OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [java/] [awt/] [geom/] [CubicCurve2D.java] - Blame information for rev 771

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 771 jeremybenn
/* CubicCurve2D.java -- represents a parameterized cubic curve in 2-D space
2
   Copyright (C) 2002, 2003, 2004 Free Software Foundation
3
 
4
This file is part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2, or (at your option)
9
any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; see the file COPYING.  If not, write to the
18
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19
02110-1301 USA.
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version. */
37
 
38
package java.awt.geom;
39
 
40
import java.awt.Rectangle;
41
import java.awt.Shape;
42
import java.util.NoSuchElementException;
43
 
44
 
45
/**
46
 * A two-dimensional curve that is parameterized with a cubic
47
 * function.
48
 *
49
 * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
50
 * alt="A drawing of a CubicCurve2D" />
51
 *
52
 * @author Eric Blake (ebb9@email.byu.edu)
53
 * @author Graydon Hoare (graydon@redhat.com)
54
 * @author Sascha Brawer (brawer@dandelis.ch)
55
 * @author Sven de Marothy (sven@physto.se)
56
 *
57
 * @since 1.2
58
 */
59
public abstract class CubicCurve2D implements Shape, Cloneable
60
{
61
  private static final double BIG_VALUE = java.lang.Double.MAX_VALUE / 10.0;
62
  private static final double EPSILON = 1E-10;
63
 
64
  /**
65
   * Constructs a new CubicCurve2D. Typical users will want to
66
   * construct instances of a subclass, such as {@link
67
   * CubicCurve2D.Float} or {@link CubicCurve2D.Double}.
68
   */
69
  protected CubicCurve2D()
70
  {
71
  }
72
 
73
  /**
74
   * Returns the <i>x</i> coordinate of the curve&#x2019;s start
75
   * point.
76
   */
77
  public abstract double getX1();
78
 
79
  /**
80
   * Returns the <i>y</i> coordinate of the curve&#x2019;s start
81
   * point.
82
   */
83
  public abstract double getY1();
84
 
85
  /**
86
   * Returns the curve&#x2019;s start point.
87
   */
88
  public abstract Point2D getP1();
89
 
90
  /**
91
   * Returns the <i>x</i> coordinate of the curve&#x2019;s first
92
   * control point.
93
   */
94
  public abstract double getCtrlX1();
95
 
96
  /**
97
   * Returns the <i>y</i> coordinate of the curve&#x2019;s first
98
   * control point.
99
   */
100
  public abstract double getCtrlY1();
101
 
102
  /**
103
   * Returns the curve&#x2019;s first control point.
104
   */
105
  public abstract Point2D getCtrlP1();
106
 
107
  /**
108
   * Returns the <i>x</i> coordinate of the curve&#x2019;s second
109
   * control point.
110
   */
111
  public abstract double getCtrlX2();
112
 
113
  /**
114
   * Returns the <i>y</i> coordinate of the curve&#x2019;s second
115
   * control point.
116
   */
117
  public abstract double getCtrlY2();
118
 
119
  /**
120
   * Returns the curve&#x2019;s second control point.
121
   */
122
  public abstract Point2D getCtrlP2();
123
 
124
  /**
125
   * Returns the <i>x</i> coordinate of the curve&#x2019;s end
126
   * point.
127
   */
128
  public abstract double getX2();
129
 
130
  /**
131
   * Returns the <i>y</i> coordinate of the curve&#x2019;s end
132
   * point.
133
   */
134
  public abstract double getY2();
135
 
136
  /**
137
   * Returns the curve&#x2019;s end point.
138
   */
139
  public abstract Point2D getP2();
140
 
141
  /**
142
   * Changes the curve geometry, separately specifying each coordinate
143
   * value.
144
   *
145
   * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
146
   * alt="A drawing of a CubicCurve2D" />
147
   *
148
   * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
149
   * point.
150
   *
151
   * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
152
   * point.
153
   *
154
   * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
155
   * first control point.
156
   *
157
   * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
158
   * first control point.
159
   *
160
   * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
161
   * second control point.
162
   *
163
   * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
164
   * second control point.
165
   *
166
   * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
167
   * point.
168
   *
169
   * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
170
   * point.
171
   */
172
  public abstract void setCurve(double x1, double y1, double cx1, double cy1,
173
                                double cx2, double cy2, double x2, double y2);
174
 
175
  /**
176
   * Changes the curve geometry, specifying coordinate values in an
177
   * array.
178
   *
179
   * @param coords an array containing the new coordinate values.  The
180
   * <i>x</i> coordinate of the new start point is located at
181
   * <code>coords[offset]</code>, its <i>y</i> coordinate at
182
   * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
183
   * new first control point is located at <code>coords[offset +
184
   * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
185
   * 3]</code>.  The <i>x</i> coordinate of the new second control
186
   * point is located at <code>coords[offset + 4]</code>, its <i>y</i>
187
   * coordinate at <code>coords[offset + 5]</code>.  The <i>x</i>
188
   * coordinate of the new end point is located at <code>coords[offset
189
   * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
190
   * 7]</code>.
191
   *
192
   * @param offset the offset of the first coordinate value in
193
   * <code>coords</code>.
194
   */
195
  public void setCurve(double[] coords, int offset)
196
  {
197
    setCurve(coords[offset++], coords[offset++], coords[offset++],
198
             coords[offset++], coords[offset++], coords[offset++],
199
             coords[offset++], coords[offset++]);
200
  }
201
 
202
  /**
203
   * Changes the curve geometry, specifying coordinate values in
204
   * separate Point objects.
205
   *
206
   * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
207
   * alt="A drawing of a CubicCurve2D" />
208
   *
209
   * <p>The curve does not keep any reference to the passed point
210
   * objects. Therefore, a later change to <code>p1</code>,
211
   * <code>c1</code>, <code>c2</code> or <code>p2</code> will not
212
   * affect the curve geometry.
213
   *
214
   * @param p1 the new start point.
215
   * @param c1 the new first control point.
216
   * @param c2 the new second control point.
217
   * @param p2 the new end point.
218
   */
219
  public void setCurve(Point2D p1, Point2D c1, Point2D c2, Point2D p2)
220
  {
221
    setCurve(p1.getX(), p1.getY(), c1.getX(), c1.getY(), c2.getX(), c2.getY(),
222
             p2.getX(), p2.getY());
223
  }
224
 
225
  /**
226
   * Changes the curve geometry, specifying coordinate values in an
227
   * array of Point objects.
228
   *
229
   * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
230
   * alt="A drawing of a CubicCurve2D" />
231
   *
232
   * <p>The curve does not keep references to the passed point
233
   * objects. Therefore, a later change to the <code>pts</code> array
234
   * or any of its elements will not affect the curve geometry.
235
   *
236
   * @param pts an array containing the points. The new start point
237
   * is located at <code>pts[offset]</code>, the new first control
238
   * point at <code>pts[offset + 1]</code>, the new second control
239
   * point at <code>pts[offset + 2]</code>, and the new end point
240
   * at <code>pts[offset + 3]</code>.
241
   *
242
   * @param offset the offset of the start point in <code>pts</code>.
243
   */
244
  public void setCurve(Point2D[] pts, int offset)
245
  {
246
    setCurve(pts[offset].getX(), pts[offset++].getY(), pts[offset].getX(),
247
             pts[offset++].getY(), pts[offset].getX(), pts[offset++].getY(),
248
             pts[offset].getX(), pts[offset++].getY());
249
  }
250
 
251
  /**
252
   * Changes the curve geometry to that of another curve.
253
   *
254
   * @param c the curve whose coordinates will be copied.
255
   */
256
  public void setCurve(CubicCurve2D c)
257
  {
258
    setCurve(c.getX1(), c.getY1(), c.getCtrlX1(), c.getCtrlY1(),
259
             c.getCtrlX2(), c.getCtrlY2(), c.getX2(), c.getY2());
260
  }
261
 
262
  /**
263
   * Calculates the squared flatness of a cubic curve, directly
264
   * specifying each coordinate value. The flatness is the maximal
265
   * distance of a control point to the line between start and end
266
   * point.
267
   *
268
   * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
269
   * alt="A drawing that illustrates the flatness" />
270
   *
271
   * <p>In the above drawing, the straight line connecting start point
272
   * P1 and end point P2 is depicted in gray.  In comparison to C1,
273
   * control point C2 is father away from the gray line. Therefore,
274
   * the result will be the square of the distance between C2 and the
275
   * gray line, i.e. the squared length of the red line.
276
   *
277
   * @param x1 the <i>x</i> coordinate of the start point P1.
278
   * @param y1 the <i>y</i> coordinate of the start point P1.
279
   * @param cx1 the <i>x</i> coordinate of the first control point C1.
280
   * @param cy1 the <i>y</i> coordinate of the first control point C1.
281
   * @param cx2 the <i>x</i> coordinate of the second control point C2.
282
   * @param cy2 the <i>y</i> coordinate of the second control point C2.
283
   * @param x2 the <i>x</i> coordinate of the end point P2.
284
   * @param y2 the <i>y</i> coordinate of the end point P2.
285
   */
286
  public static double getFlatnessSq(double x1, double y1, double cx1,
287
                                     double cy1, double cx2, double cy2,
288
                                     double x2, double y2)
289
  {
290
    return Math.max(Line2D.ptSegDistSq(x1, y1, x2, y2, cx1, cy1),
291
                    Line2D.ptSegDistSq(x1, y1, x2, y2, cx2, cy2));
292
  }
293
 
294
  /**
295
   * Calculates the flatness of a cubic curve, directly specifying
296
   * each coordinate value. The flatness is the maximal distance of a
297
   * control point to the line between start and end point.
298
   *
299
   * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
300
   * alt="A drawing that illustrates the flatness" />
301
   *
302
   * <p>In the above drawing, the straight line connecting start point
303
   * P1 and end point P2 is depicted in gray.  In comparison to C1,
304
   * control point C2 is father away from the gray line. Therefore,
305
   * the result will be the distance between C2 and the gray line,
306
   * i.e. the length of the red line.
307
   *
308
   * @param x1 the <i>x</i> coordinate of the start point P1.
309
   * @param y1 the <i>y</i> coordinate of the start point P1.
310
   * @param cx1 the <i>x</i> coordinate of the first control point C1.
311
   * @param cy1 the <i>y</i> coordinate of the first control point C1.
312
   * @param cx2 the <i>x</i> coordinate of the second control point C2.
313
   * @param cy2 the <i>y</i> coordinate of the second control point C2.
314
   * @param x2 the <i>x</i> coordinate of the end point P2.
315
   * @param y2 the <i>y</i> coordinate of the end point P2.
316
   */
317
  public static double getFlatness(double x1, double y1, double cx1,
318
                                   double cy1, double cx2, double cy2,
319
                                   double x2, double y2)
320
  {
321
    return Math.sqrt(getFlatnessSq(x1, y1, cx1, cy1, cx2, cy2, x2, y2));
322
  }
323
 
324
  /**
325
   * Calculates the squared flatness of a cubic curve, specifying the
326
   * coordinate values in an array. The flatness is the maximal
327
   * distance of a control point to the line between start and end
328
   * point.
329
   *
330
   * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
331
   * alt="A drawing that illustrates the flatness" />
332
   *
333
   * <p>In the above drawing, the straight line connecting start point
334
   * P1 and end point P2 is depicted in gray.  In comparison to C1,
335
   * control point C2 is father away from the gray line. Therefore,
336
   * the result will be the square of the distance between C2 and the
337
   * gray line, i.e. the squared length of the red line.
338
   *
339
   * @param coords an array containing the coordinate values.  The
340
   * <i>x</i> coordinate of the start point P1 is located at
341
   * <code>coords[offset]</code>, its <i>y</i> coordinate at
342
   * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
343
   * first control point C1 is located at <code>coords[offset +
344
   * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
345
   * 3]</code>. The <i>x</i> coordinate of the second control point C2
346
   * is located at <code>coords[offset + 4]</code>, its <i>y</i>
347
   * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
348
   * coordinate of the end point P2 is located at <code>coords[offset
349
   * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
350
   * 7]</code>.
351
   *
352
   * @param offset the offset of the first coordinate value in
353
   * <code>coords</code>.
354
   */
355
  public static double getFlatnessSq(double[] coords, int offset)
356
  {
357
    return getFlatnessSq(coords[offset++], coords[offset++], coords[offset++],
358
                         coords[offset++], coords[offset++], coords[offset++],
359
                         coords[offset++], coords[offset++]);
360
  }
361
 
362
  /**
363
   * Calculates the flatness of a cubic curve, specifying the
364
   * coordinate values in an array. The flatness is the maximal
365
   * distance of a control point to the line between start and end
366
   * point.
367
   *
368
   * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
369
   * alt="A drawing that illustrates the flatness" />
370
   *
371
   * <p>In the above drawing, the straight line connecting start point
372
   * P1 and end point P2 is depicted in gray.  In comparison to C1,
373
   * control point C2 is father away from the gray line. Therefore,
374
   * the result will be the distance between C2 and the gray line,
375
   * i.e. the length of the red line.
376
   *
377
   * @param coords an array containing the coordinate values.  The
378
   * <i>x</i> coordinate of the start point P1 is located at
379
   * <code>coords[offset]</code>, its <i>y</i> coordinate at
380
   * <code>coords[offset + 1]</code>.  The <i>x</i> coordinate of the
381
   * first control point C1 is located at <code>coords[offset +
382
   * 2]</code>, its <i>y</i> coordinate at <code>coords[offset +
383
   * 3]</code>. The <i>x</i> coordinate of the second control point C2
384
   * is located at <code>coords[offset + 4]</code>, its <i>y</i>
385
   * coordinate at <code>coords[offset + 5]</code>. The <i>x</i>
386
   * coordinate of the end point P2 is located at <code>coords[offset
387
   * + 6]</code>, its <i>y</i> coordinate at <code>coords[offset +
388
   * 7]</code>.
389
   *
390
   * @param offset the offset of the first coordinate value in
391
   * <code>coords</code>.
392
   */
393
  public static double getFlatness(double[] coords, int offset)
394
  {
395
    return Math.sqrt(getFlatnessSq(coords[offset++], coords[offset++],
396
                                   coords[offset++], coords[offset++],
397
                                   coords[offset++], coords[offset++],
398
                                   coords[offset++], coords[offset++]));
399
  }
400
 
401
  /**
402
   * Calculates the squared flatness of this curve.  The flatness is
403
   * the maximal distance of a control point to the line between start
404
   * and end point.
405
   *
406
   * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
407
   * alt="A drawing that illustrates the flatness" />
408
   *
409
   * <p>In the above drawing, the straight line connecting start point
410
   * P1 and end point P2 is depicted in gray.  In comparison to C1,
411
   * control point C2 is father away from the gray line. Therefore,
412
   * the result will be the square of the distance between C2 and the
413
   * gray line, i.e. the squared length of the red line.
414
   */
415
  public double getFlatnessSq()
416
  {
417
    return getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
418
                         getCtrlX2(), getCtrlY2(), getX2(), getY2());
419
  }
420
 
421
  /**
422
   * Calculates the flatness of this curve.  The flatness is the
423
   * maximal distance of a control point to the line between start and
424
   * end point.
425
   *
426
   * <p><img src="doc-files/CubicCurve2D-4.png" width="350" height="180"
427
   * alt="A drawing that illustrates the flatness" />
428
   *
429
   * <p>In the above drawing, the straight line connecting start point
430
   * P1 and end point P2 is depicted in gray.  In comparison to C1,
431
   * control point C2 is father away from the gray line. Therefore,
432
   * the result will be the distance between C2 and the gray line,
433
   * i.e. the length of the red line.
434
   */
435
  public double getFlatness()
436
  {
437
    return Math.sqrt(getFlatnessSq(getX1(), getY1(), getCtrlX1(), getCtrlY1(),
438
                                   getCtrlX2(), getCtrlY2(), getX2(), getY2()));
439
  }
440
 
441
  /**
442
   * Subdivides this curve into two halves.
443
   *
444
   * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
445
   * height="180" alt="A drawing that illustrates the effects of
446
   * subdividing a CubicCurve2D" />
447
   *
448
   * @param left a curve whose geometry will be set to the left half
449
   * of this curve, or <code>null</code> if the caller is not
450
   * interested in the left half.
451
   *
452
   * @param right a curve whose geometry will be set to the right half
453
   * of this curve, or <code>null</code> if the caller is not
454
   * interested in the right half.
455
   */
456
  public void subdivide(CubicCurve2D left, CubicCurve2D right)
457
  {
458
    // Use empty slots at end to share single array.
459
    double[] d = new double[]
460
                 {
461
                   getX1(), getY1(), getCtrlX1(), getCtrlY1(), getCtrlX2(),
462
                   getCtrlY2(), getX2(), getY2(), 0, 0, 0, 0, 0, 0
463
                 };
464
    subdivide(d, 0, d, 0, d, 6);
465
    if (left != null)
466
      left.setCurve(d, 0);
467
    if (right != null)
468
      right.setCurve(d, 6);
469
  }
470
 
471
  /**
472
   * Subdivides a cubic curve into two halves.
473
   *
474
   * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
475
   * height="180" alt="A drawing that illustrates the effects of
476
   * subdividing a CubicCurve2D" />
477
   *
478
   * @param src the curve to be subdivided.
479
   *
480
   * @param left a curve whose geometry will be set to the left half
481
   * of <code>src</code>, or <code>null</code> if the caller is not
482
   * interested in the left half.
483
   *
484
   * @param right a curve whose geometry will be set to the right half
485
   * of <code>src</code>, or <code>null</code> if the caller is not
486
   * interested in the right half.
487
   */
488
  public static void subdivide(CubicCurve2D src, CubicCurve2D left,
489
                               CubicCurve2D right)
490
  {
491
    src.subdivide(left, right);
492
  }
493
 
494
  /**
495
   * Subdivides a cubic curve into two halves, passing all coordinates
496
   * in an array.
497
   *
498
   * <p><img src="doc-files/CubicCurve2D-3.png" width="700"
499
   * height="180" alt="A drawing that illustrates the effects of
500
   * subdividing a CubicCurve2D" />
501
   *
502
   * <p>The left end point and the right start point will always be
503
   * identical. Memory-concious programmers thus may want to pass the
504
   * same array for both <code>left</code> and <code>right</code>, and
505
   * set <code>rightOff</code> to <code>leftOff + 6</code>.
506
   *
507
   * @param src an array containing the coordinates of the curve to be
508
   * subdivided.  The <i>x</i> coordinate of the start point P1 is
509
   * located at <code>src[srcOff]</code>, its <i>y</i> at
510
   * <code>src[srcOff + 1]</code>.  The <i>x</i> coordinate of the
511
   * first control point C1 is located at <code>src[srcOff +
512
   * 2]</code>, its <i>y</i> at <code>src[srcOff + 3]</code>.  The
513
   * <i>x</i> coordinate of the second control point C2 is located at
514
   * <code>src[srcOff + 4]</code>, its <i>y</i> at <code>src[srcOff +
515
   * 5]</code>. The <i>x</i> coordinate of the end point is located at
516
   * <code>src[srcOff + 6]</code>, its <i>y</i> at <code>src[srcOff +
517
   * 7]</code>.
518
   *
519
   * @param srcOff an offset into <code>src</code>, specifying
520
   * the index of the start point&#x2019;s <i>x</i> coordinate.
521
   *
522
   * @param left an array that will receive the coordinates of the
523
   * left half of <code>src</code>. It is acceptable to pass
524
   * <code>src</code>. A caller who is not interested in the left half
525
   * can pass <code>null</code>.
526
   *
527
   * @param leftOff an offset into <code>left</code>, specifying the
528
   * index where the start point&#x2019;s <i>x</i> coordinate will be
529
   * stored.
530
   *
531
   * @param right an array that will receive the coordinates of the
532
   * right half of <code>src</code>. It is acceptable to pass
533
   * <code>src</code> or <code>left</code>. A caller who is not
534
   * interested in the right half can pass <code>null</code>.
535
   *
536
   * @param rightOff an offset into <code>right</code>, specifying the
537
   * index where the start point&#x2019;s <i>x</i> coordinate will be
538
   * stored.
539
   */
540
  public static void subdivide(double[] src, int srcOff, double[] left,
541
                               int leftOff, double[] right, int rightOff)
542
  {
543
    // To understand this code, please have a look at the image
544
    // "CubicCurve2D-3.png" in the sub-directory "doc-files".
545
    double src_C1_x;
546
    double src_C1_y;
547
    double src_C2_x;
548
    double src_C2_y;
549
    double left_P1_x;
550
    double left_P1_y;
551
    double left_C1_x;
552
    double left_C1_y;
553
    double left_C2_x;
554
    double left_C2_y;
555
    double right_C1_x;
556
    double right_C1_y;
557
    double right_C2_x;
558
    double right_C2_y;
559
    double right_P2_x;
560
    double right_P2_y;
561
    double Mid_x; // Mid = left.P2 = right.P1
562
    double Mid_y; // Mid = left.P2 = right.P1
563
 
564
    left_P1_x = src[srcOff];
565
    left_P1_y = src[srcOff + 1];
566
    src_C1_x = src[srcOff + 2];
567
    src_C1_y = src[srcOff + 3];
568
    src_C2_x = src[srcOff + 4];
569
    src_C2_y = src[srcOff + 5];
570
    right_P2_x = src[srcOff + 6];
571
    right_P2_y = src[srcOff + 7];
572
 
573
    left_C1_x = (left_P1_x + src_C1_x) / 2;
574
    left_C1_y = (left_P1_y + src_C1_y) / 2;
575
    right_C2_x = (right_P2_x + src_C2_x) / 2;
576
    right_C2_y = (right_P2_y + src_C2_y) / 2;
577
    Mid_x = (src_C1_x + src_C2_x) / 2;
578
    Mid_y = (src_C1_y + src_C2_y) / 2;
579
    left_C2_x = (left_C1_x + Mid_x) / 2;
580
    left_C2_y = (left_C1_y + Mid_y) / 2;
581
    right_C1_x = (Mid_x + right_C2_x) / 2;
582
    right_C1_y = (Mid_y + right_C2_y) / 2;
583
    Mid_x = (left_C2_x + right_C1_x) / 2;
584
    Mid_y = (left_C2_y + right_C1_y) / 2;
585
 
586
    if (left != null)
587
      {
588
        left[leftOff] = left_P1_x;
589
        left[leftOff + 1] = left_P1_y;
590
        left[leftOff + 2] = left_C1_x;
591
        left[leftOff + 3] = left_C1_y;
592
        left[leftOff + 4] = left_C2_x;
593
        left[leftOff + 5] = left_C2_y;
594
        left[leftOff + 6] = Mid_x;
595
        left[leftOff + 7] = Mid_y;
596
      }
597
 
598
    if (right != null)
599
      {
600
        right[rightOff] = Mid_x;
601
        right[rightOff + 1] = Mid_y;
602
        right[rightOff + 2] = right_C1_x;
603
        right[rightOff + 3] = right_C1_y;
604
        right[rightOff + 4] = right_C2_x;
605
        right[rightOff + 5] = right_C2_y;
606
        right[rightOff + 6] = right_P2_x;
607
        right[rightOff + 7] = right_P2_y;
608
      }
609
  }
610
 
611
  /**
612
   * Finds the non-complex roots of a cubic equation, placing the
613
   * results into the same array as the equation coefficients. The
614
   * following equation is being solved:
615
   *
616
   * <blockquote><code>eqn[3]</code> &#xb7; <i>x</i><sup>3</sup>
617
   * + <code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
618
   * + <code>eqn[1]</code> &#xb7; <i>x</i>
619
   * + <code>eqn[0]</code>
620
   * = 0
621
   * </blockquote>
622
   *
623
   * <p>For some background about solving cubic equations, see the
624
   * article <a
625
   * href="http://planetmath.org/encyclopedia/CubicFormula.html"
626
   * >&#x201c;Cubic Formula&#x201d;</a> in <a
627
   * href="http://planetmath.org/" >PlanetMath</a>.  For an extensive
628
   * library of numerical algorithms written in the C programming
629
   * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
630
   * Scientific Library</a>, from which this implementation was
631
   * adapted.
632
   *
633
   * @param eqn an array with the coefficients of the equation. When
634
   * this procedure has returned, <code>eqn</code> will contain the
635
   * non-complex solutions of the equation, in no particular order.
636
   *
637
   * @return the number of non-complex solutions. A result of 0
638
   * indicates that the equation has no non-complex solutions. A
639
   * result of -1 indicates that the equation is constant (i.e.,
640
   * always or never zero).
641
   *
642
   * @see #solveCubic(double[], double[])
643
   * @see QuadCurve2D#solveQuadratic(double[],double[])
644
   *
645
   * @author Brian Gough (bjg@network-theory.com)
646
   * (original C implementation in the <a href=
647
   * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
648
   *
649
   * @author Sascha Brawer (brawer@dandelis.ch)
650
   * (adaptation to Java)
651
   */
652
  public static int solveCubic(double[] eqn)
653
  {
654
    return solveCubic(eqn, eqn);
655
  }
656
 
657
  /**
658
   * Finds the non-complex roots of a cubic equation. The following
659
   * equation is being solved:
660
   *
661
   * <blockquote><code>eqn[3]</code> &#xb7; <i>x</i><sup>3</sup>
662
   * + <code>eqn[2]</code> &#xb7; <i>x</i><sup>2</sup>
663
   * + <code>eqn[1]</code> &#xb7; <i>x</i>
664
   * + <code>eqn[0]</code>
665
   * = 0
666
   * </blockquote>
667
   *
668
   * <p>For some background about solving cubic equations, see the
669
   * article <a
670
   * href="http://planetmath.org/encyclopedia/CubicFormula.html"
671
   * >&#x201c;Cubic Formula&#x201d;</a> in <a
672
   * href="http://planetmath.org/" >PlanetMath</a>.  For an extensive
673
   * library of numerical algorithms written in the C programming
674
   * language, see the <a href= "http://www.gnu.org/software/gsl/">GNU
675
   * Scientific Library</a>, from which this implementation was
676
   * adapted.
677
   *
678
   * @see QuadCurve2D#solveQuadratic(double[],double[])
679
   *
680
   * @param eqn an array with the coefficients of the equation.
681
   *
682
   * @param res an array into which the non-complex roots will be
683
   * stored.  The results may be in an arbitrary order. It is safe to
684
   * pass the same array object reference for both <code>eqn</code>
685
   * and <code>res</code>.
686
   *
687
   * @return the number of non-complex solutions. A result of 0
688
   * indicates that the equation has no non-complex solutions. A
689
   * result of -1 indicates that the equation is constant (i.e.,
690
   * always or never zero).
691
   *
692
   * @author Brian Gough (bjg@network-theory.com)
693
   * (original C implementation in the <a href=
694
   * "http://www.gnu.org/software/gsl/">GNU Scientific Library</a>)
695
   *
696
   * @author Sascha Brawer (brawer@dandelis.ch)
697
   * (adaptation to Java)
698
   */
699
  public static int solveCubic(double[] eqn, double[] res)
700
  {
701
    // Adapted from poly/solve_cubic.c in the GNU Scientific Library
702
    // (GSL), revision 1.7 of 2003-07-26. For the original source, see
703
    // http://www.gnu.org/software/gsl/
704
    //
705
    // Brian Gough, the author of that code, has granted the
706
    // permission to use it in GNU Classpath under the GNU Classpath
707
    // license, and has assigned the copyright to the Free Software
708
    // Foundation.
709
    //
710
    // The Java implementation is very similar to the GSL code, but
711
    // not a strict one-to-one copy. For example, GSL would sort the
712
    // result.
713
 
714
    double a;
715
    double b;
716
    double c;
717
    double q;
718
    double r;
719
    double Q;
720
    double R;
721
    double c3;
722
    double Q3;
723
    double R2;
724
    double CR2;
725
    double CQ3;
726
 
727
    // If the cubic coefficient is zero, we have a quadratic equation.
728
    c3 = eqn[3];
729
    if (c3 == 0)
730
      return QuadCurve2D.solveQuadratic(eqn, res);
731
 
732
    // Divide the equation by the cubic coefficient.
733
    c = eqn[0] / c3;
734
    b = eqn[1] / c3;
735
    a = eqn[2] / c3;
736
 
737
    // We now need to solve x^3 + ax^2 + bx + c = 0.
738
    q = a * a - 3 * b;
739
    r = 2 * a * a * a - 9 * a * b + 27 * c;
740
 
741
    Q = q / 9;
742
    R = r / 54;
743
 
744
    Q3 = Q * Q * Q;
745
    R2 = R * R;
746
 
747
    CR2 = 729 * r * r;
748
    CQ3 = 2916 * q * q * q;
749
 
750
    if (R == 0 && Q == 0)
751
      {
752
        // The GNU Scientific Library would return three identical
753
        // solutions in this case.
754
        res[0] = -a / 3;
755
        return 1;
756
      }
757
 
758
    if (CR2 == CQ3)
759
      {
760
        /* this test is actually R2 == Q3, written in a form suitable
761
           for exact computation with integers */
762
        /* Due to finite precision some double roots may be missed, and
763
           considered to be a pair of complex roots z = x +/- epsilon i
764
           close to the real axis. */
765
        double sqrtQ = Math.sqrt(Q);
766
 
767
        if (R > 0)
768
          {
769
            res[0] = -2 * sqrtQ - a / 3;
770
            res[1] = sqrtQ - a / 3;
771
          }
772
        else
773
          {
774
            res[0] = -sqrtQ - a / 3;
775
            res[1] = 2 * sqrtQ - a / 3;
776
          }
777
        return 2;
778
      }
779
 
780
    if (CR2 < CQ3) /* equivalent to R2 < Q3 */
781
      {
782
        double sqrtQ = Math.sqrt(Q);
783
        double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
784
        double theta = Math.acos(R / sqrtQ3);
785
        double norm = -2 * sqrtQ;
786
        res[0] = norm * Math.cos(theta / 3) - a / 3;
787
        res[1] = norm * Math.cos((theta + 2.0 * Math.PI) / 3) - a / 3;
788
        res[2] = norm * Math.cos((theta - 2.0 * Math.PI) / 3) - a / 3;
789
 
790
        // The GNU Scientific Library sorts the results. We don't.
791
        return 3;
792
      }
793
 
794
    double sgnR = (R >= 0 ? 1 : -1);
795
    double A = -sgnR * Math.pow(Math.abs(R) + Math.sqrt(R2 - Q3), 1.0 / 3.0);
796
    double B = Q / A;
797
    res[0] = A + B - a / 3;
798
    return 1;
799
  }
800
 
801
  /**
802
   * Determines whether a position lies inside the area bounded
803
   * by the curve and the straight line connecting its end points.
804
   *
805
   * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
806
   * alt="A drawing of the area spanned by the curve" />
807
   *
808
   * <p>The above drawing illustrates in which area points are
809
   * considered &#x201c;inside&#x201d; a CubicCurve2D.
810
   */
811
  public boolean contains(double x, double y)
812
  {
813
    if (! getBounds2D().contains(x, y))
814
      return false;
815
 
816
    return ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0);
817
  }
818
 
819
  /**
820
   * Determines whether a point lies inside the area bounded
821
   * by the curve and the straight line connecting its end points.
822
   *
823
   * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
824
   * alt="A drawing of the area spanned by the curve" />
825
   *
826
   * <p>The above drawing illustrates in which area points are
827
   * considered &#x201c;inside&#x201d; a CubicCurve2D.
828
   */
829
  public boolean contains(Point2D p)
830
  {
831
    return contains(p.getX(), p.getY());
832
  }
833
 
834
  /**
835
   * Determines whether any part of a rectangle is inside the area bounded
836
   * by the curve and the straight line connecting its end points.
837
   *
838
   * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
839
   * alt="A drawing of the area spanned by the curve" />
840
   *
841
   * <p>The above drawing illustrates in which area points are
842
   * considered &#x201c;inside&#x201d; in a CubicCurve2D.
843
   * @see #contains(double, double)
844
   */
845
  public boolean intersects(double x, double y, double w, double h)
846
  {
847
    if (! getBounds2D().contains(x, y, w, h))
848
      return false;
849
 
850
    /* Does any edge intersect? */
851
    if (getAxisIntersections(x, y, true, w) != 0 /* top */
852
        || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
853
        || getAxisIntersections(x + w, y, false, h) != 0 /* right */
854
        || getAxisIntersections(x, y, false, h) != 0) /* left */
855
      return true;
856
 
857
    /* No intersections, is any point inside? */
858
    if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
859
      return true;
860
 
861
    return false;
862
  }
863
 
864
  /**
865
   * Determines whether any part of a Rectangle2D is inside the area bounded
866
   * by the curve and the straight line connecting its end points.
867
   * @see #intersects(double, double, double, double)
868
   */
869
  public boolean intersects(Rectangle2D r)
870
  {
871
    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
872
  }
873
 
874
  /**
875
   * Determine whether a rectangle is entirely inside the area that is bounded
876
   * by the curve and the straight line connecting its end points.
877
   *
878
   * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
879
   * alt="A drawing of the area spanned by the curve" />
880
   *
881
   * <p>The above drawing illustrates in which area points are
882
   * considered &#x201c;inside&#x201d; a CubicCurve2D.
883
   * @see #contains(double, double)
884
   */
885
  public boolean contains(double x, double y, double w, double h)
886
  {
887
    if (! getBounds2D().intersects(x, y, w, h))
888
      return false;
889
 
890
    /* Does any edge intersect? */
891
    if (getAxisIntersections(x, y, true, w) != 0 /* top */
892
        || getAxisIntersections(x, y + h, true, w) != 0 /* bottom */
893
        || getAxisIntersections(x + w, y, false, h) != 0 /* right */
894
        || getAxisIntersections(x, y, false, h) != 0) /* left */
895
      return false;
896
 
897
    /* No intersections, is any point inside? */
898
    if ((getAxisIntersections(x, y, true, BIG_VALUE) & 1) != 0)
899
      return true;
900
 
901
    return false;
902
  }
903
 
904
  /**
905
   * Determine whether a Rectangle2D is entirely inside the area that is
906
   * bounded by the curve and the straight line connecting its end points.
907
   *
908
   * <p><img src="doc-files/CubicCurve2D-5.png" width="350" height="180"
909
   * alt="A drawing of the area spanned by the curve" />
910
   *
911
   * <p>The above drawing illustrates in which area points are
912
   * considered &#x201c;inside&#x201d; a CubicCurve2D.
913
   * @see #contains(double, double)
914
   */
915
  public boolean contains(Rectangle2D r)
916
  {
917
    return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
918
  }
919
 
920
  /**
921
   * Determines the smallest rectangle that encloses the
922
   * curve&#x2019;s start, end and control points.
923
   */
924
  public Rectangle getBounds()
925
  {
926
    return getBounds2D().getBounds();
927
  }
928
 
929
  public PathIterator getPathIterator(final AffineTransform at)
930
  {
931
    return new PathIterator()
932
      {
933
        /** Current coordinate. */
934
        private int current = 0;
935
 
936
        public int getWindingRule()
937
        {
938
          return WIND_NON_ZERO;
939
        }
940
 
941
        public boolean isDone()
942
        {
943
          return current >= 2;
944
        }
945
 
946
        public void next()
947
        {
948
          current++;
949
        }
950
 
951
        public int currentSegment(float[] coords)
952
        {
953
          int result;
954
          switch (current)
955
            {
956
            case 0:
957
              coords[0] = (float) getX1();
958
              coords[1] = (float) getY1();
959
              result = SEG_MOVETO;
960
              break;
961
            case 1:
962
              coords[0] = (float) getCtrlX1();
963
              coords[1] = (float) getCtrlY1();
964
              coords[2] = (float) getCtrlX2();
965
              coords[3] = (float) getCtrlY2();
966
              coords[4] = (float) getX2();
967
              coords[5] = (float) getY2();
968
              result = SEG_CUBICTO;
969
              break;
970
            default:
971
              throw new NoSuchElementException("cubic iterator out of bounds");
972
            }
973
          if (at != null)
974
            at.transform(coords, 0, coords, 0, 3);
975
          return result;
976
        }
977
 
978
        public int currentSegment(double[] coords)
979
        {
980
          int result;
981
          switch (current)
982
            {
983
            case 0:
984
              coords[0] = getX1();
985
              coords[1] = getY1();
986
              result = SEG_MOVETO;
987
              break;
988
            case 1:
989
              coords[0] = getCtrlX1();
990
              coords[1] = getCtrlY1();
991
              coords[2] = getCtrlX2();
992
              coords[3] = getCtrlY2();
993
              coords[4] = getX2();
994
              coords[5] = getY2();
995
              result = SEG_CUBICTO;
996
              break;
997
            default:
998
              throw new NoSuchElementException("cubic iterator out of bounds");
999
            }
1000
          if (at != null)
1001
            at.transform(coords, 0, coords, 0, 3);
1002
          return result;
1003
        }
1004
      };
1005
  }
1006
 
1007
  public PathIterator getPathIterator(AffineTransform at, double flatness)
1008
  {
1009
    return new FlatteningPathIterator(getPathIterator(at), flatness);
1010
  }
1011
 
1012
  /**
1013
   * Create a new curve with the same contents as this one.
1014
   *
1015
   * @return the clone.
1016
   */
1017
  public Object clone()
1018
  {
1019
    try
1020
      {
1021
        return super.clone();
1022
      }
1023
    catch (CloneNotSupportedException e)
1024
      {
1025
        throw (Error) new InternalError().initCause(e); // Impossible
1026
      }
1027
  }
1028
 
1029
  /**
1030
   * Helper method used by contains() and intersects() methods, that
1031
   * returns the number of curve/line intersections on a given axis
1032
   * extending from a certain point.
1033
   *
1034
   * @param x x coordinate of the origin point
1035
   * @param y y coordinate of the origin point
1036
   * @param useYaxis axis used, if true the positive Y axis is used,
1037
   * false uses the positive X axis.
1038
   *
1039
   * This is an implementation of the line-crossings algorithm,
1040
   * Detailed in an article on Eric Haines' page:
1041
   * http://www.acm.org/tog/editors/erich/ptinpoly/
1042
   *
1043
   * A special-case not adressed in this code is self-intersections
1044
   * of the curve, e.g. if the axis intersects the self-itersection,
1045
   * the degenerate roots of the polynomial will erroneously count as
1046
   * a single intersection of the curve, and not two.
1047
   */
1048
  private int getAxisIntersections(double x, double y, boolean useYaxis,
1049
                                   double distance)
1050
  {
1051
    int nCrossings = 0;
1052
    double a0;
1053
    double a1;
1054
    double a2;
1055
    double a3;
1056
    double b0;
1057
    double b1;
1058
    double b2;
1059
    double b3;
1060
    double[] r = new double[4];
1061
    int nRoots;
1062
 
1063
    a0 = a3 = 0.0;
1064
 
1065
    if (useYaxis)
1066
      {
1067
        a0 = getY1() - y;
1068
        a1 = getCtrlY1() - y;
1069
        a2 = getCtrlY2() - y;
1070
        a3 = getY2() - y;
1071
        b0 = getX1() - x;
1072
        b1 = getCtrlX1() - x;
1073
        b2 = getCtrlX2() - x;
1074
        b3 = getX2() - x;
1075
      }
1076
    else
1077
      {
1078
        a0 = getX1() - x;
1079
        a1 = getCtrlX1() - x;
1080
        a2 = getCtrlX2() - x;
1081
        a3 = getX2() - x;
1082
        b0 = getY1() - y;
1083
        b1 = getCtrlY1() - y;
1084
        b2 = getCtrlY2() - y;
1085
        b3 = getY2() - y;
1086
      }
1087
 
1088
    /* If the axis intersects a start/endpoint, shift it up by some small
1089
       amount to guarantee the line is 'inside'
1090
       If this is not done, bad behaviour may result for points on that axis.*/
1091
    if (a0 == 0.0 || a3 == 0.0)
1092
      {
1093
        double small = getFlatness() * EPSILON;
1094
        if (a0 == 0.0)
1095
          a0 -= small;
1096
        if (a3 == 0.0)
1097
          a3 -= small;
1098
      }
1099
 
1100
    if (useYaxis)
1101
      {
1102
        if (Line2D.linesIntersect(b0, a0, b3, a3, EPSILON, 0.0, distance, 0.0))
1103
          nCrossings++;
1104
      }
1105
    else
1106
      {
1107
        if (Line2D.linesIntersect(a0, b0, a3, b3, 0.0, EPSILON, 0.0, distance))
1108
          nCrossings++;
1109
      }
1110
 
1111
    r[0] = a0;
1112
    r[1] = 3 * (a1 - a0);
1113
    r[2] = 3 * (a2 + a0 - 2 * a1);
1114
    r[3] = a3 - 3 * a2 + 3 * a1 - a0;
1115
 
1116
    if ((nRoots = solveCubic(r)) != 0)
1117
      for (int i = 0; i < nRoots; i++)
1118
        {
1119
          double t = r[i];
1120
          if (t >= 0.0 && t <= 1.0)
1121
            {
1122
              double crossing = -(t * t * t) * (b0 - 3 * b1 + 3 * b2 - b3)
1123
                                + 3 * t * t * (b0 - 2 * b1 + b2)
1124
                                + 3 * t * (b1 - b0) + b0;
1125
              if (crossing > 0.0 && crossing <= distance)
1126
                nCrossings++;
1127
            }
1128
        }
1129
 
1130
    return (nCrossings);
1131
  }
1132
 
1133
  /**
1134
   * A two-dimensional curve that is parameterized with a cubic
1135
   * function and stores coordinate values in double-precision
1136
   * floating-point format.
1137
   *
1138
   * @see CubicCurve2D.Float
1139
   *
1140
   * @author Eric Blake (ebb9@email.byu.edu)
1141
   * @author Sascha Brawer (brawer@dandelis.ch)
1142
   */
1143
  public static class Double extends CubicCurve2D
1144
  {
1145
    /**
1146
     * The <i>x</i> coordinate of the curve&#x2019;s start point.
1147
     */
1148
    public double x1;
1149
 
1150
    /**
1151
     * The <i>y</i> coordinate of the curve&#x2019;s start point.
1152
     */
1153
    public double y1;
1154
 
1155
    /**
1156
     * The <i>x</i> coordinate of the curve&#x2019;s first control point.
1157
     */
1158
    public double ctrlx1;
1159
 
1160
    /**
1161
     * The <i>y</i> coordinate of the curve&#x2019;s first control point.
1162
     */
1163
    public double ctrly1;
1164
 
1165
    /**
1166
     * The <i>x</i> coordinate of the curve&#x2019;s second control point.
1167
     */
1168
    public double ctrlx2;
1169
 
1170
    /**
1171
     * The <i>y</i> coordinate of the curve&#x2019;s second control point.
1172
     */
1173
    public double ctrly2;
1174
 
1175
    /**
1176
     * The <i>x</i> coordinate of the curve&#x2019;s end point.
1177
     */
1178
    public double x2;
1179
 
1180
    /**
1181
     * The <i>y</i> coordinate of the curve&#x2019;s end point.
1182
     */
1183
    public double y2;
1184
 
1185
    /**
1186
     * Constructs a new CubicCurve2D that stores its coordinate values
1187
     * in double-precision floating-point format. All points are
1188
     * initially at position (0, 0).
1189
     */
1190
    public Double()
1191
    {
1192
    }
1193
 
1194
    /**
1195
     * Constructs a new CubicCurve2D that stores its coordinate values
1196
     * in double-precision floating-point format, specifying the
1197
     * initial position of each point.
1198
     *
1199
     * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
1200
     * alt="A drawing of a CubicCurve2D" />
1201
     *
1202
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
1203
     * point.
1204
     *
1205
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
1206
     * point.
1207
     *
1208
     * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s first
1209
     * control point.
1210
     *
1211
     * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s first
1212
     * control point.
1213
     *
1214
     * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s second
1215
     * control point.
1216
     *
1217
     * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s second
1218
     * control point.
1219
     *
1220
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
1221
     * point.
1222
     *
1223
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
1224
     * point.
1225
     */
1226
    public Double(double x1, double y1, double cx1, double cy1, double cx2,
1227
                  double cy2, double x2, double y2)
1228
    {
1229
      this.x1 = x1;
1230
      this.y1 = y1;
1231
      ctrlx1 = cx1;
1232
      ctrly1 = cy1;
1233
      ctrlx2 = cx2;
1234
      ctrly2 = cy2;
1235
      this.x2 = x2;
1236
      this.y2 = y2;
1237
    }
1238
 
1239
    /**
1240
     * Returns the <i>x</i> coordinate of the curve&#x2019;s start
1241
     * point.
1242
     */
1243
    public double getX1()
1244
    {
1245
      return x1;
1246
    }
1247
 
1248
    /**
1249
     * Returns the <i>y</i> coordinate of the curve&#x2019;s start
1250
     * point.
1251
     */
1252
    public double getY1()
1253
    {
1254
      return y1;
1255
    }
1256
 
1257
    /**
1258
     * Returns the curve&#x2019;s start point.
1259
     */
1260
    public Point2D getP1()
1261
    {
1262
      return new Point2D.Double(x1, y1);
1263
    }
1264
 
1265
    /**
1266
     * Returns the <i>x</i> coordinate of the curve&#x2019;s first
1267
     * control point.
1268
     */
1269
    public double getCtrlX1()
1270
    {
1271
      return ctrlx1;
1272
    }
1273
 
1274
    /**
1275
     * Returns the <i>y</i> coordinate of the curve&#x2019;s first
1276
     * control point.
1277
     */
1278
    public double getCtrlY1()
1279
    {
1280
      return ctrly1;
1281
    }
1282
 
1283
    /**
1284
     * Returns the curve&#x2019;s first control point.
1285
     */
1286
    public Point2D getCtrlP1()
1287
    {
1288
      return new Point2D.Double(ctrlx1, ctrly1);
1289
    }
1290
 
1291
    /**
1292
     * Returns the <i>x</i> coordinate of the curve&#x2019;s second
1293
     * control point.
1294
     */
1295
    public double getCtrlX2()
1296
    {
1297
      return ctrlx2;
1298
    }
1299
 
1300
    /**
1301
     * Returns the <i>y</i> coordinate of the curve&#x2019;s second
1302
     * control point.
1303
     */
1304
    public double getCtrlY2()
1305
    {
1306
      return ctrly2;
1307
    }
1308
 
1309
    /**
1310
     * Returns the curve&#x2019;s second control point.
1311
     */
1312
    public Point2D getCtrlP2()
1313
    {
1314
      return new Point2D.Double(ctrlx2, ctrly2);
1315
    }
1316
 
1317
    /**
1318
     * Returns the <i>x</i> coordinate of the curve&#x2019;s end
1319
     * point.
1320
     */
1321
    public double getX2()
1322
    {
1323
      return x2;
1324
    }
1325
 
1326
    /**
1327
     * Returns the <i>y</i> coordinate of the curve&#x2019;s end
1328
     * point.
1329
     */
1330
    public double getY2()
1331
    {
1332
      return y2;
1333
    }
1334
 
1335
    /**
1336
     * Returns the curve&#x2019;s end point.
1337
     */
1338
    public Point2D getP2()
1339
    {
1340
      return new Point2D.Double(x2, y2);
1341
    }
1342
 
1343
    /**
1344
     * Changes the curve geometry, separately specifying each coordinate
1345
     * value.
1346
     *
1347
     * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
1348
     * alt="A drawing of a CubicCurve2D" />
1349
     *
1350
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
1351
     * point.
1352
     *
1353
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
1354
     * point.
1355
     *
1356
     * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
1357
     * first control point.
1358
     *
1359
     * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
1360
     * first control point.
1361
     *
1362
     * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
1363
     * second control point.
1364
     *
1365
     * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
1366
     * second control point.
1367
     *
1368
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
1369
     * point.
1370
     *
1371
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
1372
     * point.
1373
     */
1374
    public void setCurve(double x1, double y1, double cx1, double cy1,
1375
                         double cx2, double cy2, double x2, double y2)
1376
    {
1377
      this.x1 = x1;
1378
      this.y1 = y1;
1379
      ctrlx1 = cx1;
1380
      ctrly1 = cy1;
1381
      ctrlx2 = cx2;
1382
      ctrly2 = cy2;
1383
      this.x2 = x2;
1384
      this.y2 = y2;
1385
    }
1386
 
1387
    /**
1388
     * Determines the smallest rectangle that encloses the
1389
     * curve&#x2019;s start, end and control points. As the
1390
     * illustration below shows, the invisible control points may cause
1391
     * the bounds to be much larger than the area that is actually
1392
     * covered by the curve.
1393
     *
1394
     * <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
1395
     * alt="An illustration of the bounds of a CubicCurve2D" />
1396
     */
1397
    public Rectangle2D getBounds2D()
1398
    {
1399
      double nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
1400
      double ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
1401
      double nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
1402
      double ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
1403
      return new Rectangle2D.Double(nx1, ny1, nx2 - nx1, ny2 - ny1);
1404
    }
1405
  }
1406
 
1407
  /**
1408
   * A two-dimensional curve that is parameterized with a cubic
1409
   * function and stores coordinate values in single-precision
1410
   * floating-point format.
1411
   *
1412
   * @see CubicCurve2D.Float
1413
   *
1414
   * @author Eric Blake (ebb9@email.byu.edu)
1415
   * @author Sascha Brawer (brawer@dandelis.ch)
1416
   */
1417
  public static class Float extends CubicCurve2D
1418
  {
1419
    /**
1420
     * The <i>x</i> coordinate of the curve&#x2019;s start point.
1421
     */
1422
    public float x1;
1423
 
1424
    /**
1425
     * The <i>y</i> coordinate of the curve&#x2019;s start point.
1426
     */
1427
    public float y1;
1428
 
1429
    /**
1430
     * The <i>x</i> coordinate of the curve&#x2019;s first control point.
1431
     */
1432
    public float ctrlx1;
1433
 
1434
    /**
1435
     * The <i>y</i> coordinate of the curve&#x2019;s first control point.
1436
     */
1437
    public float ctrly1;
1438
 
1439
    /**
1440
     * The <i>x</i> coordinate of the curve&#x2019;s second control point.
1441
     */
1442
    public float ctrlx2;
1443
 
1444
    /**
1445
     * The <i>y</i> coordinate of the curve&#x2019;s second control point.
1446
     */
1447
    public float ctrly2;
1448
 
1449
    /**
1450
     * The <i>x</i> coordinate of the curve&#x2019;s end point.
1451
     */
1452
    public float x2;
1453
 
1454
    /**
1455
     * The <i>y</i> coordinate of the curve&#x2019;s end point.
1456
     */
1457
    public float y2;
1458
 
1459
    /**
1460
     * Constructs a new CubicCurve2D that stores its coordinate values
1461
     * in single-precision floating-point format. All points are
1462
     * initially at position (0, 0).
1463
     */
1464
    public Float()
1465
    {
1466
    }
1467
 
1468
    /**
1469
     * Constructs a new CubicCurve2D that stores its coordinate values
1470
     * in single-precision floating-point format, specifying the
1471
     * initial position of each point.
1472
     *
1473
     * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
1474
     * alt="A drawing of a CubicCurve2D" />
1475
     *
1476
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s start
1477
     * point.
1478
     *
1479
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s start
1480
     * point.
1481
     *
1482
     * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s first
1483
     * control point.
1484
     *
1485
     * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s first
1486
     * control point.
1487
     *
1488
     * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s second
1489
     * control point.
1490
     *
1491
     * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s second
1492
     * control point.
1493
     *
1494
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s end
1495
     * point.
1496
     *
1497
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s end
1498
     * point.
1499
     */
1500
    public Float(float x1, float y1, float cx1, float cy1, float cx2,
1501
                 float cy2, float x2, float y2)
1502
    {
1503
      this.x1 = x1;
1504
      this.y1 = y1;
1505
      ctrlx1 = cx1;
1506
      ctrly1 = cy1;
1507
      ctrlx2 = cx2;
1508
      ctrly2 = cy2;
1509
      this.x2 = x2;
1510
      this.y2 = y2;
1511
    }
1512
 
1513
    /**
1514
     * Returns the <i>x</i> coordinate of the curve&#x2019;s start
1515
     * point.
1516
     */
1517
    public double getX1()
1518
    {
1519
      return x1;
1520
    }
1521
 
1522
    /**
1523
     * Returns the <i>y</i> coordinate of the curve&#x2019;s start
1524
     * point.
1525
     */
1526
    public double getY1()
1527
    {
1528
      return y1;
1529
    }
1530
 
1531
    /**
1532
     * Returns the curve&#x2019;s start point.
1533
     */
1534
    public Point2D getP1()
1535
    {
1536
      return new Point2D.Float(x1, y1);
1537
    }
1538
 
1539
    /**
1540
     * Returns the <i>x</i> coordinate of the curve&#x2019;s first
1541
     * control point.
1542
     */
1543
    public double getCtrlX1()
1544
    {
1545
      return ctrlx1;
1546
    }
1547
 
1548
    /**
1549
     * Returns the <i>y</i> coordinate of the curve&#x2019;s first
1550
     * control point.
1551
     */
1552
    public double getCtrlY1()
1553
    {
1554
      return ctrly1;
1555
    }
1556
 
1557
    /**
1558
     * Returns the curve&#x2019;s first control point.
1559
     */
1560
    public Point2D getCtrlP1()
1561
    {
1562
      return new Point2D.Float(ctrlx1, ctrly1);
1563
    }
1564
 
1565
    /**
1566
     * Returns the <i>s</i> coordinate of the curve&#x2019;s second
1567
     * control point.
1568
     */
1569
    public double getCtrlX2()
1570
    {
1571
      return ctrlx2;
1572
    }
1573
 
1574
    /**
1575
     * Returns the <i>y</i> coordinate of the curve&#x2019;s second
1576
     * control point.
1577
     */
1578
    public double getCtrlY2()
1579
    {
1580
      return ctrly2;
1581
    }
1582
 
1583
    /**
1584
     * Returns the curve&#x2019;s second control point.
1585
     */
1586
    public Point2D getCtrlP2()
1587
    {
1588
      return new Point2D.Float(ctrlx2, ctrly2);
1589
    }
1590
 
1591
    /**
1592
     * Returns the <i>x</i> coordinate of the curve&#x2019;s end
1593
     * point.
1594
     */
1595
    public double getX2()
1596
    {
1597
      return x2;
1598
    }
1599
 
1600
    /**
1601
     * Returns the <i>y</i> coordinate of the curve&#x2019;s end
1602
     * point.
1603
     */
1604
    public double getY2()
1605
    {
1606
      return y2;
1607
    }
1608
 
1609
    /**
1610
     * Returns the curve&#x2019;s end point.
1611
     */
1612
    public Point2D getP2()
1613
    {
1614
      return new Point2D.Float(x2, y2);
1615
    }
1616
 
1617
    /**
1618
     * Changes the curve geometry, separately specifying each coordinate
1619
     * value as a double-precision floating-point number.
1620
     *
1621
     * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
1622
     * alt="A drawing of a CubicCurve2D" />
1623
     *
1624
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
1625
     * point.
1626
     *
1627
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
1628
     * point.
1629
     *
1630
     * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
1631
     * first control point.
1632
     *
1633
     * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
1634
     * first control point.
1635
     *
1636
     * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
1637
     * second control point.
1638
     *
1639
     * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
1640
     * second control point.
1641
     *
1642
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
1643
     * point.
1644
     *
1645
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
1646
     * point.
1647
     */
1648
    public void setCurve(double x1, double y1, double cx1, double cy1,
1649
                         double cx2, double cy2, double x2, double y2)
1650
    {
1651
      this.x1 = (float) x1;
1652
      this.y1 = (float) y1;
1653
      ctrlx1 = (float) cx1;
1654
      ctrly1 = (float) cy1;
1655
      ctrlx2 = (float) cx2;
1656
      ctrly2 = (float) cy2;
1657
      this.x2 = (float) x2;
1658
      this.y2 = (float) y2;
1659
    }
1660
 
1661
    /**
1662
     * Changes the curve geometry, separately specifying each coordinate
1663
     * value as a single-precision floating-point number.
1664
     *
1665
     * <p><img src="doc-files/CubicCurve2D-1.png" width="350" height="180"
1666
     * alt="A drawing of a CubicCurve2D" />
1667
     *
1668
     * @param x1 the <i>x</i> coordinate of the curve&#x2019;s new start
1669
     * point.
1670
     *
1671
     * @param y1 the <i>y</i> coordinate of the curve&#x2019;s new start
1672
     * point.
1673
     *
1674
     * @param cx1 the <i>x</i> coordinate of the curve&#x2019;s new
1675
     * first control point.
1676
     *
1677
     * @param cy1 the <i>y</i> coordinate of the curve&#x2019;s new
1678
     * first control point.
1679
     *
1680
     * @param cx2 the <i>x</i> coordinate of the curve&#x2019;s new
1681
     * second control point.
1682
     *
1683
     * @param cy2 the <i>y</i> coordinate of the curve&#x2019;s new
1684
     * second control point.
1685
     *
1686
     * @param x2 the <i>x</i> coordinate of the curve&#x2019;s new end
1687
     * point.
1688
     *
1689
     * @param y2 the <i>y</i> coordinate of the curve&#x2019;s new end
1690
     * point.
1691
     */
1692
    public void setCurve(float x1, float y1, float cx1, float cy1, float cx2,
1693
                         float cy2, float x2, float y2)
1694
    {
1695
      this.x1 = x1;
1696
      this.y1 = y1;
1697
      ctrlx1 = cx1;
1698
      ctrly1 = cy1;
1699
      ctrlx2 = cx2;
1700
      ctrly2 = cy2;
1701
      this.x2 = x2;
1702
      this.y2 = y2;
1703
    }
1704
 
1705
    /**
1706
     * Determines the smallest rectangle that encloses the
1707
     * curve&#x2019;s start, end and control points. As the
1708
     * illustration below shows, the invisible control points may cause
1709
     * the bounds to be much larger than the area that is actually
1710
     * covered by the curve.
1711
     *
1712
     * <p><img src="doc-files/CubicCurve2D-2.png" width="350" height="180"
1713
     * alt="An illustration of the bounds of a CubicCurve2D" />
1714
     */
1715
    public Rectangle2D getBounds2D()
1716
    {
1717
      float nx1 = Math.min(Math.min(x1, ctrlx1), Math.min(ctrlx2, x2));
1718
      float ny1 = Math.min(Math.min(y1, ctrly1), Math.min(ctrly2, y2));
1719
      float nx2 = Math.max(Math.max(x1, ctrlx1), Math.max(ctrlx2, x2));
1720
      float ny2 = Math.max(Math.max(y1, ctrly1), Math.max(ctrly2, y2));
1721
      return new Rectangle2D.Float(nx1, ny1, nx2 - nx1, ny2 - ny1);
1722
    }
1723
  }
1724
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.