1 |
771 |
jeremybenn |
/* AffineTransform.java -- transform coordinates between two 2-D spaces
|
2 |
|
|
Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation
|
3 |
|
|
|
4 |
|
|
This file is part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
9 |
|
|
any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
19 |
|
|
02110-1301 USA.
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
package java.awt.geom;
|
40 |
|
|
|
41 |
|
|
import java.awt.Shape;
|
42 |
|
|
import java.io.IOException;
|
43 |
|
|
import java.io.ObjectInputStream;
|
44 |
|
|
import java.io.Serializable;
|
45 |
|
|
|
46 |
|
|
/**
|
47 |
|
|
* This class represents an affine transformation between two coordinate
|
48 |
|
|
* spaces in 2 dimensions. Such a transform preserves the "straightness"
|
49 |
|
|
* and "parallelness" of lines. The transform is built from a sequence of
|
50 |
|
|
* translations, scales, flips, rotations, and shears.
|
51 |
|
|
*
|
52 |
|
|
* <p>The transformation can be represented using matrix math on a 3x3 array.
|
53 |
|
|
* Given (x,y), the transformation (x',y') can be found by:
|
54 |
|
|
* <pre>
|
55 |
|
|
* [ x'] [ m00 m01 m02 ] [ x ] [ m00*x + m01*y + m02 ]
|
56 |
|
|
* [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ]
|
57 |
|
|
* [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
|
58 |
|
|
* </pre>
|
59 |
|
|
* The bottom row of the matrix is constant, so a transform can be uniquely
|
60 |
|
|
* represented (as in {@link #toString()}) by
|
61 |
|
|
* "[[m00, m01, m02], [m10, m11, m12]]".
|
62 |
|
|
*
|
63 |
|
|
* @author Tom Tromey (tromey@cygnus.com)
|
64 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
65 |
|
|
* @since 1.2
|
66 |
|
|
* @status partially updated to 1.4, still has some problems
|
67 |
|
|
*/
|
68 |
|
|
public class AffineTransform implements Cloneable, Serializable
|
69 |
|
|
{
|
70 |
|
|
/**
|
71 |
|
|
* Compatible with JDK 1.2+.
|
72 |
|
|
*/
|
73 |
|
|
private static final long serialVersionUID = 1330973210523860834L;
|
74 |
|
|
|
75 |
|
|
/**
|
76 |
|
|
* The transformation is the identity (x' = x, y' = y). All other transforms
|
77 |
|
|
* have either a combination of the appropriate transform flag bits for
|
78 |
|
|
* their type, or the type GENERAL_TRANSFORM.
|
79 |
|
|
*
|
80 |
|
|
* @see #TYPE_TRANSLATION
|
81 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
82 |
|
|
* @see #TYPE_GENERAL_SCALE
|
83 |
|
|
* @see #TYPE_FLIP
|
84 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
85 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
86 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
87 |
|
|
* @see #getType()
|
88 |
|
|
*/
|
89 |
|
|
public static final int TYPE_IDENTITY = 0;
|
90 |
|
|
|
91 |
|
|
/**
|
92 |
|
|
* The transformation includes a translation - shifting in the x or y
|
93 |
|
|
* direction without changing length or angles.
|
94 |
|
|
*
|
95 |
|
|
* @see #TYPE_IDENTITY
|
96 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
97 |
|
|
* @see #TYPE_GENERAL_SCALE
|
98 |
|
|
* @see #TYPE_FLIP
|
99 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
100 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
101 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
102 |
|
|
* @see #getType()
|
103 |
|
|
*/
|
104 |
|
|
public static final int TYPE_TRANSLATION = 1;
|
105 |
|
|
|
106 |
|
|
/**
|
107 |
|
|
* The transformation includes a uniform scale - length is scaled in both
|
108 |
|
|
* the x and y directions by the same amount, without affecting angles.
|
109 |
|
|
* This is mutually exclusive with TYPE_GENERAL_SCALE.
|
110 |
|
|
*
|
111 |
|
|
* @see #TYPE_IDENTITY
|
112 |
|
|
* @see #TYPE_TRANSLATION
|
113 |
|
|
* @see #TYPE_GENERAL_SCALE
|
114 |
|
|
* @see #TYPE_FLIP
|
115 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
116 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
117 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
118 |
|
|
* @see #TYPE_MASK_SCALE
|
119 |
|
|
* @see #getType()
|
120 |
|
|
*/
|
121 |
|
|
public static final int TYPE_UNIFORM_SCALE = 2;
|
122 |
|
|
|
123 |
|
|
/**
|
124 |
|
|
* The transformation includes a general scale - length is scaled in either
|
125 |
|
|
* or both the x and y directions, but by different amounts; without
|
126 |
|
|
* affecting angles. This is mutually exclusive with TYPE_UNIFORM_SCALE.
|
127 |
|
|
*
|
128 |
|
|
* @see #TYPE_IDENTITY
|
129 |
|
|
* @see #TYPE_TRANSLATION
|
130 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
131 |
|
|
* @see #TYPE_FLIP
|
132 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
133 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
134 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
135 |
|
|
* @see #TYPE_MASK_SCALE
|
136 |
|
|
* @see #getType()
|
137 |
|
|
*/
|
138 |
|
|
public static final int TYPE_GENERAL_SCALE = 4;
|
139 |
|
|
|
140 |
|
|
/**
|
141 |
|
|
* This constant checks if either variety of scale transform is performed.
|
142 |
|
|
*
|
143 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
144 |
|
|
* @see #TYPE_GENERAL_SCALE
|
145 |
|
|
*/
|
146 |
|
|
public static final int TYPE_MASK_SCALE = 6;
|
147 |
|
|
|
148 |
|
|
/**
|
149 |
|
|
* The transformation includes a flip about an axis, swapping between
|
150 |
|
|
* right-handed and left-handed coordinate systems. In a right-handed
|
151 |
|
|
* system, the positive x-axis rotates counter-clockwise to the positive
|
152 |
|
|
* y-axis; in a left-handed system it rotates clockwise.
|
153 |
|
|
*
|
154 |
|
|
* @see #TYPE_IDENTITY
|
155 |
|
|
* @see #TYPE_TRANSLATION
|
156 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
157 |
|
|
* @see #TYPE_GENERAL_SCALE
|
158 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
159 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
160 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
161 |
|
|
* @see #getType()
|
162 |
|
|
*/
|
163 |
|
|
public static final int TYPE_FLIP = 64;
|
164 |
|
|
|
165 |
|
|
/**
|
166 |
|
|
* The transformation includes a rotation of a multiple of 90 degrees (PI/2
|
167 |
|
|
* radians). Angles are rotated, but length is preserved. This is mutually
|
168 |
|
|
* exclusive with TYPE_GENERAL_ROTATION.
|
169 |
|
|
*
|
170 |
|
|
* @see #TYPE_IDENTITY
|
171 |
|
|
* @see #TYPE_TRANSLATION
|
172 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
173 |
|
|
* @see #TYPE_GENERAL_SCALE
|
174 |
|
|
* @see #TYPE_FLIP
|
175 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
176 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
177 |
|
|
* @see #TYPE_MASK_ROTATION
|
178 |
|
|
* @see #getType()
|
179 |
|
|
*/
|
180 |
|
|
public static final int TYPE_QUADRANT_ROTATION = 8;
|
181 |
|
|
|
182 |
|
|
/**
|
183 |
|
|
* The transformation includes a rotation by an arbitrary angle. Angles are
|
184 |
|
|
* rotated, but length is preserved. This is mutually exclusive with
|
185 |
|
|
* TYPE_QUADRANT_ROTATION.
|
186 |
|
|
*
|
187 |
|
|
* @see #TYPE_IDENTITY
|
188 |
|
|
* @see #TYPE_TRANSLATION
|
189 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
190 |
|
|
* @see #TYPE_GENERAL_SCALE
|
191 |
|
|
* @see #TYPE_FLIP
|
192 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
193 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
194 |
|
|
* @see #TYPE_MASK_ROTATION
|
195 |
|
|
* @see #getType()
|
196 |
|
|
*/
|
197 |
|
|
public static final int TYPE_GENERAL_ROTATION = 16;
|
198 |
|
|
|
199 |
|
|
/**
|
200 |
|
|
* This constant checks if either variety of rotation is performed.
|
201 |
|
|
*
|
202 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
203 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
204 |
|
|
*/
|
205 |
|
|
public static final int TYPE_MASK_ROTATION = 24;
|
206 |
|
|
|
207 |
|
|
/**
|
208 |
|
|
* The transformation is an arbitrary conversion of coordinates which
|
209 |
|
|
* could not be decomposed into the other TYPEs.
|
210 |
|
|
*
|
211 |
|
|
* @see #TYPE_IDENTITY
|
212 |
|
|
* @see #TYPE_TRANSLATION
|
213 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
214 |
|
|
* @see #TYPE_GENERAL_SCALE
|
215 |
|
|
* @see #TYPE_FLIP
|
216 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
217 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
218 |
|
|
* @see #getType()
|
219 |
|
|
*/
|
220 |
|
|
public static final int TYPE_GENERAL_TRANSFORM = 32;
|
221 |
|
|
|
222 |
|
|
/**
|
223 |
|
|
* The X coordinate scaling element of the transform matrix.
|
224 |
|
|
*
|
225 |
|
|
* @serial matrix[0,0]
|
226 |
|
|
*/
|
227 |
|
|
private double m00;
|
228 |
|
|
|
229 |
|
|
/**
|
230 |
|
|
* The Y coordinate shearing element of the transform matrix.
|
231 |
|
|
*
|
232 |
|
|
* @serial matrix[1,0]
|
233 |
|
|
*/
|
234 |
|
|
private double m10;
|
235 |
|
|
|
236 |
|
|
/**
|
237 |
|
|
* The X coordinate shearing element of the transform matrix.
|
238 |
|
|
*
|
239 |
|
|
* @serial matrix[0,1]
|
240 |
|
|
*/
|
241 |
|
|
private double m01;
|
242 |
|
|
|
243 |
|
|
/**
|
244 |
|
|
* The Y coordinate scaling element of the transform matrix.
|
245 |
|
|
*
|
246 |
|
|
* @serial matrix[1,1]
|
247 |
|
|
*/
|
248 |
|
|
private double m11;
|
249 |
|
|
|
250 |
|
|
/**
|
251 |
|
|
* The X coordinate translation element of the transform matrix.
|
252 |
|
|
*
|
253 |
|
|
* @serial matrix[0,2]
|
254 |
|
|
*/
|
255 |
|
|
private double m02;
|
256 |
|
|
|
257 |
|
|
/**
|
258 |
|
|
* The Y coordinate translation element of the transform matrix.
|
259 |
|
|
*
|
260 |
|
|
* @serial matrix[1,2]
|
261 |
|
|
*/
|
262 |
|
|
private double m12;
|
263 |
|
|
|
264 |
|
|
/** The type of this transform. */
|
265 |
|
|
private transient int type;
|
266 |
|
|
|
267 |
|
|
/**
|
268 |
|
|
* Construct a new identity transform:
|
269 |
|
|
* <pre>
|
270 |
|
|
* [ 1 0 0 ]
|
271 |
|
|
* [ 0 1 0 ]
|
272 |
|
|
* [ 0 0 1 ]
|
273 |
|
|
* </pre>
|
274 |
|
|
*/
|
275 |
|
|
public AffineTransform()
|
276 |
|
|
{
|
277 |
|
|
m00 = m11 = 1;
|
278 |
|
|
}
|
279 |
|
|
|
280 |
|
|
/**
|
281 |
|
|
* Create a new transform which copies the given one.
|
282 |
|
|
*
|
283 |
|
|
* @param tx the transform to copy
|
284 |
|
|
* @throws NullPointerException if tx is null
|
285 |
|
|
*/
|
286 |
|
|
public AffineTransform(AffineTransform tx)
|
287 |
|
|
{
|
288 |
|
|
setTransform(tx);
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/**
|
292 |
|
|
* Construct a transform with the given matrix entries:
|
293 |
|
|
* <pre>
|
294 |
|
|
* [ m00 m01 m02 ]
|
295 |
|
|
* [ m10 m11 m12 ]
|
296 |
|
|
* [ 0 0 1 ]
|
297 |
|
|
* </pre>
|
298 |
|
|
*
|
299 |
|
|
* @param m00 the x scaling component
|
300 |
|
|
* @param m10 the y shearing component
|
301 |
|
|
* @param m01 the x shearing component
|
302 |
|
|
* @param m11 the y scaling component
|
303 |
|
|
* @param m02 the x translation component
|
304 |
|
|
* @param m12 the y translation component
|
305 |
|
|
*/
|
306 |
|
|
public AffineTransform(float m00, float m10,
|
307 |
|
|
float m01, float m11,
|
308 |
|
|
float m02, float m12)
|
309 |
|
|
{
|
310 |
|
|
this.m00 = m00;
|
311 |
|
|
this.m10 = m10;
|
312 |
|
|
this.m01 = m01;
|
313 |
|
|
this.m11 = m11;
|
314 |
|
|
this.m02 = m02;
|
315 |
|
|
this.m12 = m12;
|
316 |
|
|
updateType();
|
317 |
|
|
}
|
318 |
|
|
|
319 |
|
|
/**
|
320 |
|
|
* Construct a transform from a sequence of float entries. The array must
|
321 |
|
|
* have at least 4 entries, which has a translation factor of 0; or 6
|
322 |
|
|
* entries, for specifying all parameters:
|
323 |
|
|
* <pre>
|
324 |
|
|
* [ f[0] f[2] (f[4]) ]
|
325 |
|
|
* [ f[1] f[3] (f[5]) ]
|
326 |
|
|
* [ 0 0 1 ]
|
327 |
|
|
* </pre>
|
328 |
|
|
*
|
329 |
|
|
* @param f the matrix to copy from, with at least 4 (6) entries
|
330 |
|
|
* @throws NullPointerException if f is null
|
331 |
|
|
* @throws ArrayIndexOutOfBoundsException if f is too small
|
332 |
|
|
*/
|
333 |
|
|
public AffineTransform(float[] f)
|
334 |
|
|
{
|
335 |
|
|
m00 = f[0];
|
336 |
|
|
m10 = f[1];
|
337 |
|
|
m01 = f[2];
|
338 |
|
|
m11 = f[3];
|
339 |
|
|
if (f.length >= 6)
|
340 |
|
|
{
|
341 |
|
|
m02 = f[4];
|
342 |
|
|
m12 = f[5];
|
343 |
|
|
}
|
344 |
|
|
updateType();
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/**
|
348 |
|
|
* Construct a transform with the given matrix entries:
|
349 |
|
|
* <pre>
|
350 |
|
|
* [ m00 m01 m02 ]
|
351 |
|
|
* [ m10 m11 m12 ]
|
352 |
|
|
* [ 0 0 1 ]
|
353 |
|
|
* </pre>
|
354 |
|
|
*
|
355 |
|
|
* @param m00 the x scaling component
|
356 |
|
|
* @param m10 the y shearing component
|
357 |
|
|
* @param m01 the x shearing component
|
358 |
|
|
* @param m11 the y scaling component
|
359 |
|
|
* @param m02 the x translation component
|
360 |
|
|
* @param m12 the y translation component
|
361 |
|
|
*/
|
362 |
|
|
public AffineTransform(double m00, double m10, double m01,
|
363 |
|
|
double m11, double m02, double m12)
|
364 |
|
|
{
|
365 |
|
|
this.m00 = m00;
|
366 |
|
|
this.m10 = m10;
|
367 |
|
|
this.m01 = m01;
|
368 |
|
|
this.m11 = m11;
|
369 |
|
|
this.m02 = m02;
|
370 |
|
|
this.m12 = m12;
|
371 |
|
|
updateType();
|
372 |
|
|
}
|
373 |
|
|
|
374 |
|
|
/**
|
375 |
|
|
* Construct a transform from a sequence of double entries. The array must
|
376 |
|
|
* have at least 4 entries, which has a translation factor of 0; or 6
|
377 |
|
|
* entries, for specifying all parameters:
|
378 |
|
|
* <pre>
|
379 |
|
|
* [ d[0] d[2] (d[4]) ]
|
380 |
|
|
* [ d[1] d[3] (d[5]) ]
|
381 |
|
|
* [ 0 0 1 ]
|
382 |
|
|
* </pre>
|
383 |
|
|
*
|
384 |
|
|
* @param d the matrix to copy from, with at least 4 (6) entries
|
385 |
|
|
* @throws NullPointerException if d is null
|
386 |
|
|
* @throws ArrayIndexOutOfBoundsException if d is too small
|
387 |
|
|
*/
|
388 |
|
|
public AffineTransform(double[] d)
|
389 |
|
|
{
|
390 |
|
|
m00 = d[0];
|
391 |
|
|
m10 = d[1];
|
392 |
|
|
m01 = d[2];
|
393 |
|
|
m11 = d[3];
|
394 |
|
|
if (d.length >= 6)
|
395 |
|
|
{
|
396 |
|
|
m02 = d[4];
|
397 |
|
|
m12 = d[5];
|
398 |
|
|
}
|
399 |
|
|
updateType();
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
/**
|
403 |
|
|
* Returns a translation transform:
|
404 |
|
|
* <pre>
|
405 |
|
|
* [ 1 0 tx ]
|
406 |
|
|
* [ 0 1 ty ]
|
407 |
|
|
* [ 0 0 1 ]
|
408 |
|
|
* </pre>
|
409 |
|
|
*
|
410 |
|
|
* @param tx the x translation distance
|
411 |
|
|
* @param ty the y translation distance
|
412 |
|
|
* @return the translating transform
|
413 |
|
|
*/
|
414 |
|
|
public static AffineTransform getTranslateInstance(double tx, double ty)
|
415 |
|
|
{
|
416 |
|
|
AffineTransform t = new AffineTransform();
|
417 |
|
|
t.m02 = tx;
|
418 |
|
|
t.m12 = ty;
|
419 |
|
|
t.type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
|
420 |
|
|
return t;
|
421 |
|
|
}
|
422 |
|
|
|
423 |
|
|
/**
|
424 |
|
|
* Returns a rotation transform. A positive angle (in radians) rotates
|
425 |
|
|
* the positive x-axis to the positive y-axis:
|
426 |
|
|
* <pre>
|
427 |
|
|
* [ cos(theta) -sin(theta) 0 ]
|
428 |
|
|
* [ sin(theta) cos(theta) 0 ]
|
429 |
|
|
* [ 0 0 1 ]
|
430 |
|
|
* </pre>
|
431 |
|
|
*
|
432 |
|
|
* @param theta the rotation angle
|
433 |
|
|
* @return the rotating transform
|
434 |
|
|
*/
|
435 |
|
|
public static AffineTransform getRotateInstance(double theta)
|
436 |
|
|
{
|
437 |
|
|
AffineTransform t = new AffineTransform();
|
438 |
|
|
t.setToRotation(theta);
|
439 |
|
|
return t;
|
440 |
|
|
}
|
441 |
|
|
|
442 |
|
|
/**
|
443 |
|
|
* Returns a rotation transform about a point. A positive angle (in radians)
|
444 |
|
|
* rotates the positive x-axis to the positive y-axis. This is the same
|
445 |
|
|
* as calling:
|
446 |
|
|
* <pre>
|
447 |
|
|
* AffineTransform tx = new AffineTransform();
|
448 |
|
|
* tx.setToTranslation(x, y);
|
449 |
|
|
* tx.rotate(theta);
|
450 |
|
|
* tx.translate(-x, -y);
|
451 |
|
|
* </pre>
|
452 |
|
|
*
|
453 |
|
|
* <p>The resulting matrix is:
|
454 |
|
|
* <pre>
|
455 |
|
|
* [ cos(theta) -sin(theta) x-x*cos+y*sin ]
|
456 |
|
|
* [ sin(theta) cos(theta) y-x*sin-y*cos ]
|
457 |
|
|
* [ 0 0 1 ]
|
458 |
|
|
* </pre>
|
459 |
|
|
*
|
460 |
|
|
* @param theta the rotation angle
|
461 |
|
|
* @param x the x coordinate of the pivot point
|
462 |
|
|
* @param y the y coordinate of the pivot point
|
463 |
|
|
* @return the rotating transform
|
464 |
|
|
*/
|
465 |
|
|
public static AffineTransform getRotateInstance(double theta,
|
466 |
|
|
double x, double y)
|
467 |
|
|
{
|
468 |
|
|
AffineTransform t = new AffineTransform();
|
469 |
|
|
t.setToTranslation(x, y);
|
470 |
|
|
t.rotate(theta);
|
471 |
|
|
t.translate(-x, -y);
|
472 |
|
|
return t;
|
473 |
|
|
}
|
474 |
|
|
|
475 |
|
|
/**
|
476 |
|
|
* Returns a scaling transform:
|
477 |
|
|
* <pre>
|
478 |
|
|
* [ sx 0 0 ]
|
479 |
|
|
* [ 0 sy 0 ]
|
480 |
|
|
* [ 0 0 1 ]
|
481 |
|
|
* </pre>
|
482 |
|
|
*
|
483 |
|
|
* @param sx the x scaling factor
|
484 |
|
|
* @param sy the y scaling factor
|
485 |
|
|
* @return the scaling transform
|
486 |
|
|
*/
|
487 |
|
|
public static AffineTransform getScaleInstance(double sx, double sy)
|
488 |
|
|
{
|
489 |
|
|
AffineTransform t = new AffineTransform();
|
490 |
|
|
t.setToScale(sx, sy);
|
491 |
|
|
return t;
|
492 |
|
|
}
|
493 |
|
|
|
494 |
|
|
/**
|
495 |
|
|
* Returns a shearing transform (points are shifted in the x direction based
|
496 |
|
|
* on a factor of their y coordinate, and in the y direction as a factor of
|
497 |
|
|
* their x coordinate):
|
498 |
|
|
* <pre>
|
499 |
|
|
* [ 1 shx 0 ]
|
500 |
|
|
* [ shy 1 0 ]
|
501 |
|
|
* [ 0 0 1 ]
|
502 |
|
|
* </pre>
|
503 |
|
|
*
|
504 |
|
|
* @param shx the x shearing factor
|
505 |
|
|
* @param shy the y shearing factor
|
506 |
|
|
* @return the shearing transform
|
507 |
|
|
*/
|
508 |
|
|
public static AffineTransform getShearInstance(double shx, double shy)
|
509 |
|
|
{
|
510 |
|
|
AffineTransform t = new AffineTransform();
|
511 |
|
|
t.setToShear(shx, shy);
|
512 |
|
|
return t;
|
513 |
|
|
}
|
514 |
|
|
|
515 |
|
|
/**
|
516 |
|
|
* Returns the type of this transform. The result is always valid, although
|
517 |
|
|
* it may not be the simplest interpretation (in other words, there are
|
518 |
|
|
* sequences of transforms which reduce to something simpler, which this
|
519 |
|
|
* does not always detect). The result is either TYPE_GENERAL_TRANSFORM,
|
520 |
|
|
* or a bit-wise combination of TYPE_TRANSLATION, the mutually exclusive
|
521 |
|
|
* TYPE_*_ROTATIONs, and the mutually exclusive TYPE_*_SCALEs.
|
522 |
|
|
*
|
523 |
|
|
* @return The type.
|
524 |
|
|
*
|
525 |
|
|
* @see #TYPE_IDENTITY
|
526 |
|
|
* @see #TYPE_TRANSLATION
|
527 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
528 |
|
|
* @see #TYPE_GENERAL_SCALE
|
529 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
530 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
531 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
532 |
|
|
*/
|
533 |
|
|
public int getType()
|
534 |
|
|
{
|
535 |
|
|
return type;
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/**
|
539 |
|
|
* Return the determinant of this transform matrix. If the determinant is
|
540 |
|
|
* non-zero, the transform is invertible; otherwise operations which require
|
541 |
|
|
* an inverse throw a NoninvertibleTransformException. A result very near
|
542 |
|
|
* zero, due to rounding errors, may indicate that inversion results do not
|
543 |
|
|
* carry enough precision to be meaningful.
|
544 |
|
|
*
|
545 |
|
|
* <p>If this is a uniform scale transformation, the determinant also
|
546 |
|
|
* represents the squared value of the scale. Otherwise, it carries little
|
547 |
|
|
* additional meaning. The determinant is calculated as:
|
548 |
|
|
* <pre>
|
549 |
|
|
* | m00 m01 m02 |
|
550 |
|
|
* | m10 m11 m12 | = m00 * m11 - m01 * m10
|
551 |
|
|
* | 0 0 1 |
|
552 |
|
|
* </pre>
|
553 |
|
|
*
|
554 |
|
|
* @return the determinant
|
555 |
|
|
* @see #createInverse()
|
556 |
|
|
*/
|
557 |
|
|
public double getDeterminant()
|
558 |
|
|
{
|
559 |
|
|
return m00 * m11 - m01 * m10;
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/**
|
563 |
|
|
* Return the matrix of values used in this transform. If the matrix has
|
564 |
|
|
* fewer than 6 entries, only the scale and shear factors are returned;
|
565 |
|
|
* otherwise the translation factors are copied as well. The resulting
|
566 |
|
|
* values are:
|
567 |
|
|
* <pre>
|
568 |
|
|
* [ d[0] d[2] (d[4]) ]
|
569 |
|
|
* [ d[1] d[3] (d[5]) ]
|
570 |
|
|
* [ 0 0 1 ]
|
571 |
|
|
* </pre>
|
572 |
|
|
*
|
573 |
|
|
* @param d the matrix to store the results into; with 4 (6) entries
|
574 |
|
|
* @throws NullPointerException if d is null
|
575 |
|
|
* @throws ArrayIndexOutOfBoundsException if d is too small
|
576 |
|
|
*/
|
577 |
|
|
public void getMatrix(double[] d)
|
578 |
|
|
{
|
579 |
|
|
d[0] = m00;
|
580 |
|
|
d[1] = m10;
|
581 |
|
|
d[2] = m01;
|
582 |
|
|
d[3] = m11;
|
583 |
|
|
if (d.length >= 6)
|
584 |
|
|
{
|
585 |
|
|
d[4] = m02;
|
586 |
|
|
d[5] = m12;
|
587 |
|
|
}
|
588 |
|
|
}
|
589 |
|
|
|
590 |
|
|
/**
|
591 |
|
|
* Returns the X coordinate scaling factor of the matrix.
|
592 |
|
|
*
|
593 |
|
|
* @return m00
|
594 |
|
|
* @see #getMatrix(double[])
|
595 |
|
|
*/
|
596 |
|
|
public double getScaleX()
|
597 |
|
|
{
|
598 |
|
|
return m00;
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
/**
|
602 |
|
|
* Returns the Y coordinate scaling factor of the matrix.
|
603 |
|
|
*
|
604 |
|
|
* @return m11
|
605 |
|
|
* @see #getMatrix(double[])
|
606 |
|
|
*/
|
607 |
|
|
public double getScaleY()
|
608 |
|
|
{
|
609 |
|
|
return m11;
|
610 |
|
|
}
|
611 |
|
|
|
612 |
|
|
/**
|
613 |
|
|
* Returns the X coordinate shearing factor of the matrix.
|
614 |
|
|
*
|
615 |
|
|
* @return m01
|
616 |
|
|
* @see #getMatrix(double[])
|
617 |
|
|
*/
|
618 |
|
|
public double getShearX()
|
619 |
|
|
{
|
620 |
|
|
return m01;
|
621 |
|
|
}
|
622 |
|
|
|
623 |
|
|
/**
|
624 |
|
|
* Returns the Y coordinate shearing factor of the matrix.
|
625 |
|
|
*
|
626 |
|
|
* @return m10
|
627 |
|
|
* @see #getMatrix(double[])
|
628 |
|
|
*/
|
629 |
|
|
public double getShearY()
|
630 |
|
|
{
|
631 |
|
|
return m10;
|
632 |
|
|
}
|
633 |
|
|
|
634 |
|
|
/**
|
635 |
|
|
* Returns the X coordinate translation factor of the matrix.
|
636 |
|
|
*
|
637 |
|
|
* @return m02
|
638 |
|
|
* @see #getMatrix(double[])
|
639 |
|
|
*/
|
640 |
|
|
public double getTranslateX()
|
641 |
|
|
{
|
642 |
|
|
return m02;
|
643 |
|
|
}
|
644 |
|
|
|
645 |
|
|
/**
|
646 |
|
|
* Returns the Y coordinate translation factor of the matrix.
|
647 |
|
|
*
|
648 |
|
|
* @return m12
|
649 |
|
|
* @see #getMatrix(double[])
|
650 |
|
|
*/
|
651 |
|
|
public double getTranslateY()
|
652 |
|
|
{
|
653 |
|
|
return m12;
|
654 |
|
|
}
|
655 |
|
|
|
656 |
|
|
/**
|
657 |
|
|
* Concatenate a translation onto this transform. This is equivalent, but
|
658 |
|
|
* more efficient than
|
659 |
|
|
* <code>concatenate(AffineTransform.getTranslateInstance(tx, ty))</code>.
|
660 |
|
|
*
|
661 |
|
|
* @param tx the x translation distance
|
662 |
|
|
* @param ty the y translation distance
|
663 |
|
|
* @see #getTranslateInstance(double, double)
|
664 |
|
|
* @see #concatenate(AffineTransform)
|
665 |
|
|
*/
|
666 |
|
|
public void translate(double tx, double ty)
|
667 |
|
|
{
|
668 |
|
|
m02 += tx * m00 + ty * m01;
|
669 |
|
|
m12 += tx * m10 + ty * m11;
|
670 |
|
|
updateType();
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
/**
|
674 |
|
|
* Concatenate a rotation onto this transform. This is equivalent, but
|
675 |
|
|
* more efficient than
|
676 |
|
|
* <code>concatenate(AffineTransform.getRotateInstance(theta))</code>.
|
677 |
|
|
*
|
678 |
|
|
* @param theta the rotation angle
|
679 |
|
|
* @see #getRotateInstance(double)
|
680 |
|
|
* @see #concatenate(AffineTransform)
|
681 |
|
|
*/
|
682 |
|
|
public void rotate(double theta)
|
683 |
|
|
{
|
684 |
|
|
double c = Math.cos(theta);
|
685 |
|
|
double s = Math.sin(theta);
|
686 |
|
|
double n00 = m00 * c + m01 * s;
|
687 |
|
|
double n01 = m00 * -s + m01 * c;
|
688 |
|
|
double n10 = m10 * c + m11 * s;
|
689 |
|
|
double n11 = m10 * -s + m11 * c;
|
690 |
|
|
m00 = n00;
|
691 |
|
|
m01 = n01;
|
692 |
|
|
m10 = n10;
|
693 |
|
|
m11 = n11;
|
694 |
|
|
updateType();
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
/**
|
698 |
|
|
* Concatenate a rotation about a point onto this transform. This is
|
699 |
|
|
* equivalent, but more efficient than
|
700 |
|
|
* <code>concatenate(AffineTransform.getRotateInstance(theta, x, y))</code>.
|
701 |
|
|
*
|
702 |
|
|
* @param theta the rotation angle
|
703 |
|
|
* @param x the x coordinate of the pivot point
|
704 |
|
|
* @param y the y coordinate of the pivot point
|
705 |
|
|
* @see #getRotateInstance(double, double, double)
|
706 |
|
|
* @see #concatenate(AffineTransform)
|
707 |
|
|
*/
|
708 |
|
|
public void rotate(double theta, double x, double y)
|
709 |
|
|
{
|
710 |
|
|
translate(x, y);
|
711 |
|
|
rotate(theta);
|
712 |
|
|
translate(-x, -y);
|
713 |
|
|
}
|
714 |
|
|
|
715 |
|
|
/**
|
716 |
|
|
* Concatenate a scale onto this transform. This is equivalent, but more
|
717 |
|
|
* efficient than
|
718 |
|
|
* <code>concatenate(AffineTransform.getScaleInstance(sx, sy))</code>.
|
719 |
|
|
*
|
720 |
|
|
* @param sx the x scaling factor
|
721 |
|
|
* @param sy the y scaling factor
|
722 |
|
|
* @see #getScaleInstance(double, double)
|
723 |
|
|
* @see #concatenate(AffineTransform)
|
724 |
|
|
*/
|
725 |
|
|
public void scale(double sx, double sy)
|
726 |
|
|
{
|
727 |
|
|
m00 *= sx;
|
728 |
|
|
m01 *= sy;
|
729 |
|
|
m10 *= sx;
|
730 |
|
|
m11 *= sy;
|
731 |
|
|
updateType();
|
732 |
|
|
}
|
733 |
|
|
|
734 |
|
|
/**
|
735 |
|
|
* Concatenate a shearing onto this transform. This is equivalent, but more
|
736 |
|
|
* efficient than
|
737 |
|
|
* <code>concatenate(AffineTransform.getShearInstance(sx, sy))</code>.
|
738 |
|
|
*
|
739 |
|
|
* @param shx the x shearing factor
|
740 |
|
|
* @param shy the y shearing factor
|
741 |
|
|
* @see #getShearInstance(double, double)
|
742 |
|
|
* @see #concatenate(AffineTransform)
|
743 |
|
|
*/
|
744 |
|
|
public void shear(double shx, double shy)
|
745 |
|
|
{
|
746 |
|
|
double n00 = m00 + (shy * m01);
|
747 |
|
|
double n01 = m01 + (shx * m00);
|
748 |
|
|
double n10 = m10 + (shy * m11);
|
749 |
|
|
double n11 = m11 + (shx * m10);
|
750 |
|
|
m00 = n00;
|
751 |
|
|
m01 = n01;
|
752 |
|
|
m10 = n10;
|
753 |
|
|
m11 = n11;
|
754 |
|
|
updateType();
|
755 |
|
|
}
|
756 |
|
|
|
757 |
|
|
/**
|
758 |
|
|
* Reset this transform to the identity (no transformation):
|
759 |
|
|
* <pre>
|
760 |
|
|
* [ 1 0 0 ]
|
761 |
|
|
* [ 0 1 0 ]
|
762 |
|
|
* [ 0 0 1 ]
|
763 |
|
|
* </pre>
|
764 |
|
|
*/
|
765 |
|
|
public void setToIdentity()
|
766 |
|
|
{
|
767 |
|
|
m00 = m11 = 1;
|
768 |
|
|
m01 = m02 = m10 = m12 = 0;
|
769 |
|
|
type = TYPE_IDENTITY;
|
770 |
|
|
}
|
771 |
|
|
|
772 |
|
|
/**
|
773 |
|
|
* Set this transform to a translation:
|
774 |
|
|
* <pre>
|
775 |
|
|
* [ 1 0 tx ]
|
776 |
|
|
* [ 0 1 ty ]
|
777 |
|
|
* [ 0 0 1 ]
|
778 |
|
|
* </pre>
|
779 |
|
|
*
|
780 |
|
|
* @param tx the x translation distance
|
781 |
|
|
* @param ty the y translation distance
|
782 |
|
|
*/
|
783 |
|
|
public void setToTranslation(double tx, double ty)
|
784 |
|
|
{
|
785 |
|
|
m00 = m11 = 1;
|
786 |
|
|
m01 = m10 = 0;
|
787 |
|
|
m02 = tx;
|
788 |
|
|
m12 = ty;
|
789 |
|
|
type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
|
790 |
|
|
}
|
791 |
|
|
|
792 |
|
|
/**
|
793 |
|
|
* Set this transform to a rotation. A positive angle (in radians) rotates
|
794 |
|
|
* the positive x-axis to the positive y-axis:
|
795 |
|
|
* <pre>
|
796 |
|
|
* [ cos(theta) -sin(theta) 0 ]
|
797 |
|
|
* [ sin(theta) cos(theta) 0 ]
|
798 |
|
|
* [ 0 0 1 ]
|
799 |
|
|
* </pre>
|
800 |
|
|
*
|
801 |
|
|
* @param theta the rotation angle
|
802 |
|
|
*/
|
803 |
|
|
public void setToRotation(double theta)
|
804 |
|
|
{
|
805 |
|
|
double c = Math.cos(theta);
|
806 |
|
|
double s = Math.sin(theta);
|
807 |
|
|
m00 = c;
|
808 |
|
|
m01 = -s;
|
809 |
|
|
m02 = 0;
|
810 |
|
|
m10 = s;
|
811 |
|
|
m11 = c;
|
812 |
|
|
m12 = 0;
|
813 |
|
|
type = (c == 1 ? TYPE_IDENTITY
|
814 |
|
|
: c == 0 || c == -1 ? TYPE_QUADRANT_ROTATION
|
815 |
|
|
: TYPE_GENERAL_ROTATION);
|
816 |
|
|
}
|
817 |
|
|
|
818 |
|
|
/**
|
819 |
|
|
* Set this transform to a rotation about a point. A positive angle (in
|
820 |
|
|
* radians) rotates the positive x-axis to the positive y-axis. This is the
|
821 |
|
|
* same as calling:
|
822 |
|
|
* <pre>
|
823 |
|
|
* tx.setToTranslation(x, y);
|
824 |
|
|
* tx.rotate(theta);
|
825 |
|
|
* tx.translate(-x, -y);
|
826 |
|
|
* </pre>
|
827 |
|
|
*
|
828 |
|
|
* <p>The resulting matrix is:
|
829 |
|
|
* <pre>
|
830 |
|
|
* [ cos(theta) -sin(theta) x-x*cos+y*sin ]
|
831 |
|
|
* [ sin(theta) cos(theta) y-x*sin-y*cos ]
|
832 |
|
|
* [ 0 0 1 ]
|
833 |
|
|
* </pre>
|
834 |
|
|
*
|
835 |
|
|
* @param theta the rotation angle
|
836 |
|
|
* @param x the x coordinate of the pivot point
|
837 |
|
|
* @param y the y coordinate of the pivot point
|
838 |
|
|
*/
|
839 |
|
|
public void setToRotation(double theta, double x, double y)
|
840 |
|
|
{
|
841 |
|
|
double c = Math.cos(theta);
|
842 |
|
|
double s = Math.sin(theta);
|
843 |
|
|
m00 = c;
|
844 |
|
|
m01 = -s;
|
845 |
|
|
m02 = x - x * c + y * s;
|
846 |
|
|
m10 = s;
|
847 |
|
|
m11 = c;
|
848 |
|
|
m12 = y - x * s - y * c;
|
849 |
|
|
updateType();
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
/**
|
853 |
|
|
* Set this transform to a scale:
|
854 |
|
|
* <pre>
|
855 |
|
|
* [ sx 0 0 ]
|
856 |
|
|
* [ 0 sy 0 ]
|
857 |
|
|
* [ 0 0 1 ]
|
858 |
|
|
* </pre>
|
859 |
|
|
*
|
860 |
|
|
* @param sx the x scaling factor
|
861 |
|
|
* @param sy the y scaling factor
|
862 |
|
|
*/
|
863 |
|
|
public void setToScale(double sx, double sy)
|
864 |
|
|
{
|
865 |
|
|
m00 = sx;
|
866 |
|
|
m01 = m02 = m10 = m12 = 0;
|
867 |
|
|
m11 = sy;
|
868 |
|
|
type = (sx != sy ? TYPE_GENERAL_SCALE
|
869 |
|
|
: sx == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE);
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/**
|
873 |
|
|
* Set this transform to a shear (points are shifted in the x direction based
|
874 |
|
|
* on a factor of their y coordinate, and in the y direction as a factor of
|
875 |
|
|
* their x coordinate):
|
876 |
|
|
* <pre>
|
877 |
|
|
* [ 1 shx 0 ]
|
878 |
|
|
* [ shy 1 0 ]
|
879 |
|
|
* [ 0 0 1 ]
|
880 |
|
|
* </pre>
|
881 |
|
|
*
|
882 |
|
|
* @param shx the x shearing factor
|
883 |
|
|
* @param shy the y shearing factor
|
884 |
|
|
*/
|
885 |
|
|
public void setToShear(double shx, double shy)
|
886 |
|
|
{
|
887 |
|
|
m00 = m11 = 1;
|
888 |
|
|
m01 = shx;
|
889 |
|
|
m10 = shy;
|
890 |
|
|
m02 = m12 = 0;
|
891 |
|
|
updateType();
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
/**
|
895 |
|
|
* Set this transform to a copy of the given one.
|
896 |
|
|
*
|
897 |
|
|
* @param tx the transform to copy
|
898 |
|
|
* @throws NullPointerException if tx is null
|
899 |
|
|
*/
|
900 |
|
|
public void setTransform(AffineTransform tx)
|
901 |
|
|
{
|
902 |
|
|
m00 = tx.m00;
|
903 |
|
|
m01 = tx.m01;
|
904 |
|
|
m02 = tx.m02;
|
905 |
|
|
m10 = tx.m10;
|
906 |
|
|
m11 = tx.m11;
|
907 |
|
|
m12 = tx.m12;
|
908 |
|
|
type = tx.type;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/**
|
912 |
|
|
* Set this transform to the given values:
|
913 |
|
|
* <pre>
|
914 |
|
|
* [ m00 m01 m02 ]
|
915 |
|
|
* [ m10 m11 m12 ]
|
916 |
|
|
* [ 0 0 1 ]
|
917 |
|
|
* </pre>
|
918 |
|
|
*
|
919 |
|
|
* @param m00 the x scaling component
|
920 |
|
|
* @param m10 the y shearing component
|
921 |
|
|
* @param m01 the x shearing component
|
922 |
|
|
* @param m11 the y scaling component
|
923 |
|
|
* @param m02 the x translation component
|
924 |
|
|
* @param m12 the y translation component
|
925 |
|
|
*/
|
926 |
|
|
public void setTransform(double m00, double m10, double m01,
|
927 |
|
|
double m11, double m02, double m12)
|
928 |
|
|
{
|
929 |
|
|
this.m00 = m00;
|
930 |
|
|
this.m10 = m10;
|
931 |
|
|
this.m01 = m01;
|
932 |
|
|
this.m11 = m11;
|
933 |
|
|
this.m02 = m02;
|
934 |
|
|
this.m12 = m12;
|
935 |
|
|
updateType();
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
/**
|
939 |
|
|
* Set this transform to the result of performing the original version of
|
940 |
|
|
* this followed by tx. This is commonly used when chaining transformations
|
941 |
|
|
* from one space to another. In matrix form:
|
942 |
|
|
* <pre>
|
943 |
|
|
* [ this ] = [ this ] x [ tx ]
|
944 |
|
|
* </pre>
|
945 |
|
|
*
|
946 |
|
|
* @param tx the transform to concatenate
|
947 |
|
|
* @throws NullPointerException if tx is null
|
948 |
|
|
* @see #preConcatenate(AffineTransform)
|
949 |
|
|
*/
|
950 |
|
|
public void concatenate(AffineTransform tx)
|
951 |
|
|
{
|
952 |
|
|
double n00 = m00 * tx.m00 + m01 * tx.m10;
|
953 |
|
|
double n01 = m00 * tx.m01 + m01 * tx.m11;
|
954 |
|
|
double n02 = m00 * tx.m02 + m01 * tx.m12 + m02;
|
955 |
|
|
double n10 = m10 * tx.m00 + m11 * tx.m10;
|
956 |
|
|
double n11 = m10 * tx.m01 + m11 * tx.m11;
|
957 |
|
|
double n12 = m10 * tx.m02 + m11 * tx.m12 + m12;
|
958 |
|
|
m00 = n00;
|
959 |
|
|
m01 = n01;
|
960 |
|
|
m02 = n02;
|
961 |
|
|
m10 = n10;
|
962 |
|
|
m11 = n11;
|
963 |
|
|
m12 = n12;
|
964 |
|
|
updateType();
|
965 |
|
|
}
|
966 |
|
|
|
967 |
|
|
/**
|
968 |
|
|
* Set this transform to the result of performing tx followed by the
|
969 |
|
|
* original version of this. This is less common than normal concatenation,
|
970 |
|
|
* but can still be used to chain transformations from one space to another.
|
971 |
|
|
* In matrix form:
|
972 |
|
|
* <pre>
|
973 |
|
|
* [ this ] = [ tx ] x [ this ]
|
974 |
|
|
* </pre>
|
975 |
|
|
*
|
976 |
|
|
* @param tx the transform to concatenate
|
977 |
|
|
* @throws NullPointerException if tx is null
|
978 |
|
|
* @see #concatenate(AffineTransform)
|
979 |
|
|
*/
|
980 |
|
|
public void preConcatenate(AffineTransform tx)
|
981 |
|
|
{
|
982 |
|
|
double n00 = tx.m00 * m00 + tx.m01 * m10;
|
983 |
|
|
double n01 = tx.m00 * m01 + tx.m01 * m11;
|
984 |
|
|
double n02 = tx.m00 * m02 + tx.m01 * m12 + tx.m02;
|
985 |
|
|
double n10 = tx.m10 * m00 + tx.m11 * m10;
|
986 |
|
|
double n11 = tx.m10 * m01 + tx.m11 * m11;
|
987 |
|
|
double n12 = tx.m10 * m02 + tx.m11 * m12 + tx.m12;
|
988 |
|
|
m00 = n00;
|
989 |
|
|
m01 = n01;
|
990 |
|
|
m02 = n02;
|
991 |
|
|
m10 = n10;
|
992 |
|
|
m11 = n11;
|
993 |
|
|
m12 = n12;
|
994 |
|
|
updateType();
|
995 |
|
|
}
|
996 |
|
|
|
997 |
|
|
/**
|
998 |
|
|
* Returns a transform, which if concatenated to this one, will result in
|
999 |
|
|
* the identity transform. This is useful for undoing transformations, but
|
1000 |
|
|
* is only possible if the original transform has an inverse (ie. does not
|
1001 |
|
|
* map multiple points to the same line or point). A transform exists only
|
1002 |
|
|
* if getDeterminant() has a non-zero value.
|
1003 |
|
|
*
|
1004 |
|
|
* The inverse is calculated as:
|
1005 |
|
|
*
|
1006 |
|
|
* <pre>
|
1007 |
|
|
*
|
1008 |
|
|
* Let A be the matrix for which we want to find the inverse:
|
1009 |
|
|
*
|
1010 |
|
|
* A = [ m00 m01 m02 ]
|
1011 |
|
|
* [ m10 m11 m12 ]
|
1012 |
|
|
* [ 0 0 1 ]
|
1013 |
|
|
*
|
1014 |
|
|
*
|
1015 |
|
|
* 1
|
1016 |
|
|
* inverse (A) = --- x adjoint(A)
|
1017 |
|
|
* det
|
1018 |
|
|
*
|
1019 |
|
|
*
|
1020 |
|
|
*
|
1021 |
|
|
* = 1 [ m11 -m01 m01*m12-m02*m11 ]
|
1022 |
|
|
* --- x [ -m10 m00 -m00*m12+m10*m02 ]
|
1023 |
|
|
* det [ 0 0 m00*m11-m10*m01 ]
|
1024 |
|
|
*
|
1025 |
|
|
*
|
1026 |
|
|
*
|
1027 |
|
|
* = [ m11/det -m01/det m01*m12-m02*m11/det ]
|
1028 |
|
|
* [ -m10/det m00/det -m00*m12+m10*m02/det ]
|
1029 |
|
|
* [ 0 0 1 ]
|
1030 |
|
|
*
|
1031 |
|
|
*
|
1032 |
|
|
* </pre>
|
1033 |
|
|
*
|
1034 |
|
|
*
|
1035 |
|
|
*
|
1036 |
|
|
* @return a new inverse transform
|
1037 |
|
|
* @throws NoninvertibleTransformException if inversion is not possible
|
1038 |
|
|
* @see #getDeterminant()
|
1039 |
|
|
*/
|
1040 |
|
|
public AffineTransform createInverse()
|
1041 |
|
|
throws NoninvertibleTransformException
|
1042 |
|
|
{
|
1043 |
|
|
double det = getDeterminant();
|
1044 |
|
|
if (det == 0)
|
1045 |
|
|
throw new NoninvertibleTransformException("can't invert transform");
|
1046 |
|
|
|
1047 |
|
|
double im00 = m11 / det;
|
1048 |
|
|
double im10 = -m10 / det;
|
1049 |
|
|
double im01 = -m01 / det;
|
1050 |
|
|
double im11 = m00 / det;
|
1051 |
|
|
double im02 = (m01 * m12 - m02 * m11) / det;
|
1052 |
|
|
double im12 = (-m00 * m12 + m10 * m02) / det;
|
1053 |
|
|
|
1054 |
|
|
return new AffineTransform (im00, im10, im01, im11, im02, im12);
|
1055 |
|
|
}
|
1056 |
|
|
|
1057 |
|
|
/**
|
1058 |
|
|
* Perform this transformation on the given source point, and store the
|
1059 |
|
|
* result in the destination (creating it if necessary). It is safe for
|
1060 |
|
|
* src and dst to be the same.
|
1061 |
|
|
*
|
1062 |
|
|
* @param src the source point
|
1063 |
|
|
* @param dst the destination, or null
|
1064 |
|
|
* @return the transformation of src, in dst if it was non-null
|
1065 |
|
|
* @throws NullPointerException if src is null
|
1066 |
|
|
*/
|
1067 |
|
|
public Point2D transform(Point2D src, Point2D dst)
|
1068 |
|
|
{
|
1069 |
|
|
if (dst == null)
|
1070 |
|
|
dst = new Point2D.Double();
|
1071 |
|
|
double x = src.getX();
|
1072 |
|
|
double y = src.getY();
|
1073 |
|
|
double nx = m00 * x + m01 * y + m02;
|
1074 |
|
|
double ny = m10 * x + m11 * y + m12;
|
1075 |
|
|
dst.setLocation(nx, ny);
|
1076 |
|
|
return dst;
|
1077 |
|
|
}
|
1078 |
|
|
|
1079 |
|
|
/**
|
1080 |
|
|
* Perform this transformation on an array of points, storing the results
|
1081 |
|
|
* in another (possibly same) array. This will not create a destination
|
1082 |
|
|
* array, but will create points for the null entries of the destination.
|
1083 |
|
|
* The transformation is done sequentially. While having a single source
|
1084 |
|
|
* and destination point be the same is safe, you should be aware that
|
1085 |
|
|
* duplicate references to the same point in the source, and having the
|
1086 |
|
|
* source overlap the destination, may result in your source points changing
|
1087 |
|
|
* from a previous transform before it is their turn to be evaluated.
|
1088 |
|
|
*
|
1089 |
|
|
* @param src the array of source points
|
1090 |
|
|
* @param srcOff the starting offset into src
|
1091 |
|
|
* @param dst the array of destination points (may have null entries)
|
1092 |
|
|
* @param dstOff the starting offset into dst
|
1093 |
|
|
* @param num the number of points to transform
|
1094 |
|
|
* @throws NullPointerException if src or dst is null, or src has null
|
1095 |
|
|
* entries
|
1096 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1097 |
|
|
* @throws ArrayStoreException if new points are incompatible with dst
|
1098 |
|
|
*/
|
1099 |
|
|
public void transform(Point2D[] src, int srcOff,
|
1100 |
|
|
Point2D[] dst, int dstOff, int num)
|
1101 |
|
|
{
|
1102 |
|
|
while (--num >= 0)
|
1103 |
|
|
dst[dstOff] = transform(src[srcOff++], dst[dstOff++]);
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
/**
|
1107 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
1108 |
|
|
* storing the results in another (possibly same) array. This will not
|
1109 |
|
|
* create a destination array. All sources are copied before the
|
1110 |
|
|
* transformation, so that no result will overwrite a point that has not yet
|
1111 |
|
|
* been evaluated.
|
1112 |
|
|
*
|
1113 |
|
|
* @param srcPts the array of source points
|
1114 |
|
|
* @param srcOff the starting offset into src
|
1115 |
|
|
* @param dstPts the array of destination points
|
1116 |
|
|
* @param dstOff the starting offset into dst
|
1117 |
|
|
* @param num the number of points to transform
|
1118 |
|
|
* @throws NullPointerException if src or dst is null
|
1119 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1120 |
|
|
*/
|
1121 |
|
|
public void transform(float[] srcPts, int srcOff,
|
1122 |
|
|
float[] dstPts, int dstOff, int num)
|
1123 |
|
|
{
|
1124 |
|
|
if (srcPts == dstPts && dstOff > srcOff
|
1125 |
|
|
&& num > 1 && srcOff + 2 * num > dstOff)
|
1126 |
|
|
{
|
1127 |
|
|
float[] f = new float[2 * num];
|
1128 |
|
|
System.arraycopy(srcPts, srcOff, f, 0, 2 * num);
|
1129 |
|
|
srcPts = f;
|
1130 |
|
|
}
|
1131 |
|
|
while (--num >= 0)
|
1132 |
|
|
{
|
1133 |
|
|
float x = srcPts[srcOff++];
|
1134 |
|
|
float y = srcPts[srcOff++];
|
1135 |
|
|
dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
|
1136 |
|
|
dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
|
1137 |
|
|
}
|
1138 |
|
|
}
|
1139 |
|
|
|
1140 |
|
|
/**
|
1141 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
1142 |
|
|
* storing the results in another (possibly same) array. This will not
|
1143 |
|
|
* create a destination array. All sources are copied before the
|
1144 |
|
|
* transformation, so that no result will overwrite a point that has not yet
|
1145 |
|
|
* been evaluated.
|
1146 |
|
|
*
|
1147 |
|
|
* @param srcPts the array of source points
|
1148 |
|
|
* @param srcOff the starting offset into src
|
1149 |
|
|
* @param dstPts the array of destination points
|
1150 |
|
|
* @param dstOff the starting offset into dst
|
1151 |
|
|
* @param num the number of points to transform
|
1152 |
|
|
* @throws NullPointerException if src or dst is null
|
1153 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1154 |
|
|
*/
|
1155 |
|
|
public void transform(double[] srcPts, int srcOff,
|
1156 |
|
|
double[] dstPts, int dstOff, int num)
|
1157 |
|
|
{
|
1158 |
|
|
if (srcPts == dstPts && dstOff > srcOff
|
1159 |
|
|
&& num > 1 && srcOff + 2 * num > dstOff)
|
1160 |
|
|
{
|
1161 |
|
|
double[] d = new double[2 * num];
|
1162 |
|
|
System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
|
1163 |
|
|
srcPts = d;
|
1164 |
|
|
}
|
1165 |
|
|
while (--num >= 0)
|
1166 |
|
|
{
|
1167 |
|
|
double x = srcPts[srcOff++];
|
1168 |
|
|
double y = srcPts[srcOff++];
|
1169 |
|
|
dstPts[dstOff++] = m00 * x + m01 * y + m02;
|
1170 |
|
|
dstPts[dstOff++] = m10 * x + m11 * y + m12;
|
1171 |
|
|
}
|
1172 |
|
|
}
|
1173 |
|
|
|
1174 |
|
|
/**
|
1175 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
1176 |
|
|
* storing the results in another array. This will not create a destination
|
1177 |
|
|
* array.
|
1178 |
|
|
*
|
1179 |
|
|
* @param srcPts the array of source points
|
1180 |
|
|
* @param srcOff the starting offset into src
|
1181 |
|
|
* @param dstPts the array of destination points
|
1182 |
|
|
* @param dstOff the starting offset into dst
|
1183 |
|
|
* @param num the number of points to transform
|
1184 |
|
|
* @throws NullPointerException if src or dst is null
|
1185 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1186 |
|
|
*/
|
1187 |
|
|
public void transform(float[] srcPts, int srcOff,
|
1188 |
|
|
double[] dstPts, int dstOff, int num)
|
1189 |
|
|
{
|
1190 |
|
|
while (--num >= 0)
|
1191 |
|
|
{
|
1192 |
|
|
float x = srcPts[srcOff++];
|
1193 |
|
|
float y = srcPts[srcOff++];
|
1194 |
|
|
dstPts[dstOff++] = m00 * x + m01 * y + m02;
|
1195 |
|
|
dstPts[dstOff++] = m10 * x + m11 * y + m12;
|
1196 |
|
|
}
|
1197 |
|
|
}
|
1198 |
|
|
|
1199 |
|
|
/**
|
1200 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
1201 |
|
|
* storing the results in another array. This will not create a destination
|
1202 |
|
|
* array.
|
1203 |
|
|
*
|
1204 |
|
|
* @param srcPts the array of source points
|
1205 |
|
|
* @param srcOff the starting offset into src
|
1206 |
|
|
* @param dstPts the array of destination points
|
1207 |
|
|
* @param dstOff the starting offset into dst
|
1208 |
|
|
* @param num the number of points to transform
|
1209 |
|
|
* @throws NullPointerException if src or dst is null
|
1210 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1211 |
|
|
*/
|
1212 |
|
|
public void transform(double[] srcPts, int srcOff,
|
1213 |
|
|
float[] dstPts, int dstOff, int num)
|
1214 |
|
|
{
|
1215 |
|
|
while (--num >= 0)
|
1216 |
|
|
{
|
1217 |
|
|
double x = srcPts[srcOff++];
|
1218 |
|
|
double y = srcPts[srcOff++];
|
1219 |
|
|
dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
|
1220 |
|
|
dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
|
1221 |
|
|
}
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
/**
|
1225 |
|
|
* Perform the inverse of this transformation on the given source point,
|
1226 |
|
|
* and store the result in the destination (creating it if necessary). It
|
1227 |
|
|
* is safe for src and dst to be the same.
|
1228 |
|
|
*
|
1229 |
|
|
* @param src the source point
|
1230 |
|
|
* @param dst the destination, or null
|
1231 |
|
|
* @return the inverse transformation of src, in dst if it was non-null
|
1232 |
|
|
* @throws NullPointerException if src is null
|
1233 |
|
|
* @throws NoninvertibleTransformException if the inverse does not exist
|
1234 |
|
|
* @see #getDeterminant()
|
1235 |
|
|
*/
|
1236 |
|
|
public Point2D inverseTransform(Point2D src, Point2D dst)
|
1237 |
|
|
throws NoninvertibleTransformException
|
1238 |
|
|
{
|
1239 |
|
|
return createInverse().transform(src, dst);
|
1240 |
|
|
}
|
1241 |
|
|
|
1242 |
|
|
/**
|
1243 |
|
|
* Perform the inverse of this transformation on an array of points, in
|
1244 |
|
|
* (x,y) pairs, storing the results in another (possibly same) array. This
|
1245 |
|
|
* will not create a destination array. All sources are copied before the
|
1246 |
|
|
* transformation, so that no result will overwrite a point that has not yet
|
1247 |
|
|
* been evaluated.
|
1248 |
|
|
*
|
1249 |
|
|
* @param srcPts the array of source points
|
1250 |
|
|
* @param srcOff the starting offset into src
|
1251 |
|
|
* @param dstPts the array of destination points
|
1252 |
|
|
* @param dstOff the starting offset into dst
|
1253 |
|
|
* @param num the number of points to transform
|
1254 |
|
|
* @throws NullPointerException if src or dst is null
|
1255 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1256 |
|
|
* @throws NoninvertibleTransformException if the inverse does not exist
|
1257 |
|
|
* @see #getDeterminant()
|
1258 |
|
|
*/
|
1259 |
|
|
public void inverseTransform(double[] srcPts, int srcOff,
|
1260 |
|
|
double[] dstPts, int dstOff, int num)
|
1261 |
|
|
throws NoninvertibleTransformException
|
1262 |
|
|
{
|
1263 |
|
|
createInverse().transform(srcPts, srcOff, dstPts, dstOff, num);
|
1264 |
|
|
}
|
1265 |
|
|
|
1266 |
|
|
/**
|
1267 |
|
|
* Perform this transformation, less any translation, on the given source
|
1268 |
|
|
* point, and store the result in the destination (creating it if
|
1269 |
|
|
* necessary). It is safe for src and dst to be the same. The reduced
|
1270 |
|
|
* transform is equivalent to:
|
1271 |
|
|
* <pre>
|
1272 |
|
|
* [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
|
1273 |
|
|
* [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
|
1274 |
|
|
* </pre>
|
1275 |
|
|
*
|
1276 |
|
|
* @param src the source point
|
1277 |
|
|
* @param dst the destination, or null
|
1278 |
|
|
* @return the delta transformation of src, in dst if it was non-null
|
1279 |
|
|
* @throws NullPointerException if src is null
|
1280 |
|
|
*/
|
1281 |
|
|
public Point2D deltaTransform(Point2D src, Point2D dst)
|
1282 |
|
|
{
|
1283 |
|
|
if (dst == null)
|
1284 |
|
|
dst = new Point2D.Double();
|
1285 |
|
|
double x = src.getX();
|
1286 |
|
|
double y = src.getY();
|
1287 |
|
|
double nx = m00 * x + m01 * y;
|
1288 |
|
|
double ny = m10 * x + m11 * y;
|
1289 |
|
|
dst.setLocation(nx, ny);
|
1290 |
|
|
return dst;
|
1291 |
|
|
}
|
1292 |
|
|
|
1293 |
|
|
/**
|
1294 |
|
|
* Perform this transformation, less any translation, on an array of points,
|
1295 |
|
|
* in (x,y) pairs, storing the results in another (possibly same) array.
|
1296 |
|
|
* This will not create a destination array. All sources are copied before
|
1297 |
|
|
* the transformation, so that no result will overwrite a point that has
|
1298 |
|
|
* not yet been evaluated. The reduced transform is equivalent to:
|
1299 |
|
|
* <pre>
|
1300 |
|
|
* [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
|
1301 |
|
|
* [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
|
1302 |
|
|
* </pre>
|
1303 |
|
|
*
|
1304 |
|
|
* @param srcPts the array of source points
|
1305 |
|
|
* @param srcOff the starting offset into src
|
1306 |
|
|
* @param dstPts the array of destination points
|
1307 |
|
|
* @param dstOff the starting offset into dst
|
1308 |
|
|
* @param num the number of points to transform
|
1309 |
|
|
* @throws NullPointerException if src or dst is null
|
1310 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
1311 |
|
|
*/
|
1312 |
|
|
public void deltaTransform(double[] srcPts, int srcOff,
|
1313 |
|
|
double[] dstPts, int dstOff,
|
1314 |
|
|
int num)
|
1315 |
|
|
{
|
1316 |
|
|
if (srcPts == dstPts && dstOff > srcOff
|
1317 |
|
|
&& num > 1 && srcOff + 2 * num > dstOff)
|
1318 |
|
|
{
|
1319 |
|
|
double[] d = new double[2 * num];
|
1320 |
|
|
System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
|
1321 |
|
|
srcPts = d;
|
1322 |
|
|
}
|
1323 |
|
|
while (--num >= 0)
|
1324 |
|
|
{
|
1325 |
|
|
double x = srcPts[srcOff++];
|
1326 |
|
|
double y = srcPts[srcOff++];
|
1327 |
|
|
dstPts[dstOff++] = m00 * x + m01 * y;
|
1328 |
|
|
dstPts[dstOff++] = m10 * x + m11 * y;
|
1329 |
|
|
}
|
1330 |
|
|
}
|
1331 |
|
|
|
1332 |
|
|
/**
|
1333 |
|
|
* Return a new Shape, based on the given one, where the path of the shape
|
1334 |
|
|
* has been transformed by this transform. Notice that this uses GeneralPath,
|
1335 |
|
|
* which only stores points in float precision.
|
1336 |
|
|
*
|
1337 |
|
|
* @param src the shape source to transform
|
1338 |
|
|
* @return the shape, transformed by this, <code>null</code> if src is
|
1339 |
|
|
* <code>null</code>.
|
1340 |
|
|
* @see GeneralPath#transform(AffineTransform)
|
1341 |
|
|
*/
|
1342 |
|
|
public Shape createTransformedShape(Shape src)
|
1343 |
|
|
{
|
1344 |
|
|
if(src == null)
|
1345 |
|
|
return null;
|
1346 |
|
|
GeneralPath p = new GeneralPath(src);
|
1347 |
|
|
p.transform(this);
|
1348 |
|
|
return p;
|
1349 |
|
|
}
|
1350 |
|
|
|
1351 |
|
|
/**
|
1352 |
|
|
* Returns a string representation of the transform, in the format:
|
1353 |
|
|
* <code>"AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
|
1354 |
|
|
* + m10 + ", " + m11 + ", " + m12 + "]]"</code>.
|
1355 |
|
|
*
|
1356 |
|
|
* @return the string representation
|
1357 |
|
|
*/
|
1358 |
|
|
public String toString()
|
1359 |
|
|
{
|
1360 |
|
|
return "AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
|
1361 |
|
|
+ m10 + ", " + m11 + ", " + m12 + "]]";
|
1362 |
|
|
}
|
1363 |
|
|
|
1364 |
|
|
/**
|
1365 |
|
|
* Tests if this transformation is the identity:
|
1366 |
|
|
* <pre>
|
1367 |
|
|
* [ 1 0 0 ]
|
1368 |
|
|
* [ 0 1 0 ]
|
1369 |
|
|
* [ 0 0 1 ]
|
1370 |
|
|
* </pre>
|
1371 |
|
|
*
|
1372 |
|
|
* @return true if this is the identity transform
|
1373 |
|
|
*/
|
1374 |
|
|
public boolean isIdentity()
|
1375 |
|
|
{
|
1376 |
|
|
// Rather than rely on type, check explicitly.
|
1377 |
|
|
return (m00 == 1 && m01 == 0 && m02 == 0
|
1378 |
|
|
&& m10 == 0 && m11 == 1 && m12 == 0);
|
1379 |
|
|
}
|
1380 |
|
|
|
1381 |
|
|
/**
|
1382 |
|
|
* Create a new transform of the same run-time type, with the same
|
1383 |
|
|
* transforming properties as this one.
|
1384 |
|
|
*
|
1385 |
|
|
* @return the clone
|
1386 |
|
|
*/
|
1387 |
|
|
public Object clone()
|
1388 |
|
|
{
|
1389 |
|
|
try
|
1390 |
|
|
{
|
1391 |
|
|
return super.clone();
|
1392 |
|
|
}
|
1393 |
|
|
catch (CloneNotSupportedException e)
|
1394 |
|
|
{
|
1395 |
|
|
throw (Error) new InternalError().initCause(e); // Impossible
|
1396 |
|
|
}
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
/**
|
1400 |
|
|
* Return the hashcode for this transformation. The formula is not
|
1401 |
|
|
* documented, but appears to be the same as:
|
1402 |
|
|
* <pre>
|
1403 |
|
|
* long l = Double.doubleToLongBits(getScaleX());
|
1404 |
|
|
* l = l * 31 + Double.doubleToLongBits(getShearX());
|
1405 |
|
|
* l = l * 31 + Double.doubleToLongBits(getTranslateX());
|
1406 |
|
|
* l = l * 31 + Double.doubleToLongBits(getShearY());
|
1407 |
|
|
* l = l * 31 + Double.doubleToLongBits(getScaleY());
|
1408 |
|
|
* l = l * 31 + Double.doubleToLongBits(getTranslateY());
|
1409 |
|
|
* return (int) ((l >> 32) ^ l);
|
1410 |
|
|
* </pre>
|
1411 |
|
|
*
|
1412 |
|
|
* @return the hashcode
|
1413 |
|
|
*/
|
1414 |
|
|
public int hashCode()
|
1415 |
|
|
{
|
1416 |
|
|
long l = Double.doubleToLongBits(m00);
|
1417 |
|
|
l = l * 31 + Double.doubleToLongBits(m01);
|
1418 |
|
|
l = l * 31 + Double.doubleToLongBits(m02);
|
1419 |
|
|
l = l * 31 + Double.doubleToLongBits(m10);
|
1420 |
|
|
l = l * 31 + Double.doubleToLongBits(m11);
|
1421 |
|
|
l = l * 31 + Double.doubleToLongBits(m12);
|
1422 |
|
|
return (int) ((l >> 32) ^ l);
|
1423 |
|
|
}
|
1424 |
|
|
|
1425 |
|
|
/**
|
1426 |
|
|
* Compares two transforms for equality. This returns true if they have the
|
1427 |
|
|
* same matrix values.
|
1428 |
|
|
*
|
1429 |
|
|
* @param obj the transform to compare
|
1430 |
|
|
* @return true if it is equal
|
1431 |
|
|
*/
|
1432 |
|
|
public boolean equals(Object obj)
|
1433 |
|
|
{
|
1434 |
|
|
if (! (obj instanceof AffineTransform))
|
1435 |
|
|
return false;
|
1436 |
|
|
AffineTransform t = (AffineTransform) obj;
|
1437 |
|
|
return (m00 == t.m00 && m01 == t.m01 && m02 == t.m02
|
1438 |
|
|
&& m10 == t.m10 && m11 == t.m11 && m12 == t.m12);
|
1439 |
|
|
}
|
1440 |
|
|
|
1441 |
|
|
/**
|
1442 |
|
|
* Helper to decode the type from the matrix. This is not guaranteed
|
1443 |
|
|
* to find the optimal type, but at least it will be valid.
|
1444 |
|
|
*/
|
1445 |
|
|
private void updateType()
|
1446 |
|
|
{
|
1447 |
|
|
double det = getDeterminant();
|
1448 |
|
|
if (det == 0)
|
1449 |
|
|
{
|
1450 |
|
|
type = TYPE_GENERAL_TRANSFORM;
|
1451 |
|
|
return;
|
1452 |
|
|
}
|
1453 |
|
|
// Scale (includes rotation by PI) or translation.
|
1454 |
|
|
if (m01 == 0 && m10 == 0)
|
1455 |
|
|
{
|
1456 |
|
|
if (m00 == m11)
|
1457 |
|
|
type = m00 == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE;
|
1458 |
|
|
else
|
1459 |
|
|
type = TYPE_GENERAL_SCALE;
|
1460 |
|
|
if (m02 != 0 || m12 != 0)
|
1461 |
|
|
type |= TYPE_TRANSLATION;
|
1462 |
|
|
}
|
1463 |
|
|
// Rotation.
|
1464 |
|
|
else if (m00 == m11 && m01 == -m10)
|
1465 |
|
|
{
|
1466 |
|
|
type = m00 == 0 ? TYPE_QUADRANT_ROTATION : TYPE_GENERAL_ROTATION;
|
1467 |
|
|
if (det != 1)
|
1468 |
|
|
type |= TYPE_UNIFORM_SCALE;
|
1469 |
|
|
if (m02 != 0 || m12 != 0)
|
1470 |
|
|
type |= TYPE_TRANSLATION;
|
1471 |
|
|
}
|
1472 |
|
|
else
|
1473 |
|
|
type = TYPE_GENERAL_TRANSFORM;
|
1474 |
|
|
}
|
1475 |
|
|
|
1476 |
|
|
/**
|
1477 |
|
|
* Reads a transform from an object stream.
|
1478 |
|
|
*
|
1479 |
|
|
* @param s the stream to read from
|
1480 |
|
|
* @throws ClassNotFoundException if there is a problem deserializing
|
1481 |
|
|
* @throws IOException if there is a problem deserializing
|
1482 |
|
|
*/
|
1483 |
|
|
private void readObject(ObjectInputStream s)
|
1484 |
|
|
throws ClassNotFoundException, IOException
|
1485 |
|
|
{
|
1486 |
|
|
s.defaultReadObject();
|
1487 |
|
|
updateType();
|
1488 |
|
|
}
|
1489 |
|
|
} // class AffineTransform
|