF) << 8
|
716 |
|
|
| (K2[3] & 0xFF);
|
717 |
|
|
}
|
718 |
|
|
|
719 |
|
|
private L3Hash32(int[] k)
|
720 |
|
|
{
|
721 |
|
|
super();
|
722 |
|
|
|
723 |
|
|
this.k = k;
|
724 |
|
|
}
|
725 |
|
|
|
726 |
|
|
public Object clone()
|
727 |
|
|
{
|
728 |
|
|
return new L3Hash32((int[]) k.clone());
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/**
|
732 |
|
|
* @param M string of length 16 bytes.
|
733 |
|
|
* @return Y, string of length 4 bytes.
|
734 |
|
|
*/
|
735 |
|
|
byte[] digest(byte[] M)
|
736 |
|
|
{
|
737 |
|
|
if (M.length != 16)
|
738 |
|
|
throw new IllegalArgumentException("M length is not 16");
|
739 |
|
|
|
740 |
|
|
long m, y = 0L;
|
741 |
|
|
for (int i = 0, j = 0; i < 8; i++)
|
742 |
|
|
{
|
743 |
|
|
// Break M into 8 chunks and convert to integers
|
744 |
|
|
m = (M[j++] & 0xFFL) << 8 | (M[j++] & 0xFFL);
|
745 |
|
|
// Inner-product hash, extract last 32 bits and affine-translate
|
746 |
|
|
// y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(36);
|
747 |
|
|
// y = y mod 2^32;
|
748 |
|
|
y += (m * (k[i] & 0xFFFFFFFFL)) % PRIME_36;
|
749 |
|
|
}
|
750 |
|
|
int Y = ((int) y) ^ k[8];
|
751 |
|
|
return new byte[] {
|
752 |
|
|
(byte)(Y >>> 24),
|
753 |
|
|
(byte)(Y >>> 16),
|
754 |
|
|
(byte)(Y >>> 8),
|
755 |
|
|
(byte) Y };
|
756 |
|
|
}
|
757 |
|
|
}
|
758 |
|
|
}
|