OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [java/] [lang/] [Float.java] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 771 jeremybenn
/* Float.java -- object wrapper for float
2
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3
   Free Software Foundation, Inc.
4
 
5
This file is part of GNU Classpath.
6
 
7
GNU Classpath is free software; you can redistribute it and/or modify
8
it under the terms of the GNU General Public License as published by
9
the Free Software Foundation; either version 2, or (at your option)
10
any later version.
11
 
12
GNU Classpath is distributed in the hope that it will be useful, but
13
WITHOUT ANY WARRANTY; without even the implied warranty of
14
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
General Public License for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GNU Classpath; see the file COPYING.  If not, write to the
19
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20
02110-1301 USA.
21
 
22
Linking this library statically or dynamically with other modules is
23
making a combined work based on this library.  Thus, the terms and
24
conditions of the GNU General Public License cover the whole
25
combination.
26
 
27
As a special exception, the copyright holders of this library give you
28
permission to link this library with independent modules to produce an
29
executable, regardless of the license terms of these independent
30
modules, and to copy and distribute the resulting executable under
31
terms of your choice, provided that you also meet, for each linked
32
independent module, the terms and conditions of the license of that
33
module.  An independent module is a module which is not derived from
34
or based on this library.  If you modify this library, you may extend
35
this exception to your version of the library, but you are not
36
obligated to do so.  If you do not wish to do so, delete this
37
exception statement from your version. */
38
 
39
 
40
package java.lang;
41
 
42
import gnu.java.lang.CPStringBuilder;
43
 
44
/**
45
 * Instances of class <code>Float</code> represent primitive
46
 * <code>float</code> values.
47
 *
48
 * Additionally, this class provides various helper functions and variables
49
 * related to floats.
50
 *
51
 * @author Paul Fisher
52
 * @author Andrew Haley (aph@cygnus.com)
53
 * @author Eric Blake (ebb9@email.byu.edu)
54
 * @author Tom Tromey (tromey@redhat.com)
55
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
56
 * @since 1.0
57
 * @status partly updated to 1.5
58
 */
59
public final class Float extends Number implements Comparable<Float>
60
{
61
  /**
62
   * Compatible with JDK 1.0+.
63
   */
64
  private static final long serialVersionUID = -2671257302660747028L;
65
 
66
  /**
67
   * The maximum positive value a <code>double</code> may represent
68
   * is 3.4028235e+38f.
69
   */
70
  public static final float MAX_VALUE = 3.4028235e+38f;
71
 
72
  /**
73
   * The minimum positive value a <code>float</code> may represent
74
   * is 1.4e-45.
75
   */
76
  public static final float MIN_VALUE = 1.4e-45f;
77
 
78
  /**
79
   * The value of a float representation -1.0/0.0, negative infinity.
80
   */
81
  public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
82
 
83
  /**
84
   * The value of a float representation 1.0/0.0, positive infinity.
85
   */
86
  public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
87
 
88
  /**
89
   * All IEEE 754 values of NaN have the same value in Java.
90
   */
91
  public static final float NaN = 0.0f / 0.0f;
92
 
93
  /**
94
   * The primitive type <code>float</code> is represented by this
95
   * <code>Class</code> object.
96
   * @since 1.1
97
   */
98
  public static final Class<Float> TYPE = (Class<Float>) VMClassLoader.getPrimitiveClass('F');
99
 
100
  /**
101
   * The number of bits needed to represent a <code>float</code>.
102
   * @since 1.5
103
   */
104
  public static final int SIZE = 32;
105
 
106
  /**
107
   * Cache representation of 0
108
   */
109
  private static final Float ZERO = new Float(0.0f);
110
 
111
  /**
112
   * Cache representation of 1
113
   */
114
  private static final Float ONE = new Float(1.0f);
115
 
116
  /**
117
   * The immutable value of this Float.
118
   *
119
   * @serial the wrapped float
120
   */
121
  private final float value;
122
 
123
  /**
124
   * Create a <code>Float</code> from the primitive <code>float</code>
125
   * specified.
126
   *
127
   * @param value the <code>float</code> argument
128
   */
129
  public Float(float value)
130
  {
131
    this.value = value;
132
  }
133
 
134
  /**
135
   * Create a <code>Float</code> from the primitive <code>double</code>
136
   * specified.
137
   *
138
   * @param value the <code>double</code> argument
139
   */
140
  public Float(double value)
141
  {
142
    this.value = (float) value;
143
  }
144
 
145
  /**
146
   * Create a <code>Float</code> from the specified <code>String</code>.
147
   * This method calls <code>Float.parseFloat()</code>.
148
   *
149
   * @param s the <code>String</code> to convert
150
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a
151
   *         <code>float</code>
152
   * @throws NullPointerException if <code>s</code> is null
153
   * @see #parseFloat(String)
154
   */
155
  public Float(String s)
156
  {
157
    value = parseFloat(s);
158
  }
159
 
160
  /**
161
   * Convert the <code>float</code> to a <code>String</code>.
162
   * Floating-point string representation is fairly complex: here is a
163
   * rundown of the possible values.  "<code>[-]</code>" indicates that a
164
   * negative sign will be printed if the value (or exponent) is negative.
165
   * "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
166
   * "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
167
   *
168
   * <table border=1>
169
   * <tr><th>Value of Float</th><th>String Representation</th></tr>
170
   * <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
171
   * <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
172
   *     <td><code>[-]number.number</code></td></tr>
173
   * <tr><td>Other numeric value</td>
174
   *     <td><code>[-]&lt;digit&gt;.&lt;number&gt;
175
   *          E[-]&lt;number&gt;</code></td></tr>
176
   * <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
177
   * <tr><td>NaN</td> <td><code>NaN</code></td></tr>
178
   * </table>
179
   *
180
   * Yes, negative zero <em>is</em> a possible value.  Note that there is
181
   * <em>always</em> a <code>.</code> and at least one digit printed after
182
   * it: even if the number is 3, it will be printed as <code>3.0</code>.
183
   * After the ".", all digits will be printed except trailing zeros. The
184
   * result is rounded to the shortest decimal number which will parse back
185
   * to the same float.
186
   *
187
   * <p>To create other output formats, use {@link java.text.NumberFormat}.
188
   *
189
   * @XXX specify where we are not in accord with the spec.
190
   *
191
   * @param f the <code>float</code> to convert
192
   * @return the <code>String</code> representing the <code>float</code>
193
   */
194
  public static String toString(float f)
195
  {
196
    return VMFloat.toString(f);
197
  }
198
 
199
  /**
200
   * Convert a float value to a hexadecimal string.  This converts as
201
   * follows:
202
   * <ul>
203
   * <li> A NaN value is converted to the string "NaN".
204
   * <li> Positive infinity is converted to the string "Infinity".
205
   * <li> Negative infinity is converted to the string "-Infinity".
206
   * <li> For all other values, the first character of the result is '-'
207
   * if the value is negative.  This is followed by '0x1.' if the
208
   * value is normal, and '0x0.' if the value is denormal.  This is
209
   * then followed by a (lower-case) hexadecimal representation of the
210
   * mantissa, with leading zeros as required for denormal values.
211
   * The next character is a 'p', and this is followed by a decimal
212
   * representation of the unbiased exponent.
213
   * </ul>
214
   * @param f the float value
215
   * @return the hexadecimal string representation
216
   * @since 1.5
217
   */
218
  public static String toHexString(float f)
219
  {
220
    if (isNaN(f))
221
      return "NaN";
222
    if (isInfinite(f))
223
      return f < 0 ? "-Infinity" : "Infinity";
224
 
225
    int bits = floatToIntBits(f);
226
    CPStringBuilder result = new CPStringBuilder();
227
 
228
    if (bits < 0)
229
      result.append('-');
230
    result.append("0x");
231
 
232
    final int mantissaBits = 23;
233
    final int exponentBits = 8;
234
    int mantMask = (1 << mantissaBits) - 1;
235
    int mantissa = bits & mantMask;
236
    int expMask = (1 << exponentBits) - 1;
237
    int exponent = (bits >>> mantissaBits) & expMask;
238
 
239
    result.append(exponent == 0 ? '0' : '1');
240
    result.append('.');
241
    // For Float only, we have to adjust the mantissa.
242
    mantissa <<= 1;
243
    result.append(Integer.toHexString(mantissa));
244
    if (exponent == 0 && mantissa != 0)
245
      {
246
        // Treat denormal specially by inserting '0's to make
247
        // the length come out right.  The constants here are
248
        // to account for things like the '0x'.
249
        int offset = 4 + ((bits < 0) ? 1 : 0);
250
        // The silly +3 is here to keep the code the same between
251
        // the Float and Double cases.  In Float the value is
252
        // not a multiple of 4.
253
        int desiredLength = offset + (mantissaBits + 3) / 4;
254
        while (result.length() < desiredLength)
255
          result.insert(offset, '0');
256
      }
257
    result.append('p');
258
    if (exponent == 0 && mantissa == 0)
259
      {
260
        // Zero, so do nothing special.
261
      }
262
    else
263
      {
264
        // Apply bias.
265
        boolean denormal = exponent == 0;
266
        exponent -= (1 << (exponentBits - 1)) - 1;
267
        // Handle denormal.
268
        if (denormal)
269
          ++exponent;
270
      }
271
 
272
    result.append(Integer.toString(exponent));
273
    return result.toString();
274
  }
275
 
276
  /**
277
   * Creates a new <code>Float</code> object using the <code>String</code>.
278
   *
279
   * @param s the <code>String</code> to convert
280
   * @return the new <code>Float</code>
281
   * @throws NumberFormatException if <code>s</code> cannot be parsed as a
282
   *         <code>float</code>
283
   * @throws NullPointerException if <code>s</code> is null
284
   * @see #parseFloat(String)
285
   */
286
  public static Float valueOf(String s)
287
  {
288
    return valueOf(parseFloat(s));
289
  }
290
 
291
  /**
292
   * Returns a <code>Float</code> object wrapping the value.
293
   * In contrast to the <code>Float</code> constructor, this method
294
   * may cache some values.  It is used by boxing conversion.
295
   *
296
   * @param val the value to wrap
297
   * @return the <code>Float</code>
298
   * @since 1.5
299
   */
300
  public static Float valueOf(float val)
301
  {
302
    if ((val == 0.0) && (floatToRawIntBits(val) == 0))
303
      return ZERO;
304
    else if (val == 1.0)
305
      return ONE;
306
    else
307
      return new Float(val);
308
  }
309
 
310
  /**
311
   * Parse the specified <code>String</code> as a <code>float</code>. The
312
   * extended BNF grammar is as follows:<br>
313
   * <pre>
314
   * <em>DecodableString</em>:
315
   *      ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
316
   *    | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
317
   *    | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
318
   *              [ <code>f</code> | <code>F</code> | <code>d</code>
319
   *                | <code>D</code>] )
320
   * <em>FloatingPoint</em>:
321
   *      ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
322
   *              [ <em>Exponent</em> ] )
323
   *    | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
324
   * <em>Exponent</em>:
325
   *      ( ( <code>e</code> | <code>E</code> )
326
   *              [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
327
   * <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
328
   * </pre>
329
   *
330
   * <p>NaN and infinity are special cases, to allow parsing of the output
331
   * of toString.  Otherwise, the result is determined by calculating
332
   * <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
333
   * to the nearest float. Remember that many numbers cannot be precisely
334
   * represented in floating point. In case of overflow, infinity is used,
335
   * and in case of underflow, signed zero is used. Unlike Integer.parseInt,
336
   * this does not accept Unicode digits outside the ASCII range.
337
   *
338
   * <p>If an unexpected character is found in the <code>String</code>, a
339
   * <code>NumberFormatException</code> will be thrown.  Leading and trailing
340
   * 'whitespace' is ignored via <code>String.trim()</code>, but spaces
341
   * internal to the actual number are not allowed.
342
   *
343
   * <p>To parse numbers according to another format, consider using
344
   * {@link java.text.NumberFormat}.
345
   *
346
   * @XXX specify where/how we are not in accord with the spec.
347
   *
348
   * @param str the <code>String</code> to convert
349
   * @return the <code>float</code> value of <code>s</code>
350
   * @throws NumberFormatException if <code>str</code> cannot be parsed as a
351
   *         <code>float</code>
352
   * @throws NullPointerException if <code>str</code> is null
353
   * @see #MIN_VALUE
354
   * @see #MAX_VALUE
355
   * @see #POSITIVE_INFINITY
356
   * @see #NEGATIVE_INFINITY
357
   * @since 1.2
358
   */
359
  public static float parseFloat(String str)
360
  {
361
    return VMFloat.parseFloat(str);
362
  }
363
 
364
  /**
365
   * Return <code>true</code> if the <code>float</code> has the same
366
   * value as <code>NaN</code>, otherwise return <code>false</code>.
367
   *
368
   * @param v the <code>float</code> to compare
369
   * @return whether the argument is <code>NaN</code>
370
   */
371
  public static boolean isNaN(float v)
372
  {
373
    // This works since NaN != NaN is the only reflexive inequality
374
    // comparison which returns true.
375
    return v != v;
376
  }
377
 
378
  /**
379
   * Return <code>true</code> if the <code>float</code> has a value
380
   * equal to either <code>NEGATIVE_INFINITY</code> or
381
   * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
382
   *
383
   * @param v the <code>float</code> to compare
384
   * @return whether the argument is (-/+) infinity
385
   */
386
  public static boolean isInfinite(float v)
387
  {
388
    return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
389
  }
390
 
391
  /**
392
   * Return <code>true</code> if the value of this <code>Float</code>
393
   * is the same as <code>NaN</code>, otherwise return <code>false</code>.
394
   *
395
   * @return whether this <code>Float</code> is <code>NaN</code>
396
   */
397
  public boolean isNaN()
398
  {
399
    return isNaN(value);
400
  }
401
 
402
  /**
403
   * Return <code>true</code> if the value of this <code>Float</code>
404
   * is the same as <code>NEGATIVE_INFINITY</code> or
405
   * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
406
   *
407
   * @return whether this <code>Float</code> is (-/+) infinity
408
   */
409
  public boolean isInfinite()
410
  {
411
    return isInfinite(value);
412
  }
413
 
414
  /**
415
   * Convert the <code>float</code> value of this <code>Float</code>
416
   * to a <code>String</code>.  This method calls
417
   * <code>Float.toString(float)</code> to do its dirty work.
418
   *
419
   * @return the <code>String</code> representation
420
   * @see #toString(float)
421
   */
422
  public String toString()
423
  {
424
    return toString(value);
425
  }
426
 
427
  /**
428
   * Return the value of this <code>Float</code> as a <code>byte</code>.
429
   *
430
   * @return the byte value
431
   * @since 1.1
432
   */
433
  public byte byteValue()
434
  {
435
    return (byte) value;
436
  }
437
 
438
  /**
439
   * Return the value of this <code>Float</code> as a <code>short</code>.
440
   *
441
   * @return the short value
442
   * @since 1.1
443
   */
444
  public short shortValue()
445
  {
446
    return (short) value;
447
  }
448
 
449
  /**
450
   * Return the value of this <code>Integer</code> as an <code>int</code>.
451
   *
452
   * @return the int value
453
   */
454
  public int intValue()
455
  {
456
    return (int) value;
457
  }
458
 
459
  /**
460
   * Return the value of this <code>Integer</code> as a <code>long</code>.
461
   *
462
   * @return the long value
463
   */
464
  public long longValue()
465
  {
466
    return (long) value;
467
  }
468
 
469
  /**
470
   * Return the value of this <code>Float</code>.
471
   *
472
   * @return the float value
473
   */
474
  public float floatValue()
475
  {
476
    return value;
477
  }
478
 
479
  /**
480
   * Return the value of this <code>Float</code> as a <code>double</code>
481
   *
482
   * @return the double value
483
   */
484
  public double doubleValue()
485
  {
486
    return value;
487
  }
488
 
489
  /**
490
   * Return a hashcode representing this Object. <code>Float</code>'s hash
491
   * code is calculated by calling <code>floatToIntBits(floatValue())</code>.
492
   *
493
   * @return this Object's hash code
494
   * @see #floatToIntBits(float)
495
   */
496
  public int hashCode()
497
  {
498
    return floatToIntBits(value);
499
  }
500
 
501
  /**
502
   * Returns <code>true</code> if <code>obj</code> is an instance of
503
   * <code>Float</code> and represents the same float value. Unlike comparing
504
   * two floats with <code>==</code>, this treats two instances of
505
   * <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
506
   * <code>-0.0</code> as unequal.
507
   *
508
   * <p>Note that <code>f1.equals(f2)</code> is identical to
509
   * <code>floatToIntBits(f1.floatValue()) ==
510
   *    floatToIntBits(f2.floatValue())</code>.
511
   *
512
   * @param obj the object to compare
513
   * @return whether the objects are semantically equal
514
   */
515
  public boolean equals(Object obj)
516
  {
517
    if (obj instanceof Float)
518
      {
519
        float f = ((Float) obj).value;
520
        return (floatToRawIntBits(value) == floatToRawIntBits(f)) ||
521
          (isNaN(value) && isNaN(f));
522
      }
523
    return false;
524
  }
525
 
526
  /**
527
   * Convert the float to the IEEE 754 floating-point "single format" bit
528
   * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
529
   * (masked by 0x7f800000) represent the exponent, and bits 22-0
530
   * (masked by 0x007fffff) are the mantissa. This function collapses all
531
   * versions of NaN to 0x7fc00000. The result of this function can be used
532
   * as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
533
   * original <code>float</code> value.
534
   *
535
   * @param value the <code>float</code> to convert
536
   * @return the bits of the <code>float</code>
537
   * @see #intBitsToFloat(int)
538
   */
539
  public static int floatToIntBits(float value)
540
  {
541
    if (isNaN(value))
542
      return 0x7fc00000;
543
    else
544
      return VMFloat.floatToRawIntBits(value);
545
  }
546
 
547
  /**
548
   * Convert the float to the IEEE 754 floating-point "single format" bit
549
   * layout. Bit 31 (the most significant) is the sign bit, bits 30-23
550
   * (masked by 0x7f800000) represent the exponent, and bits 22-0
551
   * (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
552
   * rather than collapsing to a canonical value. The result of this function
553
   * can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
554
   * obtain the original <code>float</code> value.
555
   *
556
   * @param value the <code>float</code> to convert
557
   * @return the bits of the <code>float</code>
558
   * @see #intBitsToFloat(int)
559
   */
560
  public static int floatToRawIntBits(float value)
561
  {
562
    return VMFloat.floatToRawIntBits(value);
563
  }
564
 
565
  /**
566
   * Convert the argument in IEEE 754 floating-point "single format" bit
567
   * layout to the corresponding float. Bit 31 (the most significant) is the
568
   * sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
569
   * bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
570
   * NaN alone, so that you can recover the bit pattern with
571
   * <code>Float.floatToRawIntBits(float)</code>.
572
   *
573
   * @param bits the bits to convert
574
   * @return the <code>float</code> represented by the bits
575
   * @see #floatToIntBits(float)
576
   * @see #floatToRawIntBits(float)
577
   */
578
  public static float intBitsToFloat(int bits)
579
  {
580
    return VMFloat.intBitsToFloat(bits);
581
  }
582
 
583
  /**
584
   * Compare two Floats numerically by comparing their <code>float</code>
585
   * values. The result is positive if the first is greater, negative if the
586
   * second is greater, and 0 if the two are equal. However, this special
587
   * cases NaN and signed zero as follows: NaN is considered greater than
588
   * all other floats, including <code>POSITIVE_INFINITY</code>, and positive
589
   * zero is considered greater than negative zero.
590
   *
591
   * @param f the Float to compare
592
   * @return the comparison
593
   * @since 1.2
594
   */
595
  public int compareTo(Float f)
596
  {
597
    return compare(value, f.value);
598
  }
599
 
600
  /**
601
   * Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
602
   * other words this compares two floats, special casing NaN and zero,
603
   * without the overhead of objects.
604
   *
605
   * @param x the first float to compare
606
   * @param y the second float to compare
607
   * @return the comparison
608
   * @since 1.4
609
   */
610
  public static int compare(float x, float y)
611
  {
612
      // handle the easy cases:
613
      if (x < y)
614
          return -1;
615
      if (x > y)
616
          return 1;
617
 
618
      // handle equality respecting that 0.0 != -0.0 (hence not using x == y):
619
      int ix = floatToRawIntBits(x);
620
      int iy = floatToRawIntBits(y);
621
      if (ix == iy)
622
          return 0;
623
 
624
      // handle NaNs:
625
      if (x != x)
626
          return (y != y) ? 0 : 1;
627
      else if (y != y)
628
          return -1;
629
 
630
      // handle +/- 0.0
631
      return (ix < iy) ? -1 : 1;
632
  }
633
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.