1 |
771 |
jeremybenn |
/* java.lang.Math -- common mathematical functions, native allowed (VMMath)
|
2 |
|
|
Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
9 |
|
|
any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
19 |
|
|
02110-1301 USA.
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
package java.lang;
|
40 |
|
|
|
41 |
|
|
import gnu.classpath.Configuration;
|
42 |
|
|
|
43 |
|
|
import java.util.Random;
|
44 |
|
|
|
45 |
|
|
/**
|
46 |
|
|
* Helper class containing useful mathematical functions and constants.
|
47 |
|
|
* <P>
|
48 |
|
|
*
|
49 |
|
|
* Note that angles are specified in radians. Conversion functions are
|
50 |
|
|
* provided for your convenience.
|
51 |
|
|
*
|
52 |
|
|
* @author Paul Fisher
|
53 |
|
|
* @author John Keiser
|
54 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
55 |
|
|
* @author Andrew John Hughes (gnu_andrew@member.fsf.org)
|
56 |
|
|
* @since 1.0
|
57 |
|
|
*/
|
58 |
|
|
public final class Math
|
59 |
|
|
{
|
60 |
|
|
|
61 |
|
|
// FIXME - This is here because we need to load the "javalang" system
|
62 |
|
|
// library somewhere late in the bootstrap cycle. We cannot do this
|
63 |
|
|
// from VMSystem or VMRuntime since those are used to actually load
|
64 |
|
|
// the library. This is mainly here because historically Math was
|
65 |
|
|
// late enough in the bootstrap cycle to start using System after it
|
66 |
|
|
// was initialized (called from the java.util classes).
|
67 |
|
|
static
|
68 |
|
|
{
|
69 |
|
|
if (Configuration.INIT_LOAD_LIBRARY)
|
70 |
|
|
{
|
71 |
|
|
System.loadLibrary("javalang");
|
72 |
|
|
}
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
/**
|
76 |
|
|
* Math is non-instantiable
|
77 |
|
|
*/
|
78 |
|
|
private Math()
|
79 |
|
|
{
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
/**
|
83 |
|
|
* A random number generator, initialized on first use.
|
84 |
|
|
*/
|
85 |
|
|
private static Random rand;
|
86 |
|
|
|
87 |
|
|
/**
|
88 |
|
|
* The most accurate approximation to the mathematical constant <em>e</em>:
|
89 |
|
|
* <code>2.718281828459045</code>. Used in natural log and exp.
|
90 |
|
|
*
|
91 |
|
|
* @see #log(double)
|
92 |
|
|
* @see #exp(double)
|
93 |
|
|
*/
|
94 |
|
|
public static final double E = 2.718281828459045;
|
95 |
|
|
|
96 |
|
|
/**
|
97 |
|
|
* The most accurate approximation to the mathematical constant <em>pi</em>:
|
98 |
|
|
* <code>3.141592653589793</code>. This is the ratio of a circle's diameter
|
99 |
|
|
* to its circumference.
|
100 |
|
|
*/
|
101 |
|
|
public static final double PI = 3.141592653589793;
|
102 |
|
|
|
103 |
|
|
/**
|
104 |
|
|
* Take the absolute value of the argument.
|
105 |
|
|
* (Absolute value means make it positive.)
|
106 |
|
|
* <P>
|
107 |
|
|
*
|
108 |
|
|
* Note that the the largest negative value (Integer.MIN_VALUE) cannot
|
109 |
|
|
* be made positive. In this case, because of the rules of negation in
|
110 |
|
|
* a computer, MIN_VALUE is what will be returned.
|
111 |
|
|
* This is a <em>negative</em> value. You have been warned.
|
112 |
|
|
*
|
113 |
|
|
* @param i the number to take the absolute value of
|
114 |
|
|
* @return the absolute value
|
115 |
|
|
* @see Integer#MIN_VALUE
|
116 |
|
|
*/
|
117 |
|
|
public static int abs(int i)
|
118 |
|
|
{
|
119 |
|
|
return (i < 0) ? -i : i;
|
120 |
|
|
}
|
121 |
|
|
|
122 |
|
|
/**
|
123 |
|
|
* Take the absolute value of the argument.
|
124 |
|
|
* (Absolute value means make it positive.)
|
125 |
|
|
* <P>
|
126 |
|
|
*
|
127 |
|
|
* Note that the the largest negative value (Long.MIN_VALUE) cannot
|
128 |
|
|
* be made positive. In this case, because of the rules of negation in
|
129 |
|
|
* a computer, MIN_VALUE is what will be returned.
|
130 |
|
|
* This is a <em>negative</em> value. You have been warned.
|
131 |
|
|
*
|
132 |
|
|
* @param l the number to take the absolute value of
|
133 |
|
|
* @return the absolute value
|
134 |
|
|
* @see Long#MIN_VALUE
|
135 |
|
|
*/
|
136 |
|
|
public static long abs(long l)
|
137 |
|
|
{
|
138 |
|
|
return (l < 0) ? -l : l;
|
139 |
|
|
}
|
140 |
|
|
|
141 |
|
|
/**
|
142 |
|
|
* Take the absolute value of the argument.
|
143 |
|
|
* (Absolute value means make it positive.)
|
144 |
|
|
* <P>
|
145 |
|
|
*
|
146 |
|
|
* This is equivalent, but faster than, calling
|
147 |
|
|
* <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
|
148 |
|
|
*
|
149 |
|
|
* @param f the number to take the absolute value of
|
150 |
|
|
* @return the absolute value
|
151 |
|
|
*/
|
152 |
|
|
public static float abs(float f)
|
153 |
|
|
{
|
154 |
|
|
return (f <= 0) ? 0 - f : f;
|
155 |
|
|
}
|
156 |
|
|
|
157 |
|
|
/**
|
158 |
|
|
* Take the absolute value of the argument.
|
159 |
|
|
* (Absolute value means make it positive.)
|
160 |
|
|
*
|
161 |
|
|
* This is equivalent, but faster than, calling
|
162 |
|
|
* <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
|
163 |
|
|
* << 1) >>> 1);</code>.
|
164 |
|
|
*
|
165 |
|
|
* @param d the number to take the absolute value of
|
166 |
|
|
* @return the absolute value
|
167 |
|
|
*/
|
168 |
|
|
public static double abs(double d)
|
169 |
|
|
{
|
170 |
|
|
return (d <= 0) ? 0 - d : d;
|
171 |
|
|
}
|
172 |
|
|
|
173 |
|
|
/**
|
174 |
|
|
* Return whichever argument is smaller.
|
175 |
|
|
*
|
176 |
|
|
* @param a the first number
|
177 |
|
|
* @param b a second number
|
178 |
|
|
* @return the smaller of the two numbers
|
179 |
|
|
*/
|
180 |
|
|
public static int min(int a, int b)
|
181 |
|
|
{
|
182 |
|
|
return (a < b) ? a : b;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
/**
|
186 |
|
|
* Return whichever argument is smaller.
|
187 |
|
|
*
|
188 |
|
|
* @param a the first number
|
189 |
|
|
* @param b a second number
|
190 |
|
|
* @return the smaller of the two numbers
|
191 |
|
|
*/
|
192 |
|
|
public static long min(long a, long b)
|
193 |
|
|
{
|
194 |
|
|
return (a < b) ? a : b;
|
195 |
|
|
}
|
196 |
|
|
|
197 |
|
|
/**
|
198 |
|
|
* Return whichever argument is smaller. If either argument is NaN, the
|
199 |
|
|
* result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
200 |
|
|
*
|
201 |
|
|
* @param a the first number
|
202 |
|
|
* @param b a second number
|
203 |
|
|
* @return the smaller of the two numbers
|
204 |
|
|
*/
|
205 |
|
|
public static float min(float a, float b)
|
206 |
|
|
{
|
207 |
|
|
// this check for NaN, from JLS 15.21.1, saves a method call
|
208 |
|
|
if (a != a)
|
209 |
|
|
return a;
|
210 |
|
|
// no need to check if b is NaN; < will work correctly
|
211 |
|
|
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
212 |
|
|
if (a == 0 && b == 0)
|
213 |
|
|
return -(-a - b);
|
214 |
|
|
return (a < b) ? a : b;
|
215 |
|
|
}
|
216 |
|
|
|
217 |
|
|
/**
|
218 |
|
|
* Return whichever argument is smaller. If either argument is NaN, the
|
219 |
|
|
* result is NaN, and when comparing 0 and -0, -0 is always smaller.
|
220 |
|
|
*
|
221 |
|
|
* @param a the first number
|
222 |
|
|
* @param b a second number
|
223 |
|
|
* @return the smaller of the two numbers
|
224 |
|
|
*/
|
225 |
|
|
public static double min(double a, double b)
|
226 |
|
|
{
|
227 |
|
|
// this check for NaN, from JLS 15.21.1, saves a method call
|
228 |
|
|
if (a != a)
|
229 |
|
|
return a;
|
230 |
|
|
// no need to check if b is NaN; < will work correctly
|
231 |
|
|
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
232 |
|
|
if (a == 0 && b == 0)
|
233 |
|
|
return -(-a - b);
|
234 |
|
|
return (a < b) ? a : b;
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
/**
|
238 |
|
|
* Return whichever argument is larger.
|
239 |
|
|
*
|
240 |
|
|
* @param a the first number
|
241 |
|
|
* @param b a second number
|
242 |
|
|
* @return the larger of the two numbers
|
243 |
|
|
*/
|
244 |
|
|
public static int max(int a, int b)
|
245 |
|
|
{
|
246 |
|
|
return (a > b) ? a : b;
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
/**
|
250 |
|
|
* Return whichever argument is larger.
|
251 |
|
|
*
|
252 |
|
|
* @param a the first number
|
253 |
|
|
* @param b a second number
|
254 |
|
|
* @return the larger of the two numbers
|
255 |
|
|
*/
|
256 |
|
|
public static long max(long a, long b)
|
257 |
|
|
{
|
258 |
|
|
return (a > b) ? a : b;
|
259 |
|
|
}
|
260 |
|
|
|
261 |
|
|
/**
|
262 |
|
|
* Return whichever argument is larger. If either argument is NaN, the
|
263 |
|
|
* result is NaN, and when comparing 0 and -0, 0 is always larger.
|
264 |
|
|
*
|
265 |
|
|
* @param a the first number
|
266 |
|
|
* @param b a second number
|
267 |
|
|
* @return the larger of the two numbers
|
268 |
|
|
*/
|
269 |
|
|
public static float max(float a, float b)
|
270 |
|
|
{
|
271 |
|
|
// this check for NaN, from JLS 15.21.1, saves a method call
|
272 |
|
|
if (a != a)
|
273 |
|
|
return a;
|
274 |
|
|
// no need to check if b is NaN; > will work correctly
|
275 |
|
|
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
276 |
|
|
if (a == 0 && b == 0)
|
277 |
|
|
return a - -b;
|
278 |
|
|
return (a > b) ? a : b;
|
279 |
|
|
}
|
280 |
|
|
|
281 |
|
|
/**
|
282 |
|
|
* Return whichever argument is larger. If either argument is NaN, the
|
283 |
|
|
* result is NaN, and when comparing 0 and -0, 0 is always larger.
|
284 |
|
|
*
|
285 |
|
|
* @param a the first number
|
286 |
|
|
* @param b a second number
|
287 |
|
|
* @return the larger of the two numbers
|
288 |
|
|
*/
|
289 |
|
|
public static double max(double a, double b)
|
290 |
|
|
{
|
291 |
|
|
// this check for NaN, from JLS 15.21.1, saves a method call
|
292 |
|
|
if (a != a)
|
293 |
|
|
return a;
|
294 |
|
|
// no need to check if b is NaN; > will work correctly
|
295 |
|
|
// recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
|
296 |
|
|
if (a == 0 && b == 0)
|
297 |
|
|
return a - -b;
|
298 |
|
|
return (a > b) ? a : b;
|
299 |
|
|
}
|
300 |
|
|
|
301 |
|
|
/**
|
302 |
|
|
* The trigonometric function <em>sin</em>. The sine of NaN or infinity is
|
303 |
|
|
* NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
|
304 |
|
|
* and is semi-monotonic.
|
305 |
|
|
*
|
306 |
|
|
* @param a the angle (in radians)
|
307 |
|
|
* @return sin(a)
|
308 |
|
|
*/
|
309 |
|
|
public static double sin(double a)
|
310 |
|
|
{
|
311 |
|
|
return VMMath.sin(a);
|
312 |
|
|
}
|
313 |
|
|
|
314 |
|
|
/**
|
315 |
|
|
* The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
|
316 |
|
|
* NaN. This is accurate within 1 ulp, and is semi-monotonic.
|
317 |
|
|
*
|
318 |
|
|
* @param a the angle (in radians)
|
319 |
|
|
* @return cos(a)
|
320 |
|
|
*/
|
321 |
|
|
public static double cos(double a)
|
322 |
|
|
{
|
323 |
|
|
return VMMath.cos(a);
|
324 |
|
|
}
|
325 |
|
|
|
326 |
|
|
/**
|
327 |
|
|
* The trigonometric function <em>tan</em>. The tangent of NaN or infinity
|
328 |
|
|
* is NaN, and the tangent of 0 retains its sign. This is accurate within 1
|
329 |
|
|
* ulp, and is semi-monotonic.
|
330 |
|
|
*
|
331 |
|
|
* @param a the angle (in radians)
|
332 |
|
|
* @return tan(a)
|
333 |
|
|
*/
|
334 |
|
|
public static double tan(double a)
|
335 |
|
|
{
|
336 |
|
|
return VMMath.tan(a);
|
337 |
|
|
}
|
338 |
|
|
|
339 |
|
|
/**
|
340 |
|
|
* The trigonometric function <em>arcsin</em>. The range of angles returned
|
341 |
|
|
* is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
|
342 |
|
|
* its absolute value is beyond 1, the result is NaN; and the arcsine of
|
343 |
|
|
* 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
|
344 |
|
|
*
|
345 |
|
|
* @param a the sin to turn back into an angle
|
346 |
|
|
* @return arcsin(a)
|
347 |
|
|
*/
|
348 |
|
|
public static double asin(double a)
|
349 |
|
|
{
|
350 |
|
|
return VMMath.asin(a);
|
351 |
|
|
}
|
352 |
|
|
|
353 |
|
|
/**
|
354 |
|
|
* The trigonometric function <em>arccos</em>. The range of angles returned
|
355 |
|
|
* is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
|
356 |
|
|
* its absolute value is beyond 1, the result is NaN. This is accurate
|
357 |
|
|
* within 1 ulp, and is semi-monotonic.
|
358 |
|
|
*
|
359 |
|
|
* @param a the cos to turn back into an angle
|
360 |
|
|
* @return arccos(a)
|
361 |
|
|
*/
|
362 |
|
|
public static double acos(double a)
|
363 |
|
|
{
|
364 |
|
|
return VMMath.acos(a);
|
365 |
|
|
}
|
366 |
|
|
|
367 |
|
|
/**
|
368 |
|
|
* The trigonometric function <em>arcsin</em>. The range of angles returned
|
369 |
|
|
* is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
|
370 |
|
|
* result is NaN; and the arctangent of 0 retains its sign. This is accurate
|
371 |
|
|
* within 1 ulp, and is semi-monotonic.
|
372 |
|
|
*
|
373 |
|
|
* @param a the tan to turn back into an angle
|
374 |
|
|
* @return arcsin(a)
|
375 |
|
|
* @see #atan2(double, double)
|
376 |
|
|
*/
|
377 |
|
|
public static double atan(double a)
|
378 |
|
|
{
|
379 |
|
|
return VMMath.atan(a);
|
380 |
|
|
}
|
381 |
|
|
|
382 |
|
|
/**
|
383 |
|
|
* A special version of the trigonometric function <em>arctan</em>, for
|
384 |
|
|
* converting rectangular coordinates <em>(x, y)</em> to polar
|
385 |
|
|
* <em>(r, theta)</em>. This computes the arctangent of x/y in the range
|
386 |
|
|
* of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
|
387 |
|
|
* <li>If either argument is NaN, the result is NaN.</li>
|
388 |
|
|
* <li>If the first argument is positive zero and the second argument is
|
389 |
|
|
* positive, or the first argument is positive and finite and the second
|
390 |
|
|
* argument is positive infinity, then the result is positive zero.</li>
|
391 |
|
|
* <li>If the first argument is negative zero and the second argument is
|
392 |
|
|
* positive, or the first argument is negative and finite and the second
|
393 |
|
|
* argument is positive infinity, then the result is negative zero.</li>
|
394 |
|
|
* <li>If the first argument is positive zero and the second argument is
|
395 |
|
|
* negative, or the first argument is positive and finite and the second
|
396 |
|
|
* argument is negative infinity, then the result is the double value
|
397 |
|
|
* closest to pi.</li>
|
398 |
|
|
* <li>If the first argument is negative zero and the second argument is
|
399 |
|
|
* negative, or the first argument is negative and finite and the second
|
400 |
|
|
* argument is negative infinity, then the result is the double value
|
401 |
|
|
* closest to -pi.</li>
|
402 |
|
|
* <li>If the first argument is positive and the second argument is
|
403 |
|
|
* positive zero or negative zero, or the first argument is positive
|
404 |
|
|
* infinity and the second argument is finite, then the result is the
|
405 |
|
|
* double value closest to pi/2.</li>
|
406 |
|
|
* <li>If the first argument is negative and the second argument is
|
407 |
|
|
* positive zero or negative zero, or the first argument is negative
|
408 |
|
|
* infinity and the second argument is finite, then the result is the
|
409 |
|
|
* double value closest to -pi/2.</li>
|
410 |
|
|
* <li>If both arguments are positive infinity, then the result is the
|
411 |
|
|
* double value closest to pi/4.</li>
|
412 |
|
|
* <li>If the first argument is positive infinity and the second argument
|
413 |
|
|
* is negative infinity, then the result is the double value closest to
|
414 |
|
|
* 3*pi/4.</li>
|
415 |
|
|
* <li>If the first argument is negative infinity and the second argument
|
416 |
|
|
* is positive infinity, then the result is the double value closest to
|
417 |
|
|
* -pi/4.</li>
|
418 |
|
|
* <li>If both arguments are negative infinity, then the result is the
|
419 |
|
|
* double value closest to -3*pi/4.</li>
|
420 |
|
|
*
|
421 |
|
|
* </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
|
422 |
|
|
* use sqrt(x*x+y*y).
|
423 |
|
|
*
|
424 |
|
|
* @param y the y position
|
425 |
|
|
* @param x the x position
|
426 |
|
|
* @return <em>theta</em> in the conversion of (x, y) to (r, theta)
|
427 |
|
|
* @see #atan(double)
|
428 |
|
|
*/
|
429 |
|
|
public static double atan2(double y, double x)
|
430 |
|
|
{
|
431 |
|
|
return VMMath.atan2(y,x);
|
432 |
|
|
}
|
433 |
|
|
|
434 |
|
|
/**
|
435 |
|
|
* Take <em>e</em><sup>a</sup>. The opposite of <code>log()</code>. If the
|
436 |
|
|
* argument is NaN, the result is NaN; if the argument is positive infinity,
|
437 |
|
|
* the result is positive infinity; and if the argument is negative
|
438 |
|
|
* infinity, the result is positive zero. This is accurate within 1 ulp,
|
439 |
|
|
* and is semi-monotonic.
|
440 |
|
|
*
|
441 |
|
|
* @param a the number to raise to the power
|
442 |
|
|
* @return the number raised to the power of <em>e</em>
|
443 |
|
|
* @see #log(double)
|
444 |
|
|
* @see #pow(double, double)
|
445 |
|
|
*/
|
446 |
|
|
public static double exp(double a)
|
447 |
|
|
{
|
448 |
|
|
return VMMath.exp(a);
|
449 |
|
|
}
|
450 |
|
|
|
451 |
|
|
/**
|
452 |
|
|
* Take ln(a) (the natural log). The opposite of <code>exp()</code>. If the
|
453 |
|
|
* argument is NaN or negative, the result is NaN; if the argument is
|
454 |
|
|
* positive infinity, the result is positive infinity; and if the argument
|
455 |
|
|
* is either zero, the result is negative infinity. This is accurate within
|
456 |
|
|
* 1 ulp, and is semi-monotonic.
|
457 |
|
|
*
|
458 |
|
|
* <p>Note that the way to get log<sub>b</sub>(a) is to do this:
|
459 |
|
|
* <code>ln(a) / ln(b)</code>.
|
460 |
|
|
*
|
461 |
|
|
* @param a the number to take the natural log of
|
462 |
|
|
* @return the natural log of <code>a</code>
|
463 |
|
|
* @see #exp(double)
|
464 |
|
|
*/
|
465 |
|
|
public static double log(double a)
|
466 |
|
|
{
|
467 |
|
|
return VMMath.log(a);
|
468 |
|
|
}
|
469 |
|
|
|
470 |
|
|
/**
|
471 |
|
|
* Take a square root. If the argument is NaN or negative, the result is
|
472 |
|
|
* NaN; if the argument is positive infinity, the result is positive
|
473 |
|
|
* infinity; and if the result is either zero, the result is the same.
|
474 |
|
|
* This is accurate within the limits of doubles.
|
475 |
|
|
*
|
476 |
|
|
* <p>For a cube root, use <code>cbrt</code>. For other roots, use
|
477 |
|
|
* <code>pow(a, 1 / rootNumber)</code>.</p>
|
478 |
|
|
*
|
479 |
|
|
* @param a the numeric argument
|
480 |
|
|
* @return the square root of the argument
|
481 |
|
|
* @see #cbrt(double)
|
482 |
|
|
* @see #pow(double, double)
|
483 |
|
|
*/
|
484 |
|
|
public static double sqrt(double a)
|
485 |
|
|
{
|
486 |
|
|
return VMMath.sqrt(a);
|
487 |
|
|
}
|
488 |
|
|
|
489 |
|
|
/**
|
490 |
|
|
* Raise a number to a power. Special cases:<ul>
|
491 |
|
|
* <li>If the second argument is positive or negative zero, then the result
|
492 |
|
|
* is 1.0.</li>
|
493 |
|
|
* <li>If the second argument is 1.0, then the result is the same as the
|
494 |
|
|
* first argument.</li>
|
495 |
|
|
* <li>If the second argument is NaN, then the result is NaN.</li>
|
496 |
|
|
* <li>If the first argument is NaN and the second argument is nonzero,
|
497 |
|
|
* then the result is NaN.</li>
|
498 |
|
|
* <li>If the absolute value of the first argument is greater than 1 and
|
499 |
|
|
* the second argument is positive infinity, or the absolute value of the
|
500 |
|
|
* first argument is less than 1 and the second argument is negative
|
501 |
|
|
* infinity, then the result is positive infinity.</li>
|
502 |
|
|
* <li>If the absolute value of the first argument is greater than 1 and
|
503 |
|
|
* the second argument is negative infinity, or the absolute value of the
|
504 |
|
|
* first argument is less than 1 and the second argument is positive
|
505 |
|
|
* infinity, then the result is positive zero.</li>
|
506 |
|
|
* <li>If the absolute value of the first argument equals 1 and the second
|
507 |
|
|
* argument is infinite, then the result is NaN.</li>
|
508 |
|
|
* <li>If the first argument is positive zero and the second argument is
|
509 |
|
|
* greater than zero, or the first argument is positive infinity and the
|
510 |
|
|
* second argument is less than zero, then the result is positive zero.</li>
|
511 |
|
|
* <li>If the first argument is positive zero and the second argument is
|
512 |
|
|
* less than zero, or the first argument is positive infinity and the
|
513 |
|
|
* second argument is greater than zero, then the result is positive
|
514 |
|
|
* infinity.</li>
|
515 |
|
|
* <li>If the first argument is negative zero and the second argument is
|
516 |
|
|
* greater than zero but not a finite odd integer, or the first argument is
|
517 |
|
|
* negative infinity and the second argument is less than zero but not a
|
518 |
|
|
* finite odd integer, then the result is positive zero.</li>
|
519 |
|
|
* <li>If the first argument is negative zero and the second argument is a
|
520 |
|
|
* positive finite odd integer, or the first argument is negative infinity
|
521 |
|
|
* and the second argument is a negative finite odd integer, then the result
|
522 |
|
|
* is negative zero.</li>
|
523 |
|
|
* <li>If the first argument is negative zero and the second argument is
|
524 |
|
|
* less than zero but not a finite odd integer, or the first argument is
|
525 |
|
|
* negative infinity and the second argument is greater than zero but not a
|
526 |
|
|
* finite odd integer, then the result is positive infinity.</li>
|
527 |
|
|
* <li>If the first argument is negative zero and the second argument is a
|
528 |
|
|
* negative finite odd integer, or the first argument is negative infinity
|
529 |
|
|
* and the second argument is a positive finite odd integer, then the result
|
530 |
|
|
* is negative infinity.</li>
|
531 |
|
|
* <li>If the first argument is less than zero and the second argument is a
|
532 |
|
|
* finite even integer, then the result is equal to the result of raising
|
533 |
|
|
* the absolute value of the first argument to the power of the second
|
534 |
|
|
* argument.</li>
|
535 |
|
|
* <li>If the first argument is less than zero and the second argument is a
|
536 |
|
|
* finite odd integer, then the result is equal to the negative of the
|
537 |
|
|
* result of raising the absolute value of the first argument to the power
|
538 |
|
|
* of the second argument.</li>
|
539 |
|
|
* <li>If the first argument is finite and less than zero and the second
|
540 |
|
|
* argument is finite and not an integer, then the result is NaN.</li>
|
541 |
|
|
* <li>If both arguments are integers, then the result is exactly equal to
|
542 |
|
|
* the mathematical result of raising the first argument to the power of
|
543 |
|
|
* the second argument if that result can in fact be represented exactly as
|
544 |
|
|
* a double value.</li>
|
545 |
|
|
*
|
546 |
|
|
* </ul><p>(In the foregoing descriptions, a floating-point value is
|
547 |
|
|
* considered to be an integer if and only if it is a fixed point of the
|
548 |
|
|
* method {@link #ceil(double)} or, equivalently, a fixed point of the
|
549 |
|
|
* method {@link #floor(double)}. A value is a fixed point of a one-argument
|
550 |
|
|
* method if and only if the result of applying the method to the value is
|
551 |
|
|
* equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
|
552 |
|
|
*
|
553 |
|
|
* @param a the number to raise
|
554 |
|
|
* @param b the power to raise it to
|
555 |
|
|
* @return a<sup>b</sup>
|
556 |
|
|
*/
|
557 |
|
|
public static double pow(double a, double b)
|
558 |
|
|
{
|
559 |
|
|
return VMMath.pow(a,b);
|
560 |
|
|
}
|
561 |
|
|
|
562 |
|
|
/**
|
563 |
|
|
* Get the IEEE 754 floating point remainder on two numbers. This is the
|
564 |
|
|
* value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
|
565 |
|
|
* double to <code>x / y</code> (ties go to the even n); for a zero
|
566 |
|
|
* remainder, the sign is that of <code>x</code>. If either argument is NaN,
|
567 |
|
|
* the first argument is infinite, or the second argument is zero, the result
|
568 |
|
|
* is NaN; if x is finite but y is infinite, the result is x. This is
|
569 |
|
|
* accurate within the limits of doubles.
|
570 |
|
|
*
|
571 |
|
|
* @param x the dividend (the top half)
|
572 |
|
|
* @param y the divisor (the bottom half)
|
573 |
|
|
* @return the IEEE 754-defined floating point remainder of x/y
|
574 |
|
|
* @see #rint(double)
|
575 |
|
|
*/
|
576 |
|
|
public static double IEEEremainder(double x, double y)
|
577 |
|
|
{
|
578 |
|
|
return VMMath.IEEEremainder(x,y);
|
579 |
|
|
}
|
580 |
|
|
|
581 |
|
|
/**
|
582 |
|
|
* Take the nearest integer that is that is greater than or equal to the
|
583 |
|
|
* argument. If the argument is NaN, infinite, or zero, the result is the
|
584 |
|
|
* same; if the argument is between -1 and 0, the result is negative zero.
|
585 |
|
|
* Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
586 |
|
|
*
|
587 |
|
|
* @param a the value to act upon
|
588 |
|
|
* @return the nearest integer >= <code>a</code>
|
589 |
|
|
*/
|
590 |
|
|
public static double ceil(double a)
|
591 |
|
|
{
|
592 |
|
|
return VMMath.ceil(a);
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/**
|
596 |
|
|
* Take the nearest integer that is that is less than or equal to the
|
597 |
|
|
* argument. If the argument is NaN, infinite, or zero, the result is the
|
598 |
|
|
* same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
|
599 |
|
|
*
|
600 |
|
|
* @param a the value to act upon
|
601 |
|
|
* @return the nearest integer <= <code>a</code>
|
602 |
|
|
*/
|
603 |
|
|
public static double floor(double a)
|
604 |
|
|
{
|
605 |
|
|
return VMMath.floor(a);
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/**
|
609 |
|
|
* Take the nearest integer to the argument. If it is exactly between
|
610 |
|
|
* two integers, the even integer is taken. If the argument is NaN,
|
611 |
|
|
* infinite, or zero, the result is the same.
|
612 |
|
|
*
|
613 |
|
|
* @param a the value to act upon
|
614 |
|
|
* @return the nearest integer to <code>a</code>
|
615 |
|
|
*/
|
616 |
|
|
public static double rint(double a)
|
617 |
|
|
{
|
618 |
|
|
return VMMath.rint(a);
|
619 |
|
|
}
|
620 |
|
|
|
621 |
|
|
/**
|
622 |
|
|
* Take the nearest integer to the argument. This is equivalent to
|
623 |
|
|
* <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
|
624 |
|
|
* is 0; otherwise if the argument is outside the range of int, the result
|
625 |
|
|
* will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
|
626 |
|
|
*
|
627 |
|
|
* @param a the argument to round
|
628 |
|
|
* @return the nearest integer to the argument
|
629 |
|
|
* @see Integer#MIN_VALUE
|
630 |
|
|
* @see Integer#MAX_VALUE
|
631 |
|
|
*/
|
632 |
|
|
public static int round(float a)
|
633 |
|
|
{
|
634 |
|
|
// this check for NaN, from JLS 15.21.1, saves a method call
|
635 |
|
|
if (a != a)
|
636 |
|
|
return 0;
|
637 |
|
|
return (int) floor(a + 0.5f);
|
638 |
|
|
}
|
639 |
|
|
|
640 |
|
|
/**
|
641 |
|
|
* Take the nearest long to the argument. This is equivalent to
|
642 |
|
|
* <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
|
643 |
|
|
* result is 0; otherwise if the argument is outside the range of long, the
|
644 |
|
|
* result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
|
645 |
|
|
*
|
646 |
|
|
* @param a the argument to round
|
647 |
|
|
* @return the nearest long to the argument
|
648 |
|
|
* @see Long#MIN_VALUE
|
649 |
|
|
* @see Long#MAX_VALUE
|
650 |
|
|
*/
|
651 |
|
|
public static long round(double a)
|
652 |
|
|
{
|
653 |
|
|
// this check for NaN, from JLS 15.21.1, saves a method call
|
654 |
|
|
if (a != a)
|
655 |
|
|
return 0;
|
656 |
|
|
return (long) floor(a + 0.5d);
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
/**
|
660 |
|
|
* Get a random number. This behaves like Random.nextDouble(), seeded by
|
661 |
|
|
* System.currentTimeMillis() when first called. In other words, the number
|
662 |
|
|
* is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
|
663 |
|
|
* This random sequence is only used by this method, and is threadsafe,
|
664 |
|
|
* although you may want your own random number generator if it is shared
|
665 |
|
|
* among threads.
|
666 |
|
|
*
|
667 |
|
|
* @return a random number
|
668 |
|
|
* @see Random#nextDouble()
|
669 |
|
|
* @see System#currentTimeMillis()
|
670 |
|
|
*/
|
671 |
|
|
public static synchronized double random()
|
672 |
|
|
{
|
673 |
|
|
if (rand == null)
|
674 |
|
|
rand = new Random();
|
675 |
|
|
return rand.nextDouble();
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
/**
|
679 |
|
|
* Convert from degrees to radians. The formula for this is
|
680 |
|
|
* radians = degrees * (pi/180); however it is not always exact given the
|
681 |
|
|
* limitations of floating point numbers.
|
682 |
|
|
*
|
683 |
|
|
* @param degrees an angle in degrees
|
684 |
|
|
* @return the angle in radians
|
685 |
|
|
* @since 1.2
|
686 |
|
|
*/
|
687 |
|
|
public static double toRadians(double degrees)
|
688 |
|
|
{
|
689 |
|
|
return (degrees * PI) / 180;
|
690 |
|
|
}
|
691 |
|
|
|
692 |
|
|
/**
|
693 |
|
|
* Convert from radians to degrees. The formula for this is
|
694 |
|
|
* degrees = radians * (180/pi); however it is not always exact given the
|
695 |
|
|
* limitations of floating point numbers.
|
696 |
|
|
*
|
697 |
|
|
* @param rads an angle in radians
|
698 |
|
|
* @return the angle in degrees
|
699 |
|
|
* @since 1.2
|
700 |
|
|
*/
|
701 |
|
|
public static double toDegrees(double rads)
|
702 |
|
|
{
|
703 |
|
|
return (rads * 180) / PI;
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
/**
|
707 |
|
|
* <p>
|
708 |
|
|
* Take a cube root. If the argument is <code>NaN</code>, an infinity or
|
709 |
|
|
* zero, then the original value is returned. The returned result is
|
710 |
|
|
* within 1 ulp of the exact result. For a finite value, <code>x</code>,
|
711 |
|
|
* the cube root of <code>-x</code> is equal to the negation of the cube root
|
712 |
|
|
* of <code>x</code>.
|
713 |
|
|
* </p>
|
714 |
|
|
* <p>
|
715 |
|
|
* For a square root, use <code>sqrt</code>. For other roots, use
|
716 |
|
|
* <code>pow(a, 1 / rootNumber)</code>.
|
717 |
|
|
* </p>
|
718 |
|
|
*
|
719 |
|
|
* @param a the numeric argument
|
720 |
|
|
* @return the cube root of the argument
|
721 |
|
|
* @see #sqrt(double)
|
722 |
|
|
* @see #pow(double, double)
|
723 |
|
|
* @since 1.5
|
724 |
|
|
*/
|
725 |
|
|
public static double cbrt(double a)
|
726 |
|
|
{
|
727 |
|
|
return VMMath.cbrt(a);
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
/**
|
731 |
|
|
* <p>
|
732 |
|
|
* Returns the hyperbolic cosine of the given value. For a value,
|
733 |
|
|
* <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> +
|
734 |
|
|
* e<sup>-x</sup>)/2</code>
|
735 |
|
|
* with <code>e</code> being <a href="#E">Euler's number</a>. The returned
|
736 |
|
|
* result is within 2.5 ulps of the exact result.
|
737 |
|
|
* </p>
|
738 |
|
|
* <p>
|
739 |
|
|
* If the supplied value is <code>NaN</code>, then the original value is
|
740 |
|
|
* returned. For either infinity, positive infinity is returned.
|
741 |
|
|
* The hyperbolic cosine of zero is 1.0.
|
742 |
|
|
* </p>
|
743 |
|
|
*
|
744 |
|
|
* @param a the numeric argument
|
745 |
|
|
* @return the hyperbolic cosine of <code>a</code>.
|
746 |
|
|
* @since 1.5
|
747 |
|
|
*/
|
748 |
|
|
public static double cosh(double a)
|
749 |
|
|
{
|
750 |
|
|
return VMMath.cosh(a);
|
751 |
|
|
}
|
752 |
|
|
|
753 |
|
|
/**
|
754 |
|
|
* <p>
|
755 |
|
|
* Returns <code>e<sup>a</sup> - 1. For values close to 0, the
|
756 |
|
|
* result of <code>expm1(a) + 1</code> tend to be much closer to the
|
757 |
|
|
* exact result than simply <code>exp(x)</code>. The result is within
|
758 |
|
|
* 1 ulp of the exact result, and results are semi-monotonic. For finite
|
759 |
|
|
* inputs, the returned value is greater than or equal to -1.0. Once
|
760 |
|
|
* a result enters within half a ulp of this limit, the limit is returned.
|
761 |
|
|
* </p>
|
762 |
|
|
* <p>
|
763 |
|
|
* For <code>NaN</code>, positive infinity and zero, the original value
|
764 |
|
|
* is returned. Negative infinity returns a result of -1.0 (the limit).
|
765 |
|
|
* </p>
|
766 |
|
|
*
|
767 |
|
|
* @param a the numeric argument
|
768 |
|
|
* @return <code>e<sup>a</sup> - 1</code>
|
769 |
|
|
* @since 1.5
|
770 |
|
|
*/
|
771 |
|
|
public static double expm1(double a)
|
772 |
|
|
{
|
773 |
|
|
return VMMath.expm1(a);
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
/**
|
777 |
|
|
* <p>
|
778 |
|
|
* Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>,
|
779 |
|
|
* without intermediate overflow or underflow. The returned result is
|
780 |
|
|
* within 1 ulp of the exact result. If one parameter is held constant,
|
781 |
|
|
* then the result in the other parameter is semi-monotonic.
|
782 |
|
|
* </p>
|
783 |
|
|
* <p>
|
784 |
|
|
* If either of the arguments is an infinity, then the returned result
|
785 |
|
|
* is positive infinity. Otherwise, if either argument is <code>NaN</code>,
|
786 |
|
|
* then <code>NaN</code> is returned.
|
787 |
|
|
* </p>
|
788 |
|
|
*
|
789 |
|
|
* @param a the first parameter.
|
790 |
|
|
* @param b the second parameter.
|
791 |
|
|
* @return the hypotenuse matching the supplied parameters.
|
792 |
|
|
* @since 1.5
|
793 |
|
|
*/
|
794 |
|
|
public static double hypot(double a, double b)
|
795 |
|
|
{
|
796 |
|
|
return VMMath.hypot(a,b);
|
797 |
|
|
}
|
798 |
|
|
|
799 |
|
|
/**
|
800 |
|
|
* <p>
|
801 |
|
|
* Returns the base 10 logarithm of the supplied value. The returned
|
802 |
|
|
* result is within 1 ulp of the exact result, and the results are
|
803 |
|
|
* semi-monotonic.
|
804 |
|
|
* </p>
|
805 |
|
|
* <p>
|
806 |
|
|
* Arguments of either <code>NaN</code> or less than zero return
|
807 |
|
|
* <code>NaN</code>. An argument of positive infinity returns positive
|
808 |
|
|
* infinity. Negative infinity is returned if either positive or negative
|
809 |
|
|
* zero is supplied. Where the argument is the result of
|
810 |
|
|
* <code>10<sup>n</sup</code>, then <code>n</code> is returned.
|
811 |
|
|
* </p>
|
812 |
|
|
*
|
813 |
|
|
* @param a the numeric argument.
|
814 |
|
|
* @return the base 10 logarithm of <code>a</code>.
|
815 |
|
|
* @since 1.5
|
816 |
|
|
*/
|
817 |
|
|
public static double log10(double a)
|
818 |
|
|
{
|
819 |
|
|
return VMMath.log10(a);
|
820 |
|
|
}
|
821 |
|
|
|
822 |
|
|
/**
|
823 |
|
|
* <p>
|
824 |
|
|
* Returns the natural logarithm resulting from the sum of the argument,
|
825 |
|
|
* <code>a</code> and 1. For values close to 0, the
|
826 |
|
|
* result of <code>log1p(a)</code> tend to be much closer to the
|
827 |
|
|
* exact result than simply <code>log(1.0+a)</code>. The returned
|
828 |
|
|
* result is within 1 ulp of the exact result, and the results are
|
829 |
|
|
* semi-monotonic.
|
830 |
|
|
* </p>
|
831 |
|
|
* <p>
|
832 |
|
|
* Arguments of either <code>NaN</code> or less than -1 return
|
833 |
|
|
* <code>NaN</code>. An argument of positive infinity or zero
|
834 |
|
|
* returns the original argument. Negative infinity is returned from an
|
835 |
|
|
* argument of -1.
|
836 |
|
|
* </p>
|
837 |
|
|
*
|
838 |
|
|
* @param a the numeric argument.
|
839 |
|
|
* @return the natural logarithm of <code>a</code> + 1.
|
840 |
|
|
* @since 1.5
|
841 |
|
|
*/
|
842 |
|
|
public static double log1p(double a)
|
843 |
|
|
{
|
844 |
|
|
return VMMath.log1p(a);
|
845 |
|
|
}
|
846 |
|
|
|
847 |
|
|
/**
|
848 |
|
|
* <p>
|
849 |
|
|
* Returns the sign of the argument as follows:
|
850 |
|
|
* </p>
|
851 |
|
|
* <ul>
|
852 |
|
|
* <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
|
853 |
|
|
* <li>If <code>a</code> is less than zero, the result is -1.0.</li>
|
854 |
|
|
* <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
|
855 |
|
|
* <li>If <code>a</code> is positive or negative zero, the result is the
|
856 |
|
|
* same.</li>
|
857 |
|
|
* </ul>
|
858 |
|
|
*
|
859 |
|
|
* @param a the numeric argument.
|
860 |
|
|
* @return the sign of the argument.
|
861 |
|
|
* @since 1.5.
|
862 |
|
|
*/
|
863 |
|
|
public static double signum(double a)
|
864 |
|
|
{
|
865 |
|
|
if (Double.isNaN(a))
|
866 |
|
|
return Double.NaN;
|
867 |
|
|
if (a > 0)
|
868 |
|
|
return 1.0;
|
869 |
|
|
if (a < 0)
|
870 |
|
|
return -1.0;
|
871 |
|
|
return a;
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
/**
|
875 |
|
|
* <p>
|
876 |
|
|
* Returns the sign of the argument as follows:
|
877 |
|
|
* </p>
|
878 |
|
|
* <ul>
|
879 |
|
|
* <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
|
880 |
|
|
* <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
|
881 |
|
|
* <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
|
882 |
|
|
* <li>If <code>a</code> is positive or negative zero, the result is the
|
883 |
|
|
* same.</li>
|
884 |
|
|
* </ul>
|
885 |
|
|
*
|
886 |
|
|
* @param a the numeric argument.
|
887 |
|
|
* @return the sign of the argument.
|
888 |
|
|
* @since 1.5.
|
889 |
|
|
*/
|
890 |
|
|
public static float signum(float a)
|
891 |
|
|
{
|
892 |
|
|
if (Float.isNaN(a))
|
893 |
|
|
return Float.NaN;
|
894 |
|
|
if (a > 0)
|
895 |
|
|
return 1.0f;
|
896 |
|
|
if (a < 0)
|
897 |
|
|
return -1.0f;
|
898 |
|
|
return a;
|
899 |
|
|
}
|
900 |
|
|
|
901 |
|
|
/**
|
902 |
|
|
* <p>
|
903 |
|
|
* Returns the hyperbolic sine of the given value. For a value,
|
904 |
|
|
* <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> -
|
905 |
|
|
* e<sup>-x</sup>)/2</code>
|
906 |
|
|
* with <code>e</code> being <a href="#E">Euler's number</a>. The returned
|
907 |
|
|
* result is within 2.5 ulps of the exact result.
|
908 |
|
|
* </p>
|
909 |
|
|
* <p>
|
910 |
|
|
* If the supplied value is <code>NaN</code>, an infinity or a zero, then the
|
911 |
|
|
* original value is returned.
|
912 |
|
|
* </p>
|
913 |
|
|
*
|
914 |
|
|
* @param a the numeric argument
|
915 |
|
|
* @return the hyperbolic sine of <code>a</code>.
|
916 |
|
|
* @since 1.5
|
917 |
|
|
*/
|
918 |
|
|
public static double sinh(double a)
|
919 |
|
|
{
|
920 |
|
|
return VMMath.sinh(a);
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/**
|
924 |
|
|
* <p>
|
925 |
|
|
* Returns the hyperbolic tangent of the given value. For a value,
|
926 |
|
|
* <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> -
|
927 |
|
|
* e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code>
|
928 |
|
|
* (i.e. <code>sinh(a)/cosh(a)</code>)
|
929 |
|
|
* with <code>e</code> being <a href="#E">Euler's number</a>. The returned
|
930 |
|
|
* result is within 2.5 ulps of the exact result. The absolute value
|
931 |
|
|
* of the exact result is always less than 1. Computed results are thus
|
932 |
|
|
* less than or equal to 1 for finite arguments, with results within
|
933 |
|
|
* half a ulp of either positive or negative 1 returning the appropriate
|
934 |
|
|
* limit value (i.e. as if the argument was an infinity).
|
935 |
|
|
* </p>
|
936 |
|
|
* <p>
|
937 |
|
|
* If the supplied value is <code>NaN</code> or zero, then the original
|
938 |
|
|
* value is returned. Positive infinity returns +1.0 and negative infinity
|
939 |
|
|
* returns -1.0.
|
940 |
|
|
* </p>
|
941 |
|
|
*
|
942 |
|
|
* @param a the numeric argument
|
943 |
|
|
* @return the hyperbolic tangent of <code>a</code>.
|
944 |
|
|
* @since 1.5
|
945 |
|
|
*/
|
946 |
|
|
public static double tanh(double a)
|
947 |
|
|
{
|
948 |
|
|
return VMMath.tanh(a);
|
949 |
|
|
}
|
950 |
|
|
|
951 |
|
|
/**
|
952 |
|
|
* Return the ulp for the given double argument. The ulp is the
|
953 |
|
|
* difference between the argument and the next larger double. Note
|
954 |
|
|
* that the sign of the double argument is ignored, that is,
|
955 |
|
|
* ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
|
956 |
|
|
* If the argument is an infinity, then +Inf is returned. If the
|
957 |
|
|
* argument is zero (either positive or negative), then
|
958 |
|
|
* {@link Double#MIN_VALUE} is returned.
|
959 |
|
|
* @param d the double whose ulp should be returned
|
960 |
|
|
* @return the difference between the argument and the next larger double
|
961 |
|
|
* @since 1.5
|
962 |
|
|
*/
|
963 |
|
|
public static double ulp(double d)
|
964 |
|
|
{
|
965 |
|
|
if (Double.isNaN(d))
|
966 |
|
|
return d;
|
967 |
|
|
if (Double.isInfinite(d))
|
968 |
|
|
return Double.POSITIVE_INFINITY;
|
969 |
|
|
// This handles both +0.0 and -0.0.
|
970 |
|
|
if (d == 0.0)
|
971 |
|
|
return Double.MIN_VALUE;
|
972 |
|
|
long bits = Double.doubleToLongBits(d);
|
973 |
|
|
final int mantissaBits = 52;
|
974 |
|
|
final int exponentBits = 11;
|
975 |
|
|
final long mantMask = (1L << mantissaBits) - 1;
|
976 |
|
|
long mantissa = bits & mantMask;
|
977 |
|
|
final long expMask = (1L << exponentBits) - 1;
|
978 |
|
|
long exponent = (bits >>> mantissaBits) & expMask;
|
979 |
|
|
|
980 |
|
|
// Denormal number, so the answer is easy.
|
981 |
|
|
if (exponent == 0)
|
982 |
|
|
{
|
983 |
|
|
long result = (exponent << mantissaBits) | 1L;
|
984 |
|
|
return Double.longBitsToDouble(result);
|
985 |
|
|
}
|
986 |
|
|
|
987 |
|
|
// Conceptually we want to have '1' as the mantissa. Then we would
|
988 |
|
|
// shift the mantissa over to make a normal number. If this underflows
|
989 |
|
|
// the exponent, we will make a denormal result.
|
990 |
|
|
long newExponent = exponent - mantissaBits;
|
991 |
|
|
long newMantissa;
|
992 |
|
|
if (newExponent > 0)
|
993 |
|
|
newMantissa = 0;
|
994 |
|
|
else
|
995 |
|
|
{
|
996 |
|
|
newMantissa = 1L << -(newExponent - 1);
|
997 |
|
|
newExponent = 0;
|
998 |
|
|
}
|
999 |
|
|
return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
|
1000 |
|
|
}
|
1001 |
|
|
|
1002 |
|
|
/**
|
1003 |
|
|
* Return the ulp for the given float argument. The ulp is the
|
1004 |
|
|
* difference between the argument and the next larger float. Note
|
1005 |
|
|
* that the sign of the float argument is ignored, that is,
|
1006 |
|
|
* ulp(x) == ulp(-x). If the argument is a NaN, then NaN is returned.
|
1007 |
|
|
* If the argument is an infinity, then +Inf is returned. If the
|
1008 |
|
|
* argument is zero (either positive or negative), then
|
1009 |
|
|
* {@link Float#MIN_VALUE} is returned.
|
1010 |
|
|
* @param f the float whose ulp should be returned
|
1011 |
|
|
* @return the difference between the argument and the next larger float
|
1012 |
|
|
* @since 1.5
|
1013 |
|
|
*/
|
1014 |
|
|
public static float ulp(float f)
|
1015 |
|
|
{
|
1016 |
|
|
if (Float.isNaN(f))
|
1017 |
|
|
return f;
|
1018 |
|
|
if (Float.isInfinite(f))
|
1019 |
|
|
return Float.POSITIVE_INFINITY;
|
1020 |
|
|
// This handles both +0.0 and -0.0.
|
1021 |
|
|
if (f == 0.0)
|
1022 |
|
|
return Float.MIN_VALUE;
|
1023 |
|
|
int bits = Float.floatToIntBits(f);
|
1024 |
|
|
final int mantissaBits = 23;
|
1025 |
|
|
final int exponentBits = 8;
|
1026 |
|
|
final int mantMask = (1 << mantissaBits) - 1;
|
1027 |
|
|
int mantissa = bits & mantMask;
|
1028 |
|
|
final int expMask = (1 << exponentBits) - 1;
|
1029 |
|
|
int exponent = (bits >>> mantissaBits) & expMask;
|
1030 |
|
|
|
1031 |
|
|
// Denormal number, so the answer is easy.
|
1032 |
|
|
if (exponent == 0)
|
1033 |
|
|
{
|
1034 |
|
|
int result = (exponent << mantissaBits) | 1;
|
1035 |
|
|
return Float.intBitsToFloat(result);
|
1036 |
|
|
}
|
1037 |
|
|
|
1038 |
|
|
// Conceptually we want to have '1' as the mantissa. Then we would
|
1039 |
|
|
// shift the mantissa over to make a normal number. If this underflows
|
1040 |
|
|
// the exponent, we will make a denormal result.
|
1041 |
|
|
int newExponent = exponent - mantissaBits;
|
1042 |
|
|
int newMantissa;
|
1043 |
|
|
if (newExponent > 0)
|
1044 |
|
|
newMantissa = 0;
|
1045 |
|
|
else
|
1046 |
|
|
{
|
1047 |
|
|
newMantissa = 1 << -(newExponent - 1);
|
1048 |
|
|
newExponent = 0;
|
1049 |
|
|
}
|
1050 |
|
|
return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
|
1051 |
|
|
}
|
1052 |
|
|
}
|