| 1 |
771 |
jeremybenn |
/* FlatteningPathIterator.java -- Approximates curves by straight lines
|
| 2 |
|
|
Copyright (C) 2003 Free Software Foundation
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
| 9 |
|
|
any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
| 18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
| 19 |
|
|
02110-1301 USA.
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
package java.awt.geom;
|
| 40 |
|
|
|
| 41 |
|
|
import java.util.NoSuchElementException;
|
| 42 |
|
|
|
| 43 |
|
|
|
| 44 |
|
|
/**
|
| 45 |
|
|
* A PathIterator for approximating curved path segments by sequences
|
| 46 |
|
|
* of straight lines. Instances of this class will only return
|
| 47 |
|
|
* segments of type {@link PathIterator#SEG_MOVETO}, {@link
|
| 48 |
|
|
* PathIterator#SEG_LINETO}, and {@link PathIterator#SEG_CLOSE}.
|
| 49 |
|
|
*
|
| 50 |
|
|
* <p>The accuracy of the approximation is determined by two
|
| 51 |
|
|
* parameters:
|
| 52 |
|
|
*
|
| 53 |
|
|
* <ul><li>The <i>flatness</i> is a threshold value for deciding when
|
| 54 |
|
|
* a curved segment is consided flat enough for being approximated by
|
| 55 |
|
|
* a single straight line. Flatness is defined as the maximal distance
|
| 56 |
|
|
* of a curve control point to the straight line that connects the
|
| 57 |
|
|
* curve start and end. A lower flatness threshold means a closer
|
| 58 |
|
|
* approximation. See {@link QuadCurve2D#getFlatness()} and {@link
|
| 59 |
|
|
* CubicCurve2D#getFlatness()} for drawings which illustrate the
|
| 60 |
|
|
* meaning of flatness.</li>
|
| 61 |
|
|
*
|
| 62 |
|
|
* <li>The <i>recursion limit</i> imposes an upper bound for how often
|
| 63 |
|
|
* a curved segment gets subdivided. A limit of <i>n</i> means that
|
| 64 |
|
|
* for each individual quadratic and cubic Bézier spline
|
| 65 |
|
|
* segment, at most 2<sup><small><i>n</i></small></sup> {@link
|
| 66 |
|
|
* PathIterator#SEG_LINETO} segments will be created.</li></ul>
|
| 67 |
|
|
*
|
| 68 |
|
|
* <p><b>Memory Efficiency:</b> The memory consumption grows linearly
|
| 69 |
|
|
* with the recursion limit. Neither the <i>flatness</i> parameter nor
|
| 70 |
|
|
* the number of segments in the flattened path will affect the memory
|
| 71 |
|
|
* consumption.
|
| 72 |
|
|
*
|
| 73 |
|
|
* <p><b>Thread Safety:</b> Multiple threads can safely work on
|
| 74 |
|
|
* separate instances of this class. However, multiple threads should
|
| 75 |
|
|
* not concurrently access the same instance, as no synchronization is
|
| 76 |
|
|
* performed.
|
| 77 |
|
|
*
|
| 78 |
|
|
* @see <a href="doc-files/FlatteningPathIterator-1.html"
|
| 79 |
|
|
* >Implementation Note</a>
|
| 80 |
|
|
*
|
| 81 |
|
|
* @author Sascha Brawer (brawer@dandelis.ch)
|
| 82 |
|
|
*
|
| 83 |
|
|
* @since 1.2
|
| 84 |
|
|
*/
|
| 85 |
|
|
public class FlatteningPathIterator
|
| 86 |
|
|
implements PathIterator
|
| 87 |
|
|
{
|
| 88 |
|
|
/**
|
| 89 |
|
|
* The PathIterator whose curved segments are being approximated.
|
| 90 |
|
|
*/
|
| 91 |
|
|
private final PathIterator srcIter;
|
| 92 |
|
|
|
| 93 |
|
|
|
| 94 |
|
|
/**
|
| 95 |
|
|
* The square of the flatness threshold value, which determines when
|
| 96 |
|
|
* a curve segment is considered flat enough that no further
|
| 97 |
|
|
* subdivision is needed.
|
| 98 |
|
|
*
|
| 99 |
|
|
* <p>Calculating flatness actually produces the squared flatness
|
| 100 |
|
|
* value. To avoid the relatively expensive calculation of a square
|
| 101 |
|
|
* root for each curve segment, we perform all flatness comparisons
|
| 102 |
|
|
* on squared values.
|
| 103 |
|
|
*
|
| 104 |
|
|
* @see QuadCurve2D#getFlatnessSq()
|
| 105 |
|
|
* @see CubicCurve2D#getFlatnessSq()
|
| 106 |
|
|
*/
|
| 107 |
|
|
private final double flatnessSq;
|
| 108 |
|
|
|
| 109 |
|
|
|
| 110 |
|
|
/**
|
| 111 |
|
|
* The maximal number of subdivions that are performed to
|
| 112 |
|
|
* approximate a quadratic or cubic curve segment.
|
| 113 |
|
|
*/
|
| 114 |
|
|
private final int recursionLimit;
|
| 115 |
|
|
|
| 116 |
|
|
|
| 117 |
|
|
/**
|
| 118 |
|
|
* A stack for holding the coordinates of subdivided segments.
|
| 119 |
|
|
*
|
| 120 |
|
|
* @see <a href="doc-files/FlatteningPathIterator-1.html"
|
| 121 |
|
|
* >Implementation Note</a>
|
| 122 |
|
|
*/
|
| 123 |
|
|
private double[] stack;
|
| 124 |
|
|
|
| 125 |
|
|
|
| 126 |
|
|
/**
|
| 127 |
|
|
* The current stack size.
|
| 128 |
|
|
*
|
| 129 |
|
|
* @see <a href="doc-files/FlatteningPathIterator-1.html"
|
| 130 |
|
|
* >Implementation Note</a>
|
| 131 |
|
|
*/
|
| 132 |
|
|
private int stackSize;
|
| 133 |
|
|
|
| 134 |
|
|
|
| 135 |
|
|
/**
|
| 136 |
|
|
* The number of recursions that were performed to arrive at
|
| 137 |
|
|
* a segment on the stack.
|
| 138 |
|
|
*
|
| 139 |
|
|
* @see <a href="doc-files/FlatteningPathIterator-1.html"
|
| 140 |
|
|
* >Implementation Note</a>
|
| 141 |
|
|
*/
|
| 142 |
|
|
private int[] recLevel;
|
| 143 |
|
|
|
| 144 |
|
|
|
| 145 |
|
|
|
| 146 |
|
|
private final double[] scratch = new double[6];
|
| 147 |
|
|
|
| 148 |
|
|
|
| 149 |
|
|
/**
|
| 150 |
|
|
* The segment type of the last segment that was returned by
|
| 151 |
|
|
* the source iterator.
|
| 152 |
|
|
*/
|
| 153 |
|
|
private int srcSegType;
|
| 154 |
|
|
|
| 155 |
|
|
|
| 156 |
|
|
/**
|
| 157 |
|
|
* The current <i>x</i> position of the source iterator.
|
| 158 |
|
|
*/
|
| 159 |
|
|
private double srcPosX;
|
| 160 |
|
|
|
| 161 |
|
|
|
| 162 |
|
|
/**
|
| 163 |
|
|
* The current <i>y</i> position of the source iterator.
|
| 164 |
|
|
*/
|
| 165 |
|
|
private double srcPosY;
|
| 166 |
|
|
|
| 167 |
|
|
|
| 168 |
|
|
/**
|
| 169 |
|
|
* A flag that indicates when this path iterator has finished its
|
| 170 |
|
|
* iteration over path segments.
|
| 171 |
|
|
*/
|
| 172 |
|
|
private boolean done;
|
| 173 |
|
|
|
| 174 |
|
|
|
| 175 |
|
|
/**
|
| 176 |
|
|
* Constructs a new PathIterator for approximating an input
|
| 177 |
|
|
* PathIterator with straight lines. The approximation works by
|
| 178 |
|
|
* recursive subdivisons, until the specified flatness threshold is
|
| 179 |
|
|
* not exceeded.
|
| 180 |
|
|
*
|
| 181 |
|
|
* <p>There will not be more than 10 nested recursion steps, which
|
| 182 |
|
|
* means that a single <code>SEG_QUADTO</code> or
|
| 183 |
|
|
* <code>SEG_CUBICTO</code> segment is approximated by at most
|
| 184 |
|
|
* 2<sup><small>10</small></sup> = 1024 straight lines.
|
| 185 |
|
|
*/
|
| 186 |
|
|
public FlatteningPathIterator(PathIterator src, double flatness)
|
| 187 |
|
|
{
|
| 188 |
|
|
this(src, flatness, 10);
|
| 189 |
|
|
}
|
| 190 |
|
|
|
| 191 |
|
|
|
| 192 |
|
|
/**
|
| 193 |
|
|
* Constructs a new PathIterator for approximating an input
|
| 194 |
|
|
* PathIterator with straight lines. The approximation works by
|
| 195 |
|
|
* recursive subdivisons, until the specified flatness threshold is
|
| 196 |
|
|
* not exceeded. Additionally, the number of recursions is also
|
| 197 |
|
|
* bound by the specified recursion limit.
|
| 198 |
|
|
*/
|
| 199 |
|
|
public FlatteningPathIterator(PathIterator src, double flatness,
|
| 200 |
|
|
int limit)
|
| 201 |
|
|
{
|
| 202 |
|
|
if (flatness < 0 || limit < 0)
|
| 203 |
|
|
throw new IllegalArgumentException();
|
| 204 |
|
|
|
| 205 |
|
|
srcIter = src;
|
| 206 |
|
|
flatnessSq = flatness * flatness;
|
| 207 |
|
|
recursionLimit = limit;
|
| 208 |
|
|
fetchSegment();
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
|
| 212 |
|
|
/**
|
| 213 |
|
|
* Returns the maximally acceptable flatness.
|
| 214 |
|
|
*
|
| 215 |
|
|
* @see QuadCurve2D#getFlatness()
|
| 216 |
|
|
* @see CubicCurve2D#getFlatness()
|
| 217 |
|
|
*/
|
| 218 |
|
|
public double getFlatness()
|
| 219 |
|
|
{
|
| 220 |
|
|
return Math.sqrt(flatnessSq);
|
| 221 |
|
|
}
|
| 222 |
|
|
|
| 223 |
|
|
|
| 224 |
|
|
/**
|
| 225 |
|
|
* Returns the maximum number of recursive curve subdivisions.
|
| 226 |
|
|
*/
|
| 227 |
|
|
public int getRecursionLimit()
|
| 228 |
|
|
{
|
| 229 |
|
|
return recursionLimit;
|
| 230 |
|
|
}
|
| 231 |
|
|
|
| 232 |
|
|
|
| 233 |
|
|
// Documentation will be copied from PathIterator.
|
| 234 |
|
|
public int getWindingRule()
|
| 235 |
|
|
{
|
| 236 |
|
|
return srcIter.getWindingRule();
|
| 237 |
|
|
}
|
| 238 |
|
|
|
| 239 |
|
|
|
| 240 |
|
|
// Documentation will be copied from PathIterator.
|
| 241 |
|
|
public boolean isDone()
|
| 242 |
|
|
{
|
| 243 |
|
|
return done;
|
| 244 |
|
|
}
|
| 245 |
|
|
|
| 246 |
|
|
|
| 247 |
|
|
// Documentation will be copied from PathIterator.
|
| 248 |
|
|
public void next()
|
| 249 |
|
|
{
|
| 250 |
|
|
if (stackSize > 0)
|
| 251 |
|
|
{
|
| 252 |
|
|
--stackSize;
|
| 253 |
|
|
if (stackSize > 0)
|
| 254 |
|
|
{
|
| 255 |
|
|
switch (srcSegType)
|
| 256 |
|
|
{
|
| 257 |
|
|
case PathIterator.SEG_QUADTO:
|
| 258 |
|
|
subdivideQuadratic();
|
| 259 |
|
|
return;
|
| 260 |
|
|
|
| 261 |
|
|
case PathIterator.SEG_CUBICTO:
|
| 262 |
|
|
subdivideCubic();
|
| 263 |
|
|
return;
|
| 264 |
|
|
|
| 265 |
|
|
default:
|
| 266 |
|
|
throw new IllegalStateException();
|
| 267 |
|
|
}
|
| 268 |
|
|
}
|
| 269 |
|
|
}
|
| 270 |
|
|
|
| 271 |
|
|
srcIter.next();
|
| 272 |
|
|
fetchSegment();
|
| 273 |
|
|
}
|
| 274 |
|
|
|
| 275 |
|
|
|
| 276 |
|
|
// Documentation will be copied from PathIterator.
|
| 277 |
|
|
public int currentSegment(double[] coords)
|
| 278 |
|
|
{
|
| 279 |
|
|
if (done)
|
| 280 |
|
|
throw new NoSuchElementException();
|
| 281 |
|
|
|
| 282 |
|
|
switch (srcSegType)
|
| 283 |
|
|
{
|
| 284 |
|
|
case PathIterator.SEG_CLOSE:
|
| 285 |
|
|
return srcSegType;
|
| 286 |
|
|
|
| 287 |
|
|
case PathIterator.SEG_MOVETO:
|
| 288 |
|
|
case PathIterator.SEG_LINETO:
|
| 289 |
|
|
coords[0] = srcPosX;
|
| 290 |
|
|
coords[1] = srcPosY;
|
| 291 |
|
|
return srcSegType;
|
| 292 |
|
|
|
| 293 |
|
|
case PathIterator.SEG_QUADTO:
|
| 294 |
|
|
if (stackSize == 0)
|
| 295 |
|
|
{
|
| 296 |
|
|
coords[0] = srcPosX;
|
| 297 |
|
|
coords[1] = srcPosY;
|
| 298 |
|
|
}
|
| 299 |
|
|
else
|
| 300 |
|
|
{
|
| 301 |
|
|
int sp = stack.length - 4 * stackSize;
|
| 302 |
|
|
coords[0] = stack[sp + 2];
|
| 303 |
|
|
coords[1] = stack[sp + 3];
|
| 304 |
|
|
}
|
| 305 |
|
|
return PathIterator.SEG_LINETO;
|
| 306 |
|
|
|
| 307 |
|
|
case PathIterator.SEG_CUBICTO:
|
| 308 |
|
|
if (stackSize == 0)
|
| 309 |
|
|
{
|
| 310 |
|
|
coords[0] = srcPosX;
|
| 311 |
|
|
coords[1] = srcPosY;
|
| 312 |
|
|
}
|
| 313 |
|
|
else
|
| 314 |
|
|
{
|
| 315 |
|
|
int sp = stack.length - 6 * stackSize;
|
| 316 |
|
|
coords[0] = stack[sp + 4];
|
| 317 |
|
|
coords[1] = stack[sp + 5];
|
| 318 |
|
|
}
|
| 319 |
|
|
return PathIterator.SEG_LINETO;
|
| 320 |
|
|
}
|
| 321 |
|
|
|
| 322 |
|
|
throw new IllegalStateException();
|
| 323 |
|
|
}
|
| 324 |
|
|
|
| 325 |
|
|
|
| 326 |
|
|
// Documentation will be copied from PathIterator.
|
| 327 |
|
|
public int currentSegment(float[] coords)
|
| 328 |
|
|
{
|
| 329 |
|
|
if (done)
|
| 330 |
|
|
throw new NoSuchElementException();
|
| 331 |
|
|
|
| 332 |
|
|
switch (srcSegType)
|
| 333 |
|
|
{
|
| 334 |
|
|
case PathIterator.SEG_CLOSE:
|
| 335 |
|
|
return srcSegType;
|
| 336 |
|
|
|
| 337 |
|
|
case PathIterator.SEG_MOVETO:
|
| 338 |
|
|
case PathIterator.SEG_LINETO:
|
| 339 |
|
|
coords[0] = (float) srcPosX;
|
| 340 |
|
|
coords[1] = (float) srcPosY;
|
| 341 |
|
|
return srcSegType;
|
| 342 |
|
|
|
| 343 |
|
|
case PathIterator.SEG_QUADTO:
|
| 344 |
|
|
if (stackSize == 0)
|
| 345 |
|
|
{
|
| 346 |
|
|
coords[0] = (float) srcPosX;
|
| 347 |
|
|
coords[1] = (float) srcPosY;
|
| 348 |
|
|
}
|
| 349 |
|
|
else
|
| 350 |
|
|
{
|
| 351 |
|
|
int sp = stack.length - 4 * stackSize;
|
| 352 |
|
|
coords[0] = (float) stack[sp + 2];
|
| 353 |
|
|
coords[1] = (float) stack[sp + 3];
|
| 354 |
|
|
}
|
| 355 |
|
|
return PathIterator.SEG_LINETO;
|
| 356 |
|
|
|
| 357 |
|
|
case PathIterator.SEG_CUBICTO:
|
| 358 |
|
|
if (stackSize == 0)
|
| 359 |
|
|
{
|
| 360 |
|
|
coords[0] = (float) srcPosX;
|
| 361 |
|
|
coords[1] = (float) srcPosY;
|
| 362 |
|
|
}
|
| 363 |
|
|
else
|
| 364 |
|
|
{
|
| 365 |
|
|
int sp = stack.length - 6 * stackSize;
|
| 366 |
|
|
coords[0] = (float) stack[sp + 4];
|
| 367 |
|
|
coords[1] = (float) stack[sp + 5];
|
| 368 |
|
|
}
|
| 369 |
|
|
return PathIterator.SEG_LINETO;
|
| 370 |
|
|
}
|
| 371 |
|
|
|
| 372 |
|
|
throw new IllegalStateException();
|
| 373 |
|
|
}
|
| 374 |
|
|
|
| 375 |
|
|
|
| 376 |
|
|
/**
|
| 377 |
|
|
* Fetches the next segment from the source iterator.
|
| 378 |
|
|
*/
|
| 379 |
|
|
private void fetchSegment()
|
| 380 |
|
|
{
|
| 381 |
|
|
int sp;
|
| 382 |
|
|
|
| 383 |
|
|
if (srcIter.isDone())
|
| 384 |
|
|
{
|
| 385 |
|
|
done = true;
|
| 386 |
|
|
return;
|
| 387 |
|
|
}
|
| 388 |
|
|
|
| 389 |
|
|
srcSegType = srcIter.currentSegment(scratch);
|
| 390 |
|
|
|
| 391 |
|
|
switch (srcSegType)
|
| 392 |
|
|
{
|
| 393 |
|
|
case PathIterator.SEG_CLOSE:
|
| 394 |
|
|
return;
|
| 395 |
|
|
|
| 396 |
|
|
case PathIterator.SEG_MOVETO:
|
| 397 |
|
|
case PathIterator.SEG_LINETO:
|
| 398 |
|
|
srcPosX = scratch[0];
|
| 399 |
|
|
srcPosY = scratch[1];
|
| 400 |
|
|
return;
|
| 401 |
|
|
|
| 402 |
|
|
case PathIterator.SEG_QUADTO:
|
| 403 |
|
|
if (recursionLimit == 0)
|
| 404 |
|
|
{
|
| 405 |
|
|
srcPosX = scratch[2];
|
| 406 |
|
|
srcPosY = scratch[3];
|
| 407 |
|
|
stackSize = 0;
|
| 408 |
|
|
return;
|
| 409 |
|
|
}
|
| 410 |
|
|
sp = 4 * recursionLimit;
|
| 411 |
|
|
stackSize = 1;
|
| 412 |
|
|
if (stack == null)
|
| 413 |
|
|
{
|
| 414 |
|
|
stack = new double[sp + /* 4 + 2 */ 6];
|
| 415 |
|
|
recLevel = new int[recursionLimit + 1];
|
| 416 |
|
|
}
|
| 417 |
|
|
recLevel[0] = 0;
|
| 418 |
|
|
stack[sp] = srcPosX; // P1.x
|
| 419 |
|
|
stack[sp + 1] = srcPosY; // P1.y
|
| 420 |
|
|
stack[sp + 2] = scratch[0]; // C.x
|
| 421 |
|
|
stack[sp + 3] = scratch[1]; // C.y
|
| 422 |
|
|
srcPosX = stack[sp + 4] = scratch[2]; // P2.x
|
| 423 |
|
|
srcPosY = stack[sp + 5] = scratch[3]; // P2.y
|
| 424 |
|
|
subdivideQuadratic();
|
| 425 |
|
|
break;
|
| 426 |
|
|
|
| 427 |
|
|
case PathIterator.SEG_CUBICTO:
|
| 428 |
|
|
if (recursionLimit == 0)
|
| 429 |
|
|
{
|
| 430 |
|
|
srcPosX = scratch[4];
|
| 431 |
|
|
srcPosY = scratch[5];
|
| 432 |
|
|
stackSize = 0;
|
| 433 |
|
|
return;
|
| 434 |
|
|
}
|
| 435 |
|
|
sp = 6 * recursionLimit;
|
| 436 |
|
|
stackSize = 1;
|
| 437 |
|
|
if ((stack == null) || (stack.length < sp + 8))
|
| 438 |
|
|
{
|
| 439 |
|
|
stack = new double[sp + /* 6 + 2 */ 8];
|
| 440 |
|
|
recLevel = new int[recursionLimit + 1];
|
| 441 |
|
|
}
|
| 442 |
|
|
recLevel[0] = 0;
|
| 443 |
|
|
stack[sp] = srcPosX; // P1.x
|
| 444 |
|
|
stack[sp + 1] = srcPosY; // P1.y
|
| 445 |
|
|
stack[sp + 2] = scratch[0]; // C1.x
|
| 446 |
|
|
stack[sp + 3] = scratch[1]; // C1.y
|
| 447 |
|
|
stack[sp + 4] = scratch[2]; // C2.x
|
| 448 |
|
|
stack[sp + 5] = scratch[3]; // C2.y
|
| 449 |
|
|
srcPosX = stack[sp + 6] = scratch[4]; // P2.x
|
| 450 |
|
|
srcPosY = stack[sp + 7] = scratch[5]; // P2.y
|
| 451 |
|
|
subdivideCubic();
|
| 452 |
|
|
return;
|
| 453 |
|
|
}
|
| 454 |
|
|
}
|
| 455 |
|
|
|
| 456 |
|
|
|
| 457 |
|
|
/**
|
| 458 |
|
|
* Repeatedly subdivides the quadratic curve segment that is on top
|
| 459 |
|
|
* of the stack. The iteration terminates when the recursion limit
|
| 460 |
|
|
* has been reached, or when the resulting segment is flat enough.
|
| 461 |
|
|
*/
|
| 462 |
|
|
private void subdivideQuadratic()
|
| 463 |
|
|
{
|
| 464 |
|
|
int sp;
|
| 465 |
|
|
int level;
|
| 466 |
|
|
|
| 467 |
|
|
sp = stack.length - 4 * stackSize - 2;
|
| 468 |
|
|
level = recLevel[stackSize - 1];
|
| 469 |
|
|
while ((level < recursionLimit)
|
| 470 |
|
|
&& (QuadCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
|
| 471 |
|
|
{
|
| 472 |
|
|
recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
|
| 473 |
|
|
QuadCurve2D.subdivide(stack, sp, stack, sp - 4, stack, sp);
|
| 474 |
|
|
++stackSize;
|
| 475 |
|
|
sp -= 4;
|
| 476 |
|
|
}
|
| 477 |
|
|
}
|
| 478 |
|
|
|
| 479 |
|
|
|
| 480 |
|
|
/**
|
| 481 |
|
|
* Repeatedly subdivides the cubic curve segment that is on top
|
| 482 |
|
|
* of the stack. The iteration terminates when the recursion limit
|
| 483 |
|
|
* has been reached, or when the resulting segment is flat enough.
|
| 484 |
|
|
*/
|
| 485 |
|
|
private void subdivideCubic()
|
| 486 |
|
|
{
|
| 487 |
|
|
int sp;
|
| 488 |
|
|
int level;
|
| 489 |
|
|
|
| 490 |
|
|
sp = stack.length - 6 * stackSize - 2;
|
| 491 |
|
|
level = recLevel[stackSize - 1];
|
| 492 |
|
|
while ((level < recursionLimit)
|
| 493 |
|
|
&& (CubicCurve2D.getFlatnessSq(stack, sp) >= flatnessSq))
|
| 494 |
|
|
{
|
| 495 |
|
|
recLevel[stackSize] = recLevel[stackSize - 1] = ++level;
|
| 496 |
|
|
|
| 497 |
|
|
CubicCurve2D.subdivide(stack, sp, stack, sp - 6, stack, sp);
|
| 498 |
|
|
++stackSize;
|
| 499 |
|
|
sp -= 6;
|
| 500 |
|
|
}
|
| 501 |
|
|
}
|
| 502 |
|
|
|
| 503 |
|
|
|
| 504 |
|
|
/* These routines were useful for debugging. Since they would
|
| 505 |
|
|
* just bloat the implementation, they are commented out.
|
| 506 |
|
|
*
|
| 507 |
|
|
*
|
| 508 |
|
|
|
| 509 |
|
|
private static String segToString(int segType, double[] d, int offset)
|
| 510 |
|
|
{
|
| 511 |
|
|
String s;
|
| 512 |
|
|
|
| 513 |
|
|
switch (segType)
|
| 514 |
|
|
{
|
| 515 |
|
|
case PathIterator.SEG_CLOSE:
|
| 516 |
|
|
return "SEG_CLOSE";
|
| 517 |
|
|
|
| 518 |
|
|
case PathIterator.SEG_MOVETO:
|
| 519 |
|
|
return "SEG_MOVETO (" + d[offset] + ", " + d[offset + 1] + ")";
|
| 520 |
|
|
|
| 521 |
|
|
case PathIterator.SEG_LINETO:
|
| 522 |
|
|
return "SEG_LINETO (" + d[offset] + ", " + d[offset + 1] + ")";
|
| 523 |
|
|
|
| 524 |
|
|
case PathIterator.SEG_QUADTO:
|
| 525 |
|
|
return "SEG_QUADTO (" + d[offset] + ", " + d[offset + 1]
|
| 526 |
|
|
+ ") (" + d[offset + 2] + ", " + d[offset + 3] + ")";
|
| 527 |
|
|
|
| 528 |
|
|
case PathIterator.SEG_CUBICTO:
|
| 529 |
|
|
return "SEG_CUBICTO (" + d[offset] + ", " + d[offset + 1]
|
| 530 |
|
|
+ ") (" + d[offset + 2] + ", " + d[offset + 3]
|
| 531 |
|
|
+ ") (" + d[offset + 4] + ", " + d[offset + 5] + ")";
|
| 532 |
|
|
}
|
| 533 |
|
|
|
| 534 |
|
|
throw new IllegalStateException();
|
| 535 |
|
|
}
|
| 536 |
|
|
|
| 537 |
|
|
|
| 538 |
|
|
private void dumpQuadraticStack(String msg)
|
| 539 |
|
|
{
|
| 540 |
|
|
int sp = stack.length - 4 * stackSize - 2;
|
| 541 |
|
|
int i = 0;
|
| 542 |
|
|
System.err.print(" " + msg + ":");
|
| 543 |
|
|
while (sp < stack.length)
|
| 544 |
|
|
{
|
| 545 |
|
|
System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
|
| 546 |
|
|
if (i < recLevel.length)
|
| 547 |
|
|
System.out.print("/" + recLevel[i++]);
|
| 548 |
|
|
if (sp + 3 < stack.length)
|
| 549 |
|
|
System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
|
| 550 |
|
|
sp += 4;
|
| 551 |
|
|
}
|
| 552 |
|
|
System.err.println();
|
| 553 |
|
|
}
|
| 554 |
|
|
|
| 555 |
|
|
|
| 556 |
|
|
private void dumpCubicStack(String msg)
|
| 557 |
|
|
{
|
| 558 |
|
|
int sp = stack.length - 6 * stackSize - 2;
|
| 559 |
|
|
int i = 0;
|
| 560 |
|
|
System.err.print(" " + msg + ":");
|
| 561 |
|
|
while (sp < stack.length)
|
| 562 |
|
|
{
|
| 563 |
|
|
System.err.print(" (" + stack[sp] + ", " + stack[sp+1] + ")");
|
| 564 |
|
|
if (i < recLevel.length)
|
| 565 |
|
|
System.out.print("/" + recLevel[i++]);
|
| 566 |
|
|
if (sp + 3 < stack.length)
|
| 567 |
|
|
{
|
| 568 |
|
|
System.err.print(" [" + stack[sp+2] + ", " + stack[sp+3] + "]");
|
| 569 |
|
|
System.err.print(" [" + stack[sp+4] + ", " + stack[sp+5] + "]");
|
| 570 |
|
|
}
|
| 571 |
|
|
sp += 6;
|
| 572 |
|
|
}
|
| 573 |
|
|
System.err.println();
|
| 574 |
|
|
}
|
| 575 |
|
|
|
| 576 |
|
|
*
|
| 577 |
|
|
*
|
| 578 |
|
|
*/
|
| 579 |
|
|
}
|