1 |
771 |
jeremybenn |
/* Float.java -- object wrapper for float
|
2 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GNU Classpath.
|
6 |
|
|
|
7 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
13 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
19 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
20 |
|
|
02110-1301 USA.
|
21 |
|
|
|
22 |
|
|
Linking this library statically or dynamically with other modules is
|
23 |
|
|
making a combined work based on this library. Thus, the terms and
|
24 |
|
|
conditions of the GNU General Public License cover the whole
|
25 |
|
|
combination.
|
26 |
|
|
|
27 |
|
|
As a special exception, the copyright holders of this library give you
|
28 |
|
|
permission to link this library with independent modules to produce an
|
29 |
|
|
executable, regardless of the license terms of these independent
|
30 |
|
|
modules, and to copy and distribute the resulting executable under
|
31 |
|
|
terms of your choice, provided that you also meet, for each linked
|
32 |
|
|
independent module, the terms and conditions of the license of that
|
33 |
|
|
module. An independent module is a module which is not derived from
|
34 |
|
|
or based on this library. If you modify this library, you may extend
|
35 |
|
|
this exception to your version of the library, but you are not
|
36 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
37 |
|
|
exception statement from your version. */
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
package java.lang;
|
41 |
|
|
|
42 |
|
|
import gnu.java.lang.CPStringBuilder;
|
43 |
|
|
|
44 |
|
|
/**
|
45 |
|
|
* Instances of class <code>Float</code> represent primitive
|
46 |
|
|
* <code>float</code> values.
|
47 |
|
|
*
|
48 |
|
|
* Additionally, this class provides various helper functions and variables
|
49 |
|
|
* related to floats.
|
50 |
|
|
*
|
51 |
|
|
* @author Paul Fisher
|
52 |
|
|
* @author Andrew Haley (aph@cygnus.com)
|
53 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
54 |
|
|
* @author Tom Tromey (tromey@redhat.com)
|
55 |
|
|
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
|
56 |
|
|
* @since 1.0
|
57 |
|
|
* @status partly updated to 1.5
|
58 |
|
|
*/
|
59 |
|
|
public final class Float extends Number implements Comparable<Float>
|
60 |
|
|
{
|
61 |
|
|
/**
|
62 |
|
|
* Compatible with JDK 1.0+.
|
63 |
|
|
*/
|
64 |
|
|
private static final long serialVersionUID = -2671257302660747028L;
|
65 |
|
|
|
66 |
|
|
/**
|
67 |
|
|
* The maximum positive value a <code>double</code> may represent
|
68 |
|
|
* is 3.4028235e+38f.
|
69 |
|
|
*/
|
70 |
|
|
public static final float MAX_VALUE = 3.4028235e+38f;
|
71 |
|
|
|
72 |
|
|
/**
|
73 |
|
|
* The minimum positive value a <code>float</code> may represent
|
74 |
|
|
* is 1.4e-45.
|
75 |
|
|
*/
|
76 |
|
|
public static final float MIN_VALUE = 1.4e-45f;
|
77 |
|
|
|
78 |
|
|
/**
|
79 |
|
|
* The value of a float representation -1.0/0.0, negative infinity.
|
80 |
|
|
*/
|
81 |
|
|
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
|
82 |
|
|
|
83 |
|
|
/**
|
84 |
|
|
* The value of a float representation 1.0/0.0, positive infinity.
|
85 |
|
|
*/
|
86 |
|
|
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
|
87 |
|
|
|
88 |
|
|
/**
|
89 |
|
|
* All IEEE 754 values of NaN have the same value in Java.
|
90 |
|
|
*/
|
91 |
|
|
public static final float NaN = 0.0f / 0.0f;
|
92 |
|
|
|
93 |
|
|
/**
|
94 |
|
|
* The primitive type <code>float</code> is represented by this
|
95 |
|
|
* <code>Class</code> object.
|
96 |
|
|
* @since 1.1
|
97 |
|
|
*/
|
98 |
|
|
public static final Class<Float> TYPE = (Class<Float>) VMClassLoader.getPrimitiveClass('F');
|
99 |
|
|
|
100 |
|
|
/**
|
101 |
|
|
* The number of bits needed to represent a <code>float</code>.
|
102 |
|
|
* @since 1.5
|
103 |
|
|
*/
|
104 |
|
|
public static final int SIZE = 32;
|
105 |
|
|
|
106 |
|
|
/**
|
107 |
|
|
* Cache representation of 0
|
108 |
|
|
*/
|
109 |
|
|
private static final Float ZERO = new Float(0.0f);
|
110 |
|
|
|
111 |
|
|
/**
|
112 |
|
|
* Cache representation of 1
|
113 |
|
|
*/
|
114 |
|
|
private static final Float ONE = new Float(1.0f);
|
115 |
|
|
|
116 |
|
|
/**
|
117 |
|
|
* The immutable value of this Float.
|
118 |
|
|
*
|
119 |
|
|
* @serial the wrapped float
|
120 |
|
|
*/
|
121 |
|
|
private final float value;
|
122 |
|
|
|
123 |
|
|
/**
|
124 |
|
|
* Create a <code>Float</code> from the primitive <code>float</code>
|
125 |
|
|
* specified.
|
126 |
|
|
*
|
127 |
|
|
* @param value the <code>float</code> argument
|
128 |
|
|
*/
|
129 |
|
|
public Float(float value)
|
130 |
|
|
{
|
131 |
|
|
this.value = value;
|
132 |
|
|
}
|
133 |
|
|
|
134 |
|
|
/**
|
135 |
|
|
* Create a <code>Float</code> from the primitive <code>double</code>
|
136 |
|
|
* specified.
|
137 |
|
|
*
|
138 |
|
|
* @param value the <code>double</code> argument
|
139 |
|
|
*/
|
140 |
|
|
public Float(double value)
|
141 |
|
|
{
|
142 |
|
|
this.value = (float) value;
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
/**
|
146 |
|
|
* Create a <code>Float</code> from the specified <code>String</code>.
|
147 |
|
|
* This method calls <code>Float.parseFloat()</code>.
|
148 |
|
|
*
|
149 |
|
|
* @param s the <code>String</code> to convert
|
150 |
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
151 |
|
|
* <code>float</code>
|
152 |
|
|
* @throws NullPointerException if <code>s</code> is null
|
153 |
|
|
* @see #parseFloat(String)
|
154 |
|
|
*/
|
155 |
|
|
public Float(String s)
|
156 |
|
|
{
|
157 |
|
|
value = parseFloat(s);
|
158 |
|
|
}
|
159 |
|
|
|
160 |
|
|
/**
|
161 |
|
|
* Convert the <code>float</code> to a <code>String</code>.
|
162 |
|
|
* Floating-point string representation is fairly complex: here is a
|
163 |
|
|
* rundown of the possible values. "<code>[-]</code>" indicates that a
|
164 |
|
|
* negative sign will be printed if the value (or exponent) is negative.
|
165 |
|
|
* "<code><number></code>" means a string of digits ('0' to '9').
|
166 |
|
|
* "<code><digit></code>" means a single digit ('0' to '9').<br>
|
167 |
|
|
*
|
168 |
|
|
* <table border=1>
|
169 |
|
|
* <tr><th>Value of Float</th><th>String Representation</th></tr>
|
170 |
|
|
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
|
171 |
|
|
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
|
172 |
|
|
* <td><code>[-]number.number</code></td></tr>
|
173 |
|
|
* <tr><td>Other numeric value</td>
|
174 |
|
|
* <td><code>[-]<digit>.<number>
|
175 |
|
|
* E[-]<number></code></td></tr>
|
176 |
|
|
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
|
177 |
|
|
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
|
178 |
|
|
* </table>
|
179 |
|
|
*
|
180 |
|
|
* Yes, negative zero <em>is</em> a possible value. Note that there is
|
181 |
|
|
* <em>always</em> a <code>.</code> and at least one digit printed after
|
182 |
|
|
* it: even if the number is 3, it will be printed as <code>3.0</code>.
|
183 |
|
|
* After the ".", all digits will be printed except trailing zeros. The
|
184 |
|
|
* result is rounded to the shortest decimal number which will parse back
|
185 |
|
|
* to the same float.
|
186 |
|
|
*
|
187 |
|
|
* <p>To create other output formats, use {@link java.text.NumberFormat}.
|
188 |
|
|
*
|
189 |
|
|
* @XXX specify where we are not in accord with the spec.
|
190 |
|
|
*
|
191 |
|
|
* @param f the <code>float</code> to convert
|
192 |
|
|
* @return the <code>String</code> representing the <code>float</code>
|
193 |
|
|
*/
|
194 |
|
|
public static String toString(float f)
|
195 |
|
|
{
|
196 |
|
|
return VMFloat.toString(f);
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/**
|
200 |
|
|
* Convert a float value to a hexadecimal string. This converts as
|
201 |
|
|
* follows:
|
202 |
|
|
* <ul>
|
203 |
|
|
* <li> A NaN value is converted to the string "NaN".
|
204 |
|
|
* <li> Positive infinity is converted to the string "Infinity".
|
205 |
|
|
* <li> Negative infinity is converted to the string "-Infinity".
|
206 |
|
|
* <li> For all other values, the first character of the result is '-'
|
207 |
|
|
* if the value is negative. This is followed by '0x1.' if the
|
208 |
|
|
* value is normal, and '0x0.' if the value is denormal. This is
|
209 |
|
|
* then followed by a (lower-case) hexadecimal representation of the
|
210 |
|
|
* mantissa, with leading zeros as required for denormal values.
|
211 |
|
|
* The next character is a 'p', and this is followed by a decimal
|
212 |
|
|
* representation of the unbiased exponent.
|
213 |
|
|
* </ul>
|
214 |
|
|
* @param f the float value
|
215 |
|
|
* @return the hexadecimal string representation
|
216 |
|
|
* @since 1.5
|
217 |
|
|
*/
|
218 |
|
|
public static String toHexString(float f)
|
219 |
|
|
{
|
220 |
|
|
if (isNaN(f))
|
221 |
|
|
return "NaN";
|
222 |
|
|
if (isInfinite(f))
|
223 |
|
|
return f < 0 ? "-Infinity" : "Infinity";
|
224 |
|
|
|
225 |
|
|
int bits = floatToIntBits(f);
|
226 |
|
|
CPStringBuilder result = new CPStringBuilder();
|
227 |
|
|
|
228 |
|
|
if (bits < 0)
|
229 |
|
|
result.append('-');
|
230 |
|
|
result.append("0x");
|
231 |
|
|
|
232 |
|
|
final int mantissaBits = 23;
|
233 |
|
|
final int exponentBits = 8;
|
234 |
|
|
int mantMask = (1 << mantissaBits) - 1;
|
235 |
|
|
int mantissa = bits & mantMask;
|
236 |
|
|
int expMask = (1 << exponentBits) - 1;
|
237 |
|
|
int exponent = (bits >>> mantissaBits) & expMask;
|
238 |
|
|
|
239 |
|
|
result.append(exponent == 0 ? '0' : '1');
|
240 |
|
|
result.append('.');
|
241 |
|
|
// For Float only, we have to adjust the mantissa.
|
242 |
|
|
mantissa <<= 1;
|
243 |
|
|
result.append(Integer.toHexString(mantissa));
|
244 |
|
|
if (exponent == 0 && mantissa != 0)
|
245 |
|
|
{
|
246 |
|
|
// Treat denormal specially by inserting '0's to make
|
247 |
|
|
// the length come out right. The constants here are
|
248 |
|
|
// to account for things like the '0x'.
|
249 |
|
|
int offset = 4 + ((bits < 0) ? 1 : 0);
|
250 |
|
|
// The silly +3 is here to keep the code the same between
|
251 |
|
|
// the Float and Double cases. In Float the value is
|
252 |
|
|
// not a multiple of 4.
|
253 |
|
|
int desiredLength = offset + (mantissaBits + 3) / 4;
|
254 |
|
|
while (result.length() < desiredLength)
|
255 |
|
|
result.insert(offset, '0');
|
256 |
|
|
}
|
257 |
|
|
result.append('p');
|
258 |
|
|
if (exponent == 0 && mantissa == 0)
|
259 |
|
|
{
|
260 |
|
|
// Zero, so do nothing special.
|
261 |
|
|
}
|
262 |
|
|
else
|
263 |
|
|
{
|
264 |
|
|
// Apply bias.
|
265 |
|
|
boolean denormal = exponent == 0;
|
266 |
|
|
exponent -= (1 << (exponentBits - 1)) - 1;
|
267 |
|
|
// Handle denormal.
|
268 |
|
|
if (denormal)
|
269 |
|
|
++exponent;
|
270 |
|
|
}
|
271 |
|
|
|
272 |
|
|
result.append(Integer.toString(exponent));
|
273 |
|
|
return result.toString();
|
274 |
|
|
}
|
275 |
|
|
|
276 |
|
|
/**
|
277 |
|
|
* Creates a new <code>Float</code> object using the <code>String</code>.
|
278 |
|
|
*
|
279 |
|
|
* @param s the <code>String</code> to convert
|
280 |
|
|
* @return the new <code>Float</code>
|
281 |
|
|
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
|
282 |
|
|
* <code>float</code>
|
283 |
|
|
* @throws NullPointerException if <code>s</code> is null
|
284 |
|
|
* @see #parseFloat(String)
|
285 |
|
|
*/
|
286 |
|
|
public static Float valueOf(String s)
|
287 |
|
|
{
|
288 |
|
|
return valueOf(parseFloat(s));
|
289 |
|
|
}
|
290 |
|
|
|
291 |
|
|
/**
|
292 |
|
|
* Returns a <code>Float</code> object wrapping the value.
|
293 |
|
|
* In contrast to the <code>Float</code> constructor, this method
|
294 |
|
|
* may cache some values. It is used by boxing conversion.
|
295 |
|
|
*
|
296 |
|
|
* @param val the value to wrap
|
297 |
|
|
* @return the <code>Float</code>
|
298 |
|
|
* @since 1.5
|
299 |
|
|
*/
|
300 |
|
|
public static Float valueOf(float val)
|
301 |
|
|
{
|
302 |
|
|
if ((val == 0.0) && (floatToRawIntBits(val) == 0))
|
303 |
|
|
return ZERO;
|
304 |
|
|
else if (val == 1.0)
|
305 |
|
|
return ONE;
|
306 |
|
|
else
|
307 |
|
|
return new Float(val);
|
308 |
|
|
}
|
309 |
|
|
|
310 |
|
|
/**
|
311 |
|
|
* Parse the specified <code>String</code> as a <code>float</code>. The
|
312 |
|
|
* extended BNF grammar is as follows:<br>
|
313 |
|
|
* <pre>
|
314 |
|
|
* <em>DecodableString</em>:
|
315 |
|
|
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
|
316 |
|
|
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
|
317 |
|
|
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
|
318 |
|
|
* [ <code>f</code> | <code>F</code> | <code>d</code>
|
319 |
|
|
* | <code>D</code>] )
|
320 |
|
|
* <em>FloatingPoint</em>:
|
321 |
|
|
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
|
322 |
|
|
* [ <em>Exponent</em> ] )
|
323 |
|
|
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
|
324 |
|
|
* <em>Exponent</em>:
|
325 |
|
|
* ( ( <code>e</code> | <code>E</code> )
|
326 |
|
|
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
|
327 |
|
|
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
|
328 |
|
|
* </pre>
|
329 |
|
|
*
|
330 |
|
|
* <p>NaN and infinity are special cases, to allow parsing of the output
|
331 |
|
|
* of toString. Otherwise, the result is determined by calculating
|
332 |
|
|
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
|
333 |
|
|
* to the nearest float. Remember that many numbers cannot be precisely
|
334 |
|
|
* represented in floating point. In case of overflow, infinity is used,
|
335 |
|
|
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
|
336 |
|
|
* this does not accept Unicode digits outside the ASCII range.
|
337 |
|
|
*
|
338 |
|
|
* <p>If an unexpected character is found in the <code>String</code>, a
|
339 |
|
|
* <code>NumberFormatException</code> will be thrown. Leading and trailing
|
340 |
|
|
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
|
341 |
|
|
* internal to the actual number are not allowed.
|
342 |
|
|
*
|
343 |
|
|
* <p>To parse numbers according to another format, consider using
|
344 |
|
|
* {@link java.text.NumberFormat}.
|
345 |
|
|
*
|
346 |
|
|
* @XXX specify where/how we are not in accord with the spec.
|
347 |
|
|
*
|
348 |
|
|
* @param str the <code>String</code> to convert
|
349 |
|
|
* @return the <code>float</code> value of <code>s</code>
|
350 |
|
|
* @throws NumberFormatException if <code>str</code> cannot be parsed as a
|
351 |
|
|
* <code>float</code>
|
352 |
|
|
* @throws NullPointerException if <code>str</code> is null
|
353 |
|
|
* @see #MIN_VALUE
|
354 |
|
|
* @see #MAX_VALUE
|
355 |
|
|
* @see #POSITIVE_INFINITY
|
356 |
|
|
* @see #NEGATIVE_INFINITY
|
357 |
|
|
* @since 1.2
|
358 |
|
|
*/
|
359 |
|
|
public static float parseFloat(String str)
|
360 |
|
|
{
|
361 |
|
|
return VMFloat.parseFloat(str);
|
362 |
|
|
}
|
363 |
|
|
|
364 |
|
|
/**
|
365 |
|
|
* Return <code>true</code> if the <code>float</code> has the same
|
366 |
|
|
* value as <code>NaN</code>, otherwise return <code>false</code>.
|
367 |
|
|
*
|
368 |
|
|
* @param v the <code>float</code> to compare
|
369 |
|
|
* @return whether the argument is <code>NaN</code>
|
370 |
|
|
*/
|
371 |
|
|
public static boolean isNaN(float v)
|
372 |
|
|
{
|
373 |
|
|
// This works since NaN != NaN is the only reflexive inequality
|
374 |
|
|
// comparison which returns true.
|
375 |
|
|
return v != v;
|
376 |
|
|
}
|
377 |
|
|
|
378 |
|
|
/**
|
379 |
|
|
* Return <code>true</code> if the <code>float</code> has a value
|
380 |
|
|
* equal to either <code>NEGATIVE_INFINITY</code> or
|
381 |
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
382 |
|
|
*
|
383 |
|
|
* @param v the <code>float</code> to compare
|
384 |
|
|
* @return whether the argument is (-/+) infinity
|
385 |
|
|
*/
|
386 |
|
|
public static boolean isInfinite(float v)
|
387 |
|
|
{
|
388 |
|
|
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
|
389 |
|
|
}
|
390 |
|
|
|
391 |
|
|
/**
|
392 |
|
|
* Return <code>true</code> if the value of this <code>Float</code>
|
393 |
|
|
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
|
394 |
|
|
*
|
395 |
|
|
* @return whether this <code>Float</code> is <code>NaN</code>
|
396 |
|
|
*/
|
397 |
|
|
public boolean isNaN()
|
398 |
|
|
{
|
399 |
|
|
return isNaN(value);
|
400 |
|
|
}
|
401 |
|
|
|
402 |
|
|
/**
|
403 |
|
|
* Return <code>true</code> if the value of this <code>Float</code>
|
404 |
|
|
* is the same as <code>NEGATIVE_INFINITY</code> or
|
405 |
|
|
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
|
406 |
|
|
*
|
407 |
|
|
* @return whether this <code>Float</code> is (-/+) infinity
|
408 |
|
|
*/
|
409 |
|
|
public boolean isInfinite()
|
410 |
|
|
{
|
411 |
|
|
return isInfinite(value);
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
/**
|
415 |
|
|
* Convert the <code>float</code> value of this <code>Float</code>
|
416 |
|
|
* to a <code>String</code>. This method calls
|
417 |
|
|
* <code>Float.toString(float)</code> to do its dirty work.
|
418 |
|
|
*
|
419 |
|
|
* @return the <code>String</code> representation
|
420 |
|
|
* @see #toString(float)
|
421 |
|
|
*/
|
422 |
|
|
public String toString()
|
423 |
|
|
{
|
424 |
|
|
return toString(value);
|
425 |
|
|
}
|
426 |
|
|
|
427 |
|
|
/**
|
428 |
|
|
* Return the value of this <code>Float</code> as a <code>byte</code>.
|
429 |
|
|
*
|
430 |
|
|
* @return the byte value
|
431 |
|
|
* @since 1.1
|
432 |
|
|
*/
|
433 |
|
|
public byte byteValue()
|
434 |
|
|
{
|
435 |
|
|
return (byte) value;
|
436 |
|
|
}
|
437 |
|
|
|
438 |
|
|
/**
|
439 |
|
|
* Return the value of this <code>Float</code> as a <code>short</code>.
|
440 |
|
|
*
|
441 |
|
|
* @return the short value
|
442 |
|
|
* @since 1.1
|
443 |
|
|
*/
|
444 |
|
|
public short shortValue()
|
445 |
|
|
{
|
446 |
|
|
return (short) value;
|
447 |
|
|
}
|
448 |
|
|
|
449 |
|
|
/**
|
450 |
|
|
* Return the value of this <code>Integer</code> as an <code>int</code>.
|
451 |
|
|
*
|
452 |
|
|
* @return the int value
|
453 |
|
|
*/
|
454 |
|
|
public int intValue()
|
455 |
|
|
{
|
456 |
|
|
return (int) value;
|
457 |
|
|
}
|
458 |
|
|
|
459 |
|
|
/**
|
460 |
|
|
* Return the value of this <code>Integer</code> as a <code>long</code>.
|
461 |
|
|
*
|
462 |
|
|
* @return the long value
|
463 |
|
|
*/
|
464 |
|
|
public long longValue()
|
465 |
|
|
{
|
466 |
|
|
return (long) value;
|
467 |
|
|
}
|
468 |
|
|
|
469 |
|
|
/**
|
470 |
|
|
* Return the value of this <code>Float</code>.
|
471 |
|
|
*
|
472 |
|
|
* @return the float value
|
473 |
|
|
*/
|
474 |
|
|
public float floatValue()
|
475 |
|
|
{
|
476 |
|
|
return value;
|
477 |
|
|
}
|
478 |
|
|
|
479 |
|
|
/**
|
480 |
|
|
* Return the value of this <code>Float</code> as a <code>double</code>
|
481 |
|
|
*
|
482 |
|
|
* @return the double value
|
483 |
|
|
*/
|
484 |
|
|
public double doubleValue()
|
485 |
|
|
{
|
486 |
|
|
return value;
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/**
|
490 |
|
|
* Return a hashcode representing this Object. <code>Float</code>'s hash
|
491 |
|
|
* code is calculated by calling <code>floatToIntBits(floatValue())</code>.
|
492 |
|
|
*
|
493 |
|
|
* @return this Object's hash code
|
494 |
|
|
* @see #floatToIntBits(float)
|
495 |
|
|
*/
|
496 |
|
|
public int hashCode()
|
497 |
|
|
{
|
498 |
|
|
return floatToIntBits(value);
|
499 |
|
|
}
|
500 |
|
|
|
501 |
|
|
/**
|
502 |
|
|
* Returns <code>true</code> if <code>obj</code> is an instance of
|
503 |
|
|
* <code>Float</code> and represents the same float value. Unlike comparing
|
504 |
|
|
* two floats with <code>==</code>, this treats two instances of
|
505 |
|
|
* <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
|
506 |
|
|
* <code>-0.0</code> as unequal.
|
507 |
|
|
*
|
508 |
|
|
* <p>Note that <code>f1.equals(f2)</code> is identical to
|
509 |
|
|
* <code>floatToIntBits(f1.floatValue()) ==
|
510 |
|
|
* floatToIntBits(f2.floatValue())</code>.
|
511 |
|
|
*
|
512 |
|
|
* @param obj the object to compare
|
513 |
|
|
* @return whether the objects are semantically equal
|
514 |
|
|
*/
|
515 |
|
|
public boolean equals(Object obj)
|
516 |
|
|
{
|
517 |
|
|
if (obj instanceof Float)
|
518 |
|
|
{
|
519 |
|
|
float f = ((Float) obj).value;
|
520 |
|
|
return (floatToRawIntBits(value) == floatToRawIntBits(f)) ||
|
521 |
|
|
(isNaN(value) && isNaN(f));
|
522 |
|
|
}
|
523 |
|
|
return false;
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
/**
|
527 |
|
|
* Convert the float to the IEEE 754 floating-point "single format" bit
|
528 |
|
|
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
|
529 |
|
|
* (masked by 0x7f800000) represent the exponent, and bits 22-0
|
530 |
|
|
* (masked by 0x007fffff) are the mantissa. This function collapses all
|
531 |
|
|
* versions of NaN to 0x7fc00000. The result of this function can be used
|
532 |
|
|
* as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
|
533 |
|
|
* original <code>float</code> value.
|
534 |
|
|
*
|
535 |
|
|
* @param value the <code>float</code> to convert
|
536 |
|
|
* @return the bits of the <code>float</code>
|
537 |
|
|
* @see #intBitsToFloat(int)
|
538 |
|
|
*/
|
539 |
|
|
public static int floatToIntBits(float value)
|
540 |
|
|
{
|
541 |
|
|
if (isNaN(value))
|
542 |
|
|
return 0x7fc00000;
|
543 |
|
|
else
|
544 |
|
|
return VMFloat.floatToRawIntBits(value);
|
545 |
|
|
}
|
546 |
|
|
|
547 |
|
|
/**
|
548 |
|
|
* Convert the float to the IEEE 754 floating-point "single format" bit
|
549 |
|
|
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
|
550 |
|
|
* (masked by 0x7f800000) represent the exponent, and bits 22-0
|
551 |
|
|
* (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
|
552 |
|
|
* rather than collapsing to a canonical value. The result of this function
|
553 |
|
|
* can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
|
554 |
|
|
* obtain the original <code>float</code> value.
|
555 |
|
|
*
|
556 |
|
|
* @param value the <code>float</code> to convert
|
557 |
|
|
* @return the bits of the <code>float</code>
|
558 |
|
|
* @see #intBitsToFloat(int)
|
559 |
|
|
*/
|
560 |
|
|
public static int floatToRawIntBits(float value)
|
561 |
|
|
{
|
562 |
|
|
return VMFloat.floatToRawIntBits(value);
|
563 |
|
|
}
|
564 |
|
|
|
565 |
|
|
/**
|
566 |
|
|
* Convert the argument in IEEE 754 floating-point "single format" bit
|
567 |
|
|
* layout to the corresponding float. Bit 31 (the most significant) is the
|
568 |
|
|
* sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
|
569 |
|
|
* bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
|
570 |
|
|
* NaN alone, so that you can recover the bit pattern with
|
571 |
|
|
* <code>Float.floatToRawIntBits(float)</code>.
|
572 |
|
|
*
|
573 |
|
|
* @param bits the bits to convert
|
574 |
|
|
* @return the <code>float</code> represented by the bits
|
575 |
|
|
* @see #floatToIntBits(float)
|
576 |
|
|
* @see #floatToRawIntBits(float)
|
577 |
|
|
*/
|
578 |
|
|
public static float intBitsToFloat(int bits)
|
579 |
|
|
{
|
580 |
|
|
return VMFloat.intBitsToFloat(bits);
|
581 |
|
|
}
|
582 |
|
|
|
583 |
|
|
/**
|
584 |
|
|
* Compare two Floats numerically by comparing their <code>float</code>
|
585 |
|
|
* values. The result is positive if the first is greater, negative if the
|
586 |
|
|
* second is greater, and 0 if the two are equal. However, this special
|
587 |
|
|
* cases NaN and signed zero as follows: NaN is considered greater than
|
588 |
|
|
* all other floats, including <code>POSITIVE_INFINITY</code>, and positive
|
589 |
|
|
* zero is considered greater than negative zero.
|
590 |
|
|
*
|
591 |
|
|
* @param f the Float to compare
|
592 |
|
|
* @return the comparison
|
593 |
|
|
* @since 1.2
|
594 |
|
|
*/
|
595 |
|
|
public int compareTo(Float f)
|
596 |
|
|
{
|
597 |
|
|
return compare(value, f.value);
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
/**
|
601 |
|
|
* Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
|
602 |
|
|
* other words this compares two floats, special casing NaN and zero,
|
603 |
|
|
* without the overhead of objects.
|
604 |
|
|
*
|
605 |
|
|
* @param x the first float to compare
|
606 |
|
|
* @param y the second float to compare
|
607 |
|
|
* @return the comparison
|
608 |
|
|
* @since 1.4
|
609 |
|
|
*/
|
610 |
|
|
public static int compare(float x, float y)
|
611 |
|
|
{
|
612 |
|
|
// handle the easy cases:
|
613 |
|
|
if (x < y)
|
614 |
|
|
return -1;
|
615 |
|
|
if (x > y)
|
616 |
|
|
return 1;
|
617 |
|
|
|
618 |
|
|
// handle equality respecting that 0.0 != -0.0 (hence not using x == y):
|
619 |
|
|
int ix = floatToRawIntBits(x);
|
620 |
|
|
int iy = floatToRawIntBits(y);
|
621 |
|
|
if (ix == iy)
|
622 |
|
|
return 0;
|
623 |
|
|
|
624 |
|
|
// handle NaNs:
|
625 |
|
|
if (x != x)
|
626 |
|
|
return (y != y) ? 0 : 1;
|
627 |
|
|
else if (y != y)
|
628 |
|
|
return -1;
|
629 |
|
|
|
630 |
|
|
// handle +/- 0.0
|
631 |
|
|
return (ix < iy) ? -1 : 1;
|
632 |
|
|
}
|
633 |
|
|
}
|