1 |
771 |
jeremybenn |
/* AffineTransformOp.java -- This class performs affine
|
2 |
|
|
transformation between two images or rasters in 2 dimensions.
|
3 |
|
|
Copyright (C) 2004, 2006 Free Software Foundation
|
4 |
|
|
|
5 |
|
|
This file is part of GNU Classpath.
|
6 |
|
|
|
7 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
13 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
19 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
20 |
|
|
02110-1301 USA.
|
21 |
|
|
|
22 |
|
|
Linking this library statically or dynamically with other modules is
|
23 |
|
|
making a combined work based on this library. Thus, the terms and
|
24 |
|
|
conditions of the GNU General Public License cover the whole
|
25 |
|
|
combination.
|
26 |
|
|
|
27 |
|
|
As a special exception, the copyright holders of this library give you
|
28 |
|
|
permission to link this library with independent modules to produce an
|
29 |
|
|
executable, regardless of the license terms of these independent
|
30 |
|
|
modules, and to copy and distribute the resulting executable under
|
31 |
|
|
terms of your choice, provided that you also meet, for each linked
|
32 |
|
|
independent module, the terms and conditions of the license of that
|
33 |
|
|
module. An independent module is a module which is not derived from
|
34 |
|
|
or based on this library. If you modify this library, you may extend
|
35 |
|
|
this exception to your version of the library, but you are not
|
36 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
37 |
|
|
exception statement from your version. */
|
38 |
|
|
|
39 |
|
|
package java.awt.image;
|
40 |
|
|
|
41 |
|
|
import java.awt.Graphics2D;
|
42 |
|
|
import java.awt.Point;
|
43 |
|
|
import java.awt.Rectangle;
|
44 |
|
|
import java.awt.RenderingHints;
|
45 |
|
|
import java.awt.geom.AffineTransform;
|
46 |
|
|
import java.awt.geom.NoninvertibleTransformException;
|
47 |
|
|
import java.awt.geom.Point2D;
|
48 |
|
|
import java.awt.geom.Rectangle2D;
|
49 |
|
|
import java.util.Arrays;
|
50 |
|
|
|
51 |
|
|
/**
|
52 |
|
|
* AffineTransformOp performs matrix-based transformations (translations,
|
53 |
|
|
* scales, flips, rotations, and shears).
|
54 |
|
|
*
|
55 |
|
|
* If interpolation is required, nearest neighbour, bilinear, and bicubic
|
56 |
|
|
* methods are available.
|
57 |
|
|
*
|
58 |
|
|
* @author Olga Rodimina (rodimina@redhat.com)
|
59 |
|
|
* @author Francis Kung (fkung@redhat.com)
|
60 |
|
|
*/
|
61 |
|
|
public class AffineTransformOp implements BufferedImageOp, RasterOp
|
62 |
|
|
{
|
63 |
|
|
public static final int TYPE_NEAREST_NEIGHBOR = 1;
|
64 |
|
|
|
65 |
|
|
public static final int TYPE_BILINEAR = 2;
|
66 |
|
|
|
67 |
|
|
/**
|
68 |
|
|
* @since 1.5.0
|
69 |
|
|
*/
|
70 |
|
|
public static final int TYPE_BICUBIC = 3;
|
71 |
|
|
|
72 |
|
|
private AffineTransform transform;
|
73 |
|
|
private RenderingHints hints;
|
74 |
|
|
|
75 |
|
|
/**
|
76 |
|
|
* Construct AffineTransformOp with the given xform and interpolationType.
|
77 |
|
|
* Interpolation type can be TYPE_BILINEAR, TYPE_BICUBIC or
|
78 |
|
|
* TYPE_NEAREST_NEIGHBOR.
|
79 |
|
|
*
|
80 |
|
|
* @param xform AffineTransform that will applied to the source image
|
81 |
|
|
* @param interpolationType type of interpolation used
|
82 |
|
|
* @throws ImagingOpException if the transform matrix is noninvertible
|
83 |
|
|
*/
|
84 |
|
|
public AffineTransformOp (AffineTransform xform, int interpolationType)
|
85 |
|
|
{
|
86 |
|
|
this.transform = xform;
|
87 |
|
|
if (xform.getDeterminant() == 0)
|
88 |
|
|
throw new ImagingOpException(null);
|
89 |
|
|
|
90 |
|
|
switch (interpolationType)
|
91 |
|
|
{
|
92 |
|
|
case TYPE_BILINEAR:
|
93 |
|
|
hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
|
94 |
|
|
RenderingHints.VALUE_INTERPOLATION_BILINEAR);
|
95 |
|
|
break;
|
96 |
|
|
case TYPE_BICUBIC:
|
97 |
|
|
hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
|
98 |
|
|
RenderingHints.VALUE_INTERPOLATION_BICUBIC);
|
99 |
|
|
break;
|
100 |
|
|
default:
|
101 |
|
|
hints = new RenderingHints (RenderingHints.KEY_INTERPOLATION,
|
102 |
|
|
RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR);
|
103 |
|
|
}
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
/**
|
107 |
|
|
* Construct AffineTransformOp with the given xform and rendering hints.
|
108 |
|
|
*
|
109 |
|
|
* @param xform AffineTransform that will applied to the source image
|
110 |
|
|
* @param hints rendering hints that will be used during transformation
|
111 |
|
|
* @throws ImagingOpException if the transform matrix is noninvertible
|
112 |
|
|
*/
|
113 |
|
|
public AffineTransformOp (AffineTransform xform, RenderingHints hints)
|
114 |
|
|
{
|
115 |
|
|
this.transform = xform;
|
116 |
|
|
this.hints = hints;
|
117 |
|
|
if (xform.getDeterminant() == 0)
|
118 |
|
|
throw new ImagingOpException(null);
|
119 |
|
|
}
|
120 |
|
|
|
121 |
|
|
/**
|
122 |
|
|
* Creates a new BufferedImage with the size equal to that of the
|
123 |
|
|
* transformed image and the correct number of bands. The newly created
|
124 |
|
|
* image is created with the specified ColorModel.
|
125 |
|
|
* If a ColorModel is not specified, an appropriate ColorModel is used.
|
126 |
|
|
*
|
127 |
|
|
* @param src the source image.
|
128 |
|
|
* @param destCM color model for the destination image (can be null).
|
129 |
|
|
* @return a new compatible destination image.
|
130 |
|
|
*/
|
131 |
|
|
public BufferedImage createCompatibleDestImage (BufferedImage src,
|
132 |
|
|
ColorModel destCM)
|
133 |
|
|
{
|
134 |
|
|
if (destCM != null)
|
135 |
|
|
return new BufferedImage(destCM,
|
136 |
|
|
createCompatibleDestRaster(src.getRaster()),
|
137 |
|
|
src.isAlphaPremultiplied(), null);
|
138 |
|
|
|
139 |
|
|
// This behaviour was determined by Mauve testcases, and is compatible
|
140 |
|
|
// with the reference implementation
|
141 |
|
|
if (src.getType() == BufferedImage.TYPE_INT_ARGB_PRE
|
142 |
|
|
|| src.getType() == BufferedImage.TYPE_4BYTE_ABGR
|
143 |
|
|
|| src.getType() == BufferedImage.TYPE_4BYTE_ABGR_PRE)
|
144 |
|
|
return new BufferedImage(src.getWidth(), src.getHeight(), src.getType());
|
145 |
|
|
|
146 |
|
|
else
|
147 |
|
|
return new BufferedImage(src.getWidth(), src.getHeight(),
|
148 |
|
|
BufferedImage.TYPE_INT_ARGB);
|
149 |
|
|
}
|
150 |
|
|
|
151 |
|
|
/**
|
152 |
|
|
* Creates a new WritableRaster with the size equal to the transformed
|
153 |
|
|
* source raster and correct number of bands .
|
154 |
|
|
*
|
155 |
|
|
* @param src the source raster.
|
156 |
|
|
* @throws RasterFormatException if resulting width or height of raster is 0.
|
157 |
|
|
* @return a new compatible raster.
|
158 |
|
|
*/
|
159 |
|
|
public WritableRaster createCompatibleDestRaster (Raster src)
|
160 |
|
|
{
|
161 |
|
|
Rectangle2D rect = getBounds2D(src);
|
162 |
|
|
|
163 |
|
|
if (rect.getWidth() == 0 || rect.getHeight() == 0)
|
164 |
|
|
throw new RasterFormatException("width or height is 0");
|
165 |
|
|
|
166 |
|
|
return src.createCompatibleWritableRaster((int) rect.getWidth(),
|
167 |
|
|
(int) rect.getHeight());
|
168 |
|
|
}
|
169 |
|
|
|
170 |
|
|
/**
|
171 |
|
|
* Transforms source image using transform specified at the constructor.
|
172 |
|
|
* The resulting transformed image is stored in the destination image if one
|
173 |
|
|
* is provided; otherwise a new BufferedImage is created and returned.
|
174 |
|
|
*
|
175 |
|
|
* @param src source image
|
176 |
|
|
* @param dst destination image
|
177 |
|
|
* @throws IllegalArgumentException if the source and destination image are
|
178 |
|
|
* the same
|
179 |
|
|
* @return transformed source image.
|
180 |
|
|
*/
|
181 |
|
|
public final BufferedImage filter (BufferedImage src, BufferedImage dst)
|
182 |
|
|
{
|
183 |
|
|
if (dst == src)
|
184 |
|
|
throw new IllegalArgumentException("src image cannot be the same as "
|
185 |
|
|
+ "the dst image");
|
186 |
|
|
|
187 |
|
|
// If the destination image is null, then use a compatible BufferedImage
|
188 |
|
|
if (dst == null)
|
189 |
|
|
dst = createCompatibleDestImage(src, null);
|
190 |
|
|
|
191 |
|
|
Graphics2D gr = dst.createGraphics();
|
192 |
|
|
gr.setRenderingHints(hints);
|
193 |
|
|
gr.drawImage(src, transform, null);
|
194 |
|
|
return dst;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/**
|
198 |
|
|
* Transforms source raster using transform specified at the constructor.
|
199 |
|
|
* The resulting raster is stored in the destination raster if it is not
|
200 |
|
|
* null, otherwise a new raster is created and returned.
|
201 |
|
|
*
|
202 |
|
|
* @param src source raster
|
203 |
|
|
* @param dst destination raster
|
204 |
|
|
* @throws IllegalArgumentException if the source and destination are not
|
205 |
|
|
* compatible
|
206 |
|
|
* @return transformed raster.
|
207 |
|
|
*/
|
208 |
|
|
public final WritableRaster filter(Raster src, WritableRaster dst)
|
209 |
|
|
{
|
210 |
|
|
// Initial checks
|
211 |
|
|
if (dst == src)
|
212 |
|
|
throw new IllegalArgumentException("src image cannot be the same as"
|
213 |
|
|
+ " the dst image");
|
214 |
|
|
|
215 |
|
|
if (dst == null)
|
216 |
|
|
dst = createCompatibleDestRaster(src);
|
217 |
|
|
|
218 |
|
|
if (src.getNumBands() != dst.getNumBands())
|
219 |
|
|
throw new IllegalArgumentException("src and dst must have same number"
|
220 |
|
|
+ " of bands");
|
221 |
|
|
|
222 |
|
|
// Optimization for rasters that can be represented in the RGB colormodel:
|
223 |
|
|
// wrap the rasters in images, and let Cairo do the transformation
|
224 |
|
|
if (ColorModel.getRGBdefault().isCompatibleSampleModel(src.getSampleModel())
|
225 |
|
|
&& ColorModel.getRGBdefault().isCompatibleSampleModel(dst.getSampleModel()))
|
226 |
|
|
{
|
227 |
|
|
WritableRaster src2 = Raster.createWritableRaster(src.getSampleModel(),
|
228 |
|
|
src.getDataBuffer(),
|
229 |
|
|
new Point(src.getMinX(),
|
230 |
|
|
src.getMinY()));
|
231 |
|
|
BufferedImage iSrc = new BufferedImage(ColorModel.getRGBdefault(),
|
232 |
|
|
src2, false, null);
|
233 |
|
|
BufferedImage iDst = new BufferedImage(ColorModel.getRGBdefault(), dst,
|
234 |
|
|
false, null);
|
235 |
|
|
|
236 |
|
|
return filter(iSrc, iDst).getRaster();
|
237 |
|
|
}
|
238 |
|
|
|
239 |
|
|
// Otherwise, we need to do the transformation in java code...
|
240 |
|
|
// Create arrays to hold all the points
|
241 |
|
|
double[] dstPts = new double[dst.getHeight() * dst.getWidth() * 2];
|
242 |
|
|
double[] srcPts = new double[dst.getHeight() * dst.getWidth() * 2];
|
243 |
|
|
|
244 |
|
|
// Populate array with all points in the *destination* raster
|
245 |
|
|
int i = 0;
|
246 |
|
|
for (int x = 0; x < dst.getWidth(); x++)
|
247 |
|
|
{
|
248 |
|
|
for (int y = 0; y < dst.getHeight(); y++)
|
249 |
|
|
{
|
250 |
|
|
dstPts[i++] = x;
|
251 |
|
|
dstPts[i++] = y;
|
252 |
|
|
}
|
253 |
|
|
}
|
254 |
|
|
Rectangle srcbounds = src.getBounds();
|
255 |
|
|
|
256 |
|
|
// Use an inverse transform to map each point in the destination to
|
257 |
|
|
// a point in the source. Note that, while all points in the destination
|
258 |
|
|
// matrix are integers, this is not necessarily true for points in the
|
259 |
|
|
// source (hence why interpolation is required)
|
260 |
|
|
try
|
261 |
|
|
{
|
262 |
|
|
AffineTransform inverseTx = transform.createInverse();
|
263 |
|
|
inverseTx.transform(dstPts, 0, srcPts, 0, dstPts.length / 2);
|
264 |
|
|
}
|
265 |
|
|
catch (NoninvertibleTransformException e)
|
266 |
|
|
{
|
267 |
|
|
// Shouldn't happen since the constructor traps this
|
268 |
|
|
throw new ImagingOpException(e.getMessage());
|
269 |
|
|
}
|
270 |
|
|
|
271 |
|
|
// Different interpolation methods...
|
272 |
|
|
if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR))
|
273 |
|
|
filterNearest(src, dst, dstPts, srcPts);
|
274 |
|
|
|
275 |
|
|
else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR))
|
276 |
|
|
filterBilinear(src, dst, dstPts, srcPts);
|
277 |
|
|
|
278 |
|
|
else // bicubic
|
279 |
|
|
filterBicubic(src, dst, dstPts, srcPts);
|
280 |
|
|
|
281 |
|
|
return dst;
|
282 |
|
|
}
|
283 |
|
|
|
284 |
|
|
/**
|
285 |
|
|
* Transforms source image using transform specified at the constructor and
|
286 |
|
|
* returns bounds of the transformed image.
|
287 |
|
|
*
|
288 |
|
|
* @param src image to be transformed
|
289 |
|
|
* @return bounds of the transformed image.
|
290 |
|
|
*/
|
291 |
|
|
public final Rectangle2D getBounds2D (BufferedImage src)
|
292 |
|
|
{
|
293 |
|
|
return getBounds2D (src.getRaster());
|
294 |
|
|
}
|
295 |
|
|
|
296 |
|
|
/**
|
297 |
|
|
* Returns bounds of the transformed raster.
|
298 |
|
|
*
|
299 |
|
|
* @param src raster to be transformed
|
300 |
|
|
* @return bounds of the transformed raster.
|
301 |
|
|
*/
|
302 |
|
|
public final Rectangle2D getBounds2D (Raster src)
|
303 |
|
|
{
|
304 |
|
|
return transform.createTransformedShape(src.getBounds()).getBounds2D();
|
305 |
|
|
}
|
306 |
|
|
|
307 |
|
|
/**
|
308 |
|
|
* Returns interpolation type used during transformations.
|
309 |
|
|
*
|
310 |
|
|
* @return interpolation type
|
311 |
|
|
*/
|
312 |
|
|
public final int getInterpolationType ()
|
313 |
|
|
{
|
314 |
|
|
if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BILINEAR))
|
315 |
|
|
return TYPE_BILINEAR;
|
316 |
|
|
|
317 |
|
|
else if (hints.containsValue(RenderingHints.VALUE_INTERPOLATION_BICUBIC))
|
318 |
|
|
return TYPE_BICUBIC;
|
319 |
|
|
|
320 |
|
|
else
|
321 |
|
|
return TYPE_NEAREST_NEIGHBOR;
|
322 |
|
|
}
|
323 |
|
|
|
324 |
|
|
/**
|
325 |
|
|
* Returns location of the transformed source point. The resulting point
|
326 |
|
|
* is stored in the dstPt if one is specified.
|
327 |
|
|
*
|
328 |
|
|
* @param srcPt point to be transformed
|
329 |
|
|
* @param dstPt destination point
|
330 |
|
|
* @return the location of the transformed source point.
|
331 |
|
|
*/
|
332 |
|
|
public final Point2D getPoint2D (Point2D srcPt, Point2D dstPt)
|
333 |
|
|
{
|
334 |
|
|
return transform.transform (srcPt, dstPt);
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
/**
|
338 |
|
|
* Returns rendering hints that are used during transformation.
|
339 |
|
|
*
|
340 |
|
|
* @return the rendering hints used in this Op.
|
341 |
|
|
*/
|
342 |
|
|
public final RenderingHints getRenderingHints ()
|
343 |
|
|
{
|
344 |
|
|
return hints;
|
345 |
|
|
}
|
346 |
|
|
|
347 |
|
|
/**
|
348 |
|
|
* Returns transform used in transformation between source and destination
|
349 |
|
|
* image.
|
350 |
|
|
*
|
351 |
|
|
* @return the transform used in this Op.
|
352 |
|
|
*/
|
353 |
|
|
public final AffineTransform getTransform ()
|
354 |
|
|
{
|
355 |
|
|
return transform;
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
/**
|
359 |
|
|
* Perform nearest-neighbour filtering
|
360 |
|
|
*
|
361 |
|
|
* @param src the source raster
|
362 |
|
|
* @param dst the destination raster
|
363 |
|
|
* @param dpts array of points on the destination raster
|
364 |
|
|
* @param pts array of corresponding points on the source raster
|
365 |
|
|
*/
|
366 |
|
|
private void filterNearest(Raster src, WritableRaster dst, double[] dpts,
|
367 |
|
|
double[] pts)
|
368 |
|
|
{
|
369 |
|
|
Rectangle srcbounds = src.getBounds();
|
370 |
|
|
|
371 |
|
|
// For all points on the destination raster, copy the value from the
|
372 |
|
|
// corrosponding (rounded) source point
|
373 |
|
|
for (int i = 0; i < dpts.length; i += 2)
|
374 |
|
|
{
|
375 |
|
|
int srcX = (int) Math.round(pts[i]) + src.getMinX();
|
376 |
|
|
int srcY = (int) Math.round(pts[i + 1]) + src.getMinY();
|
377 |
|
|
|
378 |
|
|
if (srcbounds.contains(srcX, srcY))
|
379 |
|
|
dst.setDataElements((int) dpts[i] + dst.getMinX(),
|
380 |
|
|
(int) dpts[i + 1] + dst.getMinY(),
|
381 |
|
|
src.getDataElements(srcX, srcY, null));
|
382 |
|
|
}
|
383 |
|
|
}
|
384 |
|
|
|
385 |
|
|
/**
|
386 |
|
|
* Perform bilinear filtering
|
387 |
|
|
*
|
388 |
|
|
* @param src the source raster
|
389 |
|
|
* @param dst the destination raster
|
390 |
|
|
* @param dpts array of points on the destination raster
|
391 |
|
|
* @param pts array of corresponding points on the source raster
|
392 |
|
|
*/
|
393 |
|
|
private void filterBilinear(Raster src, WritableRaster dst, double[] dpts,
|
394 |
|
|
double[] pts)
|
395 |
|
|
{
|
396 |
|
|
Rectangle srcbounds = src.getBounds();
|
397 |
|
|
|
398 |
|
|
Object xyarr = null;
|
399 |
|
|
Object xp1arr = null;
|
400 |
|
|
Object yp1arr = null;
|
401 |
|
|
Object xyp1arr = null;
|
402 |
|
|
|
403 |
|
|
double xy;
|
404 |
|
|
double xp1;
|
405 |
|
|
double yp1;
|
406 |
|
|
double xyp1;
|
407 |
|
|
|
408 |
|
|
double[] result = new double[src.getNumBands()];
|
409 |
|
|
|
410 |
|
|
// For all points in the destination raster, use bilinear interpolation
|
411 |
|
|
// to find the value from the corrosponding source points
|
412 |
|
|
for (int i = 0; i < dpts.length; i += 2)
|
413 |
|
|
{
|
414 |
|
|
int srcX = (int) Math.round(pts[i]) + src.getMinX();
|
415 |
|
|
int srcY = (int) Math.round(pts[i + 1]) + src.getMinY();
|
416 |
|
|
|
417 |
|
|
if (srcbounds.contains(srcX, srcY))
|
418 |
|
|
{
|
419 |
|
|
// Corner case at the bottom or right edge; use nearest neighbour
|
420 |
|
|
if (pts[i] >= src.getWidth() - 1
|
421 |
|
|
|| pts[i + 1] >= src.getHeight() - 1)
|
422 |
|
|
dst.setDataElements((int) dpts[i] + dst.getMinX(),
|
423 |
|
|
(int) dpts[i + 1] + dst.getMinY(),
|
424 |
|
|
src.getDataElements(srcX, srcY, null));
|
425 |
|
|
|
426 |
|
|
// Standard case, apply the bilinear formula
|
427 |
|
|
else
|
428 |
|
|
{
|
429 |
|
|
int x = (int) Math.floor(pts[i] + src.getMinX());
|
430 |
|
|
int y = (int) Math.floor(pts[i + 1] + src.getMinY());
|
431 |
|
|
double xdiff = pts[i] + src.getMinX() - x;
|
432 |
|
|
double ydiff = pts[i + 1] + src.getMinY() - y;
|
433 |
|
|
|
434 |
|
|
// Get surrounding pixels used in interpolation... optimized
|
435 |
|
|
// to use the smallest datatype possible.
|
436 |
|
|
if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
|
437 |
|
|
|| src.getTransferType() == DataBuffer.TYPE_FLOAT)
|
438 |
|
|
{
|
439 |
|
|
xyarr = src.getPixel(x, y, (double[])xyarr);
|
440 |
|
|
xp1arr = src.getPixel(x+1, y, (double[])xp1arr);
|
441 |
|
|
yp1arr = src.getPixel(x, y+1, (double[])yp1arr);
|
442 |
|
|
xyp1arr = src.getPixel(x+1, y+1, (double[])xyp1arr);
|
443 |
|
|
}
|
444 |
|
|
else
|
445 |
|
|
{
|
446 |
|
|
xyarr = src.getPixel(x, y, (int[])xyarr);
|
447 |
|
|
xp1arr = src.getPixel(x+1, y, (int[])xp1arr);
|
448 |
|
|
yp1arr = src.getPixel(x, y+1, (int[])yp1arr);
|
449 |
|
|
xyp1arr = src.getPixel(x+1, y+1, (int[])xyp1arr);
|
450 |
|
|
}
|
451 |
|
|
// using
|
452 |
|
|
// array[] pixels = src.getPixels(x, y, 2, 2, pixels);
|
453 |
|
|
// instead of doing four individual src.getPixel() calls
|
454 |
|
|
// should be faster, but benchmarking shows that it's not...
|
455 |
|
|
|
456 |
|
|
// Run interpolation for each band
|
457 |
|
|
for (int j = 0; j < src.getNumBands(); j++)
|
458 |
|
|
{
|
459 |
|
|
// Pull individual sample values out of array
|
460 |
|
|
if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
|
461 |
|
|
|| src.getTransferType() == DataBuffer.TYPE_FLOAT)
|
462 |
|
|
{
|
463 |
|
|
xy = ((double[])xyarr)[j];
|
464 |
|
|
xp1 = ((double[])xp1arr)[j];
|
465 |
|
|
yp1 = ((double[])yp1arr)[j];
|
466 |
|
|
xyp1 = ((double[])xyp1arr)[j];
|
467 |
|
|
}
|
468 |
|
|
else
|
469 |
|
|
{
|
470 |
|
|
xy = ((int[])xyarr)[j];
|
471 |
|
|
xp1 = ((int[])xp1arr)[j];
|
472 |
|
|
yp1 = ((int[])yp1arr)[j];
|
473 |
|
|
xyp1 = ((int[])xyp1arr)[j];
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
// If all four samples are identical, there's no need to
|
477 |
|
|
// calculate anything
|
478 |
|
|
if (xy == xp1 && xy == yp1 && xy == xyp1)
|
479 |
|
|
result[j] = xy;
|
480 |
|
|
|
481 |
|
|
// Run bilinear interpolation formula
|
482 |
|
|
else
|
483 |
|
|
result[j] = (xy * (1-xdiff) + xp1 * xdiff)
|
484 |
|
|
* (1-ydiff)
|
485 |
|
|
+ (yp1 * (1-xdiff) + xyp1 * xdiff)
|
486 |
|
|
* ydiff;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
dst.setPixel((int)dpts[i] + dst.getMinX(),
|
490 |
|
|
(int)dpts[i+1] + dst.getMinY(),
|
491 |
|
|
result);
|
492 |
|
|
}
|
493 |
|
|
}
|
494 |
|
|
}
|
495 |
|
|
}
|
496 |
|
|
|
497 |
|
|
/**
|
498 |
|
|
* Perform bicubic filtering
|
499 |
|
|
* based on http://local.wasp.uwa.edu.au/~pbourke/colour/bicubic/
|
500 |
|
|
*
|
501 |
|
|
* @param src the source raster
|
502 |
|
|
* @param dst the destination raster
|
503 |
|
|
* @param dpts array of points on the destination raster
|
504 |
|
|
* @param pts array of corresponding points on the source raster
|
505 |
|
|
*/
|
506 |
|
|
private void filterBicubic(Raster src, WritableRaster dst, double[] dpts,
|
507 |
|
|
double[] pts)
|
508 |
|
|
{
|
509 |
|
|
Rectangle srcbounds = src.getBounds();
|
510 |
|
|
double[] result = new double[src.getNumBands()];
|
511 |
|
|
Object pixels = null;
|
512 |
|
|
|
513 |
|
|
// For all points on the destination raster, perform bicubic interpolation
|
514 |
|
|
// from corrosponding source points
|
515 |
|
|
for (int i = 0; i < dpts.length; i += 2)
|
516 |
|
|
{
|
517 |
|
|
if (srcbounds.contains((int) Math.round(pts[i]) + src.getMinX(),
|
518 |
|
|
(int) Math.round(pts[i + 1]) + src.getMinY()))
|
519 |
|
|
{
|
520 |
|
|
int x = (int) Math.floor(pts[i] + src.getMinX());
|
521 |
|
|
int y = (int) Math.floor(pts[i + 1] + src.getMinY());
|
522 |
|
|
double dx = pts[i] + src.getMinX() - x;
|
523 |
|
|
double dy = pts[i + 1] + src.getMinY() - y;
|
524 |
|
|
Arrays.fill(result, 0);
|
525 |
|
|
|
526 |
|
|
for (int m = - 1; m < 3; m++)
|
527 |
|
|
for (int n = - 1; n < 3; n++)
|
528 |
|
|
{
|
529 |
|
|
// R(x) = ( P(x+2)^3 - 4 P(x+1)^3 + 6 P(x)^3 - 4 P(x-1)^3 ) / 6
|
530 |
|
|
double r1 = 0;
|
531 |
|
|
double r2 = 0;
|
532 |
|
|
|
533 |
|
|
// Calculate R(m - dx)
|
534 |
|
|
double rx = m - dx + 2;
|
535 |
|
|
r1 += rx * rx * rx;
|
536 |
|
|
|
537 |
|
|
rx = m - dx + 1;
|
538 |
|
|
if (rx > 0)
|
539 |
|
|
r1 -= 4 * rx * rx * rx;
|
540 |
|
|
|
541 |
|
|
rx = m - dx;
|
542 |
|
|
if (rx > 0)
|
543 |
|
|
r1 += 6 * rx * rx * rx;
|
544 |
|
|
|
545 |
|
|
rx = m - dx - 1;
|
546 |
|
|
if (rx > 0)
|
547 |
|
|
r1 -= 4 * rx * rx * rx;
|
548 |
|
|
|
549 |
|
|
r1 /= 6;
|
550 |
|
|
|
551 |
|
|
// Calculate R(dy - n);
|
552 |
|
|
rx = dy - n + 2;
|
553 |
|
|
if (rx > 0)
|
554 |
|
|
r2 += rx * rx * rx;
|
555 |
|
|
|
556 |
|
|
rx = dy - n + 1;
|
557 |
|
|
if (rx > 0)
|
558 |
|
|
r2 -= 4 * rx * rx * rx;
|
559 |
|
|
|
560 |
|
|
rx = dy - n;
|
561 |
|
|
if (rx > 0)
|
562 |
|
|
r2 += 6 * rx * rx * rx;
|
563 |
|
|
|
564 |
|
|
rx = dy - n - 1;
|
565 |
|
|
if (rx > 0)
|
566 |
|
|
r2 -= 4 * rx * rx * rx;
|
567 |
|
|
|
568 |
|
|
r2 /= 6;
|
569 |
|
|
|
570 |
|
|
// Calculate F(i+m, j+n) R(m - dx) R(dy - n)
|
571 |
|
|
// Check corner cases
|
572 |
|
|
int srcX = x + m;
|
573 |
|
|
if (srcX >= src.getMinX() + src.getWidth())
|
574 |
|
|
srcX = src.getMinX() + src.getWidth() - 1;
|
575 |
|
|
else if (srcX < src.getMinX())
|
576 |
|
|
srcX = src.getMinX();
|
577 |
|
|
|
578 |
|
|
int srcY = y + n;
|
579 |
|
|
if (srcY >= src.getMinY() + src.getHeight())
|
580 |
|
|
srcY = src.getMinY() + src.getHeight() - 1;
|
581 |
|
|
else if (srcY < src.getMinY())
|
582 |
|
|
srcY = src.getMinY();
|
583 |
|
|
|
584 |
|
|
// Calculate once for each band, using the smallest
|
585 |
|
|
// datatype possible
|
586 |
|
|
if (src.getTransferType() == DataBuffer.TYPE_DOUBLE
|
587 |
|
|
|| src.getTransferType() == DataBuffer.TYPE_FLOAT)
|
588 |
|
|
{
|
589 |
|
|
pixels = src.getPixel(srcX, srcY, (double[])pixels);
|
590 |
|
|
for (int j = 0; j < result.length; j++)
|
591 |
|
|
result[j] += ((double[])pixels)[j] * r1 * r2;
|
592 |
|
|
}
|
593 |
|
|
else
|
594 |
|
|
{
|
595 |
|
|
pixels = src.getPixel(srcX, srcY, (int[])pixels);
|
596 |
|
|
for (int j = 0; j < result.length; j++)
|
597 |
|
|
result[j] += ((int[])pixels)[j] * r1 * r2;
|
598 |
|
|
}
|
599 |
|
|
}
|
600 |
|
|
|
601 |
|
|
// Put it all together
|
602 |
|
|
dst.setPixel((int)dpts[i] + dst.getMinX(),
|
603 |
|
|
(int)dpts[i+1] + dst.getMinY(),
|
604 |
|
|
result);
|
605 |
|
|
}
|
606 |
|
|
}
|
607 |
|
|
}
|
608 |
|
|
}
|