| 1 |
771 |
jeremybenn |
/* AffineTransform.java -- transform coordinates between two 2-D spaces
|
| 2 |
|
|
Copyright (C) 2000, 2001, 2002, 2004 Free Software Foundation
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
| 9 |
|
|
any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
| 18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
| 19 |
|
|
02110-1301 USA.
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
package java.awt.geom;
|
| 40 |
|
|
|
| 41 |
|
|
import java.awt.Shape;
|
| 42 |
|
|
import java.io.IOException;
|
| 43 |
|
|
import java.io.ObjectInputStream;
|
| 44 |
|
|
import java.io.Serializable;
|
| 45 |
|
|
|
| 46 |
|
|
/**
|
| 47 |
|
|
* This class represents an affine transformation between two coordinate
|
| 48 |
|
|
* spaces in 2 dimensions. Such a transform preserves the "straightness"
|
| 49 |
|
|
* and "parallelness" of lines. The transform is built from a sequence of
|
| 50 |
|
|
* translations, scales, flips, rotations, and shears.
|
| 51 |
|
|
*
|
| 52 |
|
|
* <p>The transformation can be represented using matrix math on a 3x3 array.
|
| 53 |
|
|
* Given (x,y), the transformation (x',y') can be found by:
|
| 54 |
|
|
* <pre>
|
| 55 |
|
|
* [ x'] [ m00 m01 m02 ] [ x ] [ m00*x + m01*y + m02 ]
|
| 56 |
|
|
* [ y'] = [ m10 m11 m12 ] [ y ] = [ m10*x + m11*y + m12 ]
|
| 57 |
|
|
* [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
|
| 58 |
|
|
* </pre>
|
| 59 |
|
|
* The bottom row of the matrix is constant, so a transform can be uniquely
|
| 60 |
|
|
* represented (as in {@link #toString()}) by
|
| 61 |
|
|
* "[[m00, m01, m02], [m10, m11, m12]]".
|
| 62 |
|
|
*
|
| 63 |
|
|
* @author Tom Tromey (tromey@cygnus.com)
|
| 64 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
| 65 |
|
|
* @since 1.2
|
| 66 |
|
|
* @status partially updated to 1.4, still has some problems
|
| 67 |
|
|
*/
|
| 68 |
|
|
public class AffineTransform implements Cloneable, Serializable
|
| 69 |
|
|
{
|
| 70 |
|
|
/**
|
| 71 |
|
|
* Compatible with JDK 1.2+.
|
| 72 |
|
|
*/
|
| 73 |
|
|
private static final long serialVersionUID = 1330973210523860834L;
|
| 74 |
|
|
|
| 75 |
|
|
/**
|
| 76 |
|
|
* The transformation is the identity (x' = x, y' = y). All other transforms
|
| 77 |
|
|
* have either a combination of the appropriate transform flag bits for
|
| 78 |
|
|
* their type, or the type GENERAL_TRANSFORM.
|
| 79 |
|
|
*
|
| 80 |
|
|
* @see #TYPE_TRANSLATION
|
| 81 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 82 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 83 |
|
|
* @see #TYPE_FLIP
|
| 84 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 85 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 86 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 87 |
|
|
* @see #getType()
|
| 88 |
|
|
*/
|
| 89 |
|
|
public static final int TYPE_IDENTITY = 0;
|
| 90 |
|
|
|
| 91 |
|
|
/**
|
| 92 |
|
|
* The transformation includes a translation - shifting in the x or y
|
| 93 |
|
|
* direction without changing length or angles.
|
| 94 |
|
|
*
|
| 95 |
|
|
* @see #TYPE_IDENTITY
|
| 96 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 97 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 98 |
|
|
* @see #TYPE_FLIP
|
| 99 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 100 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 101 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 102 |
|
|
* @see #getType()
|
| 103 |
|
|
*/
|
| 104 |
|
|
public static final int TYPE_TRANSLATION = 1;
|
| 105 |
|
|
|
| 106 |
|
|
/**
|
| 107 |
|
|
* The transformation includes a uniform scale - length is scaled in both
|
| 108 |
|
|
* the x and y directions by the same amount, without affecting angles.
|
| 109 |
|
|
* This is mutually exclusive with TYPE_GENERAL_SCALE.
|
| 110 |
|
|
*
|
| 111 |
|
|
* @see #TYPE_IDENTITY
|
| 112 |
|
|
* @see #TYPE_TRANSLATION
|
| 113 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 114 |
|
|
* @see #TYPE_FLIP
|
| 115 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 116 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 117 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 118 |
|
|
* @see #TYPE_MASK_SCALE
|
| 119 |
|
|
* @see #getType()
|
| 120 |
|
|
*/
|
| 121 |
|
|
public static final int TYPE_UNIFORM_SCALE = 2;
|
| 122 |
|
|
|
| 123 |
|
|
/**
|
| 124 |
|
|
* The transformation includes a general scale - length is scaled in either
|
| 125 |
|
|
* or both the x and y directions, but by different amounts; without
|
| 126 |
|
|
* affecting angles. This is mutually exclusive with TYPE_UNIFORM_SCALE.
|
| 127 |
|
|
*
|
| 128 |
|
|
* @see #TYPE_IDENTITY
|
| 129 |
|
|
* @see #TYPE_TRANSLATION
|
| 130 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 131 |
|
|
* @see #TYPE_FLIP
|
| 132 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 133 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 134 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 135 |
|
|
* @see #TYPE_MASK_SCALE
|
| 136 |
|
|
* @see #getType()
|
| 137 |
|
|
*/
|
| 138 |
|
|
public static final int TYPE_GENERAL_SCALE = 4;
|
| 139 |
|
|
|
| 140 |
|
|
/**
|
| 141 |
|
|
* This constant checks if either variety of scale transform is performed.
|
| 142 |
|
|
*
|
| 143 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 144 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 145 |
|
|
*/
|
| 146 |
|
|
public static final int TYPE_MASK_SCALE = 6;
|
| 147 |
|
|
|
| 148 |
|
|
/**
|
| 149 |
|
|
* The transformation includes a flip about an axis, swapping between
|
| 150 |
|
|
* right-handed and left-handed coordinate systems. In a right-handed
|
| 151 |
|
|
* system, the positive x-axis rotates counter-clockwise to the positive
|
| 152 |
|
|
* y-axis; in a left-handed system it rotates clockwise.
|
| 153 |
|
|
*
|
| 154 |
|
|
* @see #TYPE_IDENTITY
|
| 155 |
|
|
* @see #TYPE_TRANSLATION
|
| 156 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 157 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 158 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 159 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 160 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 161 |
|
|
* @see #getType()
|
| 162 |
|
|
*/
|
| 163 |
|
|
public static final int TYPE_FLIP = 64;
|
| 164 |
|
|
|
| 165 |
|
|
/**
|
| 166 |
|
|
* The transformation includes a rotation of a multiple of 90 degrees (PI/2
|
| 167 |
|
|
* radians). Angles are rotated, but length is preserved. This is mutually
|
| 168 |
|
|
* exclusive with TYPE_GENERAL_ROTATION.
|
| 169 |
|
|
*
|
| 170 |
|
|
* @see #TYPE_IDENTITY
|
| 171 |
|
|
* @see #TYPE_TRANSLATION
|
| 172 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 173 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 174 |
|
|
* @see #TYPE_FLIP
|
| 175 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 176 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 177 |
|
|
* @see #TYPE_MASK_ROTATION
|
| 178 |
|
|
* @see #getType()
|
| 179 |
|
|
*/
|
| 180 |
|
|
public static final int TYPE_QUADRANT_ROTATION = 8;
|
| 181 |
|
|
|
| 182 |
|
|
/**
|
| 183 |
|
|
* The transformation includes a rotation by an arbitrary angle. Angles are
|
| 184 |
|
|
* rotated, but length is preserved. This is mutually exclusive with
|
| 185 |
|
|
* TYPE_QUADRANT_ROTATION.
|
| 186 |
|
|
*
|
| 187 |
|
|
* @see #TYPE_IDENTITY
|
| 188 |
|
|
* @see #TYPE_TRANSLATION
|
| 189 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 190 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 191 |
|
|
* @see #TYPE_FLIP
|
| 192 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 193 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 194 |
|
|
* @see #TYPE_MASK_ROTATION
|
| 195 |
|
|
* @see #getType()
|
| 196 |
|
|
*/
|
| 197 |
|
|
public static final int TYPE_GENERAL_ROTATION = 16;
|
| 198 |
|
|
|
| 199 |
|
|
/**
|
| 200 |
|
|
* This constant checks if either variety of rotation is performed.
|
| 201 |
|
|
*
|
| 202 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 203 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 204 |
|
|
*/
|
| 205 |
|
|
public static final int TYPE_MASK_ROTATION = 24;
|
| 206 |
|
|
|
| 207 |
|
|
/**
|
| 208 |
|
|
* The transformation is an arbitrary conversion of coordinates which
|
| 209 |
|
|
* could not be decomposed into the other TYPEs.
|
| 210 |
|
|
*
|
| 211 |
|
|
* @see #TYPE_IDENTITY
|
| 212 |
|
|
* @see #TYPE_TRANSLATION
|
| 213 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 214 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 215 |
|
|
* @see #TYPE_FLIP
|
| 216 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 217 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 218 |
|
|
* @see #getType()
|
| 219 |
|
|
*/
|
| 220 |
|
|
public static final int TYPE_GENERAL_TRANSFORM = 32;
|
| 221 |
|
|
|
| 222 |
|
|
/**
|
| 223 |
|
|
* The X coordinate scaling element of the transform matrix.
|
| 224 |
|
|
*
|
| 225 |
|
|
* @serial matrix[0,0]
|
| 226 |
|
|
*/
|
| 227 |
|
|
private double m00;
|
| 228 |
|
|
|
| 229 |
|
|
/**
|
| 230 |
|
|
* The Y coordinate shearing element of the transform matrix.
|
| 231 |
|
|
*
|
| 232 |
|
|
* @serial matrix[1,0]
|
| 233 |
|
|
*/
|
| 234 |
|
|
private double m10;
|
| 235 |
|
|
|
| 236 |
|
|
/**
|
| 237 |
|
|
* The X coordinate shearing element of the transform matrix.
|
| 238 |
|
|
*
|
| 239 |
|
|
* @serial matrix[0,1]
|
| 240 |
|
|
*/
|
| 241 |
|
|
private double m01;
|
| 242 |
|
|
|
| 243 |
|
|
/**
|
| 244 |
|
|
* The Y coordinate scaling element of the transform matrix.
|
| 245 |
|
|
*
|
| 246 |
|
|
* @serial matrix[1,1]
|
| 247 |
|
|
*/
|
| 248 |
|
|
private double m11;
|
| 249 |
|
|
|
| 250 |
|
|
/**
|
| 251 |
|
|
* The X coordinate translation element of the transform matrix.
|
| 252 |
|
|
*
|
| 253 |
|
|
* @serial matrix[0,2]
|
| 254 |
|
|
*/
|
| 255 |
|
|
private double m02;
|
| 256 |
|
|
|
| 257 |
|
|
/**
|
| 258 |
|
|
* The Y coordinate translation element of the transform matrix.
|
| 259 |
|
|
*
|
| 260 |
|
|
* @serial matrix[1,2]
|
| 261 |
|
|
*/
|
| 262 |
|
|
private double m12;
|
| 263 |
|
|
|
| 264 |
|
|
/** The type of this transform. */
|
| 265 |
|
|
private transient int type;
|
| 266 |
|
|
|
| 267 |
|
|
/**
|
| 268 |
|
|
* Construct a new identity transform:
|
| 269 |
|
|
* <pre>
|
| 270 |
|
|
* [ 1 0 0 ]
|
| 271 |
|
|
* [ 0 1 0 ]
|
| 272 |
|
|
* [ 0 0 1 ]
|
| 273 |
|
|
* </pre>
|
| 274 |
|
|
*/
|
| 275 |
|
|
public AffineTransform()
|
| 276 |
|
|
{
|
| 277 |
|
|
m00 = m11 = 1;
|
| 278 |
|
|
}
|
| 279 |
|
|
|
| 280 |
|
|
/**
|
| 281 |
|
|
* Create a new transform which copies the given one.
|
| 282 |
|
|
*
|
| 283 |
|
|
* @param tx the transform to copy
|
| 284 |
|
|
* @throws NullPointerException if tx is null
|
| 285 |
|
|
*/
|
| 286 |
|
|
public AffineTransform(AffineTransform tx)
|
| 287 |
|
|
{
|
| 288 |
|
|
setTransform(tx);
|
| 289 |
|
|
}
|
| 290 |
|
|
|
| 291 |
|
|
/**
|
| 292 |
|
|
* Construct a transform with the given matrix entries:
|
| 293 |
|
|
* <pre>
|
| 294 |
|
|
* [ m00 m01 m02 ]
|
| 295 |
|
|
* [ m10 m11 m12 ]
|
| 296 |
|
|
* [ 0 0 1 ]
|
| 297 |
|
|
* </pre>
|
| 298 |
|
|
*
|
| 299 |
|
|
* @param m00 the x scaling component
|
| 300 |
|
|
* @param m10 the y shearing component
|
| 301 |
|
|
* @param m01 the x shearing component
|
| 302 |
|
|
* @param m11 the y scaling component
|
| 303 |
|
|
* @param m02 the x translation component
|
| 304 |
|
|
* @param m12 the y translation component
|
| 305 |
|
|
*/
|
| 306 |
|
|
public AffineTransform(float m00, float m10,
|
| 307 |
|
|
float m01, float m11,
|
| 308 |
|
|
float m02, float m12)
|
| 309 |
|
|
{
|
| 310 |
|
|
this.m00 = m00;
|
| 311 |
|
|
this.m10 = m10;
|
| 312 |
|
|
this.m01 = m01;
|
| 313 |
|
|
this.m11 = m11;
|
| 314 |
|
|
this.m02 = m02;
|
| 315 |
|
|
this.m12 = m12;
|
| 316 |
|
|
updateType();
|
| 317 |
|
|
}
|
| 318 |
|
|
|
| 319 |
|
|
/**
|
| 320 |
|
|
* Construct a transform from a sequence of float entries. The array must
|
| 321 |
|
|
* have at least 4 entries, which has a translation factor of 0; or 6
|
| 322 |
|
|
* entries, for specifying all parameters:
|
| 323 |
|
|
* <pre>
|
| 324 |
|
|
* [ f[0] f[2] (f[4]) ]
|
| 325 |
|
|
* [ f[1] f[3] (f[5]) ]
|
| 326 |
|
|
* [ 0 0 1 ]
|
| 327 |
|
|
* </pre>
|
| 328 |
|
|
*
|
| 329 |
|
|
* @param f the matrix to copy from, with at least 4 (6) entries
|
| 330 |
|
|
* @throws NullPointerException if f is null
|
| 331 |
|
|
* @throws ArrayIndexOutOfBoundsException if f is too small
|
| 332 |
|
|
*/
|
| 333 |
|
|
public AffineTransform(float[] f)
|
| 334 |
|
|
{
|
| 335 |
|
|
m00 = f[0];
|
| 336 |
|
|
m10 = f[1];
|
| 337 |
|
|
m01 = f[2];
|
| 338 |
|
|
m11 = f[3];
|
| 339 |
|
|
if (f.length >= 6)
|
| 340 |
|
|
{
|
| 341 |
|
|
m02 = f[4];
|
| 342 |
|
|
m12 = f[5];
|
| 343 |
|
|
}
|
| 344 |
|
|
updateType();
|
| 345 |
|
|
}
|
| 346 |
|
|
|
| 347 |
|
|
/**
|
| 348 |
|
|
* Construct a transform with the given matrix entries:
|
| 349 |
|
|
* <pre>
|
| 350 |
|
|
* [ m00 m01 m02 ]
|
| 351 |
|
|
* [ m10 m11 m12 ]
|
| 352 |
|
|
* [ 0 0 1 ]
|
| 353 |
|
|
* </pre>
|
| 354 |
|
|
*
|
| 355 |
|
|
* @param m00 the x scaling component
|
| 356 |
|
|
* @param m10 the y shearing component
|
| 357 |
|
|
* @param m01 the x shearing component
|
| 358 |
|
|
* @param m11 the y scaling component
|
| 359 |
|
|
* @param m02 the x translation component
|
| 360 |
|
|
* @param m12 the y translation component
|
| 361 |
|
|
*/
|
| 362 |
|
|
public AffineTransform(double m00, double m10, double m01,
|
| 363 |
|
|
double m11, double m02, double m12)
|
| 364 |
|
|
{
|
| 365 |
|
|
this.m00 = m00;
|
| 366 |
|
|
this.m10 = m10;
|
| 367 |
|
|
this.m01 = m01;
|
| 368 |
|
|
this.m11 = m11;
|
| 369 |
|
|
this.m02 = m02;
|
| 370 |
|
|
this.m12 = m12;
|
| 371 |
|
|
updateType();
|
| 372 |
|
|
}
|
| 373 |
|
|
|
| 374 |
|
|
/**
|
| 375 |
|
|
* Construct a transform from a sequence of double entries. The array must
|
| 376 |
|
|
* have at least 4 entries, which has a translation factor of 0; or 6
|
| 377 |
|
|
* entries, for specifying all parameters:
|
| 378 |
|
|
* <pre>
|
| 379 |
|
|
* [ d[0] d[2] (d[4]) ]
|
| 380 |
|
|
* [ d[1] d[3] (d[5]) ]
|
| 381 |
|
|
* [ 0 0 1 ]
|
| 382 |
|
|
* </pre>
|
| 383 |
|
|
*
|
| 384 |
|
|
* @param d the matrix to copy from, with at least 4 (6) entries
|
| 385 |
|
|
* @throws NullPointerException if d is null
|
| 386 |
|
|
* @throws ArrayIndexOutOfBoundsException if d is too small
|
| 387 |
|
|
*/
|
| 388 |
|
|
public AffineTransform(double[] d)
|
| 389 |
|
|
{
|
| 390 |
|
|
m00 = d[0];
|
| 391 |
|
|
m10 = d[1];
|
| 392 |
|
|
m01 = d[2];
|
| 393 |
|
|
m11 = d[3];
|
| 394 |
|
|
if (d.length >= 6)
|
| 395 |
|
|
{
|
| 396 |
|
|
m02 = d[4];
|
| 397 |
|
|
m12 = d[5];
|
| 398 |
|
|
}
|
| 399 |
|
|
updateType();
|
| 400 |
|
|
}
|
| 401 |
|
|
|
| 402 |
|
|
/**
|
| 403 |
|
|
* Returns a translation transform:
|
| 404 |
|
|
* <pre>
|
| 405 |
|
|
* [ 1 0 tx ]
|
| 406 |
|
|
* [ 0 1 ty ]
|
| 407 |
|
|
* [ 0 0 1 ]
|
| 408 |
|
|
* </pre>
|
| 409 |
|
|
*
|
| 410 |
|
|
* @param tx the x translation distance
|
| 411 |
|
|
* @param ty the y translation distance
|
| 412 |
|
|
* @return the translating transform
|
| 413 |
|
|
*/
|
| 414 |
|
|
public static AffineTransform getTranslateInstance(double tx, double ty)
|
| 415 |
|
|
{
|
| 416 |
|
|
AffineTransform t = new AffineTransform();
|
| 417 |
|
|
t.m02 = tx;
|
| 418 |
|
|
t.m12 = ty;
|
| 419 |
|
|
t.type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
|
| 420 |
|
|
return t;
|
| 421 |
|
|
}
|
| 422 |
|
|
|
| 423 |
|
|
/**
|
| 424 |
|
|
* Returns a rotation transform. A positive angle (in radians) rotates
|
| 425 |
|
|
* the positive x-axis to the positive y-axis:
|
| 426 |
|
|
* <pre>
|
| 427 |
|
|
* [ cos(theta) -sin(theta) 0 ]
|
| 428 |
|
|
* [ sin(theta) cos(theta) 0 ]
|
| 429 |
|
|
* [ 0 0 1 ]
|
| 430 |
|
|
* </pre>
|
| 431 |
|
|
*
|
| 432 |
|
|
* @param theta the rotation angle
|
| 433 |
|
|
* @return the rotating transform
|
| 434 |
|
|
*/
|
| 435 |
|
|
public static AffineTransform getRotateInstance(double theta)
|
| 436 |
|
|
{
|
| 437 |
|
|
AffineTransform t = new AffineTransform();
|
| 438 |
|
|
t.setToRotation(theta);
|
| 439 |
|
|
return t;
|
| 440 |
|
|
}
|
| 441 |
|
|
|
| 442 |
|
|
/**
|
| 443 |
|
|
* Returns a rotation transform about a point. A positive angle (in radians)
|
| 444 |
|
|
* rotates the positive x-axis to the positive y-axis. This is the same
|
| 445 |
|
|
* as calling:
|
| 446 |
|
|
* <pre>
|
| 447 |
|
|
* AffineTransform tx = new AffineTransform();
|
| 448 |
|
|
* tx.setToTranslation(x, y);
|
| 449 |
|
|
* tx.rotate(theta);
|
| 450 |
|
|
* tx.translate(-x, -y);
|
| 451 |
|
|
* </pre>
|
| 452 |
|
|
*
|
| 453 |
|
|
* <p>The resulting matrix is:
|
| 454 |
|
|
* <pre>
|
| 455 |
|
|
* [ cos(theta) -sin(theta) x-x*cos+y*sin ]
|
| 456 |
|
|
* [ sin(theta) cos(theta) y-x*sin-y*cos ]
|
| 457 |
|
|
* [ 0 0 1 ]
|
| 458 |
|
|
* </pre>
|
| 459 |
|
|
*
|
| 460 |
|
|
* @param theta the rotation angle
|
| 461 |
|
|
* @param x the x coordinate of the pivot point
|
| 462 |
|
|
* @param y the y coordinate of the pivot point
|
| 463 |
|
|
* @return the rotating transform
|
| 464 |
|
|
*/
|
| 465 |
|
|
public static AffineTransform getRotateInstance(double theta,
|
| 466 |
|
|
double x, double y)
|
| 467 |
|
|
{
|
| 468 |
|
|
AffineTransform t = new AffineTransform();
|
| 469 |
|
|
t.setToTranslation(x, y);
|
| 470 |
|
|
t.rotate(theta);
|
| 471 |
|
|
t.translate(-x, -y);
|
| 472 |
|
|
return t;
|
| 473 |
|
|
}
|
| 474 |
|
|
|
| 475 |
|
|
/**
|
| 476 |
|
|
* Returns a scaling transform:
|
| 477 |
|
|
* <pre>
|
| 478 |
|
|
* [ sx 0 0 ]
|
| 479 |
|
|
* [ 0 sy 0 ]
|
| 480 |
|
|
* [ 0 0 1 ]
|
| 481 |
|
|
* </pre>
|
| 482 |
|
|
*
|
| 483 |
|
|
* @param sx the x scaling factor
|
| 484 |
|
|
* @param sy the y scaling factor
|
| 485 |
|
|
* @return the scaling transform
|
| 486 |
|
|
*/
|
| 487 |
|
|
public static AffineTransform getScaleInstance(double sx, double sy)
|
| 488 |
|
|
{
|
| 489 |
|
|
AffineTransform t = new AffineTransform();
|
| 490 |
|
|
t.setToScale(sx, sy);
|
| 491 |
|
|
return t;
|
| 492 |
|
|
}
|
| 493 |
|
|
|
| 494 |
|
|
/**
|
| 495 |
|
|
* Returns a shearing transform (points are shifted in the x direction based
|
| 496 |
|
|
* on a factor of their y coordinate, and in the y direction as a factor of
|
| 497 |
|
|
* their x coordinate):
|
| 498 |
|
|
* <pre>
|
| 499 |
|
|
* [ 1 shx 0 ]
|
| 500 |
|
|
* [ shy 1 0 ]
|
| 501 |
|
|
* [ 0 0 1 ]
|
| 502 |
|
|
* </pre>
|
| 503 |
|
|
*
|
| 504 |
|
|
* @param shx the x shearing factor
|
| 505 |
|
|
* @param shy the y shearing factor
|
| 506 |
|
|
* @return the shearing transform
|
| 507 |
|
|
*/
|
| 508 |
|
|
public static AffineTransform getShearInstance(double shx, double shy)
|
| 509 |
|
|
{
|
| 510 |
|
|
AffineTransform t = new AffineTransform();
|
| 511 |
|
|
t.setToShear(shx, shy);
|
| 512 |
|
|
return t;
|
| 513 |
|
|
}
|
| 514 |
|
|
|
| 515 |
|
|
/**
|
| 516 |
|
|
* Returns the type of this transform. The result is always valid, although
|
| 517 |
|
|
* it may not be the simplest interpretation (in other words, there are
|
| 518 |
|
|
* sequences of transforms which reduce to something simpler, which this
|
| 519 |
|
|
* does not always detect). The result is either TYPE_GENERAL_TRANSFORM,
|
| 520 |
|
|
* or a bit-wise combination of TYPE_TRANSLATION, the mutually exclusive
|
| 521 |
|
|
* TYPE_*_ROTATIONs, and the mutually exclusive TYPE_*_SCALEs.
|
| 522 |
|
|
*
|
| 523 |
|
|
* @return The type.
|
| 524 |
|
|
*
|
| 525 |
|
|
* @see #TYPE_IDENTITY
|
| 526 |
|
|
* @see #TYPE_TRANSLATION
|
| 527 |
|
|
* @see #TYPE_UNIFORM_SCALE
|
| 528 |
|
|
* @see #TYPE_GENERAL_SCALE
|
| 529 |
|
|
* @see #TYPE_QUADRANT_ROTATION
|
| 530 |
|
|
* @see #TYPE_GENERAL_ROTATION
|
| 531 |
|
|
* @see #TYPE_GENERAL_TRANSFORM
|
| 532 |
|
|
*/
|
| 533 |
|
|
public int getType()
|
| 534 |
|
|
{
|
| 535 |
|
|
return type;
|
| 536 |
|
|
}
|
| 537 |
|
|
|
| 538 |
|
|
/**
|
| 539 |
|
|
* Return the determinant of this transform matrix. If the determinant is
|
| 540 |
|
|
* non-zero, the transform is invertible; otherwise operations which require
|
| 541 |
|
|
* an inverse throw a NoninvertibleTransformException. A result very near
|
| 542 |
|
|
* zero, due to rounding errors, may indicate that inversion results do not
|
| 543 |
|
|
* carry enough precision to be meaningful.
|
| 544 |
|
|
*
|
| 545 |
|
|
* <p>If this is a uniform scale transformation, the determinant also
|
| 546 |
|
|
* represents the squared value of the scale. Otherwise, it carries little
|
| 547 |
|
|
* additional meaning. The determinant is calculated as:
|
| 548 |
|
|
* <pre>
|
| 549 |
|
|
* | m00 m01 m02 |
|
| 550 |
|
|
* | m10 m11 m12 | = m00 * m11 - m01 * m10
|
| 551 |
|
|
* | 0 0 1 |
|
| 552 |
|
|
* </pre>
|
| 553 |
|
|
*
|
| 554 |
|
|
* @return the determinant
|
| 555 |
|
|
* @see #createInverse()
|
| 556 |
|
|
*/
|
| 557 |
|
|
public double getDeterminant()
|
| 558 |
|
|
{
|
| 559 |
|
|
return m00 * m11 - m01 * m10;
|
| 560 |
|
|
}
|
| 561 |
|
|
|
| 562 |
|
|
/**
|
| 563 |
|
|
* Return the matrix of values used in this transform. If the matrix has
|
| 564 |
|
|
* fewer than 6 entries, only the scale and shear factors are returned;
|
| 565 |
|
|
* otherwise the translation factors are copied as well. The resulting
|
| 566 |
|
|
* values are:
|
| 567 |
|
|
* <pre>
|
| 568 |
|
|
* [ d[0] d[2] (d[4]) ]
|
| 569 |
|
|
* [ d[1] d[3] (d[5]) ]
|
| 570 |
|
|
* [ 0 0 1 ]
|
| 571 |
|
|
* </pre>
|
| 572 |
|
|
*
|
| 573 |
|
|
* @param d the matrix to store the results into; with 4 (6) entries
|
| 574 |
|
|
* @throws NullPointerException if d is null
|
| 575 |
|
|
* @throws ArrayIndexOutOfBoundsException if d is too small
|
| 576 |
|
|
*/
|
| 577 |
|
|
public void getMatrix(double[] d)
|
| 578 |
|
|
{
|
| 579 |
|
|
d[0] = m00;
|
| 580 |
|
|
d[1] = m10;
|
| 581 |
|
|
d[2] = m01;
|
| 582 |
|
|
d[3] = m11;
|
| 583 |
|
|
if (d.length >= 6)
|
| 584 |
|
|
{
|
| 585 |
|
|
d[4] = m02;
|
| 586 |
|
|
d[5] = m12;
|
| 587 |
|
|
}
|
| 588 |
|
|
}
|
| 589 |
|
|
|
| 590 |
|
|
/**
|
| 591 |
|
|
* Returns the X coordinate scaling factor of the matrix.
|
| 592 |
|
|
*
|
| 593 |
|
|
* @return m00
|
| 594 |
|
|
* @see #getMatrix(double[])
|
| 595 |
|
|
*/
|
| 596 |
|
|
public double getScaleX()
|
| 597 |
|
|
{
|
| 598 |
|
|
return m00;
|
| 599 |
|
|
}
|
| 600 |
|
|
|
| 601 |
|
|
/**
|
| 602 |
|
|
* Returns the Y coordinate scaling factor of the matrix.
|
| 603 |
|
|
*
|
| 604 |
|
|
* @return m11
|
| 605 |
|
|
* @see #getMatrix(double[])
|
| 606 |
|
|
*/
|
| 607 |
|
|
public double getScaleY()
|
| 608 |
|
|
{
|
| 609 |
|
|
return m11;
|
| 610 |
|
|
}
|
| 611 |
|
|
|
| 612 |
|
|
/**
|
| 613 |
|
|
* Returns the X coordinate shearing factor of the matrix.
|
| 614 |
|
|
*
|
| 615 |
|
|
* @return m01
|
| 616 |
|
|
* @see #getMatrix(double[])
|
| 617 |
|
|
*/
|
| 618 |
|
|
public double getShearX()
|
| 619 |
|
|
{
|
| 620 |
|
|
return m01;
|
| 621 |
|
|
}
|
| 622 |
|
|
|
| 623 |
|
|
/**
|
| 624 |
|
|
* Returns the Y coordinate shearing factor of the matrix.
|
| 625 |
|
|
*
|
| 626 |
|
|
* @return m10
|
| 627 |
|
|
* @see #getMatrix(double[])
|
| 628 |
|
|
*/
|
| 629 |
|
|
public double getShearY()
|
| 630 |
|
|
{
|
| 631 |
|
|
return m10;
|
| 632 |
|
|
}
|
| 633 |
|
|
|
| 634 |
|
|
/**
|
| 635 |
|
|
* Returns the X coordinate translation factor of the matrix.
|
| 636 |
|
|
*
|
| 637 |
|
|
* @return m02
|
| 638 |
|
|
* @see #getMatrix(double[])
|
| 639 |
|
|
*/
|
| 640 |
|
|
public double getTranslateX()
|
| 641 |
|
|
{
|
| 642 |
|
|
return m02;
|
| 643 |
|
|
}
|
| 644 |
|
|
|
| 645 |
|
|
/**
|
| 646 |
|
|
* Returns the Y coordinate translation factor of the matrix.
|
| 647 |
|
|
*
|
| 648 |
|
|
* @return m12
|
| 649 |
|
|
* @see #getMatrix(double[])
|
| 650 |
|
|
*/
|
| 651 |
|
|
public double getTranslateY()
|
| 652 |
|
|
{
|
| 653 |
|
|
return m12;
|
| 654 |
|
|
}
|
| 655 |
|
|
|
| 656 |
|
|
/**
|
| 657 |
|
|
* Concatenate a translation onto this transform. This is equivalent, but
|
| 658 |
|
|
* more efficient than
|
| 659 |
|
|
* <code>concatenate(AffineTransform.getTranslateInstance(tx, ty))</code>.
|
| 660 |
|
|
*
|
| 661 |
|
|
* @param tx the x translation distance
|
| 662 |
|
|
* @param ty the y translation distance
|
| 663 |
|
|
* @see #getTranslateInstance(double, double)
|
| 664 |
|
|
* @see #concatenate(AffineTransform)
|
| 665 |
|
|
*/
|
| 666 |
|
|
public void translate(double tx, double ty)
|
| 667 |
|
|
{
|
| 668 |
|
|
m02 += tx * m00 + ty * m01;
|
| 669 |
|
|
m12 += tx * m10 + ty * m11;
|
| 670 |
|
|
updateType();
|
| 671 |
|
|
}
|
| 672 |
|
|
|
| 673 |
|
|
/**
|
| 674 |
|
|
* Concatenate a rotation onto this transform. This is equivalent, but
|
| 675 |
|
|
* more efficient than
|
| 676 |
|
|
* <code>concatenate(AffineTransform.getRotateInstance(theta))</code>.
|
| 677 |
|
|
*
|
| 678 |
|
|
* @param theta the rotation angle
|
| 679 |
|
|
* @see #getRotateInstance(double)
|
| 680 |
|
|
* @see #concatenate(AffineTransform)
|
| 681 |
|
|
*/
|
| 682 |
|
|
public void rotate(double theta)
|
| 683 |
|
|
{
|
| 684 |
|
|
double c = Math.cos(theta);
|
| 685 |
|
|
double s = Math.sin(theta);
|
| 686 |
|
|
double n00 = m00 * c + m01 * s;
|
| 687 |
|
|
double n01 = m00 * -s + m01 * c;
|
| 688 |
|
|
double n10 = m10 * c + m11 * s;
|
| 689 |
|
|
double n11 = m10 * -s + m11 * c;
|
| 690 |
|
|
m00 = n00;
|
| 691 |
|
|
m01 = n01;
|
| 692 |
|
|
m10 = n10;
|
| 693 |
|
|
m11 = n11;
|
| 694 |
|
|
updateType();
|
| 695 |
|
|
}
|
| 696 |
|
|
|
| 697 |
|
|
/**
|
| 698 |
|
|
* Concatenate a rotation about a point onto this transform. This is
|
| 699 |
|
|
* equivalent, but more efficient than
|
| 700 |
|
|
* <code>concatenate(AffineTransform.getRotateInstance(theta, x, y))</code>.
|
| 701 |
|
|
*
|
| 702 |
|
|
* @param theta the rotation angle
|
| 703 |
|
|
* @param x the x coordinate of the pivot point
|
| 704 |
|
|
* @param y the y coordinate of the pivot point
|
| 705 |
|
|
* @see #getRotateInstance(double, double, double)
|
| 706 |
|
|
* @see #concatenate(AffineTransform)
|
| 707 |
|
|
*/
|
| 708 |
|
|
public void rotate(double theta, double x, double y)
|
| 709 |
|
|
{
|
| 710 |
|
|
translate(x, y);
|
| 711 |
|
|
rotate(theta);
|
| 712 |
|
|
translate(-x, -y);
|
| 713 |
|
|
}
|
| 714 |
|
|
|
| 715 |
|
|
/**
|
| 716 |
|
|
* Concatenate a scale onto this transform. This is equivalent, but more
|
| 717 |
|
|
* efficient than
|
| 718 |
|
|
* <code>concatenate(AffineTransform.getScaleInstance(sx, sy))</code>.
|
| 719 |
|
|
*
|
| 720 |
|
|
* @param sx the x scaling factor
|
| 721 |
|
|
* @param sy the y scaling factor
|
| 722 |
|
|
* @see #getScaleInstance(double, double)
|
| 723 |
|
|
* @see #concatenate(AffineTransform)
|
| 724 |
|
|
*/
|
| 725 |
|
|
public void scale(double sx, double sy)
|
| 726 |
|
|
{
|
| 727 |
|
|
m00 *= sx;
|
| 728 |
|
|
m01 *= sy;
|
| 729 |
|
|
m10 *= sx;
|
| 730 |
|
|
m11 *= sy;
|
| 731 |
|
|
updateType();
|
| 732 |
|
|
}
|
| 733 |
|
|
|
| 734 |
|
|
/**
|
| 735 |
|
|
* Concatenate a shearing onto this transform. This is equivalent, but more
|
| 736 |
|
|
* efficient than
|
| 737 |
|
|
* <code>concatenate(AffineTransform.getShearInstance(sx, sy))</code>.
|
| 738 |
|
|
*
|
| 739 |
|
|
* @param shx the x shearing factor
|
| 740 |
|
|
* @param shy the y shearing factor
|
| 741 |
|
|
* @see #getShearInstance(double, double)
|
| 742 |
|
|
* @see #concatenate(AffineTransform)
|
| 743 |
|
|
*/
|
| 744 |
|
|
public void shear(double shx, double shy)
|
| 745 |
|
|
{
|
| 746 |
|
|
double n00 = m00 + (shy * m01);
|
| 747 |
|
|
double n01 = m01 + (shx * m00);
|
| 748 |
|
|
double n10 = m10 + (shy * m11);
|
| 749 |
|
|
double n11 = m11 + (shx * m10);
|
| 750 |
|
|
m00 = n00;
|
| 751 |
|
|
m01 = n01;
|
| 752 |
|
|
m10 = n10;
|
| 753 |
|
|
m11 = n11;
|
| 754 |
|
|
updateType();
|
| 755 |
|
|
}
|
| 756 |
|
|
|
| 757 |
|
|
/**
|
| 758 |
|
|
* Reset this transform to the identity (no transformation):
|
| 759 |
|
|
* <pre>
|
| 760 |
|
|
* [ 1 0 0 ]
|
| 761 |
|
|
* [ 0 1 0 ]
|
| 762 |
|
|
* [ 0 0 1 ]
|
| 763 |
|
|
* </pre>
|
| 764 |
|
|
*/
|
| 765 |
|
|
public void setToIdentity()
|
| 766 |
|
|
{
|
| 767 |
|
|
m00 = m11 = 1;
|
| 768 |
|
|
m01 = m02 = m10 = m12 = 0;
|
| 769 |
|
|
type = TYPE_IDENTITY;
|
| 770 |
|
|
}
|
| 771 |
|
|
|
| 772 |
|
|
/**
|
| 773 |
|
|
* Set this transform to a translation:
|
| 774 |
|
|
* <pre>
|
| 775 |
|
|
* [ 1 0 tx ]
|
| 776 |
|
|
* [ 0 1 ty ]
|
| 777 |
|
|
* [ 0 0 1 ]
|
| 778 |
|
|
* </pre>
|
| 779 |
|
|
*
|
| 780 |
|
|
* @param tx the x translation distance
|
| 781 |
|
|
* @param ty the y translation distance
|
| 782 |
|
|
*/
|
| 783 |
|
|
public void setToTranslation(double tx, double ty)
|
| 784 |
|
|
{
|
| 785 |
|
|
m00 = m11 = 1;
|
| 786 |
|
|
m01 = m10 = 0;
|
| 787 |
|
|
m02 = tx;
|
| 788 |
|
|
m12 = ty;
|
| 789 |
|
|
type = (tx == 0 && ty == 0) ? TYPE_UNIFORM_SCALE : TYPE_TRANSLATION;
|
| 790 |
|
|
}
|
| 791 |
|
|
|
| 792 |
|
|
/**
|
| 793 |
|
|
* Set this transform to a rotation. A positive angle (in radians) rotates
|
| 794 |
|
|
* the positive x-axis to the positive y-axis:
|
| 795 |
|
|
* <pre>
|
| 796 |
|
|
* [ cos(theta) -sin(theta) 0 ]
|
| 797 |
|
|
* [ sin(theta) cos(theta) 0 ]
|
| 798 |
|
|
* [ 0 0 1 ]
|
| 799 |
|
|
* </pre>
|
| 800 |
|
|
*
|
| 801 |
|
|
* @param theta the rotation angle
|
| 802 |
|
|
*/
|
| 803 |
|
|
public void setToRotation(double theta)
|
| 804 |
|
|
{
|
| 805 |
|
|
double c = Math.cos(theta);
|
| 806 |
|
|
double s = Math.sin(theta);
|
| 807 |
|
|
m00 = c;
|
| 808 |
|
|
m01 = -s;
|
| 809 |
|
|
m02 = 0;
|
| 810 |
|
|
m10 = s;
|
| 811 |
|
|
m11 = c;
|
| 812 |
|
|
m12 = 0;
|
| 813 |
|
|
type = (c == 1 ? TYPE_IDENTITY
|
| 814 |
|
|
: c == 0 || c == -1 ? TYPE_QUADRANT_ROTATION
|
| 815 |
|
|
: TYPE_GENERAL_ROTATION);
|
| 816 |
|
|
}
|
| 817 |
|
|
|
| 818 |
|
|
/**
|
| 819 |
|
|
* Set this transform to a rotation about a point. A positive angle (in
|
| 820 |
|
|
* radians) rotates the positive x-axis to the positive y-axis. This is the
|
| 821 |
|
|
* same as calling:
|
| 822 |
|
|
* <pre>
|
| 823 |
|
|
* tx.setToTranslation(x, y);
|
| 824 |
|
|
* tx.rotate(theta);
|
| 825 |
|
|
* tx.translate(-x, -y);
|
| 826 |
|
|
* </pre>
|
| 827 |
|
|
*
|
| 828 |
|
|
* <p>The resulting matrix is:
|
| 829 |
|
|
* <pre>
|
| 830 |
|
|
* [ cos(theta) -sin(theta) x-x*cos+y*sin ]
|
| 831 |
|
|
* [ sin(theta) cos(theta) y-x*sin-y*cos ]
|
| 832 |
|
|
* [ 0 0 1 ]
|
| 833 |
|
|
* </pre>
|
| 834 |
|
|
*
|
| 835 |
|
|
* @param theta the rotation angle
|
| 836 |
|
|
* @param x the x coordinate of the pivot point
|
| 837 |
|
|
* @param y the y coordinate of the pivot point
|
| 838 |
|
|
*/
|
| 839 |
|
|
public void setToRotation(double theta, double x, double y)
|
| 840 |
|
|
{
|
| 841 |
|
|
double c = Math.cos(theta);
|
| 842 |
|
|
double s = Math.sin(theta);
|
| 843 |
|
|
m00 = c;
|
| 844 |
|
|
m01 = -s;
|
| 845 |
|
|
m02 = x - x * c + y * s;
|
| 846 |
|
|
m10 = s;
|
| 847 |
|
|
m11 = c;
|
| 848 |
|
|
m12 = y - x * s - y * c;
|
| 849 |
|
|
updateType();
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
/**
|
| 853 |
|
|
* Set this transform to a scale:
|
| 854 |
|
|
* <pre>
|
| 855 |
|
|
* [ sx 0 0 ]
|
| 856 |
|
|
* [ 0 sy 0 ]
|
| 857 |
|
|
* [ 0 0 1 ]
|
| 858 |
|
|
* </pre>
|
| 859 |
|
|
*
|
| 860 |
|
|
* @param sx the x scaling factor
|
| 861 |
|
|
* @param sy the y scaling factor
|
| 862 |
|
|
*/
|
| 863 |
|
|
public void setToScale(double sx, double sy)
|
| 864 |
|
|
{
|
| 865 |
|
|
m00 = sx;
|
| 866 |
|
|
m01 = m02 = m10 = m12 = 0;
|
| 867 |
|
|
m11 = sy;
|
| 868 |
|
|
type = (sx != sy ? TYPE_GENERAL_SCALE
|
| 869 |
|
|
: sx == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE);
|
| 870 |
|
|
}
|
| 871 |
|
|
|
| 872 |
|
|
/**
|
| 873 |
|
|
* Set this transform to a shear (points are shifted in the x direction based
|
| 874 |
|
|
* on a factor of their y coordinate, and in the y direction as a factor of
|
| 875 |
|
|
* their x coordinate):
|
| 876 |
|
|
* <pre>
|
| 877 |
|
|
* [ 1 shx 0 ]
|
| 878 |
|
|
* [ shy 1 0 ]
|
| 879 |
|
|
* [ 0 0 1 ]
|
| 880 |
|
|
* </pre>
|
| 881 |
|
|
*
|
| 882 |
|
|
* @param shx the x shearing factor
|
| 883 |
|
|
* @param shy the y shearing factor
|
| 884 |
|
|
*/
|
| 885 |
|
|
public void setToShear(double shx, double shy)
|
| 886 |
|
|
{
|
| 887 |
|
|
m00 = m11 = 1;
|
| 888 |
|
|
m01 = shx;
|
| 889 |
|
|
m10 = shy;
|
| 890 |
|
|
m02 = m12 = 0;
|
| 891 |
|
|
updateType();
|
| 892 |
|
|
}
|
| 893 |
|
|
|
| 894 |
|
|
/**
|
| 895 |
|
|
* Set this transform to a copy of the given one.
|
| 896 |
|
|
*
|
| 897 |
|
|
* @param tx the transform to copy
|
| 898 |
|
|
* @throws NullPointerException if tx is null
|
| 899 |
|
|
*/
|
| 900 |
|
|
public void setTransform(AffineTransform tx)
|
| 901 |
|
|
{
|
| 902 |
|
|
m00 = tx.m00;
|
| 903 |
|
|
m01 = tx.m01;
|
| 904 |
|
|
m02 = tx.m02;
|
| 905 |
|
|
m10 = tx.m10;
|
| 906 |
|
|
m11 = tx.m11;
|
| 907 |
|
|
m12 = tx.m12;
|
| 908 |
|
|
type = tx.type;
|
| 909 |
|
|
}
|
| 910 |
|
|
|
| 911 |
|
|
/**
|
| 912 |
|
|
* Set this transform to the given values:
|
| 913 |
|
|
* <pre>
|
| 914 |
|
|
* [ m00 m01 m02 ]
|
| 915 |
|
|
* [ m10 m11 m12 ]
|
| 916 |
|
|
* [ 0 0 1 ]
|
| 917 |
|
|
* </pre>
|
| 918 |
|
|
*
|
| 919 |
|
|
* @param m00 the x scaling component
|
| 920 |
|
|
* @param m10 the y shearing component
|
| 921 |
|
|
* @param m01 the x shearing component
|
| 922 |
|
|
* @param m11 the y scaling component
|
| 923 |
|
|
* @param m02 the x translation component
|
| 924 |
|
|
* @param m12 the y translation component
|
| 925 |
|
|
*/
|
| 926 |
|
|
public void setTransform(double m00, double m10, double m01,
|
| 927 |
|
|
double m11, double m02, double m12)
|
| 928 |
|
|
{
|
| 929 |
|
|
this.m00 = m00;
|
| 930 |
|
|
this.m10 = m10;
|
| 931 |
|
|
this.m01 = m01;
|
| 932 |
|
|
this.m11 = m11;
|
| 933 |
|
|
this.m02 = m02;
|
| 934 |
|
|
this.m12 = m12;
|
| 935 |
|
|
updateType();
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
/**
|
| 939 |
|
|
* Set this transform to the result of performing the original version of
|
| 940 |
|
|
* this followed by tx. This is commonly used when chaining transformations
|
| 941 |
|
|
* from one space to another. In matrix form:
|
| 942 |
|
|
* <pre>
|
| 943 |
|
|
* [ this ] = [ this ] x [ tx ]
|
| 944 |
|
|
* </pre>
|
| 945 |
|
|
*
|
| 946 |
|
|
* @param tx the transform to concatenate
|
| 947 |
|
|
* @throws NullPointerException if tx is null
|
| 948 |
|
|
* @see #preConcatenate(AffineTransform)
|
| 949 |
|
|
*/
|
| 950 |
|
|
public void concatenate(AffineTransform tx)
|
| 951 |
|
|
{
|
| 952 |
|
|
double n00 = m00 * tx.m00 + m01 * tx.m10;
|
| 953 |
|
|
double n01 = m00 * tx.m01 + m01 * tx.m11;
|
| 954 |
|
|
double n02 = m00 * tx.m02 + m01 * tx.m12 + m02;
|
| 955 |
|
|
double n10 = m10 * tx.m00 + m11 * tx.m10;
|
| 956 |
|
|
double n11 = m10 * tx.m01 + m11 * tx.m11;
|
| 957 |
|
|
double n12 = m10 * tx.m02 + m11 * tx.m12 + m12;
|
| 958 |
|
|
m00 = n00;
|
| 959 |
|
|
m01 = n01;
|
| 960 |
|
|
m02 = n02;
|
| 961 |
|
|
m10 = n10;
|
| 962 |
|
|
m11 = n11;
|
| 963 |
|
|
m12 = n12;
|
| 964 |
|
|
updateType();
|
| 965 |
|
|
}
|
| 966 |
|
|
|
| 967 |
|
|
/**
|
| 968 |
|
|
* Set this transform to the result of performing tx followed by the
|
| 969 |
|
|
* original version of this. This is less common than normal concatenation,
|
| 970 |
|
|
* but can still be used to chain transformations from one space to another.
|
| 971 |
|
|
* In matrix form:
|
| 972 |
|
|
* <pre>
|
| 973 |
|
|
* [ this ] = [ tx ] x [ this ]
|
| 974 |
|
|
* </pre>
|
| 975 |
|
|
*
|
| 976 |
|
|
* @param tx the transform to concatenate
|
| 977 |
|
|
* @throws NullPointerException if tx is null
|
| 978 |
|
|
* @see #concatenate(AffineTransform)
|
| 979 |
|
|
*/
|
| 980 |
|
|
public void preConcatenate(AffineTransform tx)
|
| 981 |
|
|
{
|
| 982 |
|
|
double n00 = tx.m00 * m00 + tx.m01 * m10;
|
| 983 |
|
|
double n01 = tx.m00 * m01 + tx.m01 * m11;
|
| 984 |
|
|
double n02 = tx.m00 * m02 + tx.m01 * m12 + tx.m02;
|
| 985 |
|
|
double n10 = tx.m10 * m00 + tx.m11 * m10;
|
| 986 |
|
|
double n11 = tx.m10 * m01 + tx.m11 * m11;
|
| 987 |
|
|
double n12 = tx.m10 * m02 + tx.m11 * m12 + tx.m12;
|
| 988 |
|
|
m00 = n00;
|
| 989 |
|
|
m01 = n01;
|
| 990 |
|
|
m02 = n02;
|
| 991 |
|
|
m10 = n10;
|
| 992 |
|
|
m11 = n11;
|
| 993 |
|
|
m12 = n12;
|
| 994 |
|
|
updateType();
|
| 995 |
|
|
}
|
| 996 |
|
|
|
| 997 |
|
|
/**
|
| 998 |
|
|
* Returns a transform, which if concatenated to this one, will result in
|
| 999 |
|
|
* the identity transform. This is useful for undoing transformations, but
|
| 1000 |
|
|
* is only possible if the original transform has an inverse (ie. does not
|
| 1001 |
|
|
* map multiple points to the same line or point). A transform exists only
|
| 1002 |
|
|
* if getDeterminant() has a non-zero value.
|
| 1003 |
|
|
*
|
| 1004 |
|
|
* The inverse is calculated as:
|
| 1005 |
|
|
*
|
| 1006 |
|
|
* <pre>
|
| 1007 |
|
|
*
|
| 1008 |
|
|
* Let A be the matrix for which we want to find the inverse:
|
| 1009 |
|
|
*
|
| 1010 |
|
|
* A = [ m00 m01 m02 ]
|
| 1011 |
|
|
* [ m10 m11 m12 ]
|
| 1012 |
|
|
* [ 0 0 1 ]
|
| 1013 |
|
|
*
|
| 1014 |
|
|
*
|
| 1015 |
|
|
* 1
|
| 1016 |
|
|
* inverse (A) = --- x adjoint(A)
|
| 1017 |
|
|
* det
|
| 1018 |
|
|
*
|
| 1019 |
|
|
*
|
| 1020 |
|
|
*
|
| 1021 |
|
|
* = 1 [ m11 -m01 m01*m12-m02*m11 ]
|
| 1022 |
|
|
* --- x [ -m10 m00 -m00*m12+m10*m02 ]
|
| 1023 |
|
|
* det [ 0 0 m00*m11-m10*m01 ]
|
| 1024 |
|
|
*
|
| 1025 |
|
|
*
|
| 1026 |
|
|
*
|
| 1027 |
|
|
* = [ m11/det -m01/det m01*m12-m02*m11/det ]
|
| 1028 |
|
|
* [ -m10/det m00/det -m00*m12+m10*m02/det ]
|
| 1029 |
|
|
* [ 0 0 1 ]
|
| 1030 |
|
|
*
|
| 1031 |
|
|
*
|
| 1032 |
|
|
* </pre>
|
| 1033 |
|
|
*
|
| 1034 |
|
|
*
|
| 1035 |
|
|
*
|
| 1036 |
|
|
* @return a new inverse transform
|
| 1037 |
|
|
* @throws NoninvertibleTransformException if inversion is not possible
|
| 1038 |
|
|
* @see #getDeterminant()
|
| 1039 |
|
|
*/
|
| 1040 |
|
|
public AffineTransform createInverse()
|
| 1041 |
|
|
throws NoninvertibleTransformException
|
| 1042 |
|
|
{
|
| 1043 |
|
|
double det = getDeterminant();
|
| 1044 |
|
|
if (det == 0)
|
| 1045 |
|
|
throw new NoninvertibleTransformException("can't invert transform");
|
| 1046 |
|
|
|
| 1047 |
|
|
double im00 = m11 / det;
|
| 1048 |
|
|
double im10 = -m10 / det;
|
| 1049 |
|
|
double im01 = -m01 / det;
|
| 1050 |
|
|
double im11 = m00 / det;
|
| 1051 |
|
|
double im02 = (m01 * m12 - m02 * m11) / det;
|
| 1052 |
|
|
double im12 = (-m00 * m12 + m10 * m02) / det;
|
| 1053 |
|
|
|
| 1054 |
|
|
return new AffineTransform (im00, im10, im01, im11, im02, im12);
|
| 1055 |
|
|
}
|
| 1056 |
|
|
|
| 1057 |
|
|
/**
|
| 1058 |
|
|
* Perform this transformation on the given source point, and store the
|
| 1059 |
|
|
* result in the destination (creating it if necessary). It is safe for
|
| 1060 |
|
|
* src and dst to be the same.
|
| 1061 |
|
|
*
|
| 1062 |
|
|
* @param src the source point
|
| 1063 |
|
|
* @param dst the destination, or null
|
| 1064 |
|
|
* @return the transformation of src, in dst if it was non-null
|
| 1065 |
|
|
* @throws NullPointerException if src is null
|
| 1066 |
|
|
*/
|
| 1067 |
|
|
public Point2D transform(Point2D src, Point2D dst)
|
| 1068 |
|
|
{
|
| 1069 |
|
|
if (dst == null)
|
| 1070 |
|
|
dst = new Point2D.Double();
|
| 1071 |
|
|
double x = src.getX();
|
| 1072 |
|
|
double y = src.getY();
|
| 1073 |
|
|
double nx = m00 * x + m01 * y + m02;
|
| 1074 |
|
|
double ny = m10 * x + m11 * y + m12;
|
| 1075 |
|
|
dst.setLocation(nx, ny);
|
| 1076 |
|
|
return dst;
|
| 1077 |
|
|
}
|
| 1078 |
|
|
|
| 1079 |
|
|
/**
|
| 1080 |
|
|
* Perform this transformation on an array of points, storing the results
|
| 1081 |
|
|
* in another (possibly same) array. This will not create a destination
|
| 1082 |
|
|
* array, but will create points for the null entries of the destination.
|
| 1083 |
|
|
* The transformation is done sequentially. While having a single source
|
| 1084 |
|
|
* and destination point be the same is safe, you should be aware that
|
| 1085 |
|
|
* duplicate references to the same point in the source, and having the
|
| 1086 |
|
|
* source overlap the destination, may result in your source points changing
|
| 1087 |
|
|
* from a previous transform before it is their turn to be evaluated.
|
| 1088 |
|
|
*
|
| 1089 |
|
|
* @param src the array of source points
|
| 1090 |
|
|
* @param srcOff the starting offset into src
|
| 1091 |
|
|
* @param dst the array of destination points (may have null entries)
|
| 1092 |
|
|
* @param dstOff the starting offset into dst
|
| 1093 |
|
|
* @param num the number of points to transform
|
| 1094 |
|
|
* @throws NullPointerException if src or dst is null, or src has null
|
| 1095 |
|
|
* entries
|
| 1096 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1097 |
|
|
* @throws ArrayStoreException if new points are incompatible with dst
|
| 1098 |
|
|
*/
|
| 1099 |
|
|
public void transform(Point2D[] src, int srcOff,
|
| 1100 |
|
|
Point2D[] dst, int dstOff, int num)
|
| 1101 |
|
|
{
|
| 1102 |
|
|
while (--num >= 0)
|
| 1103 |
|
|
dst[dstOff] = transform(src[srcOff++], dst[dstOff++]);
|
| 1104 |
|
|
}
|
| 1105 |
|
|
|
| 1106 |
|
|
/**
|
| 1107 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
| 1108 |
|
|
* storing the results in another (possibly same) array. This will not
|
| 1109 |
|
|
* create a destination array. All sources are copied before the
|
| 1110 |
|
|
* transformation, so that no result will overwrite a point that has not yet
|
| 1111 |
|
|
* been evaluated.
|
| 1112 |
|
|
*
|
| 1113 |
|
|
* @param srcPts the array of source points
|
| 1114 |
|
|
* @param srcOff the starting offset into src
|
| 1115 |
|
|
* @param dstPts the array of destination points
|
| 1116 |
|
|
* @param dstOff the starting offset into dst
|
| 1117 |
|
|
* @param num the number of points to transform
|
| 1118 |
|
|
* @throws NullPointerException if src or dst is null
|
| 1119 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1120 |
|
|
*/
|
| 1121 |
|
|
public void transform(float[] srcPts, int srcOff,
|
| 1122 |
|
|
float[] dstPts, int dstOff, int num)
|
| 1123 |
|
|
{
|
| 1124 |
|
|
if (srcPts == dstPts && dstOff > srcOff
|
| 1125 |
|
|
&& num > 1 && srcOff + 2 * num > dstOff)
|
| 1126 |
|
|
{
|
| 1127 |
|
|
float[] f = new float[2 * num];
|
| 1128 |
|
|
System.arraycopy(srcPts, srcOff, f, 0, 2 * num);
|
| 1129 |
|
|
srcPts = f;
|
| 1130 |
|
|
}
|
| 1131 |
|
|
while (--num >= 0)
|
| 1132 |
|
|
{
|
| 1133 |
|
|
float x = srcPts[srcOff++];
|
| 1134 |
|
|
float y = srcPts[srcOff++];
|
| 1135 |
|
|
dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
|
| 1136 |
|
|
dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
|
| 1137 |
|
|
}
|
| 1138 |
|
|
}
|
| 1139 |
|
|
|
| 1140 |
|
|
/**
|
| 1141 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
| 1142 |
|
|
* storing the results in another (possibly same) array. This will not
|
| 1143 |
|
|
* create a destination array. All sources are copied before the
|
| 1144 |
|
|
* transformation, so that no result will overwrite a point that has not yet
|
| 1145 |
|
|
* been evaluated.
|
| 1146 |
|
|
*
|
| 1147 |
|
|
* @param srcPts the array of source points
|
| 1148 |
|
|
* @param srcOff the starting offset into src
|
| 1149 |
|
|
* @param dstPts the array of destination points
|
| 1150 |
|
|
* @param dstOff the starting offset into dst
|
| 1151 |
|
|
* @param num the number of points to transform
|
| 1152 |
|
|
* @throws NullPointerException if src or dst is null
|
| 1153 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1154 |
|
|
*/
|
| 1155 |
|
|
public void transform(double[] srcPts, int srcOff,
|
| 1156 |
|
|
double[] dstPts, int dstOff, int num)
|
| 1157 |
|
|
{
|
| 1158 |
|
|
if (srcPts == dstPts && dstOff > srcOff
|
| 1159 |
|
|
&& num > 1 && srcOff + 2 * num > dstOff)
|
| 1160 |
|
|
{
|
| 1161 |
|
|
double[] d = new double[2 * num];
|
| 1162 |
|
|
System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
|
| 1163 |
|
|
srcPts = d;
|
| 1164 |
|
|
}
|
| 1165 |
|
|
while (--num >= 0)
|
| 1166 |
|
|
{
|
| 1167 |
|
|
double x = srcPts[srcOff++];
|
| 1168 |
|
|
double y = srcPts[srcOff++];
|
| 1169 |
|
|
dstPts[dstOff++] = m00 * x + m01 * y + m02;
|
| 1170 |
|
|
dstPts[dstOff++] = m10 * x + m11 * y + m12;
|
| 1171 |
|
|
}
|
| 1172 |
|
|
}
|
| 1173 |
|
|
|
| 1174 |
|
|
/**
|
| 1175 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
| 1176 |
|
|
* storing the results in another array. This will not create a destination
|
| 1177 |
|
|
* array.
|
| 1178 |
|
|
*
|
| 1179 |
|
|
* @param srcPts the array of source points
|
| 1180 |
|
|
* @param srcOff the starting offset into src
|
| 1181 |
|
|
* @param dstPts the array of destination points
|
| 1182 |
|
|
* @param dstOff the starting offset into dst
|
| 1183 |
|
|
* @param num the number of points to transform
|
| 1184 |
|
|
* @throws NullPointerException if src or dst is null
|
| 1185 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1186 |
|
|
*/
|
| 1187 |
|
|
public void transform(float[] srcPts, int srcOff,
|
| 1188 |
|
|
double[] dstPts, int dstOff, int num)
|
| 1189 |
|
|
{
|
| 1190 |
|
|
while (--num >= 0)
|
| 1191 |
|
|
{
|
| 1192 |
|
|
float x = srcPts[srcOff++];
|
| 1193 |
|
|
float y = srcPts[srcOff++];
|
| 1194 |
|
|
dstPts[dstOff++] = m00 * x + m01 * y + m02;
|
| 1195 |
|
|
dstPts[dstOff++] = m10 * x + m11 * y + m12;
|
| 1196 |
|
|
}
|
| 1197 |
|
|
}
|
| 1198 |
|
|
|
| 1199 |
|
|
/**
|
| 1200 |
|
|
* Perform this transformation on an array of points, in (x,y) pairs,
|
| 1201 |
|
|
* storing the results in another array. This will not create a destination
|
| 1202 |
|
|
* array.
|
| 1203 |
|
|
*
|
| 1204 |
|
|
* @param srcPts the array of source points
|
| 1205 |
|
|
* @param srcOff the starting offset into src
|
| 1206 |
|
|
* @param dstPts the array of destination points
|
| 1207 |
|
|
* @param dstOff the starting offset into dst
|
| 1208 |
|
|
* @param num the number of points to transform
|
| 1209 |
|
|
* @throws NullPointerException if src or dst is null
|
| 1210 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1211 |
|
|
*/
|
| 1212 |
|
|
public void transform(double[] srcPts, int srcOff,
|
| 1213 |
|
|
float[] dstPts, int dstOff, int num)
|
| 1214 |
|
|
{
|
| 1215 |
|
|
while (--num >= 0)
|
| 1216 |
|
|
{
|
| 1217 |
|
|
double x = srcPts[srcOff++];
|
| 1218 |
|
|
double y = srcPts[srcOff++];
|
| 1219 |
|
|
dstPts[dstOff++] = (float) (m00 * x + m01 * y + m02);
|
| 1220 |
|
|
dstPts[dstOff++] = (float) (m10 * x + m11 * y + m12);
|
| 1221 |
|
|
}
|
| 1222 |
|
|
}
|
| 1223 |
|
|
|
| 1224 |
|
|
/**
|
| 1225 |
|
|
* Perform the inverse of this transformation on the given source point,
|
| 1226 |
|
|
* and store the result in the destination (creating it if necessary). It
|
| 1227 |
|
|
* is safe for src and dst to be the same.
|
| 1228 |
|
|
*
|
| 1229 |
|
|
* @param src the source point
|
| 1230 |
|
|
* @param dst the destination, or null
|
| 1231 |
|
|
* @return the inverse transformation of src, in dst if it was non-null
|
| 1232 |
|
|
* @throws NullPointerException if src is null
|
| 1233 |
|
|
* @throws NoninvertibleTransformException if the inverse does not exist
|
| 1234 |
|
|
* @see #getDeterminant()
|
| 1235 |
|
|
*/
|
| 1236 |
|
|
public Point2D inverseTransform(Point2D src, Point2D dst)
|
| 1237 |
|
|
throws NoninvertibleTransformException
|
| 1238 |
|
|
{
|
| 1239 |
|
|
return createInverse().transform(src, dst);
|
| 1240 |
|
|
}
|
| 1241 |
|
|
|
| 1242 |
|
|
/**
|
| 1243 |
|
|
* Perform the inverse of this transformation on an array of points, in
|
| 1244 |
|
|
* (x,y) pairs, storing the results in another (possibly same) array. This
|
| 1245 |
|
|
* will not create a destination array. All sources are copied before the
|
| 1246 |
|
|
* transformation, so that no result will overwrite a point that has not yet
|
| 1247 |
|
|
* been evaluated.
|
| 1248 |
|
|
*
|
| 1249 |
|
|
* @param srcPts the array of source points
|
| 1250 |
|
|
* @param srcOff the starting offset into src
|
| 1251 |
|
|
* @param dstPts the array of destination points
|
| 1252 |
|
|
* @param dstOff the starting offset into dst
|
| 1253 |
|
|
* @param num the number of points to transform
|
| 1254 |
|
|
* @throws NullPointerException if src or dst is null
|
| 1255 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1256 |
|
|
* @throws NoninvertibleTransformException if the inverse does not exist
|
| 1257 |
|
|
* @see #getDeterminant()
|
| 1258 |
|
|
*/
|
| 1259 |
|
|
public void inverseTransform(double[] srcPts, int srcOff,
|
| 1260 |
|
|
double[] dstPts, int dstOff, int num)
|
| 1261 |
|
|
throws NoninvertibleTransformException
|
| 1262 |
|
|
{
|
| 1263 |
|
|
createInverse().transform(srcPts, srcOff, dstPts, dstOff, num);
|
| 1264 |
|
|
}
|
| 1265 |
|
|
|
| 1266 |
|
|
/**
|
| 1267 |
|
|
* Perform this transformation, less any translation, on the given source
|
| 1268 |
|
|
* point, and store the result in the destination (creating it if
|
| 1269 |
|
|
* necessary). It is safe for src and dst to be the same. The reduced
|
| 1270 |
|
|
* transform is equivalent to:
|
| 1271 |
|
|
* <pre>
|
| 1272 |
|
|
* [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
|
| 1273 |
|
|
* [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
|
| 1274 |
|
|
* </pre>
|
| 1275 |
|
|
*
|
| 1276 |
|
|
* @param src the source point
|
| 1277 |
|
|
* @param dst the destination, or null
|
| 1278 |
|
|
* @return the delta transformation of src, in dst if it was non-null
|
| 1279 |
|
|
* @throws NullPointerException if src is null
|
| 1280 |
|
|
*/
|
| 1281 |
|
|
public Point2D deltaTransform(Point2D src, Point2D dst)
|
| 1282 |
|
|
{
|
| 1283 |
|
|
if (dst == null)
|
| 1284 |
|
|
dst = new Point2D.Double();
|
| 1285 |
|
|
double x = src.getX();
|
| 1286 |
|
|
double y = src.getY();
|
| 1287 |
|
|
double nx = m00 * x + m01 * y;
|
| 1288 |
|
|
double ny = m10 * x + m11 * y;
|
| 1289 |
|
|
dst.setLocation(nx, ny);
|
| 1290 |
|
|
return dst;
|
| 1291 |
|
|
}
|
| 1292 |
|
|
|
| 1293 |
|
|
/**
|
| 1294 |
|
|
* Perform this transformation, less any translation, on an array of points,
|
| 1295 |
|
|
* in (x,y) pairs, storing the results in another (possibly same) array.
|
| 1296 |
|
|
* This will not create a destination array. All sources are copied before
|
| 1297 |
|
|
* the transformation, so that no result will overwrite a point that has
|
| 1298 |
|
|
* not yet been evaluated. The reduced transform is equivalent to:
|
| 1299 |
|
|
* <pre>
|
| 1300 |
|
|
* [ x' ] = [ m00 m01 ] [ x ] = [ m00 * x + m01 * y ]
|
| 1301 |
|
|
* [ y' ] [ m10 m11 ] [ y ] = [ m10 * x + m11 * y ]
|
| 1302 |
|
|
* </pre>
|
| 1303 |
|
|
*
|
| 1304 |
|
|
* @param srcPts the array of source points
|
| 1305 |
|
|
* @param srcOff the starting offset into src
|
| 1306 |
|
|
* @param dstPts the array of destination points
|
| 1307 |
|
|
* @param dstOff the starting offset into dst
|
| 1308 |
|
|
* @param num the number of points to transform
|
| 1309 |
|
|
* @throws NullPointerException if src or dst is null
|
| 1310 |
|
|
* @throws ArrayIndexOutOfBoundsException if array bounds are exceeded
|
| 1311 |
|
|
*/
|
| 1312 |
|
|
public void deltaTransform(double[] srcPts, int srcOff,
|
| 1313 |
|
|
double[] dstPts, int dstOff,
|
| 1314 |
|
|
int num)
|
| 1315 |
|
|
{
|
| 1316 |
|
|
if (srcPts == dstPts && dstOff > srcOff
|
| 1317 |
|
|
&& num > 1 && srcOff + 2 * num > dstOff)
|
| 1318 |
|
|
{
|
| 1319 |
|
|
double[] d = new double[2 * num];
|
| 1320 |
|
|
System.arraycopy(srcPts, srcOff, d, 0, 2 * num);
|
| 1321 |
|
|
srcPts = d;
|
| 1322 |
|
|
}
|
| 1323 |
|
|
while (--num >= 0)
|
| 1324 |
|
|
{
|
| 1325 |
|
|
double x = srcPts[srcOff++];
|
| 1326 |
|
|
double y = srcPts[srcOff++];
|
| 1327 |
|
|
dstPts[dstOff++] = m00 * x + m01 * y;
|
| 1328 |
|
|
dstPts[dstOff++] = m10 * x + m11 * y;
|
| 1329 |
|
|
}
|
| 1330 |
|
|
}
|
| 1331 |
|
|
|
| 1332 |
|
|
/**
|
| 1333 |
|
|
* Return a new Shape, based on the given one, where the path of the shape
|
| 1334 |
|
|
* has been transformed by this transform. Notice that this uses GeneralPath,
|
| 1335 |
|
|
* which only stores points in float precision.
|
| 1336 |
|
|
*
|
| 1337 |
|
|
* @param src the shape source to transform
|
| 1338 |
|
|
* @return the shape, transformed by this, <code>null</code> if src is
|
| 1339 |
|
|
* <code>null</code>.
|
| 1340 |
|
|
* @see GeneralPath#transform(AffineTransform)
|
| 1341 |
|
|
*/
|
| 1342 |
|
|
public Shape createTransformedShape(Shape src)
|
| 1343 |
|
|
{
|
| 1344 |
|
|
if(src == null)
|
| 1345 |
|
|
return null;
|
| 1346 |
|
|
GeneralPath p = new GeneralPath(src);
|
| 1347 |
|
|
p.transform(this);
|
| 1348 |
|
|
return p;
|
| 1349 |
|
|
}
|
| 1350 |
|
|
|
| 1351 |
|
|
/**
|
| 1352 |
|
|
* Returns a string representation of the transform, in the format:
|
| 1353 |
|
|
* <code>"AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
|
| 1354 |
|
|
* + m10 + ", " + m11 + ", " + m12 + "]]"</code>.
|
| 1355 |
|
|
*
|
| 1356 |
|
|
* @return the string representation
|
| 1357 |
|
|
*/
|
| 1358 |
|
|
public String toString()
|
| 1359 |
|
|
{
|
| 1360 |
|
|
return "AffineTransform[[" + m00 + ", " + m01 + ", " + m02 + "], ["
|
| 1361 |
|
|
+ m10 + ", " + m11 + ", " + m12 + "]]";
|
| 1362 |
|
|
}
|
| 1363 |
|
|
|
| 1364 |
|
|
/**
|
| 1365 |
|
|
* Tests if this transformation is the identity:
|
| 1366 |
|
|
* <pre>
|
| 1367 |
|
|
* [ 1 0 0 ]
|
| 1368 |
|
|
* [ 0 1 0 ]
|
| 1369 |
|
|
* [ 0 0 1 ]
|
| 1370 |
|
|
* </pre>
|
| 1371 |
|
|
*
|
| 1372 |
|
|
* @return true if this is the identity transform
|
| 1373 |
|
|
*/
|
| 1374 |
|
|
public boolean isIdentity()
|
| 1375 |
|
|
{
|
| 1376 |
|
|
// Rather than rely on type, check explicitly.
|
| 1377 |
|
|
return (m00 == 1 && m01 == 0 && m02 == 0
|
| 1378 |
|
|
&& m10 == 0 && m11 == 1 && m12 == 0);
|
| 1379 |
|
|
}
|
| 1380 |
|
|
|
| 1381 |
|
|
/**
|
| 1382 |
|
|
* Create a new transform of the same run-time type, with the same
|
| 1383 |
|
|
* transforming properties as this one.
|
| 1384 |
|
|
*
|
| 1385 |
|
|
* @return the clone
|
| 1386 |
|
|
*/
|
| 1387 |
|
|
public Object clone()
|
| 1388 |
|
|
{
|
| 1389 |
|
|
try
|
| 1390 |
|
|
{
|
| 1391 |
|
|
return super.clone();
|
| 1392 |
|
|
}
|
| 1393 |
|
|
catch (CloneNotSupportedException e)
|
| 1394 |
|
|
{
|
| 1395 |
|
|
throw (Error) new InternalError().initCause(e); // Impossible
|
| 1396 |
|
|
}
|
| 1397 |
|
|
}
|
| 1398 |
|
|
|
| 1399 |
|
|
/**
|
| 1400 |
|
|
* Return the hashcode for this transformation. The formula is not
|
| 1401 |
|
|
* documented, but appears to be the same as:
|
| 1402 |
|
|
* <pre>
|
| 1403 |
|
|
* long l = Double.doubleToLongBits(getScaleX());
|
| 1404 |
|
|
* l = l * 31 + Double.doubleToLongBits(getShearX());
|
| 1405 |
|
|
* l = l * 31 + Double.doubleToLongBits(getTranslateX());
|
| 1406 |
|
|
* l = l * 31 + Double.doubleToLongBits(getShearY());
|
| 1407 |
|
|
* l = l * 31 + Double.doubleToLongBits(getScaleY());
|
| 1408 |
|
|
* l = l * 31 + Double.doubleToLongBits(getTranslateY());
|
| 1409 |
|
|
* return (int) ((l >> 32) ^ l);
|
| 1410 |
|
|
* </pre>
|
| 1411 |
|
|
*
|
| 1412 |
|
|
* @return the hashcode
|
| 1413 |
|
|
*/
|
| 1414 |
|
|
public int hashCode()
|
| 1415 |
|
|
{
|
| 1416 |
|
|
long l = Double.doubleToLongBits(m00);
|
| 1417 |
|
|
l = l * 31 + Double.doubleToLongBits(m01);
|
| 1418 |
|
|
l = l * 31 + Double.doubleToLongBits(m02);
|
| 1419 |
|
|
l = l * 31 + Double.doubleToLongBits(m10);
|
| 1420 |
|
|
l = l * 31 + Double.doubleToLongBits(m11);
|
| 1421 |
|
|
l = l * 31 + Double.doubleToLongBits(m12);
|
| 1422 |
|
|
return (int) ((l >> 32) ^ l);
|
| 1423 |
|
|
}
|
| 1424 |
|
|
|
| 1425 |
|
|
/**
|
| 1426 |
|
|
* Compares two transforms for equality. This returns true if they have the
|
| 1427 |
|
|
* same matrix values.
|
| 1428 |
|
|
*
|
| 1429 |
|
|
* @param obj the transform to compare
|
| 1430 |
|
|
* @return true if it is equal
|
| 1431 |
|
|
*/
|
| 1432 |
|
|
public boolean equals(Object obj)
|
| 1433 |
|
|
{
|
| 1434 |
|
|
if (! (obj instanceof AffineTransform))
|
| 1435 |
|
|
return false;
|
| 1436 |
|
|
AffineTransform t = (AffineTransform) obj;
|
| 1437 |
|
|
return (m00 == t.m00 && m01 == t.m01 && m02 == t.m02
|
| 1438 |
|
|
&& m10 == t.m10 && m11 == t.m11 && m12 == t.m12);
|
| 1439 |
|
|
}
|
| 1440 |
|
|
|
| 1441 |
|
|
/**
|
| 1442 |
|
|
* Helper to decode the type from the matrix. This is not guaranteed
|
| 1443 |
|
|
* to find the optimal type, but at least it will be valid.
|
| 1444 |
|
|
*/
|
| 1445 |
|
|
private void updateType()
|
| 1446 |
|
|
{
|
| 1447 |
|
|
double det = getDeterminant();
|
| 1448 |
|
|
if (det == 0)
|
| 1449 |
|
|
{
|
| 1450 |
|
|
type = TYPE_GENERAL_TRANSFORM;
|
| 1451 |
|
|
return;
|
| 1452 |
|
|
}
|
| 1453 |
|
|
// Scale (includes rotation by PI) or translation.
|
| 1454 |
|
|
if (m01 == 0 && m10 == 0)
|
| 1455 |
|
|
{
|
| 1456 |
|
|
if (m00 == m11)
|
| 1457 |
|
|
type = m00 == 1 ? TYPE_IDENTITY : TYPE_UNIFORM_SCALE;
|
| 1458 |
|
|
else
|
| 1459 |
|
|
type = TYPE_GENERAL_SCALE;
|
| 1460 |
|
|
if (m02 != 0 || m12 != 0)
|
| 1461 |
|
|
type |= TYPE_TRANSLATION;
|
| 1462 |
|
|
}
|
| 1463 |
|
|
// Rotation.
|
| 1464 |
|
|
else if (m00 == m11 && m01 == -m10)
|
| 1465 |
|
|
{
|
| 1466 |
|
|
type = m00 == 0 ? TYPE_QUADRANT_ROTATION : TYPE_GENERAL_ROTATION;
|
| 1467 |
|
|
if (det != 1)
|
| 1468 |
|
|
type |= TYPE_UNIFORM_SCALE;
|
| 1469 |
|
|
if (m02 != 0 || m12 != 0)
|
| 1470 |
|
|
type |= TYPE_TRANSLATION;
|
| 1471 |
|
|
}
|
| 1472 |
|
|
else
|
| 1473 |
|
|
type = TYPE_GENERAL_TRANSFORM;
|
| 1474 |
|
|
}
|
| 1475 |
|
|
|
| 1476 |
|
|
/**
|
| 1477 |
|
|
* Reads a transform from an object stream.
|
| 1478 |
|
|
*
|
| 1479 |
|
|
* @param s the stream to read from
|
| 1480 |
|
|
* @throws ClassNotFoundException if there is a problem deserializing
|
| 1481 |
|
|
* @throws IOException if there is a problem deserializing
|
| 1482 |
|
|
*/
|
| 1483 |
|
|
private void readObject(ObjectInputStream s)
|
| 1484 |
|
|
throws ClassNotFoundException, IOException
|
| 1485 |
|
|
{
|
| 1486 |
|
|
s.defaultReadObject();
|
| 1487 |
|
|
updateType();
|
| 1488 |
|
|
}
|
| 1489 |
|
|
} // class AffineTransform
|