1 |
771 |
jeremybenn |
/* Double.java -- object wrapper for double
|
2 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GNU Classpath.
|
6 |
|
|
|
7 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
13 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
19 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
20 |
|
|
02110-1301 USA.
|
21 |
|
|
|
22 |
|
|
Linking this library statically or dynamically with other modules is
|
23 |
|
|
making a combined work based on this library. Thus, the terms and
|
24 |
|
|
conditions of the GNU General Public License cover the whole
|
25 |
|
|
combination.
|
26 |
|
|
|
27 |
|
|
As a special exception, the copyright holders of this library give you
|
28 |
|
|
permission to link this library with independent modules to produce an
|
29 |
|
|
executable, regardless of the license terms of these independent
|
30 |
|
|
modules, and to copy and distribute the resulting executable under
|
31 |
|
|
terms of your choice, provided that you also meet, for each linked
|
32 |
|
|
independent module, the terms and conditions of the license of that
|
33 |
|
|
module. An independent module is a module which is not derived from
|
34 |
|
|
or based on this library. If you modify this library, you may extend
|
35 |
|
|
this exception to your version of the library, but you are not
|
36 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
37 |
|
|
exception statement from your version. */
|
38 |
|
|
|
39 |
|
|
package java.lang;
|
40 |
|
|
|
41 |
|
|
import gnu.java.lang.CPStringBuilder;
|
42 |
|
|
|
43 |
|
|
/**
|
44 |
|
|
* Instances of class <code>Double</code> represent primitive
|
45 |
|
|
* <code>double</code> values.
|
46 |
|
|
*
|
47 |
|
|
* Additionally, this class provides various helper functions and variables
|
48 |
|
|
* related to doubles.
|
49 |
|
|
*
|
50 |
|
|
* @author Paul Fisher
|
51 |
|
|
* @author Andrew Haley (aph@cygnus.com)
|
52 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
53 |
|
|
* @author Tom Tromey (tromey@redhat.com)
|
54 |
|
|
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
|
55 |
|
|
* @since 1.0
|
56 |
|
|
* @status partly updated to 1.5
|
57 |
|
|
*/
|
58 |
|
|
public final class Double extends Number implements Comparable<Double>
|
59 |
|
|
{
|
60 |
|
|
/**
|
61 |
|
|
* Compatible with JDK 1.0+.
|
62 |
|
|
*/
|
63 |
|
|
private static final long serialVersionUID = -9172774392245257468L;
|
64 |
|
|
|
65 |
|
|
/**
|
66 |
|
|
* The maximum positive value a <code>double</code> may represent
|
67 |
|
|
* is 1.7976931348623157e+308.
|
68 |
|
|
*/
|
69 |
|
|
public static final double MAX_VALUE = 1.7976931348623157e+308;
|
70 |
|
|
|
71 |
|
|
/**
|
72 |
|
|
* The minimum positive value a <code>double</code> may represent
|
73 |
|
|
* is 5e-324.
|
74 |
|
|
*/
|
75 |
|
|
public static final double MIN_VALUE = 5e-324;
|
76 |
|
|
|
77 |
|
|
/**
|
78 |
|
|
* The value of a double representation -1.0/0.0, negative
|
79 |
|
|
* infinity.
|
80 |
|
|
*/
|
81 |
|
|
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
|
82 |
|
|
|
83 |
|
|
/**
|
84 |
|
|
* The value of a double representing 1.0/0.0, positive infinity.
|
85 |
|
|
*/
|
86 |
|
|
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
|
87 |
|
|
|
88 |
|
|
/**
|
89 |
|
|
* All IEEE 754 values of NaN have the same value in Java.
|
90 |
|
|
*/
|
91 |
|
|
public static final double NaN = 0.0 / 0.0;
|
92 |
|
|
|
93 |
|
|
/**
|
94 |
|
|
* The number of bits needed to represent a <code>double</code>.
|
95 |
|
|
* @since 1.5
|
96 |
|
|
*/
|
97 |
|
|
public static final int SIZE = 64;
|
98 |
|
|
|
99 |
|
|
/**
|
100 |
|
|
* The primitive type <code>double</code> is represented by this
|
101 |
|
|
* <code>Class</code> object.
|
102 |
|
|
* @since 1.1
|
103 |
|
|
*/
|
104 |
|
|
public static final Class<Double> TYPE = (Class<Double>) VMClassLoader.getPrimitiveClass('D');
|
105 |
|
|
|
106 |
|
|
/**
|
107 |
|
|
* Cache representation of 0
|
108 |
|
|
*/
|
109 |
|
|
private static final Double ZERO = new Double(0.0d);
|
110 |
|
|
|
111 |
|
|
/**
|
112 |
|
|
* Cache representation of 1
|
113 |
|
|
*/
|
114 |
|
|
private static final Double ONE = new Double(1.0d);
|
115 |
|
|
|
116 |
|
|
/**
|
117 |
|
|
* The immutable value of this Double.
|
118 |
|
|
*
|
119 |
|
|
* @serial the wrapped double
|
120 |
|
|
*/
|
121 |
|
|
private final double value;
|
122 |
|
|
|
123 |
|
|
/**
|
124 |
|
|
* Create a <code>Double</code> from the primitive <code>double</code>
|
125 |
|
|
* specified.
|
126 |
|
|
*
|
127 |
|
|
* @param value the <code>double</code> argument
|
128 |
|
|
*/
|
129 |
|
|
public Double(double value)
|
130 |
|
|
{
|
131 |
|
|
this.value = value;
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/**
|
135 |
|
|
* Create a <code>Double</code> from the specified <code>String</code>.
|
136 |
|
|
* This method calls <code>Double.parseDouble()</code>.
|
137 |
|
|
*
|
138 |
|
|
* @param s the <code>String</code> to convert
|
139 |
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
140 |
|
|
* <code>double</code>
|
141 |
|
|
* @throws NullPointerException if <code>s</code> is null
|
142 |
|
|
* @see #parseDouble(String)
|
143 |
|
|
*/
|
144 |
|
|
public Double(String s)
|
145 |
|
|
{
|
146 |
|
|
value = parseDouble(s);
|
147 |
|
|
}
|
148 |
|
|
|
149 |
|
|
/**
|
150 |
|
|
* Convert the <code>double</code> to a <code>String</code>.
|
151 |
|
|
* Floating-point string representation is fairly complex: here is a
|
152 |
|
|
* rundown of the possible values. "<code>[-]</code>" indicates that a
|
153 |
|
|
* negative sign will be printed if the value (or exponent) is negative.
|
154 |
|
|
* "<code><number></code>" means a string of digits ('0' to '9').
|
155 |
|
|
* "<code><digit></code>" means a single digit ('0' to '9').<br>
|
156 |
|
|
*
|
157 |
|
|
* <table border=1>
|
158 |
|
|
* <tr><th>Value of Double</th><th>String Representation</th></tr>
|
159 |
|
|
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
|
160 |
|
|
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
|
161 |
|
|
* <td><code>[-]number.number</code></td></tr>
|
162 |
|
|
* <tr><td>Other numeric value</td>
|
163 |
|
|
* <td><code>[-]<digit>.<number>
|
164 |
|
|
* E[-]<number></code></td></tr>
|
165 |
|
|
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
|
166 |
|
|
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
|
167 |
|
|
* </table>
|
168 |
|
|
*
|
169 |
|
|
* Yes, negative zero <em>is</em> a possible value. Note that there is
|
170 |
|
|
* <em>always</em> a <code>.</code> and at least one digit printed after
|
171 |
|
|
* it: even if the number is 3, it will be printed as <code>3.0</code>.
|
172 |
|
|
* After the ".", all digits will be printed except trailing zeros. The
|
173 |
|
|
* result is rounded to the shortest decimal number which will parse back
|
174 |
|
|
* to the same double.
|
175 |
|
|
*
|
176 |
|
|
* <p>To create other output formats, use {@link java.text.NumberFormat}.
|
177 |
|
|
*
|
178 |
|
|
* @XXX specify where we are not in accord with the spec.
|
179 |
|
|
*
|
180 |
|
|
* @param d the <code>double</code> to convert
|
181 |
|
|
* @return the <code>String</code> representing the <code>double</code>
|
182 |
|
|
*/
|
183 |
|
|
public static String toString(double d)
|
184 |
|
|
{
|
185 |
|
|
return VMDouble.toString(d, false);
|
186 |
|
|
}
|
187 |
|
|
|
188 |
|
|
/**
|
189 |
|
|
* Convert a double value to a hexadecimal string. This converts as
|
190 |
|
|
* follows:
|
191 |
|
|
* <ul>
|
192 |
|
|
* <li> A NaN value is converted to the string "NaN".
|
193 |
|
|
* <li> Positive infinity is converted to the string "Infinity".
|
194 |
|
|
* <li> Negative infinity is converted to the string "-Infinity".
|
195 |
|
|
* <li> For all other values, the first character of the result is '-'
|
196 |
|
|
* if the value is negative. This is followed by '0x1.' if the
|
197 |
|
|
* value is normal, and '0x0.' if the value is denormal. This is
|
198 |
|
|
* then followed by a (lower-case) hexadecimal representation of the
|
199 |
|
|
* mantissa, with leading zeros as required for denormal values.
|
200 |
|
|
* The next character is a 'p', and this is followed by a decimal
|
201 |
|
|
* representation of the unbiased exponent.
|
202 |
|
|
* </ul>
|
203 |
|
|
* @param d the double value
|
204 |
|
|
* @return the hexadecimal string representation
|
205 |
|
|
* @since 1.5
|
206 |
|
|
*/
|
207 |
|
|
public static String toHexString(double d)
|
208 |
|
|
{
|
209 |
|
|
if (isNaN(d))
|
210 |
|
|
return "NaN";
|
211 |
|
|
if (isInfinite(d))
|
212 |
|
|
return d < 0 ? "-Infinity" : "Infinity";
|
213 |
|
|
|
214 |
|
|
long bits = doubleToLongBits(d);
|
215 |
|
|
CPStringBuilder result = new CPStringBuilder();
|
216 |
|
|
|
217 |
|
|
if (bits < 0)
|
218 |
|
|
result.append('-');
|
219 |
|
|
result.append("0x");
|
220 |
|
|
|
221 |
|
|
final int mantissaBits = 52;
|
222 |
|
|
final int exponentBits = 11;
|
223 |
|
|
long mantMask = (1L << mantissaBits) - 1;
|
224 |
|
|
long mantissa = bits & mantMask;
|
225 |
|
|
long expMask = (1L << exponentBits) - 1;
|
226 |
|
|
long exponent = (bits >>> mantissaBits) & expMask;
|
227 |
|
|
|
228 |
|
|
result.append(exponent == 0 ? '0' : '1');
|
229 |
|
|
result.append('.');
|
230 |
|
|
result.append(Long.toHexString(mantissa));
|
231 |
|
|
if (exponent == 0 && mantissa != 0)
|
232 |
|
|
{
|
233 |
|
|
// Treat denormal specially by inserting '0's to make
|
234 |
|
|
// the length come out right. The constants here are
|
235 |
|
|
// to account for things like the '0x'.
|
236 |
|
|
int offset = 4 + ((bits < 0) ? 1 : 0);
|
237 |
|
|
// The silly +3 is here to keep the code the same between
|
238 |
|
|
// the Float and Double cases. In Float the value is
|
239 |
|
|
// not a multiple of 4.
|
240 |
|
|
int desiredLength = offset + (mantissaBits + 3) / 4;
|
241 |
|
|
while (result.length() < desiredLength)
|
242 |
|
|
result.insert(offset, '0');
|
243 |
|
|
}
|
244 |
|
|
result.append('p');
|
245 |
|
|
if (exponent == 0 && mantissa == 0)
|
246 |
|
|
{
|
247 |
|
|
// Zero, so do nothing special.
|
248 |
|
|
}
|
249 |
|
|
else
|
250 |
|
|
{
|
251 |
|
|
// Apply bias.
|
252 |
|
|
boolean denormal = exponent == 0;
|
253 |
|
|
exponent -= (1 << (exponentBits - 1)) - 1;
|
254 |
|
|
// Handle denormal.
|
255 |
|
|
if (denormal)
|
256 |
|
|
++exponent;
|
257 |
|
|
}
|
258 |
|
|
|
259 |
|
|
result.append(Long.toString(exponent));
|
260 |
|
|
return result.toString();
|
261 |
|
|
}
|
262 |
|
|
|
263 |
|
|
/**
|
264 |
|
|
* Returns a <code>Double</code> object wrapping the value.
|
265 |
|
|
* In contrast to the <code>Double</code> constructor, this method
|
266 |
|
|
* may cache some values. It is used by boxing conversion.
|
267 |
|
|
*
|
268 |
|
|
* @param val the value to wrap
|
269 |
|
|
* @return the <code>Double</code>
|
270 |
|
|
* @since 1.5
|
271 |
|
|
*/
|
272 |
|
|
public static Double valueOf(double val)
|
273 |
|
|
{
|
274 |
|
|
if ((val == 0.0) && (doubleToRawLongBits(val) == 0L))
|
275 |
|
|
return ZERO;
|
276 |
|
|
else if (val == 1.0)
|
277 |
|
|
return ONE;
|
278 |
|
|
else
|
279 |
|
|
return new Double(val);
|
280 |
|
|
}
|
281 |
|
|
|
282 |
|
|
/**
|
283 |
|
|
* Create a new <code>Double</code> object using the <code>String</code>.
|
284 |
|
|
*
|
285 |
|
|
* @param s the <code>String</code> to convert
|
286 |
|
|
* @return the new <code>Double</code>
|
287 |
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
288 |
|
|
* <code>double</code>
|
289 |
|
|
* @throws NullPointerException if <code>s</code> is null.
|
290 |
|
|
* @see #parseDouble(String)
|
291 |
|
|
*/
|
292 |
|
|
public static Double valueOf(String s)
|
293 |
|
|
{
|
294 |
|
|
return valueOf(parseDouble(s));
|
295 |
|
|
}
|
296 |
|
|
|
297 |
|
|
/**
|
298 |
|
|
* Parse the specified <code>String</code> as a <code>double</code>. The
|
299 |
|
|
* extended BNF grammar is as follows:<br>
|
300 |
|
|
* <pre>
|
301 |
|
|
* <em>DecodableString</em>:
|
302 |
|
|
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
|
303 |
|
|
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
|
304 |
|
|
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
|
305 |
|
|
* [ <code>f</code> | <code>F</code> | <code>d</code>
|
306 |
|
|
* | <code>D</code>] )
|
307 |
|
|
* <em>FloatingPoint</em>:
|
308 |
|
|
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
|
309 |
|
|
* [ <em>Exponent</em> ] )
|
310 |
|
|
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
|
311 |
|
|
* <em>Exponent</em>:
|
312 |
|
|
* ( ( <code>e</code> | <code>E</code> )
|
313 |
|
|
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
|
314 |
|
|
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
|
315 |
|
|
* </pre>
|
316 |
|
|
*
|
317 |
|
|
* <p>NaN and infinity are special cases, to allow parsing of the output
|
318 |
|
|
* of toString. Otherwise, the result is determined by calculating
|
319 |
|
|
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
|
320 |
|
|
* to the nearest double. Remember that many numbers cannot be precisely
|
321 |
|
|
* represented in floating point. In case of overflow, infinity is used,
|
322 |
|
|
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
|
323 |
|
|
* this does not accept Unicode digits outside the ASCII range.
|
324 |
|
|
*
|
325 |
|
|
* <p>If an unexpected character is found in the <code>String</code>, a
|
326 |
|
|
* <code>NumberFormatException</code> will be thrown. Leading and trailing
|
327 |
|
|
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
|
328 |
|
|
* internal to the actual number are not allowed.
|
329 |
|
|
*
|
330 |
|
|
* <p>To parse numbers according to another format, consider using
|
331 |
|
|
* {@link java.text.NumberFormat}.
|
332 |
|
|
*
|
333 |
|
|
* @XXX specify where/how we are not in accord with the spec.
|
334 |
|
|
*
|
335 |
|
|
* @param str the <code>String</code> to convert
|
336 |
|
|
* @return the <code>double</code> value of <code>s</code>
|
337 |
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
338 |
|
|
* <code>double</code>
|
339 |
|
|
* @throws NullPointerException if <code>s</code> is null
|
340 |
|
|
* @see #MIN_VALUE
|
341 |
|
|
* @see #MAX_VALUE
|
342 |
|
|
* @see #POSITIVE_INFINITY
|
343 |
|
|
* @see #NEGATIVE_INFINITY
|
344 |
|
|
* @since 1.2
|
345 |
|
|
*/
|
346 |
|
|
public static double parseDouble(String str)
|
347 |
|
|
{
|
348 |
|
|
return VMDouble.parseDouble(str);
|
349 |
|
|
}
|
350 |
|
|
|
351 |
|
|
/**
|
352 |
|
|
* Return <code>true</code> if the <code>double</code> has the same
|
353 |
|
|
* value as <code>NaN</code>, otherwise return <code>false</code>.
|
354 |
|
|
*
|
355 |
|
|
* @param v the <code>double</code> to compare
|
356 |
|
|
* @return whether the argument is <code>NaN</code>.
|
357 |
|
|
*/
|
358 |
|
|
public static boolean isNaN(double v)
|
359 |
|
|
{
|
360 |
|
|
// This works since NaN != NaN is the only reflexive inequality
|
361 |
|
|
// comparison which returns true.
|
362 |
|
|
return v != v;
|
363 |
|
|
}
|
364 |
|
|
|
365 |
|
|
/**
|
366 |
|
|
* Return <code>true</code> if the <code>double</code> has a value
|
367 |
|
|
* equal to either <code>NEGATIVE_INFINITY</code> or
|
368 |
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
369 |
|
|
*
|
370 |
|
|
* @param v the <code>double</code> to compare
|
371 |
|
|
* @return whether the argument is (-/+) infinity.
|
372 |
|
|
*/
|
373 |
|
|
public static boolean isInfinite(double v)
|
374 |
|
|
{
|
375 |
|
|
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/**
|
379 |
|
|
* Return <code>true</code> if the value of this <code>Double</code>
|
380 |
|
|
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
|
381 |
|
|
*
|
382 |
|
|
* @return whether this <code>Double</code> is <code>NaN</code>
|
383 |
|
|
*/
|
384 |
|
|
public boolean isNaN()
|
385 |
|
|
{
|
386 |
|
|
return isNaN(value);
|
387 |
|
|
}
|
388 |
|
|
|
389 |
|
|
/**
|
390 |
|
|
* Return <code>true</code> if the value of this <code>Double</code>
|
391 |
|
|
* is the same as <code>NEGATIVE_INFINITY</code> or
|
392 |
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
393 |
|
|
*
|
394 |
|
|
* @return whether this <code>Double</code> is (-/+) infinity
|
395 |
|
|
*/
|
396 |
|
|
public boolean isInfinite()
|
397 |
|
|
{
|
398 |
|
|
return isInfinite(value);
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/**
|
402 |
|
|
* Convert the <code>double</code> value of this <code>Double</code>
|
403 |
|
|
* to a <code>String</code>. This method calls
|
404 |
|
|
* <code>Double.toString(double)</code> to do its dirty work.
|
405 |
|
|
*
|
406 |
|
|
* @return the <code>String</code> representation
|
407 |
|
|
* @see #toString(double)
|
408 |
|
|
*/
|
409 |
|
|
public String toString()
|
410 |
|
|
{
|
411 |
|
|
return toString(value);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
/**
|
415 |
|
|
* Return the value of this <code>Double</code> as a <code>byte</code>.
|
416 |
|
|
*
|
417 |
|
|
* @return the byte value
|
418 |
|
|
* @since 1.1
|
419 |
|
|
*/
|
420 |
|
|
public byte byteValue()
|
421 |
|
|
{
|
422 |
|
|
return (byte) value;
|
423 |
|
|
}
|
424 |
|
|
|
425 |
|
|
/**
|
426 |
|
|
* Return the value of this <code>Double</code> as a <code>short</code>.
|
427 |
|
|
*
|
428 |
|
|
* @return the short value
|
429 |
|
|
* @since 1.1
|
430 |
|
|
*/
|
431 |
|
|
public short shortValue()
|
432 |
|
|
{
|
433 |
|
|
return (short) value;
|
434 |
|
|
}
|
435 |
|
|
|
436 |
|
|
/**
|
437 |
|
|
* Return the value of this <code>Double</code> as an <code>int</code>.
|
438 |
|
|
*
|
439 |
|
|
* @return the int value
|
440 |
|
|
*/
|
441 |
|
|
public int intValue()
|
442 |
|
|
{
|
443 |
|
|
return (int) value;
|
444 |
|
|
}
|
445 |
|
|
|
446 |
|
|
/**
|
447 |
|
|
* Return the value of this <code>Double</code> as a <code>long</code>.
|
448 |
|
|
*
|
449 |
|
|
* @return the long value
|
450 |
|
|
*/
|
451 |
|
|
public long longValue()
|
452 |
|
|
{
|
453 |
|
|
return (long) value;
|
454 |
|
|
}
|
455 |
|
|
|
456 |
|
|
/**
|
457 |
|
|
* Return the value of this <code>Double</code> as a <code>float</code>.
|
458 |
|
|
*
|
459 |
|
|
* @return the float value
|
460 |
|
|
*/
|
461 |
|
|
public float floatValue()
|
462 |
|
|
{
|
463 |
|
|
return (float) value;
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
/**
|
467 |
|
|
* Return the value of this <code>Double</code>.
|
468 |
|
|
*
|
469 |
|
|
* @return the double value
|
470 |
|
|
*/
|
471 |
|
|
public double doubleValue()
|
472 |
|
|
{
|
473 |
|
|
return value;
|
474 |
|
|
}
|
475 |
|
|
|
476 |
|
|
/**
|
477 |
|
|
* Return a hashcode representing this Object. <code>Double</code>'s hash
|
478 |
|
|
* code is calculated by:<br>
|
479 |
|
|
* <code>long v = Double.doubleToLongBits(doubleValue());<br>
|
480 |
|
|
* int hash = (int)(v^(v>>32))</code>.
|
481 |
|
|
*
|
482 |
|
|
* @return this Object's hash code
|
483 |
|
|
* @see #doubleToLongBits(double)
|
484 |
|
|
*/
|
485 |
|
|
public int hashCode()
|
486 |
|
|
{
|
487 |
|
|
long v = doubleToLongBits(value);
|
488 |
|
|
return (int) (v ^ (v >>> 32));
|
489 |
|
|
}
|
490 |
|
|
|
491 |
|
|
/**
|
492 |
|
|
* Returns <code>true</code> if <code>obj</code> is an instance of
|
493 |
|
|
* <code>Double</code> and represents the same double value. Unlike comparing
|
494 |
|
|
* two doubles with <code>==</code>, this treats two instances of
|
495 |
|
|
* <code>Double.NaN</code> as equal, but treats <code>0.0</code> and
|
496 |
|
|
* <code>-0.0</code> as unequal.
|
497 |
|
|
*
|
498 |
|
|
* <p>Note that <code>d1.equals(d2)</code> is identical to
|
499 |
|
|
* <code>doubleToLongBits(d1.doubleValue()) ==
|
500 |
|
|
* doubleToLongBits(d2.doubleValue())</code>.
|
501 |
|
|
*
|
502 |
|
|
* @param obj the object to compare
|
503 |
|
|
* @return whether the objects are semantically equal
|
504 |
|
|
*/
|
505 |
|
|
public boolean equals(Object obj)
|
506 |
|
|
{
|
507 |
|
|
if (obj instanceof Double)
|
508 |
|
|
{
|
509 |
|
|
double d = ((Double) obj).value;
|
510 |
|
|
return (doubleToRawLongBits(value) == doubleToRawLongBits(d)) ||
|
511 |
|
|
(isNaN(value) && isNaN(d));
|
512 |
|
|
}
|
513 |
|
|
return false;
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
/**
|
517 |
|
|
* Convert the double to the IEEE 754 floating-point "double format" bit
|
518 |
|
|
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
|
519 |
|
|
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
|
520 |
|
|
* (masked by 0x000fffffffffffffL) are the mantissa. This function
|
521 |
|
|
* collapses all versions of NaN to 0x7ff8000000000000L. The result of this
|
522 |
|
|
* function can be used as the argument to
|
523 |
|
|
* <code>Double.longBitsToDouble(long)</code> to obtain the original
|
524 |
|
|
* <code>double</code> value.
|
525 |
|
|
*
|
526 |
|
|
* @param value the <code>double</code> to convert
|
527 |
|
|
* @return the bits of the <code>double</code>
|
528 |
|
|
* @see #longBitsToDouble(long)
|
529 |
|
|
*/
|
530 |
|
|
public static long doubleToLongBits(double value)
|
531 |
|
|
{
|
532 |
|
|
if (isNaN(value))
|
533 |
|
|
return 0x7ff8000000000000L;
|
534 |
|
|
else
|
535 |
|
|
return VMDouble.doubleToRawLongBits(value);
|
536 |
|
|
}
|
537 |
|
|
|
538 |
|
|
/**
|
539 |
|
|
* Convert the double to the IEEE 754 floating-point "double format" bit
|
540 |
|
|
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
|
541 |
|
|
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
|
542 |
|
|
* (masked by 0x000fffffffffffffL) are the mantissa. This function
|
543 |
|
|
* leaves NaN alone, rather than collapsing to a canonical value. The
|
544 |
|
|
* result of this function can be used as the argument to
|
545 |
|
|
* <code>Double.longBitsToDouble(long)</code> to obtain the original
|
546 |
|
|
* <code>double</code> value.
|
547 |
|
|
*
|
548 |
|
|
* @param value the <code>double</code> to convert
|
549 |
|
|
* @return the bits of the <code>double</code>
|
550 |
|
|
* @see #longBitsToDouble(long)
|
551 |
|
|
*/
|
552 |
|
|
public static long doubleToRawLongBits(double value)
|
553 |
|
|
{
|
554 |
|
|
return VMDouble.doubleToRawLongBits(value);
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/**
|
558 |
|
|
* Convert the argument in IEEE 754 floating-point "double format" bit
|
559 |
|
|
* layout to the corresponding float. Bit 63 (the most significant) is the
|
560 |
|
|
* sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
|
561 |
|
|
* exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
|
562 |
|
|
* This function leaves NaN alone, so that you can recover the bit pattern
|
563 |
|
|
* with <code>Double.doubleToRawLongBits(double)</code>.
|
564 |
|
|
*
|
565 |
|
|
* @param bits the bits to convert
|
566 |
|
|
* @return the <code>double</code> represented by the bits
|
567 |
|
|
* @see #doubleToLongBits(double)
|
568 |
|
|
* @see #doubleToRawLongBits(double)
|
569 |
|
|
*/
|
570 |
|
|
public static double longBitsToDouble(long bits)
|
571 |
|
|
{
|
572 |
|
|
return VMDouble.longBitsToDouble(bits);
|
573 |
|
|
}
|
574 |
|
|
|
575 |
|
|
/**
|
576 |
|
|
* Compare two Doubles numerically by comparing their <code>double</code>
|
577 |
|
|
* values. The result is positive if the first is greater, negative if the
|
578 |
|
|
* second is greater, and 0 if the two are equal. However, this special
|
579 |
|
|
* cases NaN and signed zero as follows: NaN is considered greater than
|
580 |
|
|
* all other doubles, including <code>POSITIVE_INFINITY</code>, and positive
|
581 |
|
|
* zero is considered greater than negative zero.
|
582 |
|
|
*
|
583 |
|
|
* @param d the Double to compare
|
584 |
|
|
* @return the comparison
|
585 |
|
|
* @since 1.2
|
586 |
|
|
*/
|
587 |
|
|
public int compareTo(Double d)
|
588 |
|
|
{
|
589 |
|
|
return compare(value, d.value);
|
590 |
|
|
}
|
591 |
|
|
|
592 |
|
|
/**
|
593 |
|
|
* Behaves like <code>new Double(x).compareTo(new Double(y))</code>; in
|
594 |
|
|
* other words this compares two doubles, special casing NaN and zero,
|
595 |
|
|
* without the overhead of objects.
|
596 |
|
|
*
|
597 |
|
|
* @param x the first double to compare
|
598 |
|
|
* @param y the second double to compare
|
599 |
|
|
* @return the comparison
|
600 |
|
|
* @since 1.4
|
601 |
|
|
*/
|
602 |
|
|
public static int compare(double x, double y)
|
603 |
|
|
{
|
604 |
|
|
// handle the easy cases:
|
605 |
|
|
if (x < y)
|
606 |
|
|
return -1;
|
607 |
|
|
if (x > y)
|
608 |
|
|
return 1;
|
609 |
|
|
|
610 |
|
|
// handle equality respecting that 0.0 != -0.0 (hence not using x == y):
|
611 |
|
|
long lx = doubleToRawLongBits(x);
|
612 |
|
|
long ly = doubleToRawLongBits(y);
|
613 |
|
|
if (lx == ly)
|
614 |
|
|
return 0;
|
615 |
|
|
|
616 |
|
|
// handle NaNs:
|
617 |
|
|
if (x != x)
|
618 |
|
|
return (y != y) ? 0 : 1;
|
619 |
|
|
else if (y != y)
|
620 |
|
|
return -1;
|
621 |
|
|
|
622 |
|
|
// handle +/- 0.0
|
623 |
|
|
return (lx < ly) ? -1 : 1;
|
624 |
|
|
}
|
625 |
|
|
}
|