1 |
771 |
jeremybenn |
/* Line2D.java -- represents a line in 2-D space, plus operations on a line
|
2 |
|
|
Copyright (C) 2000, 2001, 2002 Free Software Foundation
|
3 |
|
|
|
4 |
|
|
This file is part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
9 |
|
|
any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
19 |
|
|
02110-1301 USA.
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
package java.awt.geom;
|
39 |
|
|
|
40 |
|
|
import java.awt.Rectangle;
|
41 |
|
|
import java.awt.Shape;
|
42 |
|
|
import java.util.NoSuchElementException;
|
43 |
|
|
|
44 |
|
|
/**
|
45 |
|
|
* Represents a directed line bewteen two points in (x,y) Cartesian space.
|
46 |
|
|
* Remember, on-screen graphics have increasing x from left-to-right, and
|
47 |
|
|
* increasing y from top-to-bottom. The storage is left to subclasses.
|
48 |
|
|
*
|
49 |
|
|
* @author Tom Tromey (tromey@cygnus.com)
|
50 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
51 |
|
|
* @author David Gilbert
|
52 |
|
|
* @since 1.2
|
53 |
|
|
* @status updated to 1.4
|
54 |
|
|
*/
|
55 |
|
|
public abstract class Line2D implements Shape, Cloneable
|
56 |
|
|
{
|
57 |
|
|
/**
|
58 |
|
|
* The default constructor.
|
59 |
|
|
*/
|
60 |
|
|
protected Line2D()
|
61 |
|
|
{
|
62 |
|
|
}
|
63 |
|
|
|
64 |
|
|
/**
|
65 |
|
|
* Return the x coordinate of the first point.
|
66 |
|
|
*
|
67 |
|
|
* @return the starting x coordinate
|
68 |
|
|
*/
|
69 |
|
|
public abstract double getX1();
|
70 |
|
|
|
71 |
|
|
/**
|
72 |
|
|
* Return the y coordinate of the first point.
|
73 |
|
|
*
|
74 |
|
|
* @return the starting y coordinate
|
75 |
|
|
*/
|
76 |
|
|
public abstract double getY1();
|
77 |
|
|
|
78 |
|
|
/**
|
79 |
|
|
* Return the first point.
|
80 |
|
|
*
|
81 |
|
|
* @return the starting point
|
82 |
|
|
*/
|
83 |
|
|
public abstract Point2D getP1();
|
84 |
|
|
|
85 |
|
|
/**
|
86 |
|
|
* Return the x coordinate of the second point.
|
87 |
|
|
*
|
88 |
|
|
* @return the ending x coordinate
|
89 |
|
|
*/
|
90 |
|
|
public abstract double getX2();
|
91 |
|
|
|
92 |
|
|
/**
|
93 |
|
|
* Return the y coordinate of the second point.
|
94 |
|
|
*
|
95 |
|
|
* @return the ending y coordinate
|
96 |
|
|
*/
|
97 |
|
|
public abstract double getY2();
|
98 |
|
|
|
99 |
|
|
/**
|
100 |
|
|
* Return the second point.
|
101 |
|
|
*
|
102 |
|
|
* @return the ending point
|
103 |
|
|
*/
|
104 |
|
|
public abstract Point2D getP2();
|
105 |
|
|
|
106 |
|
|
/**
|
107 |
|
|
* Set the coordinates of the line to the given coordinates. Loss of
|
108 |
|
|
* precision may occur due to rounding issues.
|
109 |
|
|
*
|
110 |
|
|
* @param x1 the first x coordinate
|
111 |
|
|
* @param y1 the first y coordinate
|
112 |
|
|
* @param x2 the second x coordinate
|
113 |
|
|
* @param y2 the second y coordinate
|
114 |
|
|
*/
|
115 |
|
|
public abstract void setLine(double x1, double y1, double x2, double y2);
|
116 |
|
|
|
117 |
|
|
/**
|
118 |
|
|
* Set the coordinates to the given points.
|
119 |
|
|
*
|
120 |
|
|
* @param p1 the first point
|
121 |
|
|
* @param p2 the second point
|
122 |
|
|
* @throws NullPointerException if either point is null
|
123 |
|
|
*/
|
124 |
|
|
public void setLine(Point2D p1, Point2D p2)
|
125 |
|
|
{
|
126 |
|
|
setLine(p1.getX(), p1.getY(), p2.getX(), p2.getY());
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
/**
|
130 |
|
|
* Set the coordinates to those of the given line.
|
131 |
|
|
*
|
132 |
|
|
* @param l the line to copy
|
133 |
|
|
* @throws NullPointerException if l is null
|
134 |
|
|
*/
|
135 |
|
|
public void setLine(Line2D l)
|
136 |
|
|
{
|
137 |
|
|
setLine(l.getX1(), l.getY1(), l.getX2(), l.getY2());
|
138 |
|
|
}
|
139 |
|
|
|
140 |
|
|
/**
|
141 |
|
|
* Computes the relative rotation direction needed to pivot the line about
|
142 |
|
|
* the first point in order to have the second point colinear with point p.
|
143 |
|
|
* Because of floating point rounding, don't expect this to be a perfect
|
144 |
|
|
* measure of colinearity. The answer is 1 if the line has a shorter rotation
|
145 |
|
|
* in the direction of the positive X axis to the negative Y axis
|
146 |
|
|
* (counter-clockwise in the default Java coordinate system), or -1 if the
|
147 |
|
|
* shortest rotation is in the opposite direction (clockwise). If p
|
148 |
|
|
* is already colinear, the return value is -1 if it lies beyond the first
|
149 |
|
|
* point, 0 if it lies in the segment, or 1 if it lies beyond the second
|
150 |
|
|
* point. If the first and second point are coincident, this returns 0.
|
151 |
|
|
*
|
152 |
|
|
* @param x1 the first x coordinate
|
153 |
|
|
* @param y1 the first y coordinate
|
154 |
|
|
* @param x2 the second x coordinate
|
155 |
|
|
* @param y2 the second y coordinate
|
156 |
|
|
* @param px the reference x coordinate
|
157 |
|
|
* @param py the reference y coordinate
|
158 |
|
|
* @return the relative rotation direction
|
159 |
|
|
*/
|
160 |
|
|
public static int relativeCCW(double x1, double y1, double x2, double y2,
|
161 |
|
|
double px, double py)
|
162 |
|
|
{
|
163 |
|
|
if ((x1 == x2 && y1 == y2)
|
164 |
|
|
|| (x1 == px && y1 == py))
|
165 |
|
|
return 0; // Coincident points.
|
166 |
|
|
// Translate to the origin.
|
167 |
|
|
x2 -= x1;
|
168 |
|
|
y2 -= y1;
|
169 |
|
|
px -= x1;
|
170 |
|
|
py -= y1;
|
171 |
|
|
double slope2 = y2 / x2;
|
172 |
|
|
double slopep = py / px;
|
173 |
|
|
if (slope2 == slopep || (x2 == 0 && px == 0))
|
174 |
|
|
return y2 > 0 // Colinear.
|
175 |
|
|
? (py < 0 ? -1 : py > y2 ? 1 : 0)
|
176 |
|
|
: (py > 0 ? -1 : py < y2 ? 1 : 0);
|
177 |
|
|
if (x2 >= 0 && slope2 >= 0)
|
178 |
|
|
return px >= 0 // Quadrant 1.
|
179 |
|
|
? (slope2 > slopep ? 1 : -1)
|
180 |
|
|
: (slope2 < slopep ? 1 : -1);
|
181 |
|
|
if (y2 > 0)
|
182 |
|
|
return px < 0 // Quadrant 2.
|
183 |
|
|
? (slope2 > slopep ? 1 : -1)
|
184 |
|
|
: (slope2 < slopep ? 1 : -1);
|
185 |
|
|
if (slope2 >= 0.0)
|
186 |
|
|
return px >= 0 // Quadrant 3.
|
187 |
|
|
? (slope2 < slopep ? 1 : -1)
|
188 |
|
|
: (slope2 > slopep ? 1 : -1);
|
189 |
|
|
return px < 0 // Quadrant 4.
|
190 |
|
|
? (slope2 < slopep ? 1 : -1)
|
191 |
|
|
: (slope2 > slopep ? 1 : -1);
|
192 |
|
|
}
|
193 |
|
|
|
194 |
|
|
/**
|
195 |
|
|
* Computes the relative rotation direction needed to pivot this line about
|
196 |
|
|
* the first point in order to have the second point colinear with point p.
|
197 |
|
|
* Because of floating point rounding, don't expect this to be a perfect
|
198 |
|
|
* measure of colinearity. The answer is 1 if the line has a shorter rotation
|
199 |
|
|
* in the direction of the positive X axis to the negative Y axis
|
200 |
|
|
* (counter-clockwise in the default Java coordinate system), or -1 if the
|
201 |
|
|
* shortest rotation is in the opposite direction (clockwise). If p
|
202 |
|
|
* is already colinear, the return value is -1 if it lies beyond the first
|
203 |
|
|
* point, 0 if it lies in the segment, or 1 if it lies beyond the second
|
204 |
|
|
* point. If the first and second point are coincident, this returns 0.
|
205 |
|
|
*
|
206 |
|
|
* @param px the reference x coordinate
|
207 |
|
|
* @param py the reference y coordinate
|
208 |
|
|
* @return the relative rotation direction
|
209 |
|
|
* @see #relativeCCW(double, double, double, double, double, double)
|
210 |
|
|
*/
|
211 |
|
|
public int relativeCCW(double px, double py)
|
212 |
|
|
{
|
213 |
|
|
return relativeCCW(getX1(), getY1(), getX2(), getY2(), px, py);
|
214 |
|
|
}
|
215 |
|
|
|
216 |
|
|
/**
|
217 |
|
|
* Computes the relative rotation direction needed to pivot this line about
|
218 |
|
|
* the first point in order to have the second point colinear with point p.
|
219 |
|
|
* Because of floating point rounding, don't expect this to be a perfect
|
220 |
|
|
* measure of colinearity. The answer is 1 if the line has a shorter rotation
|
221 |
|
|
* in the direction of the positive X axis to the negative Y axis
|
222 |
|
|
* (counter-clockwise in the default Java coordinate system), or -1 if the
|
223 |
|
|
* shortest rotation is in the opposite direction (clockwise). If p
|
224 |
|
|
* is already colinear, the return value is -1 if it lies beyond the first
|
225 |
|
|
* point, 0 if it lies in the segment, or 1 if it lies beyond the second
|
226 |
|
|
* point. If the first and second point are coincident, this returns 0.
|
227 |
|
|
*
|
228 |
|
|
* @param p the reference point
|
229 |
|
|
* @return the relative rotation direction
|
230 |
|
|
* @throws NullPointerException if p is null
|
231 |
|
|
* @see #relativeCCW(double, double, double, double, double, double)
|
232 |
|
|
*/
|
233 |
|
|
public int relativeCCW(Point2D p)
|
234 |
|
|
{
|
235 |
|
|
return relativeCCW(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
236 |
|
|
}
|
237 |
|
|
|
238 |
|
|
/**
|
239 |
|
|
* Computes twice the (signed) area of the triangle defined by the three
|
240 |
|
|
* points. This method is used for intersection testing.
|
241 |
|
|
*
|
242 |
|
|
* @param x1 the x-coordinate of the first point.
|
243 |
|
|
* @param y1 the y-coordinate of the first point.
|
244 |
|
|
* @param x2 the x-coordinate of the second point.
|
245 |
|
|
* @param y2 the y-coordinate of the second point.
|
246 |
|
|
* @param x3 the x-coordinate of the third point.
|
247 |
|
|
* @param y3 the y-coordinate of the third point.
|
248 |
|
|
*
|
249 |
|
|
* @return Twice the area.
|
250 |
|
|
*/
|
251 |
|
|
private static double area2(double x1, double y1,
|
252 |
|
|
double x2, double y2,
|
253 |
|
|
double x3, double y3)
|
254 |
|
|
{
|
255 |
|
|
return (x2 - x1) * (y3 - y1) - (x3 - x1) * (y2 - y1);
|
256 |
|
|
}
|
257 |
|
|
|
258 |
|
|
/**
|
259 |
|
|
* Returns <code>true</code> if (x3, y3) lies between (x1, y1) and (x2, y2),
|
260 |
|
|
* and false otherwise, This test assumes that the three points are
|
261 |
|
|
* collinear, and is used for intersection testing.
|
262 |
|
|
*
|
263 |
|
|
* @param x1 the x-coordinate of the first point.
|
264 |
|
|
* @param y1 the y-coordinate of the first point.
|
265 |
|
|
* @param x2 the x-coordinate of the second point.
|
266 |
|
|
* @param y2 the y-coordinate of the second point.
|
267 |
|
|
* @param x3 the x-coordinate of the third point.
|
268 |
|
|
* @param y3 the y-coordinate of the third point.
|
269 |
|
|
*
|
270 |
|
|
* @return A boolean.
|
271 |
|
|
*/
|
272 |
|
|
private static boolean between(double x1, double y1,
|
273 |
|
|
double x2, double y2,
|
274 |
|
|
double x3, double y3)
|
275 |
|
|
{
|
276 |
|
|
if (x1 != x2) {
|
277 |
|
|
return (x1 <= x3 && x3 <= x2) || (x1 >= x3 && x3 >= x2);
|
278 |
|
|
}
|
279 |
|
|
else {
|
280 |
|
|
return (y1 <= y3 && y3 <= y2) || (y1 >= y3 && y3 >= y2);
|
281 |
|
|
}
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/**
|
285 |
|
|
* Test if the line segment (x1,y1)->(x2,y2) intersects the line segment
|
286 |
|
|
* (x3,y3)->(x4,y4).
|
287 |
|
|
*
|
288 |
|
|
* @param x1 the first x coordinate of the first segment
|
289 |
|
|
* @param y1 the first y coordinate of the first segment
|
290 |
|
|
* @param x2 the second x coordinate of the first segment
|
291 |
|
|
* @param y2 the second y coordinate of the first segment
|
292 |
|
|
* @param x3 the first x coordinate of the second segment
|
293 |
|
|
* @param y3 the first y coordinate of the second segment
|
294 |
|
|
* @param x4 the second x coordinate of the second segment
|
295 |
|
|
* @param y4 the second y coordinate of the second segment
|
296 |
|
|
* @return true if the segments intersect
|
297 |
|
|
*/
|
298 |
|
|
public static boolean linesIntersect(double x1, double y1,
|
299 |
|
|
double x2, double y2,
|
300 |
|
|
double x3, double y3,
|
301 |
|
|
double x4, double y4)
|
302 |
|
|
{
|
303 |
|
|
double a1, a2, a3, a4;
|
304 |
|
|
|
305 |
|
|
// deal with special cases
|
306 |
|
|
if ((a1 = area2(x1, y1, x2, y2, x3, y3)) == 0.0)
|
307 |
|
|
{
|
308 |
|
|
// check if p3 is between p1 and p2 OR
|
309 |
|
|
// p4 is collinear also AND either between p1 and p2 OR at opposite ends
|
310 |
|
|
if (between(x1, y1, x2, y2, x3, y3))
|
311 |
|
|
{
|
312 |
|
|
return true;
|
313 |
|
|
}
|
314 |
|
|
else
|
315 |
|
|
{
|
316 |
|
|
if (area2(x1, y1, x2, y2, x4, y4) == 0.0)
|
317 |
|
|
{
|
318 |
|
|
return between(x3, y3, x4, y4, x1, y1)
|
319 |
|
|
|| between (x3, y3, x4, y4, x2, y2);
|
320 |
|
|
}
|
321 |
|
|
else {
|
322 |
|
|
return false;
|
323 |
|
|
}
|
324 |
|
|
}
|
325 |
|
|
}
|
326 |
|
|
else if ((a2 = area2(x1, y1, x2, y2, x4, y4)) == 0.0)
|
327 |
|
|
{
|
328 |
|
|
// check if p4 is between p1 and p2 (we already know p3 is not
|
329 |
|
|
// collinear)
|
330 |
|
|
return between(x1, y1, x2, y2, x4, y4);
|
331 |
|
|
}
|
332 |
|
|
|
333 |
|
|
if ((a3 = area2(x3, y3, x4, y4, x1, y1)) == 0.0) {
|
334 |
|
|
// check if p1 is between p3 and p4 OR
|
335 |
|
|
// p2 is collinear also AND either between p1 and p2 OR at opposite ends
|
336 |
|
|
if (between(x3, y3, x4, y4, x1, y1)) {
|
337 |
|
|
return true;
|
338 |
|
|
}
|
339 |
|
|
else {
|
340 |
|
|
if (area2(x3, y3, x4, y4, x2, y2) == 0.0) {
|
341 |
|
|
return between(x1, y1, x2, y2, x3, y3)
|
342 |
|
|
|| between (x1, y1, x2, y2, x4, y4);
|
343 |
|
|
}
|
344 |
|
|
else {
|
345 |
|
|
return false;
|
346 |
|
|
}
|
347 |
|
|
}
|
348 |
|
|
}
|
349 |
|
|
else if ((a4 = area2(x3, y3, x4, y4, x2, y2)) == 0.0) {
|
350 |
|
|
// check if p2 is between p3 and p4 (we already know p1 is not
|
351 |
|
|
// collinear)
|
352 |
|
|
return between(x3, y3, x4, y4, x2, y2);
|
353 |
|
|
}
|
354 |
|
|
else { // test for regular intersection
|
355 |
|
|
return ((a1 > 0.0) ^ (a2 > 0.0)) && ((a3 > 0.0) ^ (a4 > 0.0));
|
356 |
|
|
}
|
357 |
|
|
}
|
358 |
|
|
|
359 |
|
|
/**
|
360 |
|
|
* Test if this line intersects the line given by (x1,y1)->(x2,y2).
|
361 |
|
|
*
|
362 |
|
|
* @param x1 the first x coordinate of the other segment
|
363 |
|
|
* @param y1 the first y coordinate of the other segment
|
364 |
|
|
* @param x2 the second x coordinate of the other segment
|
365 |
|
|
* @param y2 the second y coordinate of the other segment
|
366 |
|
|
* @return true if the segments intersect
|
367 |
|
|
* @see #linesIntersect(double, double, double, double,
|
368 |
|
|
* double, double, double, double)
|
369 |
|
|
*/
|
370 |
|
|
public boolean intersectsLine(double x1, double y1, double x2, double y2)
|
371 |
|
|
{
|
372 |
|
|
return linesIntersect(getX1(), getY1(), getX2(), getY2(),
|
373 |
|
|
x1, y1, x2, y2);
|
374 |
|
|
}
|
375 |
|
|
|
376 |
|
|
/**
|
377 |
|
|
* Test if this line intersects the given line.
|
378 |
|
|
*
|
379 |
|
|
* @param l the other segment
|
380 |
|
|
* @return true if the segments intersect
|
381 |
|
|
* @throws NullPointerException if l is null
|
382 |
|
|
* @see #linesIntersect(double, double, double, double,
|
383 |
|
|
* double, double, double, double)
|
384 |
|
|
*/
|
385 |
|
|
public boolean intersectsLine(Line2D l)
|
386 |
|
|
{
|
387 |
|
|
return linesIntersect(getX1(), getY1(), getX2(), getY2(),
|
388 |
|
|
l.getX1(), l.getY1(), l.getX2(), l.getY2());
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
/**
|
392 |
|
|
* Measures the square of the shortest distance from the reference point
|
393 |
|
|
* to a point on the line segment. If the point is on the segment, the
|
394 |
|
|
* result will be 0.
|
395 |
|
|
*
|
396 |
|
|
* @param x1 the first x coordinate of the segment
|
397 |
|
|
* @param y1 the first y coordinate of the segment
|
398 |
|
|
* @param x2 the second x coordinate of the segment
|
399 |
|
|
* @param y2 the second y coordinate of the segment
|
400 |
|
|
* @param px the x coordinate of the point
|
401 |
|
|
* @param py the y coordinate of the point
|
402 |
|
|
* @return the square of the distance from the point to the segment
|
403 |
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
404 |
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
405 |
|
|
*/
|
406 |
|
|
public static double ptSegDistSq(double x1, double y1, double x2, double y2,
|
407 |
|
|
double px, double py)
|
408 |
|
|
{
|
409 |
|
|
double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
|
410 |
|
|
|
411 |
|
|
double x, y;
|
412 |
|
|
if (pd2 == 0)
|
413 |
|
|
{
|
414 |
|
|
// Points are coincident.
|
415 |
|
|
x = x1;
|
416 |
|
|
y = y2;
|
417 |
|
|
}
|
418 |
|
|
else
|
419 |
|
|
{
|
420 |
|
|
double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
|
421 |
|
|
|
422 |
|
|
if (u < 0)
|
423 |
|
|
{
|
424 |
|
|
// "Off the end"
|
425 |
|
|
x = x1;
|
426 |
|
|
y = y1;
|
427 |
|
|
}
|
428 |
|
|
else if (u > 1.0)
|
429 |
|
|
{
|
430 |
|
|
x = x2;
|
431 |
|
|
y = y2;
|
432 |
|
|
}
|
433 |
|
|
else
|
434 |
|
|
{
|
435 |
|
|
x = x1 + u * (x2 - x1);
|
436 |
|
|
y = y1 + u * (y2 - y1);
|
437 |
|
|
}
|
438 |
|
|
}
|
439 |
|
|
|
440 |
|
|
return (x - px) * (x - px) + (y - py) * (y - py);
|
441 |
|
|
}
|
442 |
|
|
|
443 |
|
|
/**
|
444 |
|
|
* Measures the shortest distance from the reference point to a point on
|
445 |
|
|
* the line segment. If the point is on the segment, the result will be 0.
|
446 |
|
|
*
|
447 |
|
|
* @param x1 the first x coordinate of the segment
|
448 |
|
|
* @param y1 the first y coordinate of the segment
|
449 |
|
|
* @param x2 the second x coordinate of the segment
|
450 |
|
|
* @param y2 the second y coordinate of the segment
|
451 |
|
|
* @param px the x coordinate of the point
|
452 |
|
|
* @param py the y coordinate of the point
|
453 |
|
|
* @return the distance from the point to the segment
|
454 |
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
455 |
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
456 |
|
|
*/
|
457 |
|
|
public static double ptSegDist(double x1, double y1, double x2, double y2,
|
458 |
|
|
double px, double py)
|
459 |
|
|
{
|
460 |
|
|
return Math.sqrt(ptSegDistSq(x1, y1, x2, y2, px, py));
|
461 |
|
|
}
|
462 |
|
|
|
463 |
|
|
/**
|
464 |
|
|
* Measures the square of the shortest distance from the reference point
|
465 |
|
|
* to a point on this line segment. If the point is on the segment, the
|
466 |
|
|
* result will be 0.
|
467 |
|
|
*
|
468 |
|
|
* @param px the x coordinate of the point
|
469 |
|
|
* @param py the y coordinate of the point
|
470 |
|
|
* @return the square of the distance from the point to the segment
|
471 |
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
472 |
|
|
*/
|
473 |
|
|
public double ptSegDistSq(double px, double py)
|
474 |
|
|
{
|
475 |
|
|
return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
/**
|
479 |
|
|
* Measures the square of the shortest distance from the reference point
|
480 |
|
|
* to a point on this line segment. If the point is on the segment, the
|
481 |
|
|
* result will be 0.
|
482 |
|
|
*
|
483 |
|
|
* @param p the point
|
484 |
|
|
* @return the square of the distance from the point to the segment
|
485 |
|
|
* @throws NullPointerException if p is null
|
486 |
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
487 |
|
|
*/
|
488 |
|
|
public double ptSegDistSq(Point2D p)
|
489 |
|
|
{
|
490 |
|
|
return ptSegDistSq(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
491 |
|
|
}
|
492 |
|
|
|
493 |
|
|
/**
|
494 |
|
|
* Measures the shortest distance from the reference point to a point on
|
495 |
|
|
* this line segment. If the point is on the segment, the result will be 0.
|
496 |
|
|
*
|
497 |
|
|
* @param px the x coordinate of the point
|
498 |
|
|
* @param py the y coordinate of the point
|
499 |
|
|
* @return the distance from the point to the segment
|
500 |
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
501 |
|
|
*/
|
502 |
|
|
public double ptSegDist(double px, double py)
|
503 |
|
|
{
|
504 |
|
|
return ptSegDist(getX1(), getY1(), getX2(), getY2(), px, py);
|
505 |
|
|
}
|
506 |
|
|
|
507 |
|
|
/**
|
508 |
|
|
* Measures the shortest distance from the reference point to a point on
|
509 |
|
|
* this line segment. If the point is on the segment, the result will be 0.
|
510 |
|
|
*
|
511 |
|
|
* @param p the point
|
512 |
|
|
* @return the distance from the point to the segment
|
513 |
|
|
* @throws NullPointerException if p is null
|
514 |
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
515 |
|
|
*/
|
516 |
|
|
public double ptSegDist(Point2D p)
|
517 |
|
|
{
|
518 |
|
|
return ptSegDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
519 |
|
|
}
|
520 |
|
|
|
521 |
|
|
/**
|
522 |
|
|
* Measures the square of the shortest distance from the reference point
|
523 |
|
|
* to a point on the infinite line extended from the segment. If the point
|
524 |
|
|
* is on the segment, the result will be 0. If the segment is length 0,
|
525 |
|
|
* the distance is to the common endpoint.
|
526 |
|
|
*
|
527 |
|
|
* @param x1 the first x coordinate of the segment
|
528 |
|
|
* @param y1 the first y coordinate of the segment
|
529 |
|
|
* @param x2 the second x coordinate of the segment
|
530 |
|
|
* @param y2 the second y coordinate of the segment
|
531 |
|
|
* @param px the x coordinate of the point
|
532 |
|
|
* @param py the y coordinate of the point
|
533 |
|
|
* @return the square of the distance from the point to the extended line
|
534 |
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
535 |
|
|
* @see #ptSegDistSq(double, double, double, double, double, double)
|
536 |
|
|
*/
|
537 |
|
|
public static double ptLineDistSq(double x1, double y1, double x2, double y2,
|
538 |
|
|
double px, double py)
|
539 |
|
|
{
|
540 |
|
|
double pd2 = (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2);
|
541 |
|
|
|
542 |
|
|
double x, y;
|
543 |
|
|
if (pd2 == 0)
|
544 |
|
|
{
|
545 |
|
|
// Points are coincident.
|
546 |
|
|
x = x1;
|
547 |
|
|
y = y2;
|
548 |
|
|
}
|
549 |
|
|
else
|
550 |
|
|
{
|
551 |
|
|
double u = ((px - x1) * (x2 - x1) + (py - y1) * (y2 - y1)) / pd2;
|
552 |
|
|
x = x1 + u * (x2 - x1);
|
553 |
|
|
y = y1 + u * (y2 - y1);
|
554 |
|
|
}
|
555 |
|
|
|
556 |
|
|
return (x - px) * (x - px) + (y - py) * (y - py);
|
557 |
|
|
}
|
558 |
|
|
|
559 |
|
|
/**
|
560 |
|
|
* Measures the shortest distance from the reference point to a point on
|
561 |
|
|
* the infinite line extended from the segment. If the point is on the
|
562 |
|
|
* segment, the result will be 0. If the segment is length 0, the distance
|
563 |
|
|
* is to the common endpoint.
|
564 |
|
|
*
|
565 |
|
|
* @param x1 the first x coordinate of the segment
|
566 |
|
|
* @param y1 the first y coordinate of the segment
|
567 |
|
|
* @param x2 the second x coordinate of the segment
|
568 |
|
|
* @param y2 the second y coordinate of the segment
|
569 |
|
|
* @param px the x coordinate of the point
|
570 |
|
|
* @param py the y coordinate of the point
|
571 |
|
|
* @return the distance from the point to the extended line
|
572 |
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
573 |
|
|
* @see #ptSegDist(double, double, double, double, double, double)
|
574 |
|
|
*/
|
575 |
|
|
public static double ptLineDist(double x1, double y1,
|
576 |
|
|
double x2, double y2,
|
577 |
|
|
double px, double py)
|
578 |
|
|
{
|
579 |
|
|
return Math.sqrt(ptLineDistSq(x1, y1, x2, y2, px, py));
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
/**
|
583 |
|
|
* Measures the square of the shortest distance from the reference point
|
584 |
|
|
* to a point on the infinite line extended from this segment. If the point
|
585 |
|
|
* is on the segment, the result will be 0. If the segment is length 0,
|
586 |
|
|
* the distance is to the common endpoint.
|
587 |
|
|
*
|
588 |
|
|
* @param px the x coordinate of the point
|
589 |
|
|
* @param py the y coordinate of the point
|
590 |
|
|
* @return the square of the distance from the point to the extended line
|
591 |
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
592 |
|
|
*/
|
593 |
|
|
public double ptLineDistSq(double px, double py)
|
594 |
|
|
{
|
595 |
|
|
return ptLineDistSq(getX1(), getY1(), getX2(), getY2(), px, py);
|
596 |
|
|
}
|
597 |
|
|
|
598 |
|
|
/**
|
599 |
|
|
* Measures the square of the shortest distance from the reference point
|
600 |
|
|
* to a point on the infinite line extended from this segment. If the point
|
601 |
|
|
* is on the segment, the result will be 0. If the segment is length 0,
|
602 |
|
|
* the distance is to the common endpoint.
|
603 |
|
|
*
|
604 |
|
|
* @param p the point
|
605 |
|
|
* @return the square of the distance from the point to the extended line
|
606 |
|
|
* @throws NullPointerException if p is null
|
607 |
|
|
* @see #ptLineDistSq(double, double, double, double, double, double)
|
608 |
|
|
*/
|
609 |
|
|
public double ptLineDistSq(Point2D p)
|
610 |
|
|
{
|
611 |
|
|
return ptLineDistSq(getX1(), getY1(), getX2(), getY2(),
|
612 |
|
|
p.getX(), p.getY());
|
613 |
|
|
}
|
614 |
|
|
|
615 |
|
|
/**
|
616 |
|
|
* Measures the shortest distance from the reference point to a point on
|
617 |
|
|
* the infinite line extended from this segment. If the point is on the
|
618 |
|
|
* segment, the result will be 0. If the segment is length 0, the distance
|
619 |
|
|
* is to the common endpoint.
|
620 |
|
|
*
|
621 |
|
|
* @param px the x coordinate of the point
|
622 |
|
|
* @param py the y coordinate of the point
|
623 |
|
|
* @return the distance from the point to the extended line
|
624 |
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
625 |
|
|
*/
|
626 |
|
|
public double ptLineDist(double px, double py)
|
627 |
|
|
{
|
628 |
|
|
return ptLineDist(getX1(), getY1(), getX2(), getY2(), px, py);
|
629 |
|
|
}
|
630 |
|
|
|
631 |
|
|
/**
|
632 |
|
|
* Measures the shortest distance from the reference point to a point on
|
633 |
|
|
* the infinite line extended from this segment. If the point is on the
|
634 |
|
|
* segment, the result will be 0. If the segment is length 0, the distance
|
635 |
|
|
* is to the common endpoint.
|
636 |
|
|
*
|
637 |
|
|
* @param p the point
|
638 |
|
|
* @return the distance from the point to the extended line
|
639 |
|
|
* @throws NullPointerException if p is null
|
640 |
|
|
* @see #ptLineDist(double, double, double, double, double, double)
|
641 |
|
|
*/
|
642 |
|
|
public double ptLineDist(Point2D p)
|
643 |
|
|
{
|
644 |
|
|
return ptLineDist(getX1(), getY1(), getX2(), getY2(), p.getX(), p.getY());
|
645 |
|
|
}
|
646 |
|
|
|
647 |
|
|
/**
|
648 |
|
|
* Test if a point is contained inside the line. Since a line has no area,
|
649 |
|
|
* this returns false.
|
650 |
|
|
*
|
651 |
|
|
* @param x the x coordinate
|
652 |
|
|
* @param y the y coordinate
|
653 |
|
|
* @return false; the line does not contain points
|
654 |
|
|
*/
|
655 |
|
|
public boolean contains(double x, double y)
|
656 |
|
|
{
|
657 |
|
|
return false;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
/**
|
661 |
|
|
* Test if a point is contained inside the line. Since a line has no area,
|
662 |
|
|
* this returns false.
|
663 |
|
|
*
|
664 |
|
|
* @param p the point
|
665 |
|
|
* @return false; the line does not contain points
|
666 |
|
|
*/
|
667 |
|
|
public boolean contains(Point2D p)
|
668 |
|
|
{
|
669 |
|
|
return false;
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/**
|
673 |
|
|
* Tests if this line intersects the interior of the specified rectangle.
|
674 |
|
|
*
|
675 |
|
|
* @param x the x coordinate of the rectangle
|
676 |
|
|
* @param y the y coordinate of the rectangle
|
677 |
|
|
* @param w the width of the rectangle
|
678 |
|
|
* @param h the height of the rectangle
|
679 |
|
|
* @return true if the line intersects the rectangle
|
680 |
|
|
*/
|
681 |
|
|
public boolean intersects(double x, double y, double w, double h)
|
682 |
|
|
{
|
683 |
|
|
if (w <= 0 || h <= 0)
|
684 |
|
|
return false;
|
685 |
|
|
double x1 = getX1();
|
686 |
|
|
double y1 = getY1();
|
687 |
|
|
double x2 = getX2();
|
688 |
|
|
double y2 = getY2();
|
689 |
|
|
|
690 |
|
|
if (x1 >= x && x1 <= x + w && y1 >= y && y1 <= y + h)
|
691 |
|
|
return true;
|
692 |
|
|
if (x2 >= x && x2 <= x + w && y2 >= y && y2 <= y + h)
|
693 |
|
|
return true;
|
694 |
|
|
|
695 |
|
|
double x3 = x + w;
|
696 |
|
|
double y3 = y + h;
|
697 |
|
|
|
698 |
|
|
return (linesIntersect(x1, y1, x2, y2, x, y, x, y3)
|
699 |
|
|
|| linesIntersect(x1, y1, x2, y2, x, y3, x3, y3)
|
700 |
|
|
|| linesIntersect(x1, y1, x2, y2, x3, y3, x3, y)
|
701 |
|
|
|| linesIntersect(x1, y1, x2, y2, x3, y, x, y));
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/**
|
705 |
|
|
* Tests if this line intersects the interior of the specified rectangle.
|
706 |
|
|
*
|
707 |
|
|
* @param r the rectangle
|
708 |
|
|
* @return true if the line intersects the rectangle
|
709 |
|
|
* @throws NullPointerException if r is null
|
710 |
|
|
*/
|
711 |
|
|
public boolean intersects(Rectangle2D r)
|
712 |
|
|
{
|
713 |
|
|
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
|
714 |
|
|
}
|
715 |
|
|
|
716 |
|
|
/**
|
717 |
|
|
* Tests if the line contains a rectangle. Since lines have no area, this
|
718 |
|
|
* always returns false.
|
719 |
|
|
*
|
720 |
|
|
* @param x the x coordinate of the rectangle
|
721 |
|
|
* @param y the y coordinate of the rectangle
|
722 |
|
|
* @param w the width of the rectangle
|
723 |
|
|
* @param h the height of the rectangle
|
724 |
|
|
* @return false; the line does not contain points
|
725 |
|
|
*/
|
726 |
|
|
public boolean contains(double x, double y, double w, double h)
|
727 |
|
|
{
|
728 |
|
|
return false;
|
729 |
|
|
}
|
730 |
|
|
|
731 |
|
|
/**
|
732 |
|
|
* Tests if the line contains a rectangle. Since lines have no area, this
|
733 |
|
|
* always returns false.
|
734 |
|
|
*
|
735 |
|
|
* @param r the rectangle
|
736 |
|
|
* @return false; the line does not contain points
|
737 |
|
|
*/
|
738 |
|
|
public boolean contains(Rectangle2D r)
|
739 |
|
|
{
|
740 |
|
|
return false;
|
741 |
|
|
}
|
742 |
|
|
|
743 |
|
|
/**
|
744 |
|
|
* Gets a bounding box (not necessarily minimal) for this line.
|
745 |
|
|
*
|
746 |
|
|
* @return the integer bounding box
|
747 |
|
|
* @see #getBounds2D()
|
748 |
|
|
*/
|
749 |
|
|
public Rectangle getBounds()
|
750 |
|
|
{
|
751 |
|
|
return getBounds2D().getBounds();
|
752 |
|
|
}
|
753 |
|
|
|
754 |
|
|
/**
|
755 |
|
|
* Return a path iterator, possibly applying a transform on the result. This
|
756 |
|
|
* iterator is not threadsafe.
|
757 |
|
|
*
|
758 |
|
|
* @param at the transform, or null
|
759 |
|
|
* @return a new path iterator
|
760 |
|
|
*/
|
761 |
|
|
public PathIterator getPathIterator(final AffineTransform at)
|
762 |
|
|
{
|
763 |
|
|
return new PathIterator()
|
764 |
|
|
{
|
765 |
|
|
/** Current coordinate. */
|
766 |
|
|
private int current = 0;
|
767 |
|
|
|
768 |
|
|
public int getWindingRule()
|
769 |
|
|
{
|
770 |
|
|
return WIND_NON_ZERO;
|
771 |
|
|
}
|
772 |
|
|
|
773 |
|
|
public boolean isDone()
|
774 |
|
|
{
|
775 |
|
|
return current >= 2;
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
public void next()
|
779 |
|
|
{
|
780 |
|
|
current++;
|
781 |
|
|
}
|
782 |
|
|
|
783 |
|
|
public int currentSegment(float[] coords)
|
784 |
|
|
{
|
785 |
|
|
int result;
|
786 |
|
|
switch (current)
|
787 |
|
|
{
|
788 |
|
|
case 0:
|
789 |
|
|
coords[0] = (float) getX1();
|
790 |
|
|
coords[1] = (float) getY1();
|
791 |
|
|
result = SEG_MOVETO;
|
792 |
|
|
break;
|
793 |
|
|
case 1:
|
794 |
|
|
coords[0] = (float) getX2();
|
795 |
|
|
coords[1] = (float) getY2();
|
796 |
|
|
result = SEG_LINETO;
|
797 |
|
|
break;
|
798 |
|
|
default:
|
799 |
|
|
throw new NoSuchElementException("line iterator out of bounds");
|
800 |
|
|
}
|
801 |
|
|
if (at != null)
|
802 |
|
|
at.transform(coords, 0, coords, 0, 1);
|
803 |
|
|
return result;
|
804 |
|
|
}
|
805 |
|
|
|
806 |
|
|
public int currentSegment(double[] coords)
|
807 |
|
|
{
|
808 |
|
|
int result;
|
809 |
|
|
switch (current)
|
810 |
|
|
{
|
811 |
|
|
case 0:
|
812 |
|
|
coords[0] = getX1();
|
813 |
|
|
coords[1] = getY1();
|
814 |
|
|
result = SEG_MOVETO;
|
815 |
|
|
break;
|
816 |
|
|
case 1:
|
817 |
|
|
coords[0] = getX2();
|
818 |
|
|
coords[1] = getY2();
|
819 |
|
|
result = SEG_LINETO;
|
820 |
|
|
break;
|
821 |
|
|
default:
|
822 |
|
|
throw new NoSuchElementException("line iterator out of bounds");
|
823 |
|
|
}
|
824 |
|
|
if (at != null)
|
825 |
|
|
at.transform(coords, 0, coords, 0, 1);
|
826 |
|
|
return result;
|
827 |
|
|
}
|
828 |
|
|
};
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/**
|
832 |
|
|
* Return a flat path iterator, possibly applying a transform on the result.
|
833 |
|
|
* This iterator is not threadsafe.
|
834 |
|
|
*
|
835 |
|
|
* @param at the transform, or null
|
836 |
|
|
* @param flatness ignored, since lines are already flat
|
837 |
|
|
* @return a new path iterator
|
838 |
|
|
* @see #getPathIterator(AffineTransform)
|
839 |
|
|
*/
|
840 |
|
|
public PathIterator getPathIterator(AffineTransform at, double flatness)
|
841 |
|
|
{
|
842 |
|
|
return getPathIterator(at);
|
843 |
|
|
}
|
844 |
|
|
|
845 |
|
|
/**
|
846 |
|
|
* Create a new line of the same run-time type with the same contents as
|
847 |
|
|
* this one.
|
848 |
|
|
*
|
849 |
|
|
* @return the clone
|
850 |
|
|
*
|
851 |
|
|
* @exception OutOfMemoryError If there is not enough memory available.
|
852 |
|
|
*
|
853 |
|
|
* @since 1.2
|
854 |
|
|
*/
|
855 |
|
|
public Object clone()
|
856 |
|
|
{
|
857 |
|
|
try
|
858 |
|
|
{
|
859 |
|
|
return super.clone();
|
860 |
|
|
}
|
861 |
|
|
catch (CloneNotSupportedException e)
|
862 |
|
|
{
|
863 |
|
|
throw (Error) new InternalError().initCause(e); // Impossible
|
864 |
|
|
}
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
/**
|
868 |
|
|
* This class defines a point in <code>double</code> precision.
|
869 |
|
|
*
|
870 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
871 |
|
|
* @since 1.2
|
872 |
|
|
* @status updated to 1.4
|
873 |
|
|
*/
|
874 |
|
|
public static class Double extends Line2D
|
875 |
|
|
{
|
876 |
|
|
/** The x coordinate of the first point. */
|
877 |
|
|
public double x1;
|
878 |
|
|
|
879 |
|
|
/** The y coordinate of the first point. */
|
880 |
|
|
public double y1;
|
881 |
|
|
|
882 |
|
|
/** The x coordinate of the second point. */
|
883 |
|
|
public double x2;
|
884 |
|
|
|
885 |
|
|
/** The y coordinate of the second point. */
|
886 |
|
|
public double y2;
|
887 |
|
|
|
888 |
|
|
/**
|
889 |
|
|
* Construct the line segment (0,0)->(0,0).
|
890 |
|
|
*/
|
891 |
|
|
public Double()
|
892 |
|
|
{
|
893 |
|
|
}
|
894 |
|
|
|
895 |
|
|
/**
|
896 |
|
|
* Construct the line segment with the specified points.
|
897 |
|
|
*
|
898 |
|
|
* @param x1 the x coordinate of the first point
|
899 |
|
|
* @param y1 the y coordinate of the first point
|
900 |
|
|
* @param x2 the x coordinate of the second point
|
901 |
|
|
* @param y2 the y coordinate of the second point
|
902 |
|
|
*/
|
903 |
|
|
public Double(double x1, double y1, double x2, double y2)
|
904 |
|
|
{
|
905 |
|
|
this.x1 = x1;
|
906 |
|
|
this.y1 = y1;
|
907 |
|
|
this.x2 = x2;
|
908 |
|
|
this.y2 = y2;
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/**
|
912 |
|
|
* Construct the line segment with the specified points.
|
913 |
|
|
*
|
914 |
|
|
* @param p1 the first point
|
915 |
|
|
* @param p2 the second point
|
916 |
|
|
* @throws NullPointerException if either point is null
|
917 |
|
|
*/
|
918 |
|
|
public Double(Point2D p1, Point2D p2)
|
919 |
|
|
{
|
920 |
|
|
x1 = p1.getX();
|
921 |
|
|
y1 = p1.getY();
|
922 |
|
|
x2 = p2.getX();
|
923 |
|
|
y2 = p2.getY();
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
/**
|
927 |
|
|
* Return the x coordinate of the first point.
|
928 |
|
|
*
|
929 |
|
|
* @return the value of x1
|
930 |
|
|
*/
|
931 |
|
|
public double getX1()
|
932 |
|
|
{
|
933 |
|
|
return x1;
|
934 |
|
|
}
|
935 |
|
|
|
936 |
|
|
/**
|
937 |
|
|
* Return the y coordinate of the first point.
|
938 |
|
|
*
|
939 |
|
|
* @return the value of y1
|
940 |
|
|
*/
|
941 |
|
|
public double getY1()
|
942 |
|
|
{
|
943 |
|
|
return y1;
|
944 |
|
|
}
|
945 |
|
|
|
946 |
|
|
/**
|
947 |
|
|
* Return the first point.
|
948 |
|
|
*
|
949 |
|
|
* @return the point (x1,y1)
|
950 |
|
|
*/
|
951 |
|
|
public Point2D getP1()
|
952 |
|
|
{
|
953 |
|
|
return new Point2D.Double(x1, y1);
|
954 |
|
|
}
|
955 |
|
|
|
956 |
|
|
/**
|
957 |
|
|
* Return the x coordinate of the second point.
|
958 |
|
|
*
|
959 |
|
|
* @return the value of x2
|
960 |
|
|
*/
|
961 |
|
|
public double getX2()
|
962 |
|
|
{
|
963 |
|
|
return x2;
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
/**
|
967 |
|
|
* Return the y coordinate of the second point.
|
968 |
|
|
*
|
969 |
|
|
* @return the value of y2
|
970 |
|
|
*/
|
971 |
|
|
public double getY2()
|
972 |
|
|
{
|
973 |
|
|
return y2;
|
974 |
|
|
}
|
975 |
|
|
|
976 |
|
|
/**
|
977 |
|
|
* Return the second point.
|
978 |
|
|
*
|
979 |
|
|
* @return the point (x2,y2)
|
980 |
|
|
*/
|
981 |
|
|
public Point2D getP2()
|
982 |
|
|
{
|
983 |
|
|
return new Point2D.Double(x2, y2);
|
984 |
|
|
}
|
985 |
|
|
|
986 |
|
|
/**
|
987 |
|
|
* Set this line to the given points.
|
988 |
|
|
*
|
989 |
|
|
* @param x1 the new x coordinate of the first point
|
990 |
|
|
* @param y1 the new y coordinate of the first point
|
991 |
|
|
* @param x2 the new x coordinate of the second point
|
992 |
|
|
* @param y2 the new y coordinate of the second point
|
993 |
|
|
*/
|
994 |
|
|
public void setLine(double x1, double y1, double x2, double y2)
|
995 |
|
|
{
|
996 |
|
|
this.x1 = x1;
|
997 |
|
|
this.y1 = y1;
|
998 |
|
|
this.x2 = x2;
|
999 |
|
|
this.y2 = y2;
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
/**
|
1003 |
|
|
* Return the exact bounds of this line segment.
|
1004 |
|
|
*
|
1005 |
|
|
* @return the bounding box
|
1006 |
|
|
*/
|
1007 |
|
|
public Rectangle2D getBounds2D()
|
1008 |
|
|
{
|
1009 |
|
|
double x = Math.min(x1, x2);
|
1010 |
|
|
double y = Math.min(y1, y2);
|
1011 |
|
|
double w = Math.abs(x1 - x2);
|
1012 |
|
|
double h = Math.abs(y1 - y2);
|
1013 |
|
|
return new Rectangle2D.Double(x, y, w, h);
|
1014 |
|
|
}
|
1015 |
|
|
} // class Double
|
1016 |
|
|
|
1017 |
|
|
/**
|
1018 |
|
|
* This class defines a point in <code>float</code> precision.
|
1019 |
|
|
*
|
1020 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
1021 |
|
|
* @since 1.2
|
1022 |
|
|
* @status updated to 1.4
|
1023 |
|
|
*/
|
1024 |
|
|
public static class Float extends Line2D
|
1025 |
|
|
{
|
1026 |
|
|
/** The x coordinate of the first point. */
|
1027 |
|
|
public float x1;
|
1028 |
|
|
|
1029 |
|
|
/** The y coordinate of the first point. */
|
1030 |
|
|
public float y1;
|
1031 |
|
|
|
1032 |
|
|
/** The x coordinate of the second point. */
|
1033 |
|
|
public float x2;
|
1034 |
|
|
|
1035 |
|
|
/** The y coordinate of the second point. */
|
1036 |
|
|
public float y2;
|
1037 |
|
|
|
1038 |
|
|
/**
|
1039 |
|
|
* Construct the line segment (0,0)->(0,0).
|
1040 |
|
|
*/
|
1041 |
|
|
public Float()
|
1042 |
|
|
{
|
1043 |
|
|
}
|
1044 |
|
|
|
1045 |
|
|
/**
|
1046 |
|
|
* Construct the line segment with the specified points.
|
1047 |
|
|
*
|
1048 |
|
|
* @param x1 the x coordinate of the first point
|
1049 |
|
|
* @param y1 the y coordinate of the first point
|
1050 |
|
|
* @param x2 the x coordinate of the second point
|
1051 |
|
|
* @param y2 the y coordinate of the second point
|
1052 |
|
|
*/
|
1053 |
|
|
public Float(float x1, float y1, float x2, float y2)
|
1054 |
|
|
{
|
1055 |
|
|
this.x1 = x1;
|
1056 |
|
|
this.y1 = y1;
|
1057 |
|
|
this.x2 = x2;
|
1058 |
|
|
this.y2 = y2;
|
1059 |
|
|
}
|
1060 |
|
|
|
1061 |
|
|
/**
|
1062 |
|
|
* Construct the line segment with the specified points.
|
1063 |
|
|
*
|
1064 |
|
|
* @param p1 the first point
|
1065 |
|
|
* @param p2 the second point
|
1066 |
|
|
* @throws NullPointerException if either point is null
|
1067 |
|
|
*/
|
1068 |
|
|
public Float(Point2D p1, Point2D p2)
|
1069 |
|
|
{
|
1070 |
|
|
x1 = (float) p1.getX();
|
1071 |
|
|
y1 = (float) p1.getY();
|
1072 |
|
|
x2 = (float) p2.getX();
|
1073 |
|
|
y2 = (float) p2.getY();
|
1074 |
|
|
}
|
1075 |
|
|
|
1076 |
|
|
/**
|
1077 |
|
|
* Return the x coordinate of the first point.
|
1078 |
|
|
*
|
1079 |
|
|
* @return the value of x1
|
1080 |
|
|
*/
|
1081 |
|
|
public double getX1()
|
1082 |
|
|
{
|
1083 |
|
|
return x1;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/**
|
1087 |
|
|
* Return the y coordinate of the first point.
|
1088 |
|
|
*
|
1089 |
|
|
* @return the value of y1
|
1090 |
|
|
*/
|
1091 |
|
|
public double getY1()
|
1092 |
|
|
{
|
1093 |
|
|
return y1;
|
1094 |
|
|
}
|
1095 |
|
|
|
1096 |
|
|
/**
|
1097 |
|
|
* Return the first point.
|
1098 |
|
|
*
|
1099 |
|
|
* @return the point (x1,y1)
|
1100 |
|
|
*/
|
1101 |
|
|
public Point2D getP1()
|
1102 |
|
|
{
|
1103 |
|
|
return new Point2D.Float(x1, y1);
|
1104 |
|
|
}
|
1105 |
|
|
|
1106 |
|
|
/**
|
1107 |
|
|
* Return the x coordinate of the second point.
|
1108 |
|
|
*
|
1109 |
|
|
* @return the value of x2
|
1110 |
|
|
*/
|
1111 |
|
|
public double getX2()
|
1112 |
|
|
{
|
1113 |
|
|
return x2;
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/**
|
1117 |
|
|
* Return the y coordinate of the second point.
|
1118 |
|
|
*
|
1119 |
|
|
* @return the value of y2
|
1120 |
|
|
*/
|
1121 |
|
|
public double getY2()
|
1122 |
|
|
{
|
1123 |
|
|
return y2;
|
1124 |
|
|
}
|
1125 |
|
|
|
1126 |
|
|
/**
|
1127 |
|
|
* Return the second point.
|
1128 |
|
|
*
|
1129 |
|
|
* @return the point (x2,y2)
|
1130 |
|
|
*/
|
1131 |
|
|
public Point2D getP2()
|
1132 |
|
|
{
|
1133 |
|
|
return new Point2D.Float(x2, y2);
|
1134 |
|
|
}
|
1135 |
|
|
|
1136 |
|
|
/**
|
1137 |
|
|
* Set this line to the given points.
|
1138 |
|
|
*
|
1139 |
|
|
* @param x1 the new x coordinate of the first point
|
1140 |
|
|
* @param y1 the new y coordinate of the first point
|
1141 |
|
|
* @param x2 the new x coordinate of the second point
|
1142 |
|
|
* @param y2 the new y coordinate of the second point
|
1143 |
|
|
*/
|
1144 |
|
|
public void setLine(double x1, double y1, double x2, double y2)
|
1145 |
|
|
{
|
1146 |
|
|
this.x1 = (float) x1;
|
1147 |
|
|
this.y1 = (float) y1;
|
1148 |
|
|
this.x2 = (float) x2;
|
1149 |
|
|
this.y2 = (float) y2;
|
1150 |
|
|
}
|
1151 |
|
|
|
1152 |
|
|
/**
|
1153 |
|
|
* Set this line to the given points.
|
1154 |
|
|
*
|
1155 |
|
|
* @param x1 the new x coordinate of the first point
|
1156 |
|
|
* @param y1 the new y coordinate of the first point
|
1157 |
|
|
* @param x2 the new x coordinate of the second point
|
1158 |
|
|
* @param y2 the new y coordinate of the second point
|
1159 |
|
|
*/
|
1160 |
|
|
public void setLine(float x1, float y1, float x2, float y2)
|
1161 |
|
|
{
|
1162 |
|
|
this.x1 = x1;
|
1163 |
|
|
this.y1 = y1;
|
1164 |
|
|
this.x2 = x2;
|
1165 |
|
|
this.y2 = y2;
|
1166 |
|
|
}
|
1167 |
|
|
|
1168 |
|
|
/**
|
1169 |
|
|
* Return the exact bounds of this line segment.
|
1170 |
|
|
*
|
1171 |
|
|
* @return the bounding box
|
1172 |
|
|
*/
|
1173 |
|
|
public Rectangle2D getBounds2D()
|
1174 |
|
|
{
|
1175 |
|
|
float x = Math.min(x1, x2);
|
1176 |
|
|
float y = Math.min(y1, y2);
|
1177 |
|
|
float w = Math.abs(x1 - x2);
|
1178 |
|
|
float h = Math.abs(y1 - y2);
|
1179 |
|
|
return new Rectangle2D.Float(x, y, w, h);
|
1180 |
|
|
}
|
1181 |
|
|
} // class Float
|
1182 |
|
|
} // class Line2D
|