OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [java/] [awt/] [geom/] [Line2D.java] - Blame information for rev 775

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 771 jeremybenn
/* Line2D.java -- represents a line in 2-D space, plus operations on a line
2
   Copyright (C) 2000, 2001, 2002 Free Software Foundation
3
 
4
This file is part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2, or (at your option)
9
any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; see the file COPYING.  If not, write to the
18
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19
02110-1301 USA.
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version. */
37
 
38
package java.awt.geom;
39
 
40
import java.awt.Rectangle;
41
import java.awt.Shape;
42
import java.util.NoSuchElementException;
43
 
44
/**
45
 * Represents a directed line bewteen two points in (x,y) Cartesian space.
46
 * Remember, on-screen graphics have increasing x from left-to-right, and
47
 * increasing y from top-to-bottom. The storage is left to subclasses.
48
 *
49
 * @author Tom Tromey (tromey@cygnus.com)
50
 * @author Eric Blake (ebb9@email.byu.edu)
51
 * @author David Gilbert
52
 * @since 1.2
53
 * @status updated to 1.4
54
 */
55
public abstract class Line2D implements Shape, Cloneable
56
{
57
  /**
58
   * The default constructor.
59
   */
60
  protected Line2D()
61
  {
62
  }
63
 
64
  /**
65
   * Return the x coordinate of the first point.
66
   *
67
   * @return the starting x coordinate
68
   */
69
  public abstract double getX1();
70
 
71
  /**
72
   * Return the y coordinate of the first point.
73
   *
74
   * @return the starting y coordinate
75
   */
76
  public abstract double getY1();
77
 
78
  /**
79
   * Return the first point.
80
   *
81
   * @return the starting point
82
   */
83
  public abstract Point2D getP1();
84
 
85
  /**
86
   * Return the x coordinate of the second point.
87
   *
88
   * @return the ending x coordinate
89
   */
90
  public abstract double getX2();
91
 
92
  /**
93
   * Return the y coordinate of the second point.
94
   *
95
   * @return the ending y coordinate
96
   */
97
  public abstract double getY2();
98
 
99
  /**
100
   * Return the second point.
101
   *
102
   * @return the ending point
103
   */
104
  public abstract Point2D getP2();
105
 
106
  /**
107
   * Set the coordinates of the line to the given coordinates. Loss of
108
   * precision may occur due to rounding issues.
109
   *
110
   * @param x1 the first x coordinate
111
   * @param y1 the first y coordinate
112
   * @param x2 the second x coordinate
113
   * @param y2 the second y coordinate
114
   */
115
  public abstract void setLine(double x1, double y1, double x2, double y2);
116
 
117
  /**
118
   * Set the coordinates to the given points.
119
   *
120
   * @param p1 the first point
121
   * @param p2 the second point
122
   * @throws NullPointerException if either point is null
123
   */
124
  public void setLine(Point2D p1, Point2D p2)
125
  {
126
    setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
127
  }
128
 
129
  /**
130
   * Set the coordinates to those of the given line.
131
   *
132
   * @param l the line to copy
133
   * @throws NullPointerException if l is null
134
   */
135
  public void setLine(Line2D l)
136
  {
137
    setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
138
  }
139
 
140
  /**
141
   * Computes the relative rotation direction needed to pivot the line about
142
   * the first point in order to have the second point colinear with point p.
143
   * Because of floating point rounding, don't expect this to be a perfect
144
   * measure of colinearity. The answer is 1 if the line has a shorter rotation
145
   * in the direction of the positive X axis to the negative Y axis
146
   * (counter-clockwise in the default Java coordinate system), or -1 if the
147
   * shortest rotation is in the opposite direction (clockwise). If p
148
   * is already colinear, the return value is -1 if it lies beyond the first
149
   * point, 0 if it lies in the segment, or 1 if it lies beyond the second
150
   * point. If the first and second point are coincident, this returns 0.
151
   *
152
   * @param x1 the first x coordinate
153
   * @param y1 the first y coordinate
154
   * @param x2 the second x coordinate
155
   * @param y2 the second y coordinate
156
   * @param px the reference x coordinate
157
   * @param py the reference y coordinate
158
   * @return the relative rotation direction
159
   */
160
  public static int relativeCCW(double x1, double y1, double x2, double y2,
161
                                double px, double py)
162
  {
163
    if ((x1 == x2 && y1 == y2)
164
        || (x1 == px && y1 == py))
165
      return 0; // Coincident points.
166
    // Translate to the origin.
167
    x2 -= x1;
168
    y2 -= y1;
169
    px -= x1;
170
    py -= y1;
171
    double slope2 = y2 / x2;
172
    double slopep = py / px;
173
    if (slope2 == slopep || (x2 == 0 && px == 0))
174
      return y2 > 0 // Colinear.
175
        ? (py < 0 ? -1 : py > y2 ? 1 : 0)
176
        : (py > 0 ? -1 : py < y2 ? 1 : 0);
177
    if (x2 >= 0 && slope2 >= 0)
178
      return px >= 0 // Quadrant 1.
179
        ? (slope2 > slopep ? 1 : -1)
180
        : (slope2 < slopep ? 1 : -1);
181
    if (y2 > 0)
182
      return px < 0 // Quadrant 2.
183
        ? (slope2 > slopep ? 1 : -1)
184
        : (slope2 < slopep ? 1 : -1);
185
    if (slope2 >= 0.0)
186
      return px >= 0 // Quadrant 3.
187
        ? (slope2 < slopep ? 1 : -1)
188
        : (slope2 > slopep ? 1 : -1);
189
    return px < 0 // Quadrant 4.
190
      ? (slope2 < slopep ? 1 : -1)
191
      : (slope2 > slopep ? 1 : -1);
192
  }
193
 
194
  /**
195
   * Computes the relative rotation direction needed to pivot this line about
196
   * the first point in order to have the second point colinear with point p.
197
   * Because of floating point rounding, don't expect this to be a perfect
198
   * measure of colinearity. The answer is 1 if the line has a shorter rotation
199
   * in the direction of the positive X axis to the negative Y axis
200
   * (counter-clockwise in the default Java coordinate system), or -1 if the
201
   * shortest rotation is in the opposite direction (clockwise). If p
202
   * is already colinear, the return value is -1 if it lies beyond the first
203
   * point, 0 if it lies in the segment, or 1 if it lies beyond the second
204
   * point. If the first and second point are coincident, this returns 0.
205
   *
206
   * @param px the reference x coordinate
207
   * @param py the reference y coordinate
208
   * @return the relative rotation direction
209
   * @see #relativeCCW(double, double, double, double, double, double)
210
   */
211
  public int relativeCCW(double px, double py)
212
  {
213
    return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
214
  }
215
 
216
  /**
217
   * Computes the relative rotation direction needed to pivot this line about
218
   * the first point in order to have the second point colinear with point p.
219
   * Because of floating point rounding, don't expect this to be a perfect
220
   * measure of colinearity. The answer is 1 if the line has a shorter rotation
221
   * in the direction of the positive X axis to the negative Y axis
222
   * (counter-clockwise in the default Java coordinate system), or -1 if the
223
   * shortest rotation is in the opposite direction (clockwise). If p
224
   * is already colinear, the return value is -1 if it lies beyond the first
225
   * point, 0 if it lies in the segment, or 1 if it lies beyond the second
226
   * point. If the first and second point are coincident, this returns 0.
227
   *
228
   * @param p the reference point
229
   * @return the relative rotation direction
230
   * @throws NullPointerException if p is null
231
   * @see #relativeCCW(double, double, double, double, double, double)
232
   */
233
  public int relativeCCW(Point2D p)
234
  {
235
    return relativeCCW(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
236
  }
237
 
238
  /**
239
   * Computes twice the (signed) area of the triangle defined by the three
240
   * points.  This method is used for intersection testing.
241
   *
242
   * @param x1  the x-coordinate of the first point.
243
   * @param y1  the y-coordinate of the first point.
244
   * @param x2  the x-coordinate of the second point.
245
   * @param y2  the y-coordinate of the second point.
246
   * @param x3  the x-coordinate of the third point.
247
   * @param y3  the y-coordinate of the third point.
248
   *
249
   * @return Twice the area.
250
   */
251
  private static double area2(double x1, double y1,
252
                             double x2, double y2,
253
                             double x3, double y3)
254
  {
255
    return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
256
  }
257
 
258
  /**
259
   * Returns <code>true</code> if (x3, y3) lies between (x1, y1) and (x2, y2),
260
   * and false otherwise,  This test assumes that the three points are
261
   * collinear, and is used for intersection testing.
262
   *
263
   * @param x1  the x-coordinate of the first point.
264
   * @param y1  the y-coordinate of the first point.
265
   * @param x2  the x-coordinate of the second point.
266
   * @param y2  the y-coordinate of the second point.
267
   * @param x3  the x-coordinate of the third point.
268
   * @param y3  the y-coordinate of the third point.
269
   *
270
   * @return A boolean.
271
   */
272
  private static boolean between(double x1, double y1,
273
                                double x2, double y2,
274
                                double x3, double y3)
275
  {
276
    if (x1 != x2) {
277
      return (x1 <= x3 && x3 <= x2) || (x1 >= x3 && x3 >= x2);
278
    }
279
    else {
280
      return (y1 <= y3 && y3 <= y2) || (y1 >= y3 && y3 >= y2);
281
    }
282
  }
283
 
284
  /**
285
   * Test if the line segment (x1,y1)-&gt;(x2,y2) intersects the line segment
286
   * (x3,y3)-&gt;(x4,y4).
287
   *
288
   * @param x1 the first x coordinate of the first segment
289
   * @param y1 the first y coordinate of the first segment
290
   * @param x2 the second x coordinate of the first segment
291
   * @param y2 the second y coordinate of the first segment
292
   * @param x3 the first x coordinate of the second segment
293
   * @param y3 the first y coordinate of the second segment
294
   * @param x4 the second x coordinate of the second segment
295
   * @param y4 the second y coordinate of the second segment
296
   * @return true if the segments intersect
297
   */
298
  public static boolean linesIntersect(double x1, double y1,
299
                                      double x2, double y2,
300
                                      double x3, double y3,
301
                                      double x4, double y4)
302
  {
303
    double a1, a2, a3, a4;
304
 
305
    // deal with special cases
306
    if ((a1 = area2(x1, y1, x2, y2, x3, y3)) == 0.0)
307
    {
308
      // check if p3 is between p1 and p2 OR
309
      // p4 is collinear also AND either between p1 and p2 OR at opposite ends
310
      if (between(x1, y1, x2, y2, x3, y3))
311
      {
312
        return true;
313
      }
314
      else
315
      {
316
        if (area2(x1, y1, x2, y2, x4, y4) == 0.0)
317
        {
318
          return between(x3, y3, x4, y4, x1, y1)
319
                 || between (x3, y3, x4, y4, x2, y2);
320
        }
321
        else {
322
          return false;
323
        }
324
      }
325
    }
326
    else if ((a2 = area2(x1, y1, x2, y2, x4, y4)) == 0.0)
327
    {
328
      // check if p4 is between p1 and p2 (we already know p3 is not
329
      // collinear)
330
      return between(x1, y1, x2, y2, x4, y4);
331
    }
332
 
333
    if ((a3 = area2(x3, y3, x4, y4, x1, y1)) == 0.0) {
334
      // check if p1 is between p3 and p4 OR
335
      // p2 is collinear also AND either between p1 and p2 OR at opposite ends
336
      if (between(x3, y3, x4, y4, x1, y1)) {
337
        return true;
338
      }
339
      else {
340
        if (area2(x3, y3, x4, y4, x2, y2) == 0.0) {
341
          return between(x1, y1, x2, y2, x3, y3)
342
                 || between (x1, y1, x2, y2, x4, y4);
343
        }
344
        else {
345
          return false;
346
        }
347
      }
348
    }
349
    else if ((a4 = area2(x3, y3, x4, y4, x2, y2)) == 0.0) {
350
      // check if p2 is between p3 and p4 (we already know p1 is not
351
      // collinear)
352
      return between(x3, y3, x4, y4, x2, y2);
353
    }
354
    else {  // test for regular intersection
355
      return ((a1 > 0.0) ^ (a2 > 0.0)) && ((a3 > 0.0) ^ (a4 > 0.0));
356
    }
357
  }
358
 
359
  /**
360
   * Test if this line intersects the line given by (x1,y1)-&gt;(x2,y2).
361
   *
362
   * @param x1 the first x coordinate of the other segment
363
   * @param y1 the first y coordinate of the other segment
364
   * @param x2 the second x coordinate of the other segment
365
   * @param y2 the second y coordinate of the other segment
366
   * @return true if the segments intersect
367
   * @see #linesIntersect(double, double, double, double,
368
   *                      double, double, double, double)
369
   */
370
  public boolean intersectsLine(double x1, double y1, double x2, double y2)
371
  {
372
    return linesIntersect(getX1(), getY1(), getX2(), getY2(),
373
                          x1, y1, x2, y2);
374
  }
375
 
376
  /**
377
   * Test if this line intersects the given line.
378
   *
379
   * @param l the other segment
380
   * @return true if the segments intersect
381
   * @throws NullPointerException if l is null
382
   * @see #linesIntersect(double, double, double, double,
383
   *                      double, double, double, double)
384
   */
385
  public boolean intersectsLine(Line2D l)
386
  {
387
    return linesIntersect(getX1(), getY1(), getX2(), getY2(),
388
                          l.getX1(), l.getY1(), l.getX2(), l.getY2());
389
  }
390
 
391
  /**
392
   * Measures the square of the shortest distance from the reference point
393
   * to a point on the line segment. If the point is on the segment, the
394
   * result will be 0.
395
   *
396
   * @param x1 the first x coordinate of the segment
397
   * @param y1 the first y coordinate of the segment
398
   * @param x2 the second x coordinate of the segment
399
   * @param y2 the second y coordinate of the segment
400
   * @param px the x coordinate of the point
401
   * @param py the y coordinate of the point
402
   * @return the square of the distance from the point to the segment
403
   * @see #ptSegDist(double, double, double, double, double, double)
404
   * @see #ptLineDistSq(double, double, double, double, double, double)
405
   */
406
  public static double ptSegDistSq(double x1, double y1, double x2, double y2,
407
                                   double px, double py)
408
  {
409
    double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
410
 
411
    double x, y;
412
    if (pd2 == 0)
413
      {
414
        // Points are coincident.
415
        x = x1;
416
        y = y2;
417
      }
418
    else
419
      {
420
        double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
421
 
422
        if (u < 0)
423
          {
424
            // "Off the end"
425
            x = x1;
426
            y = y1;
427
          }
428
        else if (u > 1.0)
429
          {
430
            x = x2;
431
            y = y2;
432
          }
433
        else
434
          {
435
            x = x1 + u * (x2 - x1);
436
            y = y1 + u * (y2 - y1);
437
          }
438
      }
439
 
440
    return (x - px) * (x - px) + (y - py) * (y - py);
441
  }
442
 
443
  /**
444
   * Measures the shortest distance from the reference point to a point on
445
   * the line segment. If the point is on the segment, the result will be 0.
446
   *
447
   * @param x1 the first x coordinate of the segment
448
   * @param y1 the first y coordinate of the segment
449
   * @param x2 the second x coordinate of the segment
450
   * @param y2 the second y coordinate of the segment
451
   * @param px the x coordinate of the point
452
   * @param py the y coordinate of the point
453
   * @return the distance from the point to the segment
454
   * @see #ptSegDistSq(double, double, double, double, double, double)
455
   * @see #ptLineDist(double, double, double, double, double, double)
456
   */
457
  public static double ptSegDist(double x1, double y1, double x2, double y2,
458
                                 double px, double py)
459
  {
460
    return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
461
  }
462
 
463
  /**
464
   * Measures the square of the shortest distance from the reference point
465
   * to a point on this line segment. If the point is on the segment, the
466
   * result will be 0.
467
   *
468
   * @param px the x coordinate of the point
469
   * @param py the y coordinate of the point
470
   * @return the square of the distance from the point to the segment
471
   * @see #ptSegDistSq(double, double, double, double, double, double)
472
   */
473
  public double ptSegDistSq(double px, double py)
474
  {
475
    return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
476
  }
477
 
478
  /**
479
   * Measures the square of the shortest distance from the reference point
480
   * to a point on this line segment. If the point is on the segment, the
481
   * result will be 0.
482
   *
483
   * @param p the point
484
   * @return the square of the distance from the point to the segment
485
   * @throws NullPointerException if p is null
486
   * @see #ptSegDistSq(double, double, double, double, double, double)
487
   */
488
  public double ptSegDistSq(Point2D p)
489
  {
490
    return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
491
  }
492
 
493
  /**
494
   * Measures the shortest distance from the reference point to a point on
495
   * this line segment. If the point is on the segment, the result will be 0.
496
   *
497
   * @param px the x coordinate of the point
498
   * @param py the y coordinate of the point
499
   * @return the distance from the point to the segment
500
   * @see #ptSegDist(double, double, double, double, double, double)
501
   */
502
  public double ptSegDist(double px, double py)
503
  {
504
    return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
505
  }
506
 
507
  /**
508
   * Measures the shortest distance from the reference point to a point on
509
   * this line segment. If the point is on the segment, the result will be 0.
510
   *
511
   * @param p the point
512
   * @return the distance from the point to the segment
513
   * @throws NullPointerException if p is null
514
   * @see #ptSegDist(double, double, double, double, double, double)
515
   */
516
  public double ptSegDist(Point2D p)
517
  {
518
    return ptSegDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
519
  }
520
 
521
  /**
522
   * Measures the square of the shortest distance from the reference point
523
   * to a point on the infinite line extended from the segment. If the point
524
   * is on the segment, the result will be 0. If the segment is length 0,
525
   * the distance is to the common endpoint.
526
   *
527
   * @param x1 the first x coordinate of the segment
528
   * @param y1 the first y coordinate of the segment
529
   * @param x2 the second x coordinate of the segment
530
   * @param y2 the second y coordinate of the segment
531
   * @param px the x coordinate of the point
532
   * @param py the y coordinate of the point
533
   * @return the square of the distance from the point to the extended line
534
   * @see #ptLineDist(double, double, double, double, double, double)
535
   * @see #ptSegDistSq(double, double, double, double, double, double)
536
   */
537
  public static double ptLineDistSq(double x1, double y1, double x2, double y2,
538
                                    double px, double py)
539
  {
540
    double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
541
 
542
    double x, y;
543
    if (pd2 == 0)
544
      {
545
        // Points are coincident.
546
        x = x1;
547
        y = y2;
548
      }
549
    else
550
      {
551
        double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
552
        x = x1 + u * (x2 - x1);
553
        y = y1 + u * (y2 - y1);
554
      }
555
 
556
    return (x - px) * (x - px) + (y - py) * (y - py);
557
  }
558
 
559
  /**
560
   * Measures the shortest distance from the reference point to a point on
561
   * the infinite line extended from the segment. If the point is on the
562
   * segment, the result will be 0. If the segment is length 0, the distance
563
   * is to the common endpoint.
564
   *
565
   * @param x1 the first x coordinate of the segment
566
   * @param y1 the first y coordinate of the segment
567
   * @param x2 the second x coordinate of the segment
568
   * @param y2 the second y coordinate of the segment
569
   * @param px the x coordinate of the point
570
   * @param py the y coordinate of the point
571
   * @return the distance from the point to the extended line
572
   * @see #ptLineDistSq(double, double, double, double, double, double)
573
   * @see #ptSegDist(double, double, double, double, double, double)
574
   */
575
  public static double ptLineDist(double x1, double y1,
576
                                   double x2, double y2,
577
                                   double px, double py)
578
  {
579
    return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
580
  }
581
 
582
  /**
583
   * Measures the square of the shortest distance from the reference point
584
   * to a point on the infinite line extended from this segment. If the point
585
   * is on the segment, the result will be 0. If the segment is length 0,
586
   * the distance is to the common endpoint.
587
   *
588
   * @param px the x coordinate of the point
589
   * @param py the y coordinate of the point
590
   * @return the square of the distance from the point to the extended line
591
   * @see #ptLineDistSq(double, double, double, double, double, double)
592
   */
593
  public double ptLineDistSq(double px, double py)
594
  {
595
    return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
596
  }
597
 
598
  /**
599
   * Measures the square of the shortest distance from the reference point
600
   * to a point on the infinite line extended from this segment. If the point
601
   * is on the segment, the result will be 0. If the segment is length 0,
602
   * the distance is to the common endpoint.
603
   *
604
   * @param p the point
605
   * @return the square of the distance from the point to the extended line
606
   * @throws NullPointerException if p is null
607
   * @see #ptLineDistSq(double, double, double, double, double, double)
608
   */
609
  public double ptLineDistSq(Point2D p)
610
  {
611
    return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
612
                        p.getX(), p.getY());
613
  }
614
 
615
  /**
616
   * Measures the shortest distance from the reference point to a point on
617
   * the infinite line extended from this segment. If the point is on the
618
   * segment, the result will be 0. If the segment is length 0, the distance
619
   * is to the common endpoint.
620
   *
621
   * @param px the x coordinate of the point
622
   * @param py the y coordinate of the point
623
   * @return the distance from the point to the extended line
624
   * @see #ptLineDist(double, double, double, double, double, double)
625
   */
626
  public double ptLineDist(double px, double py)
627
  {
628
    return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
629
  }
630
 
631
  /**
632
   * Measures the shortest distance from the reference point to a point on
633
   * the infinite line extended from this segment. If the point is on the
634
   * segment, the result will be 0. If the segment is length 0, the distance
635
   * is to the common endpoint.
636
   *
637
   * @param p the point
638
   * @return the distance from the point to the extended line
639
   * @throws NullPointerException if p is null
640
   * @see #ptLineDist(double, double, double, double, double, double)
641
   */
642
  public double ptLineDist(Point2D p)
643
  {
644
    return ptLineDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
645
  }
646
 
647
  /**
648
   * Test if a point is contained inside the line. Since a line has no area,
649
   * this returns false.
650
   *
651
   * @param x the x coordinate
652
   * @param y the y coordinate
653
   * @return false; the line does not contain points
654
   */
655
  public boolean contains(double x, double y)
656
  {
657
    return false;
658
  }
659
 
660
  /**
661
   * Test if a point is contained inside the line. Since a line has no area,
662
   * this returns false.
663
   *
664
   * @param p the point
665
   * @return false; the line does not contain points
666
   */
667
  public boolean contains(Point2D p)
668
  {
669
    return false;
670
  }
671
 
672
  /**
673
   * Tests if this line intersects the interior of the specified rectangle.
674
   *
675
   * @param x the x coordinate of the rectangle
676
   * @param y the y coordinate of the rectangle
677
   * @param w the width of the rectangle
678
   * @param h the height of the rectangle
679
   * @return true if the line intersects the rectangle
680
   */
681
  public boolean intersects(double x, double y, double w, double h)
682
  {
683
    if (w <= 0 || h <= 0)
684
      return false;
685
    double x1 = getX1();
686
    double y1 = getY1();
687
    double x2 = getX2();
688
    double y2 = getY2();
689
 
690
    if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
691
      return true;
692
    if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
693
      return true;
694
 
695
    double x3 = x + w;
696
    double y3 = y + h;
697
 
698
    return (linesIntersect(x1, y1, x2, y2, x, y, x, y3)
699
            || linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
700
            || linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
701
            || linesIntersect(x1, y1, x2, y2, x3, y, x, y));
702
  }
703
 
704
  /**
705
   * Tests if this line intersects the interior of the specified rectangle.
706
   *
707
   * @param r the rectangle
708
   * @return true if the line intersects the rectangle
709
   * @throws NullPointerException if r is null
710
   */
711
  public boolean intersects(Rectangle2D r)
712
  {
713
    return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
714
  }
715
 
716
  /**
717
   * Tests if the line contains a rectangle. Since lines have no area, this
718
   * always returns false.
719
   *
720
   * @param x the x coordinate of the rectangle
721
   * @param y the y coordinate of the rectangle
722
   * @param w the width of the rectangle
723
   * @param h the height of the rectangle
724
   * @return false; the line does not contain points
725
   */
726
  public boolean contains(double x, double y, double w, double h)
727
  {
728
    return false;
729
  }
730
 
731
  /**
732
   * Tests if the line contains a rectangle. Since lines have no area, this
733
   * always returns false.
734
   *
735
   * @param r the rectangle
736
   * @return false; the line does not contain points
737
   */
738
  public boolean contains(Rectangle2D r)
739
  {
740
    return false;
741
  }
742
 
743
  /**
744
   * Gets a bounding box (not necessarily minimal) for this line.
745
   *
746
   * @return the integer bounding box
747
   * @see #getBounds2D()
748
   */
749
  public Rectangle getBounds()
750
  {
751
    return getBounds2D().getBounds();
752
  }
753
 
754
  /**
755
   * Return a path iterator, possibly applying a transform on the result. This
756
   * iterator is not threadsafe.
757
   *
758
   * @param at the transform, or null
759
   * @return a new path iterator
760
   */
761
  public PathIterator getPathIterator(final AffineTransform at)
762
  {
763
    return new PathIterator()
764
    {
765
      /** Current coordinate. */
766
      private int current = 0;
767
 
768
      public int getWindingRule()
769
      {
770
        return WIND_NON_ZERO;
771
      }
772
 
773
      public boolean isDone()
774
      {
775
        return current >= 2;
776
      }
777
 
778
      public void next()
779
      {
780
        current++;
781
      }
782
 
783
      public int currentSegment(float[] coords)
784
      {
785
        int result;
786
        switch (current)
787
          {
788
          case 0:
789
            coords[0] = (float) getX1();
790
            coords[1] = (float) getY1();
791
            result = SEG_MOVETO;
792
            break;
793
          case 1:
794
            coords[0] = (float) getX2();
795
            coords[1] = (float) getY2();
796
            result = SEG_LINETO;
797
            break;
798
          default:
799
            throw new NoSuchElementException("line iterator out of bounds");
800
          }
801
        if (at != null)
802
          at.transform(coords, 0, coords, 0, 1);
803
        return result;
804
      }
805
 
806
      public int currentSegment(double[] coords)
807
      {
808
        int result;
809
        switch (current)
810
          {
811
          case 0:
812
            coords[0] = getX1();
813
            coords[1] = getY1();
814
            result = SEG_MOVETO;
815
            break;
816
          case 1:
817
            coords[0] = getX2();
818
            coords[1] = getY2();
819
            result = SEG_LINETO;
820
            break;
821
          default:
822
            throw new NoSuchElementException("line iterator out of bounds");
823
          }
824
        if (at != null)
825
          at.transform(coords, 0, coords, 0, 1);
826
        return result;
827
      }
828
    };
829
  }
830
 
831
  /**
832
   * Return a flat path iterator, possibly applying a transform on the result.
833
   * This iterator is not threadsafe.
834
   *
835
   * @param at the transform, or null
836
   * @param flatness ignored, since lines are already flat
837
   * @return a new path iterator
838
   * @see #getPathIterator(AffineTransform)
839
   */
840
  public PathIterator getPathIterator(AffineTransform at, double flatness)
841
  {
842
    return getPathIterator(at);
843
  }
844
 
845
  /**
846
   * Create a new line of the same run-time type with the same contents as
847
   * this one.
848
   *
849
   * @return the clone
850
   *
851
   * @exception OutOfMemoryError If there is not enough memory available.
852
   *
853
   * @since 1.2
854
   */
855
  public Object clone()
856
  {
857
    try
858
      {
859
        return super.clone();
860
      }
861
    catch (CloneNotSupportedException e)
862
      {
863
        throw (Error) new InternalError().initCause(e); // Impossible
864
      }
865
  }
866
 
867
  /**
868
   * This class defines a point in <code>double</code> precision.
869
   *
870
   * @author Eric Blake (ebb9@email.byu.edu)
871
   * @since 1.2
872
   * @status updated to 1.4
873
   */
874
  public static class Double extends Line2D
875
  {
876
    /** The x coordinate of the first point. */
877
    public double x1;
878
 
879
    /** The y coordinate of the first point. */
880
    public double y1;
881
 
882
    /** The x coordinate of the second point. */
883
    public double x2;
884
 
885
    /** The y coordinate of the second point. */
886
    public double y2;
887
 
888
    /**
889
     * Construct the line segment (0,0)-&gt;(0,0).
890
     */
891
    public Double()
892
    {
893
    }
894
 
895
    /**
896
     * Construct the line segment with the specified points.
897
     *
898
     * @param x1 the x coordinate of the first point
899
     * @param y1 the y coordinate of the first point
900
     * @param x2 the x coordinate of the second point
901
     * @param y2 the y coordinate of the second point
902
     */
903
    public Double(double x1, double y1, double x2, double y2)
904
    {
905
      this.x1 = x1;
906
      this.y1 = y1;
907
      this.x2 = x2;
908
      this.y2 = y2;
909
    }
910
 
911
    /**
912
     * Construct the line segment with the specified points.
913
     *
914
     * @param p1 the first point
915
     * @param p2 the second point
916
     * @throws NullPointerException if either point is null
917
     */
918
    public Double(Point2D p1, Point2D p2)
919
    {
920
      x1 = p1.getX();
921
      y1 = p1.getY();
922
      x2 = p2.getX();
923
      y2 = p2.getY();
924
    }
925
 
926
    /**
927
     * Return the x coordinate of the first point.
928
     *
929
     * @return the value of x1
930
     */
931
    public double getX1()
932
    {
933
      return x1;
934
    }
935
 
936
    /**
937
     * Return the y coordinate of the first point.
938
     *
939
     * @return the value of y1
940
     */
941
    public double getY1()
942
    {
943
      return y1;
944
    }
945
 
946
    /**
947
     * Return the first point.
948
     *
949
     * @return the point (x1,y1)
950
     */
951
    public Point2D getP1()
952
    {
953
      return new Point2D.Double(x1, y1);
954
    }
955
 
956
    /**
957
     * Return the x coordinate of the second point.
958
     *
959
     * @return the value of x2
960
     */
961
    public double getX2()
962
    {
963
      return x2;
964
    }
965
 
966
    /**
967
     * Return the y coordinate of the second point.
968
     *
969
     * @return the value of y2
970
     */
971
    public double getY2()
972
    {
973
      return y2;
974
    }
975
 
976
    /**
977
     * Return the second point.
978
     *
979
     * @return the point (x2,y2)
980
     */
981
    public Point2D getP2()
982
    {
983
      return new Point2D.Double(x2, y2);
984
    }
985
 
986
    /**
987
     * Set this line to the given points.
988
     *
989
     * @param x1 the new x coordinate of the first point
990
     * @param y1 the new y coordinate of the first point
991
     * @param x2 the new x coordinate of the second point
992
     * @param y2 the new y coordinate of the second point
993
     */
994
    public void setLine(double x1, double y1, double x2, double y2)
995
    {
996
      this.x1 = x1;
997
      this.y1 = y1;
998
      this.x2 = x2;
999
      this.y2 = y2;
1000
    }
1001
 
1002
    /**
1003
     * Return the exact bounds of this line segment.
1004
     *
1005
     * @return the bounding box
1006
     */
1007
    public Rectangle2D getBounds2D()
1008
    {
1009
      double x = Math.min(x1, x2);
1010
      double y = Math.min(y1, y2);
1011
      double w = Math.abs(x1 - x2);
1012
      double h = Math.abs(y1 - y2);
1013
      return new Rectangle2D.Double(x, y, w, h);
1014
    }
1015
  } // class Double
1016
 
1017
  /**
1018
   * This class defines a point in <code>float</code> precision.
1019
   *
1020
   * @author Eric Blake (ebb9@email.byu.edu)
1021
   * @since 1.2
1022
   * @status updated to 1.4
1023
   */
1024
  public static class Float extends Line2D
1025
  {
1026
    /** The x coordinate of the first point. */
1027
    public float x1;
1028
 
1029
    /** The y coordinate of the first point. */
1030
    public float y1;
1031
 
1032
    /** The x coordinate of the second point. */
1033
    public float x2;
1034
 
1035
    /** The y coordinate of the second point. */
1036
    public float y2;
1037
 
1038
    /**
1039
     * Construct the line segment (0,0)-&gt;(0,0).
1040
     */
1041
    public Float()
1042
    {
1043
    }
1044
 
1045
    /**
1046
     * Construct the line segment with the specified points.
1047
     *
1048
     * @param x1 the x coordinate of the first point
1049
     * @param y1 the y coordinate of the first point
1050
     * @param x2 the x coordinate of the second point
1051
     * @param y2 the y coordinate of the second point
1052
     */
1053
    public Float(float x1, float y1, float x2, float y2)
1054
    {
1055
      this.x1 = x1;
1056
      this.y1 = y1;
1057
      this.x2 = x2;
1058
      this.y2 = y2;
1059
    }
1060
 
1061
    /**
1062
     * Construct the line segment with the specified points.
1063
     *
1064
     * @param p1 the first point
1065
     * @param p2 the second point
1066
     * @throws NullPointerException if either point is null
1067
     */
1068
    public Float(Point2D p1, Point2D p2)
1069
    {
1070
      x1 = (float) p1.getX();
1071
      y1 = (float) p1.getY();
1072
      x2 = (float) p2.getX();
1073
      y2 = (float) p2.getY();
1074
    }
1075
 
1076
    /**
1077
     * Return the x coordinate of the first point.
1078
     *
1079
     * @return the value of x1
1080
     */
1081
    public double getX1()
1082
    {
1083
      return x1;
1084
    }
1085
 
1086
    /**
1087
     * Return the y coordinate of the first point.
1088
     *
1089
     * @return the value of y1
1090
     */
1091
    public double getY1()
1092
    {
1093
      return y1;
1094
    }
1095
 
1096
    /**
1097
     * Return the first point.
1098
     *
1099
     * @return the point (x1,y1)
1100
     */
1101
    public Point2D getP1()
1102
    {
1103
      return new Point2D.Float(x1, y1);
1104
    }
1105
 
1106
    /**
1107
     * Return the x coordinate of the second point.
1108
     *
1109
     * @return the value of x2
1110
     */
1111
    public double getX2()
1112
    {
1113
      return x2;
1114
    }
1115
 
1116
    /**
1117
     * Return the y coordinate of the second point.
1118
     *
1119
     * @return the value of y2
1120
     */
1121
    public double getY2()
1122
    {
1123
      return y2;
1124
    }
1125
 
1126
    /**
1127
     * Return the second point.
1128
     *
1129
     * @return the point (x2,y2)
1130
     */
1131
    public Point2D getP2()
1132
    {
1133
      return new Point2D.Float(x2, y2);
1134
    }
1135
 
1136
    /**
1137
     * Set this line to the given points.
1138
     *
1139
     * @param x1 the new x coordinate of the first point
1140
     * @param y1 the new y coordinate of the first point
1141
     * @param x2 the new x coordinate of the second point
1142
     * @param y2 the new y coordinate of the second point
1143
     */
1144
    public void setLine(double x1, double y1, double x2, double y2)
1145
    {
1146
      this.x1 = (float) x1;
1147
      this.y1 = (float) y1;
1148
      this.x2 = (float) x2;
1149
      this.y2 = (float) y2;
1150
    }
1151
 
1152
    /**
1153
     * Set this line to the given points.
1154
     *
1155
     * @param x1 the new x coordinate of the first point
1156
     * @param y1 the new y coordinate of the first point
1157
     * @param x2 the new x coordinate of the second point
1158
     * @param y2 the new y coordinate of the second point
1159
     */
1160
    public void setLine(float x1, float y1, float x2, float y2)
1161
    {
1162
      this.x1 = x1;
1163
      this.y1 = y1;
1164
      this.x2 = x2;
1165
      this.y2 = y2;
1166
    }
1167
 
1168
    /**
1169
     * Return the exact bounds of this line segment.
1170
     *
1171
     * @return the bounding box
1172
     */
1173
    public Rectangle2D getBounds2D()
1174
    {
1175
      float x = Math.min(x1, x2);
1176
      float y = Math.min(y1, y2);
1177
      float w = Math.abs(x1 - x2);
1178
      float h = Math.abs(y1 - y2);
1179
      return new Rectangle2D.Float(x, y, w, h);
1180
    }
1181
  } // class Float
1182
} // class Line2D

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.