1 |
771 |
jeremybenn |
/* java.math.BigDecimal -- Arbitrary precision decimals.
|
2 |
|
|
Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
9 |
|
|
any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
19 |
|
|
02110-1301 USA.
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
package java.math;
|
39 |
|
|
|
40 |
|
|
import gnu.java.lang.CPStringBuilder;
|
41 |
|
|
|
42 |
|
|
public class BigDecimal extends Number implements Comparable<BigDecimal>
|
43 |
|
|
{
|
44 |
|
|
private BigInteger intVal;
|
45 |
|
|
private int scale;
|
46 |
|
|
private int precision = 0;
|
47 |
|
|
private static final long serialVersionUID = 6108874887143696463L;
|
48 |
|
|
|
49 |
|
|
/**
|
50 |
|
|
* The constant zero as a BigDecimal with scale zero.
|
51 |
|
|
* @since 1.5
|
52 |
|
|
*/
|
53 |
|
|
public static final BigDecimal ZERO =
|
54 |
|
|
new BigDecimal (BigInteger.ZERO, 0);
|
55 |
|
|
|
56 |
|
|
/**
|
57 |
|
|
* The constant one as a BigDecimal with scale zero.
|
58 |
|
|
* @since 1.5
|
59 |
|
|
*/
|
60 |
|
|
public static final BigDecimal ONE =
|
61 |
|
|
new BigDecimal (BigInteger.ONE, 0);
|
62 |
|
|
|
63 |
|
|
/**
|
64 |
|
|
* The constant ten as a BigDecimal with scale zero.
|
65 |
|
|
* @since 1.5
|
66 |
|
|
*/
|
67 |
|
|
public static final BigDecimal TEN =
|
68 |
|
|
new BigDecimal (BigInteger.TEN, 0);
|
69 |
|
|
|
70 |
|
|
public static final int ROUND_UP = 0;
|
71 |
|
|
public static final int ROUND_DOWN = 1;
|
72 |
|
|
public static final int ROUND_CEILING = 2;
|
73 |
|
|
public static final int ROUND_FLOOR = 3;
|
74 |
|
|
public static final int ROUND_HALF_UP = 4;
|
75 |
|
|
public static final int ROUND_HALF_DOWN = 5;
|
76 |
|
|
public static final int ROUND_HALF_EVEN = 6;
|
77 |
|
|
public static final int ROUND_UNNECESSARY = 7;
|
78 |
|
|
|
79 |
|
|
/**
|
80 |
|
|
* Constructs a new BigDecimal whose unscaled value is val and whose
|
81 |
|
|
* scale is zero.
|
82 |
|
|
* @param val the value of the new BigDecimal
|
83 |
|
|
* @since 1.5
|
84 |
|
|
*/
|
85 |
|
|
public BigDecimal (int val)
|
86 |
|
|
{
|
87 |
|
|
this.intVal = BigInteger.valueOf(val);
|
88 |
|
|
this.scale = 0;
|
89 |
|
|
}
|
90 |
|
|
|
91 |
|
|
/**
|
92 |
|
|
* Constructs a BigDecimal using the BigDecimal(int) constructor and then
|
93 |
|
|
* rounds according to the MathContext.
|
94 |
|
|
* @param val the value for the initial (unrounded) BigDecimal
|
95 |
|
|
* @param mc the MathContext specifying the rounding
|
96 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
97 |
|
|
* is RoundingMode.UNNECESSARY
|
98 |
|
|
* @since 1.5
|
99 |
|
|
*/
|
100 |
|
|
public BigDecimal (int val, MathContext mc)
|
101 |
|
|
{
|
102 |
|
|
this (val);
|
103 |
|
|
if (mc.getPrecision() != 0)
|
104 |
|
|
{
|
105 |
|
|
BigDecimal result = this.round(mc);
|
106 |
|
|
this.intVal = result.intVal;
|
107 |
|
|
this.scale = result.scale;
|
108 |
|
|
this.precision = result.precision;
|
109 |
|
|
}
|
110 |
|
|
}
|
111 |
|
|
|
112 |
|
|
/**
|
113 |
|
|
* Constructs a new BigDecimal whose unscaled value is val and whose
|
114 |
|
|
* scale is zero.
|
115 |
|
|
* @param val the value of the new BigDecimal
|
116 |
|
|
*/
|
117 |
|
|
public BigDecimal (long val)
|
118 |
|
|
{
|
119 |
|
|
this.intVal = BigInteger.valueOf(val);
|
120 |
|
|
this.scale = 0;
|
121 |
|
|
}
|
122 |
|
|
|
123 |
|
|
/**
|
124 |
|
|
* Constructs a BigDecimal from the long in the same way as BigDecimal(long)
|
125 |
|
|
* and then rounds according to the MathContext.
|
126 |
|
|
* @param val the long from which we create the initial BigDecimal
|
127 |
|
|
* @param mc the MathContext that specifies the rounding behaviour
|
128 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
129 |
|
|
* is RoundingMode.UNNECESSARY
|
130 |
|
|
* @since 1.5
|
131 |
|
|
*/
|
132 |
|
|
public BigDecimal (long val, MathContext mc)
|
133 |
|
|
{
|
134 |
|
|
this(val);
|
135 |
|
|
if (mc.getPrecision() != 0)
|
136 |
|
|
{
|
137 |
|
|
BigDecimal result = this.round(mc);
|
138 |
|
|
this.intVal = result.intVal;
|
139 |
|
|
this.scale = result.scale;
|
140 |
|
|
this.precision = result.precision;
|
141 |
|
|
}
|
142 |
|
|
}
|
143 |
|
|
|
144 |
|
|
/**
|
145 |
|
|
* Constructs a BigDecimal whose value is given by num rounded according to
|
146 |
|
|
* mc. Since num is already a BigInteger, the rounding refers only to the
|
147 |
|
|
* precision setting in mc, if mc.getPrecision() returns an int lower than
|
148 |
|
|
* the number of digits in num, then rounding is necessary.
|
149 |
|
|
* @param num the unscaledValue, before rounding
|
150 |
|
|
* @param mc the MathContext that specifies the precision
|
151 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
152 |
|
|
* is RoundingMode.UNNECESSARY
|
153 |
|
|
* * @since 1.5
|
154 |
|
|
*/
|
155 |
|
|
public BigDecimal (BigInteger num, MathContext mc)
|
156 |
|
|
{
|
157 |
|
|
this (num, 0);
|
158 |
|
|
if (mc.getPrecision() != 0)
|
159 |
|
|
{
|
160 |
|
|
BigDecimal result = this.round(mc);
|
161 |
|
|
this.intVal = result.intVal;
|
162 |
|
|
this.scale = result.scale;
|
163 |
|
|
this.precision = result.precision;
|
164 |
|
|
}
|
165 |
|
|
}
|
166 |
|
|
|
167 |
|
|
/**
|
168 |
|
|
* Constructs a BigDecimal from the String val according to the same
|
169 |
|
|
* rules as the BigDecimal(String) constructor and then rounds
|
170 |
|
|
* according to the MathContext mc.
|
171 |
|
|
* @param val the String from which we construct the initial BigDecimal
|
172 |
|
|
* @param mc the MathContext that specifies the rounding
|
173 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
174 |
|
|
* is RoundingMode.UNNECESSARY
|
175 |
|
|
* @since 1.5
|
176 |
|
|
*/
|
177 |
|
|
public BigDecimal (String val, MathContext mc)
|
178 |
|
|
{
|
179 |
|
|
this (val);
|
180 |
|
|
if (mc.getPrecision() != 0)
|
181 |
|
|
{
|
182 |
|
|
BigDecimal result = this.round(mc);
|
183 |
|
|
this.intVal = result.intVal;
|
184 |
|
|
this.scale = result.scale;
|
185 |
|
|
this.precision = result.precision;
|
186 |
|
|
}
|
187 |
|
|
}
|
188 |
|
|
|
189 |
|
|
/**
|
190 |
|
|
* Constructs a BigDecimal whose unscaled value is num and whose
|
191 |
|
|
* scale is zero.
|
192 |
|
|
* @param num the value of the new BigDecimal
|
193 |
|
|
*/
|
194 |
|
|
public BigDecimal (BigInteger num)
|
195 |
|
|
{
|
196 |
|
|
this (num, 0);
|
197 |
|
|
}
|
198 |
|
|
|
199 |
|
|
/**
|
200 |
|
|
* Constructs a BigDecimal whose unscaled value is num and whose
|
201 |
|
|
* scale is scale.
|
202 |
|
|
* @param num
|
203 |
|
|
* @param scale
|
204 |
|
|
*/
|
205 |
|
|
public BigDecimal (BigInteger num, int scale)
|
206 |
|
|
{
|
207 |
|
|
this.intVal = num;
|
208 |
|
|
this.scale = scale;
|
209 |
|
|
}
|
210 |
|
|
|
211 |
|
|
/**
|
212 |
|
|
* Constructs a BigDecimal using the BigDecimal(BigInteger, int)
|
213 |
|
|
* constructor and then rounds according to the MathContext.
|
214 |
|
|
* @param num the unscaled value of the unrounded BigDecimal
|
215 |
|
|
* @param scale the scale of the unrounded BigDecimal
|
216 |
|
|
* @param mc the MathContext specifying the rounding
|
217 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
218 |
|
|
* is RoundingMode.UNNECESSARY
|
219 |
|
|
* @since 1.5
|
220 |
|
|
*/
|
221 |
|
|
public BigDecimal (BigInteger num, int scale, MathContext mc)
|
222 |
|
|
{
|
223 |
|
|
this (num, scale);
|
224 |
|
|
if (mc.getPrecision() != 0)
|
225 |
|
|
{
|
226 |
|
|
BigDecimal result = this.round(mc);
|
227 |
|
|
this.intVal = result.intVal;
|
228 |
|
|
this.scale = result.scale;
|
229 |
|
|
this.precision = result.precision;
|
230 |
|
|
}
|
231 |
|
|
}
|
232 |
|
|
|
233 |
|
|
/**
|
234 |
|
|
* Constructs a BigDecimal in the same way as BigDecimal(double) and then
|
235 |
|
|
* rounds according to the MathContext.
|
236 |
|
|
* @param num the double from which the initial BigDecimal is created
|
237 |
|
|
* @param mc the MathContext that specifies the rounding behaviour
|
238 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
239 |
|
|
* is RoundingMode.UNNECESSARY
|
240 |
|
|
* @since 1.5
|
241 |
|
|
*/
|
242 |
|
|
public BigDecimal (double num, MathContext mc)
|
243 |
|
|
{
|
244 |
|
|
this (num);
|
245 |
|
|
if (mc.getPrecision() != 0)
|
246 |
|
|
{
|
247 |
|
|
BigDecimal result = this.round(mc);
|
248 |
|
|
this.intVal = result.intVal;
|
249 |
|
|
this.scale = result.scale;
|
250 |
|
|
this.precision = result.precision;
|
251 |
|
|
}
|
252 |
|
|
}
|
253 |
|
|
|
254 |
|
|
public BigDecimal (double num) throws NumberFormatException
|
255 |
|
|
{
|
256 |
|
|
if (Double.isInfinite (num) || Double.isNaN (num))
|
257 |
|
|
throw new NumberFormatException ("invalid argument: " + num);
|
258 |
|
|
// Note we can't convert NUM to a String and then use the
|
259 |
|
|
// String-based constructor. The BigDecimal documentation makes
|
260 |
|
|
// it clear that the two constructors work differently.
|
261 |
|
|
|
262 |
|
|
final int mantissaBits = 52;
|
263 |
|
|
final int exponentBits = 11;
|
264 |
|
|
final long mantMask = (1L << mantissaBits) - 1;
|
265 |
|
|
final long expMask = (1L << exponentBits) - 1;
|
266 |
|
|
|
267 |
|
|
long bits = Double.doubleToLongBits (num);
|
268 |
|
|
long mantissa = bits & mantMask;
|
269 |
|
|
long exponent = (bits >>> mantissaBits) & expMask;
|
270 |
|
|
boolean denormal = exponent == 0;
|
271 |
|
|
|
272 |
|
|
// Correct the exponent for the bias.
|
273 |
|
|
exponent -= denormal ? 1022 : 1023;
|
274 |
|
|
|
275 |
|
|
// Now correct the exponent to account for the bits to the right
|
276 |
|
|
// of the decimal.
|
277 |
|
|
exponent -= mantissaBits;
|
278 |
|
|
// Ordinary numbers have an implied leading `1' bit.
|
279 |
|
|
if (! denormal)
|
280 |
|
|
mantissa |= (1L << mantissaBits);
|
281 |
|
|
|
282 |
|
|
// Shave off factors of 10.
|
283 |
|
|
while (exponent < 0 && (mantissa & 1) == 0)
|
284 |
|
|
{
|
285 |
|
|
++exponent;
|
286 |
|
|
mantissa >>= 1;
|
287 |
|
|
}
|
288 |
|
|
|
289 |
|
|
intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
|
290 |
|
|
if (exponent < 0)
|
291 |
|
|
{
|
292 |
|
|
// We have MANTISSA * 2 ^ (EXPONENT).
|
293 |
|
|
// Since (1/2)^N == 5^N * 10^-N we can easily convert this
|
294 |
|
|
// into a power of 10.
|
295 |
|
|
scale = (int) (- exponent);
|
296 |
|
|
BigInteger mult = BigInteger.valueOf (5).pow (scale);
|
297 |
|
|
intVal = intVal.multiply (mult);
|
298 |
|
|
}
|
299 |
|
|
else
|
300 |
|
|
{
|
301 |
|
|
intVal = intVal.shiftLeft ((int) exponent);
|
302 |
|
|
scale = 0;
|
303 |
|
|
}
|
304 |
|
|
}
|
305 |
|
|
|
306 |
|
|
/**
|
307 |
|
|
* Constructs a BigDecimal from the char subarray and rounding
|
308 |
|
|
* according to the MathContext.
|
309 |
|
|
* @param in the char array
|
310 |
|
|
* @param offset the start of the subarray
|
311 |
|
|
* @param len the length of the subarray
|
312 |
|
|
* @param mc the MathContext for rounding
|
313 |
|
|
* @throws NumberFormatException if the char subarray is not a valid
|
314 |
|
|
* BigDecimal representation
|
315 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding
|
316 |
|
|
* mode is RoundingMode.UNNECESSARY
|
317 |
|
|
* @since 1.5
|
318 |
|
|
*/
|
319 |
|
|
public BigDecimal(char[] in, int offset, int len, MathContext mc)
|
320 |
|
|
{
|
321 |
|
|
this(in, offset, len);
|
322 |
|
|
// If mc has precision other than zero then we must round.
|
323 |
|
|
if (mc.getPrecision() != 0)
|
324 |
|
|
{
|
325 |
|
|
BigDecimal temp = this.round(mc);
|
326 |
|
|
this.intVal = temp.intVal;
|
327 |
|
|
this.scale = temp.scale;
|
328 |
|
|
this.precision = temp.precision;
|
329 |
|
|
}
|
330 |
|
|
}
|
331 |
|
|
|
332 |
|
|
/**
|
333 |
|
|
* Constructs a BigDecimal from the char array and rounding according
|
334 |
|
|
* to the MathContext.
|
335 |
|
|
* @param in the char array
|
336 |
|
|
* @param mc the MathContext
|
337 |
|
|
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
|
338 |
|
|
* representation
|
339 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding mode
|
340 |
|
|
* is RoundingMode.UNNECESSARY
|
341 |
|
|
* @since 1.5
|
342 |
|
|
*/
|
343 |
|
|
public BigDecimal(char[] in, MathContext mc)
|
344 |
|
|
{
|
345 |
|
|
this(in, 0, in.length);
|
346 |
|
|
// If mc has precision other than zero then we must round.
|
347 |
|
|
if (mc.getPrecision() != 0)
|
348 |
|
|
{
|
349 |
|
|
BigDecimal temp = this.round(mc);
|
350 |
|
|
this.intVal = temp.intVal;
|
351 |
|
|
this.scale = temp.scale;
|
352 |
|
|
this.precision = temp.precision;
|
353 |
|
|
}
|
354 |
|
|
}
|
355 |
|
|
|
356 |
|
|
/**
|
357 |
|
|
* Constructs a BigDecimal from the given char array, accepting the same
|
358 |
|
|
* sequence of characters as the BigDecimal(String) constructor.
|
359 |
|
|
* @param in the char array
|
360 |
|
|
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
|
361 |
|
|
* representation
|
362 |
|
|
* @since 1.5
|
363 |
|
|
*/
|
364 |
|
|
public BigDecimal(char[] in)
|
365 |
|
|
{
|
366 |
|
|
this(in, 0, in.length);
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
/**
|
370 |
|
|
* Constructs a BigDecimal from a char subarray, accepting the same sequence
|
371 |
|
|
* of characters as the BigDecimal(String) constructor.
|
372 |
|
|
* @param in the char array
|
373 |
|
|
* @param offset the start of the subarray
|
374 |
|
|
* @param len the length of the subarray
|
375 |
|
|
* @throws NumberFormatException if <code>in</code> is not a valid
|
376 |
|
|
* BigDecimal representation.
|
377 |
|
|
* @since 1.5
|
378 |
|
|
*/
|
379 |
|
|
public BigDecimal(char[] in, int offset, int len)
|
380 |
|
|
{
|
381 |
|
|
// start is the index into the char array where the significand starts
|
382 |
|
|
int start = offset;
|
383 |
|
|
// end is one greater than the index of the last character used
|
384 |
|
|
int end = offset + len;
|
385 |
|
|
// point is the index into the char array where the exponent starts
|
386 |
|
|
// (or, if there is no exponent, this is equal to end)
|
387 |
|
|
int point = offset;
|
388 |
|
|
// dot is the index into the char array where the decimal point is
|
389 |
|
|
// found, or -1 if there is no decimal point
|
390 |
|
|
int dot = -1;
|
391 |
|
|
|
392 |
|
|
// The following examples show what these variables mean. Note that
|
393 |
|
|
// point and dot don't yet have the correct values, they will be
|
394 |
|
|
// properly assigned in a loop later on in this method.
|
395 |
|
|
//
|
396 |
|
|
// Example 1
|
397 |
|
|
//
|
398 |
|
|
// + 1 0 2 . 4 6 9
|
399 |
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
400 |
|
|
//
|
401 |
|
|
// offset = 2, len = 8, start = 3, dot = 6, point = end = 10
|
402 |
|
|
//
|
403 |
|
|
// Example 2
|
404 |
|
|
//
|
405 |
|
|
// + 2 3 4 . 6 1 3 E - 1
|
406 |
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
407 |
|
|
//
|
408 |
|
|
// offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
|
409 |
|
|
//
|
410 |
|
|
// Example 3
|
411 |
|
|
//
|
412 |
|
|
// - 1 2 3 4 5 e 7
|
413 |
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
414 |
|
|
//
|
415 |
|
|
// offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
|
416 |
|
|
|
417 |
|
|
// Determine the sign of the number.
|
418 |
|
|
boolean negative = false;
|
419 |
|
|
if (in[offset] == '+')
|
420 |
|
|
{
|
421 |
|
|
++start;
|
422 |
|
|
++point;
|
423 |
|
|
}
|
424 |
|
|
else if (in[offset] == '-')
|
425 |
|
|
{
|
426 |
|
|
++start;
|
427 |
|
|
++point;
|
428 |
|
|
negative = true;
|
429 |
|
|
}
|
430 |
|
|
|
431 |
|
|
// Check each character looking for the decimal point and the
|
432 |
|
|
// start of the exponent.
|
433 |
|
|
while (point < end)
|
434 |
|
|
{
|
435 |
|
|
char c = in[point];
|
436 |
|
|
if (c == '.')
|
437 |
|
|
{
|
438 |
|
|
// If dot != -1 then we've seen more than one decimal point.
|
439 |
|
|
if (dot != -1)
|
440 |
|
|
throw new NumberFormatException("multiple `.'s in number");
|
441 |
|
|
dot = point;
|
442 |
|
|
}
|
443 |
|
|
// Break when we reach the start of the exponent.
|
444 |
|
|
else if (c == 'e' || c == 'E')
|
445 |
|
|
break;
|
446 |
|
|
// Throw an exception if the character was not a decimal or an
|
447 |
|
|
// exponent and is not a digit.
|
448 |
|
|
else if (!Character.isDigit(c))
|
449 |
|
|
throw new NumberFormatException("unrecognized character at " + point
|
450 |
|
|
+ ": " + c);
|
451 |
|
|
++point;
|
452 |
|
|
}
|
453 |
|
|
|
454 |
|
|
// val is a StringBuilder from which we'll create a BigInteger
|
455 |
|
|
// which will be the unscaled value for this BigDecimal
|
456 |
|
|
CPStringBuilder val = new CPStringBuilder(point - start - 1);
|
457 |
|
|
if (dot != -1)
|
458 |
|
|
{
|
459 |
|
|
// If there was a decimal we must combine the two parts that
|
460 |
|
|
// contain only digits and we must set the scale properly.
|
461 |
|
|
val.append(in, start, dot - start);
|
462 |
|
|
val.append(in, dot + 1, point - dot - 1);
|
463 |
|
|
scale = point - 1 - dot;
|
464 |
|
|
}
|
465 |
|
|
else
|
466 |
|
|
{
|
467 |
|
|
// If there was no decimal then the unscaled value is just the number
|
468 |
|
|
// formed from all the digits and the scale is zero.
|
469 |
|
|
val.append(in, start, point - start);
|
470 |
|
|
scale = 0;
|
471 |
|
|
}
|
472 |
|
|
if (val.length() == 0)
|
473 |
|
|
throw new NumberFormatException("no digits seen");
|
474 |
|
|
|
475 |
|
|
// Prepend a negative sign if necessary.
|
476 |
|
|
if (negative)
|
477 |
|
|
val.insert(0, '-');
|
478 |
|
|
intVal = new BigInteger(val.toString());
|
479 |
|
|
|
480 |
|
|
// Now parse exponent.
|
481 |
|
|
// If point < end that means we broke out of the previous loop when we
|
482 |
|
|
// saw an 'e' or an 'E'.
|
483 |
|
|
if (point < end)
|
484 |
|
|
{
|
485 |
|
|
point++;
|
486 |
|
|
// Ignore a '+' sign.
|
487 |
|
|
if (in[point] == '+')
|
488 |
|
|
point++;
|
489 |
|
|
|
490 |
|
|
// Throw an exception if there were no digits found after the 'e'
|
491 |
|
|
// or 'E'.
|
492 |
|
|
if (point >= end)
|
493 |
|
|
throw new NumberFormatException("no exponent following e or E");
|
494 |
|
|
|
495 |
|
|
try
|
496 |
|
|
{
|
497 |
|
|
// Adjust the scale according to the exponent.
|
498 |
|
|
// Remember that the value of a BigDecimal is
|
499 |
|
|
// unscaledValue x Math.pow(10, -scale)
|
500 |
|
|
scale -= Integer.parseInt(new String(in, point, end - point));
|
501 |
|
|
}
|
502 |
|
|
catch (NumberFormatException ex)
|
503 |
|
|
{
|
504 |
|
|
throw new NumberFormatException("malformed exponent");
|
505 |
|
|
}
|
506 |
|
|
}
|
507 |
|
|
}
|
508 |
|
|
|
509 |
|
|
public BigDecimal (String num) throws NumberFormatException
|
510 |
|
|
{
|
511 |
|
|
int len = num.length();
|
512 |
|
|
int start = 0, point = 0;
|
513 |
|
|
int dot = -1;
|
514 |
|
|
boolean negative = false;
|
515 |
|
|
if (num.charAt(0) == '+')
|
516 |
|
|
{
|
517 |
|
|
++start;
|
518 |
|
|
++point;
|
519 |
|
|
}
|
520 |
|
|
else if (num.charAt(0) == '-')
|
521 |
|
|
{
|
522 |
|
|
++start;
|
523 |
|
|
++point;
|
524 |
|
|
negative = true;
|
525 |
|
|
}
|
526 |
|
|
|
527 |
|
|
while (point < len)
|
528 |
|
|
{
|
529 |
|
|
char c = num.charAt (point);
|
530 |
|
|
if (c == '.')
|
531 |
|
|
{
|
532 |
|
|
if (dot >= 0)
|
533 |
|
|
throw new NumberFormatException ("multiple `.'s in number");
|
534 |
|
|
dot = point;
|
535 |
|
|
}
|
536 |
|
|
else if (c == 'e' || c == 'E')
|
537 |
|
|
break;
|
538 |
|
|
else if (Character.digit (c, 10) < 0)
|
539 |
|
|
throw new NumberFormatException ("unrecognized character: " + c);
|
540 |
|
|
++point;
|
541 |
|
|
}
|
542 |
|
|
|
543 |
|
|
String val;
|
544 |
|
|
if (dot >= 0)
|
545 |
|
|
{
|
546 |
|
|
val = num.substring (start, dot) + num.substring (dot + 1, point);
|
547 |
|
|
scale = point - 1 - dot;
|
548 |
|
|
}
|
549 |
|
|
else
|
550 |
|
|
{
|
551 |
|
|
val = num.substring (start, point);
|
552 |
|
|
scale = 0;
|
553 |
|
|
}
|
554 |
|
|
if (val.length () == 0)
|
555 |
|
|
throw new NumberFormatException ("no digits seen");
|
556 |
|
|
|
557 |
|
|
if (negative)
|
558 |
|
|
val = "-" + val;
|
559 |
|
|
intVal = new BigInteger (val);
|
560 |
|
|
|
561 |
|
|
// Now parse exponent.
|
562 |
|
|
if (point < len)
|
563 |
|
|
{
|
564 |
|
|
point++;
|
565 |
|
|
if (num.charAt(point) == '+')
|
566 |
|
|
point++;
|
567 |
|
|
|
568 |
|
|
if (point >= len )
|
569 |
|
|
throw new NumberFormatException ("no exponent following e or E");
|
570 |
|
|
|
571 |
|
|
try
|
572 |
|
|
{
|
573 |
|
|
scale -= Integer.parseInt (num.substring (point));
|
574 |
|
|
}
|
575 |
|
|
catch (NumberFormatException ex)
|
576 |
|
|
{
|
577 |
|
|
throw new NumberFormatException ("malformed exponent");
|
578 |
|
|
}
|
579 |
|
|
}
|
580 |
|
|
}
|
581 |
|
|
|
582 |
|
|
public static BigDecimal valueOf (long val)
|
583 |
|
|
{
|
584 |
|
|
return valueOf (val, 0);
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
public static BigDecimal valueOf (long val, int scale)
|
588 |
|
|
throws NumberFormatException
|
589 |
|
|
{
|
590 |
|
|
if ((scale == 0) && ((int)val == val))
|
591 |
|
|
switch ((int) val)
|
592 |
|
|
{
|
593 |
|
|
case 0:
|
594 |
|
|
return ZERO;
|
595 |
|
|
case 1:
|
596 |
|
|
return ONE;
|
597 |
|
|
}
|
598 |
|
|
|
599 |
|
|
return new BigDecimal (BigInteger.valueOf (val), scale);
|
600 |
|
|
}
|
601 |
|
|
|
602 |
|
|
public BigDecimal add (BigDecimal val)
|
603 |
|
|
{
|
604 |
|
|
// For addition, need to line up decimals. Note that the movePointRight
|
605 |
|
|
// method cannot be used for this as it might return a BigDecimal with
|
606 |
|
|
// scale == 0 instead of the scale we need.
|
607 |
|
|
BigInteger op1 = intVal;
|
608 |
|
|
BigInteger op2 = val.intVal;
|
609 |
|
|
if (scale < val.scale)
|
610 |
|
|
op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
|
611 |
|
|
else if (scale > val.scale)
|
612 |
|
|
op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
|
613 |
|
|
|
614 |
|
|
return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
|
615 |
|
|
}
|
616 |
|
|
|
617 |
|
|
/**
|
618 |
|
|
* Returns a BigDecimal whose value is found first by calling the
|
619 |
|
|
* method add(val) and then by rounding according to the MathContext mc.
|
620 |
|
|
* @param val the augend
|
621 |
|
|
* @param mc the MathContext for rounding
|
622 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding is
|
623 |
|
|
* RoundingMode.UNNECESSARY
|
624 |
|
|
* @return <code>this</code> + <code>val</code>, rounded if need be
|
625 |
|
|
* @since 1.5
|
626 |
|
|
*/
|
627 |
|
|
public BigDecimal add (BigDecimal val, MathContext mc)
|
628 |
|
|
{
|
629 |
|
|
return add(val).round(mc);
|
630 |
|
|
}
|
631 |
|
|
|
632 |
|
|
public BigDecimal subtract (BigDecimal val)
|
633 |
|
|
{
|
634 |
|
|
return this.add(val.negate());
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
/**
|
638 |
|
|
* Returns a BigDecimal whose value is found first by calling the
|
639 |
|
|
* method subtract(val) and then by rounding according to the MathContext mc.
|
640 |
|
|
* @param val the subtrahend
|
641 |
|
|
* @param mc the MathContext for rounding
|
642 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding is
|
643 |
|
|
* RoundingMode.UNNECESSARY
|
644 |
|
|
* @return <code>this</code> - <code>val</code>, rounded if need be
|
645 |
|
|
* @since 1.5
|
646 |
|
|
*/
|
647 |
|
|
public BigDecimal subtract (BigDecimal val, MathContext mc)
|
648 |
|
|
{
|
649 |
|
|
return subtract(val).round(mc);
|
650 |
|
|
}
|
651 |
|
|
|
652 |
|
|
public BigDecimal multiply (BigDecimal val)
|
653 |
|
|
{
|
654 |
|
|
return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
|
655 |
|
|
}
|
656 |
|
|
|
657 |
|
|
/**
|
658 |
|
|
* Returns a BigDecimal whose value is (this x val) before it is rounded
|
659 |
|
|
* according to the MathContext mc.
|
660 |
|
|
* @param val the multiplicand
|
661 |
|
|
* @param mc the MathContext for rounding
|
662 |
|
|
* @return a new BigDecimal with value approximately (this x val)
|
663 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
664 |
|
|
* is RoundingMode.UNNECESSARY
|
665 |
|
|
* @since 1.5
|
666 |
|
|
*/
|
667 |
|
|
public BigDecimal multiply (BigDecimal val, MathContext mc)
|
668 |
|
|
{
|
669 |
|
|
return multiply(val).round(mc);
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
public BigDecimal divide (BigDecimal val, int roundingMode)
|
673 |
|
|
throws ArithmeticException, IllegalArgumentException
|
674 |
|
|
{
|
675 |
|
|
return divide (val, scale, roundingMode);
|
676 |
|
|
}
|
677 |
|
|
|
678 |
|
|
/**
|
679 |
|
|
* Returns a BigDecimal whose value is (this / val), with the specified scale
|
680 |
|
|
* and rounding according to the RoundingMode
|
681 |
|
|
* @param val the divisor
|
682 |
|
|
* @param scale the scale of the BigDecimal returned
|
683 |
|
|
* @param roundingMode the rounding mode to use
|
684 |
|
|
* @return a BigDecimal whose value is approximately (this / val)
|
685 |
|
|
* @throws ArithmeticException if divisor is zero or the rounding mode is
|
686 |
|
|
* UNNECESSARY but the specified scale cannot represent the value exactly
|
687 |
|
|
* @since 1.5
|
688 |
|
|
*/
|
689 |
|
|
public BigDecimal divide(BigDecimal val,
|
690 |
|
|
int scale, RoundingMode roundingMode)
|
691 |
|
|
{
|
692 |
|
|
return divide (val, scale, roundingMode.ordinal());
|
693 |
|
|
}
|
694 |
|
|
|
695 |
|
|
/**
|
696 |
|
|
* Returns a BigDecimal whose value is (this / val) rounded according to the
|
697 |
|
|
* RoundingMode
|
698 |
|
|
* @param val the divisor
|
699 |
|
|
* @param roundingMode the rounding mode to use
|
700 |
|
|
* @return a BigDecimal whose value is approximately (this / val)
|
701 |
|
|
* @throws ArithmeticException if divisor is zero or the rounding mode is
|
702 |
|
|
* UNNECESSARY but the specified scale cannot represent the value exactly
|
703 |
|
|
*/
|
704 |
|
|
public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
|
705 |
|
|
{
|
706 |
|
|
return divide (val, scale, roundingMode.ordinal());
|
707 |
|
|
}
|
708 |
|
|
|
709 |
|
|
public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
|
710 |
|
|
throws ArithmeticException, IllegalArgumentException
|
711 |
|
|
{
|
712 |
|
|
if (roundingMode < 0 || roundingMode > 7)
|
713 |
|
|
throw
|
714 |
|
|
new IllegalArgumentException("illegal rounding mode: " + roundingMode);
|
715 |
|
|
|
716 |
|
|
if (intVal.signum () == 0) // handle special case of 0.0/0.0
|
717 |
|
|
return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
|
718 |
|
|
|
719 |
|
|
// Ensure that pow gets a non-negative value.
|
720 |
|
|
BigInteger valIntVal = val.intVal;
|
721 |
|
|
int power = newScale - (scale - val.scale);
|
722 |
|
|
if (power < 0)
|
723 |
|
|
{
|
724 |
|
|
// Effectively increase the scale of val to avoid an
|
725 |
|
|
// ArithmeticException for a negative power.
|
726 |
|
|
valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
|
727 |
|
|
power = 0;
|
728 |
|
|
}
|
729 |
|
|
|
730 |
|
|
BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
|
731 |
|
|
|
732 |
|
|
BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
|
733 |
|
|
|
734 |
|
|
BigInteger unrounded = parts[0];
|
735 |
|
|
if (parts[1].signum () == 0) // no remainder, no rounding necessary
|
736 |
|
|
return new BigDecimal (unrounded, newScale);
|
737 |
|
|
|
738 |
|
|
if (roundingMode == ROUND_UNNECESSARY)
|
739 |
|
|
throw new ArithmeticException ("Rounding necessary");
|
740 |
|
|
|
741 |
|
|
int sign = intVal.signum () * valIntVal.signum ();
|
742 |
|
|
|
743 |
|
|
if (roundingMode == ROUND_CEILING)
|
744 |
|
|
roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
|
745 |
|
|
else if (roundingMode == ROUND_FLOOR)
|
746 |
|
|
roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
|
747 |
|
|
else
|
748 |
|
|
{
|
749 |
|
|
// half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
|
750 |
|
|
// 1 if >. This implies that the remainder to round is less than,
|
751 |
|
|
// equal to, or greater than half way to the next digit.
|
752 |
|
|
BigInteger posRemainder
|
753 |
|
|
= parts[1].signum () < 0 ? parts[1].negate() : parts[1];
|
754 |
|
|
valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
|
755 |
|
|
int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
|
756 |
|
|
|
757 |
|
|
switch(roundingMode)
|
758 |
|
|
{
|
759 |
|
|
case ROUND_HALF_UP:
|
760 |
|
|
roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
|
761 |
|
|
break;
|
762 |
|
|
case ROUND_HALF_DOWN:
|
763 |
|
|
roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
|
764 |
|
|
break;
|
765 |
|
|
case ROUND_HALF_EVEN:
|
766 |
|
|
if (half < 0)
|
767 |
|
|
roundingMode = ROUND_DOWN;
|
768 |
|
|
else if (half > 0)
|
769 |
|
|
roundingMode = ROUND_UP;
|
770 |
|
|
else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
|
771 |
|
|
roundingMode = ROUND_UP;
|
772 |
|
|
else // even, ROUND_HALF_DOWN
|
773 |
|
|
roundingMode = ROUND_DOWN;
|
774 |
|
|
break;
|
775 |
|
|
}
|
776 |
|
|
}
|
777 |
|
|
|
778 |
|
|
if (roundingMode == ROUND_UP)
|
779 |
|
|
unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
|
780 |
|
|
|
781 |
|
|
// roundingMode == ROUND_DOWN
|
782 |
|
|
return new BigDecimal (unrounded, newScale);
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
/**
|
786 |
|
|
* Performs division, if the resulting quotient requires rounding
|
787 |
|
|
* (has a nonterminating decimal expansion),
|
788 |
|
|
* an ArithmeticException is thrown.
|
789 |
|
|
* #see divide(BigDecimal, int, int)
|
790 |
|
|
* @since 1.5
|
791 |
|
|
*/
|
792 |
|
|
public BigDecimal divide(BigDecimal divisor)
|
793 |
|
|
throws ArithmeticException, IllegalArgumentException
|
794 |
|
|
{
|
795 |
|
|
return divide(divisor, scale, ROUND_UNNECESSARY);
|
796 |
|
|
}
|
797 |
|
|
|
798 |
|
|
/**
|
799 |
|
|
* Returns a BigDecimal whose value is the remainder in the quotient
|
800 |
|
|
* this / val. This is obtained by
|
801 |
|
|
* subtract(divideToIntegralValue(val).multiply(val)).
|
802 |
|
|
* @param val the divisor
|
803 |
|
|
* @return a BigDecimal whose value is the remainder
|
804 |
|
|
* @throws ArithmeticException if val == 0
|
805 |
|
|
* @since 1.5
|
806 |
|
|
*/
|
807 |
|
|
public BigDecimal remainder(BigDecimal val)
|
808 |
|
|
{
|
809 |
|
|
return subtract(divideToIntegralValue(val).multiply(val));
|
810 |
|
|
}
|
811 |
|
|
|
812 |
|
|
/**
|
813 |
|
|
* Returns a BigDecimal array, the first element of which is the integer part
|
814 |
|
|
* of this / val, and the second element of which is the remainder of
|
815 |
|
|
* that quotient.
|
816 |
|
|
* @param val the divisor
|
817 |
|
|
* @return the above described BigDecimal array
|
818 |
|
|
* @throws ArithmeticException if val == 0
|
819 |
|
|
* @since 1.5
|
820 |
|
|
*/
|
821 |
|
|
public BigDecimal[] divideAndRemainder(BigDecimal val)
|
822 |
|
|
{
|
823 |
|
|
BigDecimal[] result = new BigDecimal[2];
|
824 |
|
|
result[0] = divideToIntegralValue(val);
|
825 |
|
|
result[1] = subtract(result[0].multiply(val));
|
826 |
|
|
return result;
|
827 |
|
|
}
|
828 |
|
|
|
829 |
|
|
/**
|
830 |
|
|
* Returns a BigDecimal whose value is the integer part of the quotient
|
831 |
|
|
* this / val. The preferred scale is this.scale - val.scale.
|
832 |
|
|
* @param val the divisor
|
833 |
|
|
* @return a BigDecimal whose value is the integer part of this / val.
|
834 |
|
|
* @throws ArithmeticException if val == 0
|
835 |
|
|
* @since 1.5
|
836 |
|
|
*/
|
837 |
|
|
public BigDecimal divideToIntegralValue(BigDecimal val)
|
838 |
|
|
{
|
839 |
|
|
return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
|
840 |
|
|
}
|
841 |
|
|
|
842 |
|
|
/**
|
843 |
|
|
* Mutates this BigDecimal into one with no fractional part, whose value is
|
844 |
|
|
* equal to the largest integer that is <= to this BigDecimal. Note that
|
845 |
|
|
* since this method is private it is okay to mutate this BigDecimal.
|
846 |
|
|
* @return the BigDecimal obtained through the floor operation on this
|
847 |
|
|
* BigDecimal.
|
848 |
|
|
*/
|
849 |
|
|
private BigDecimal floor()
|
850 |
|
|
{
|
851 |
|
|
if (scale <= 0)
|
852 |
|
|
return this;
|
853 |
|
|
String intValStr = intVal.toString();
|
854 |
|
|
intValStr = intValStr.substring(0, intValStr.length() - scale);
|
855 |
|
|
intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
|
856 |
|
|
return this;
|
857 |
|
|
}
|
858 |
|
|
|
859 |
|
|
public int compareTo (BigDecimal val)
|
860 |
|
|
{
|
861 |
|
|
if (scale == val.scale)
|
862 |
|
|
return intVal.compareTo (val.intVal);
|
863 |
|
|
|
864 |
|
|
BigInteger thisParts[] =
|
865 |
|
|
intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
|
866 |
|
|
BigInteger valParts[] =
|
867 |
|
|
val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
|
868 |
|
|
|
869 |
|
|
int compare;
|
870 |
|
|
if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
|
871 |
|
|
return compare;
|
872 |
|
|
|
873 |
|
|
// quotients are the same, so compare remainders
|
874 |
|
|
|
875 |
|
|
// Add some trailing zeros to the remainder with the smallest scale
|
876 |
|
|
if (scale < val.scale)
|
877 |
|
|
thisParts[1] = thisParts[1].multiply
|
878 |
|
|
(BigInteger.valueOf (10).pow (val.scale - scale));
|
879 |
|
|
else if (scale > val.scale)
|
880 |
|
|
valParts[1] = valParts[1].multiply
|
881 |
|
|
(BigInteger.valueOf (10).pow (scale - val.scale));
|
882 |
|
|
|
883 |
|
|
// and compare them
|
884 |
|
|
return thisParts[1].compareTo (valParts[1]);
|
885 |
|
|
}
|
886 |
|
|
|
887 |
|
|
public boolean equals (Object o)
|
888 |
|
|
{
|
889 |
|
|
return (o instanceof BigDecimal
|
890 |
|
|
&& scale == ((BigDecimal) o).scale
|
891 |
|
|
&& compareTo ((BigDecimal) o) == 0);
|
892 |
|
|
}
|
893 |
|
|
|
894 |
|
|
public int hashCode()
|
895 |
|
|
{
|
896 |
|
|
return intValue() ^ scale;
|
897 |
|
|
}
|
898 |
|
|
|
899 |
|
|
public BigDecimal max (BigDecimal val)
|
900 |
|
|
{
|
901 |
|
|
switch (compareTo (val))
|
902 |
|
|
{
|
903 |
|
|
case 1:
|
904 |
|
|
return this;
|
905 |
|
|
default:
|
906 |
|
|
return val;
|
907 |
|
|
}
|
908 |
|
|
}
|
909 |
|
|
|
910 |
|
|
public BigDecimal min (BigDecimal val)
|
911 |
|
|
{
|
912 |
|
|
switch (compareTo (val))
|
913 |
|
|
{
|
914 |
|
|
case -1:
|
915 |
|
|
return this;
|
916 |
|
|
default:
|
917 |
|
|
return val;
|
918 |
|
|
}
|
919 |
|
|
}
|
920 |
|
|
|
921 |
|
|
public BigDecimal movePointLeft (int n)
|
922 |
|
|
{
|
923 |
|
|
return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
|
924 |
|
|
}
|
925 |
|
|
|
926 |
|
|
public BigDecimal movePointRight (int n)
|
927 |
|
|
{
|
928 |
|
|
if (n < 0)
|
929 |
|
|
return movePointLeft (-n);
|
930 |
|
|
|
931 |
|
|
if (scale >= n)
|
932 |
|
|
return new BigDecimal (intVal, scale - n);
|
933 |
|
|
|
934 |
|
|
return new BigDecimal (intVal.multiply
|
935 |
|
|
(BigInteger.TEN.pow (n - scale)), 0);
|
936 |
|
|
}
|
937 |
|
|
|
938 |
|
|
public int signum ()
|
939 |
|
|
{
|
940 |
|
|
return intVal.signum ();
|
941 |
|
|
}
|
942 |
|
|
|
943 |
|
|
public int scale ()
|
944 |
|
|
{
|
945 |
|
|
return scale;
|
946 |
|
|
}
|
947 |
|
|
|
948 |
|
|
public BigInteger unscaledValue()
|
949 |
|
|
{
|
950 |
|
|
return intVal;
|
951 |
|
|
}
|
952 |
|
|
|
953 |
|
|
public BigDecimal abs ()
|
954 |
|
|
{
|
955 |
|
|
return new BigDecimal (intVal.abs (), scale);
|
956 |
|
|
}
|
957 |
|
|
|
958 |
|
|
public BigDecimal negate ()
|
959 |
|
|
{
|
960 |
|
|
return new BigDecimal (intVal.negate (), scale);
|
961 |
|
|
}
|
962 |
|
|
|
963 |
|
|
/**
|
964 |
|
|
* Returns a BigDecimal whose value is found first by negating this via
|
965 |
|
|
* the negate() method, then by rounding according to the MathContext mc.
|
966 |
|
|
* @param mc the MathContext for rounding
|
967 |
|
|
* @return a BigDecimal whose value is approximately (-this)
|
968 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
969 |
|
|
* is RoundingMode.UNNECESSARY
|
970 |
|
|
* @since 1.5
|
971 |
|
|
*/
|
972 |
|
|
public BigDecimal negate(MathContext mc)
|
973 |
|
|
{
|
974 |
|
|
BigDecimal result = negate();
|
975 |
|
|
if (mc.getPrecision() != 0)
|
976 |
|
|
result = result.round(mc);
|
977 |
|
|
return result;
|
978 |
|
|
}
|
979 |
|
|
|
980 |
|
|
/**
|
981 |
|
|
* Returns this BigDecimal. This is included for symmetry with the
|
982 |
|
|
* method negate().
|
983 |
|
|
* @return this
|
984 |
|
|
* @since 1.5
|
985 |
|
|
*/
|
986 |
|
|
public BigDecimal plus()
|
987 |
|
|
{
|
988 |
|
|
return this;
|
989 |
|
|
}
|
990 |
|
|
|
991 |
|
|
/**
|
992 |
|
|
* Returns a BigDecimal whose value is found by rounding <code>this</code>
|
993 |
|
|
* according to the MathContext. This is the same as round(MathContext).
|
994 |
|
|
* @param mc the MathContext for rounding
|
995 |
|
|
* @return a BigDecimal whose value is <code>this</code> before being rounded
|
996 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
997 |
|
|
* is RoundingMode.UNNECESSARY
|
998 |
|
|
* @since 1.5
|
999 |
|
|
*/
|
1000 |
|
|
public BigDecimal plus(MathContext mc)
|
1001 |
|
|
{
|
1002 |
|
|
return round(mc);
|
1003 |
|
|
}
|
1004 |
|
|
|
1005 |
|
|
/**
|
1006 |
|
|
* Returns a BigDecimal which is this BigDecimal rounded according to the
|
1007 |
|
|
* MathContext rounding settings.
|
1008 |
|
|
* @param mc the MathContext that tells us how to round
|
1009 |
|
|
* @return the rounded BigDecimal
|
1010 |
|
|
*/
|
1011 |
|
|
public BigDecimal round(MathContext mc)
|
1012 |
|
|
{
|
1013 |
|
|
int mcPrecision = mc.getPrecision();
|
1014 |
|
|
int numToChop = precision() - mcPrecision;
|
1015 |
|
|
// If mc specifies not to chop any digits or if we've already chopped
|
1016 |
|
|
// enough digits (say by using a MathContext in the constructor for this
|
1017 |
|
|
// BigDecimal) then just return this.
|
1018 |
|
|
if (mcPrecision == 0 || numToChop <= 0)
|
1019 |
|
|
return this;
|
1020 |
|
|
|
1021 |
|
|
// Make a new BigDecimal which is the correct power of 10 to chop off
|
1022 |
|
|
// the required number of digits and then call divide.
|
1023 |
|
|
BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
|
1024 |
|
|
BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
|
1025 |
|
|
rounded.scale -= numToChop;
|
1026 |
|
|
rounded.precision = mcPrecision;
|
1027 |
|
|
return rounded;
|
1028 |
|
|
}
|
1029 |
|
|
|
1030 |
|
|
/**
|
1031 |
|
|
* Returns the precision of this BigDecimal (the number of digits in the
|
1032 |
|
|
* unscaled value). The precision of a zero value is 1.
|
1033 |
|
|
* @return the number of digits in the unscaled value, or 1 if the value
|
1034 |
|
|
* is zero.
|
1035 |
|
|
*/
|
1036 |
|
|
public int precision()
|
1037 |
|
|
{
|
1038 |
|
|
if (precision == 0)
|
1039 |
|
|
{
|
1040 |
|
|
String s = intVal.toString();
|
1041 |
|
|
precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
|
1042 |
|
|
}
|
1043 |
|
|
return precision;
|
1044 |
|
|
}
|
1045 |
|
|
|
1046 |
|
|
/**
|
1047 |
|
|
* Returns the String representation of this BigDecimal, using scientific
|
1048 |
|
|
* notation if necessary. The following steps are taken to generate
|
1049 |
|
|
* the result:
|
1050 |
|
|
*
|
1051 |
|
|
* 1. the BigInteger unscaledValue's toString method is called and if
|
1052 |
|
|
* <code>scale == 0<code> is returned.
|
1053 |
|
|
* 2. an <code>int adjExp</code> is created which is equal to the negation
|
1054 |
|
|
* of <code>scale</code> plus the number of digits in the unscaled value,
|
1055 |
|
|
* minus one.
|
1056 |
|
|
* 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
|
1057 |
|
|
* BigDecimal without scientific notation. A decimal is added if the
|
1058 |
|
|
* scale is positive and zeros are prepended as necessary.
|
1059 |
|
|
* 4. if scale is negative or adjExp is less than -6 we use scientific
|
1060 |
|
|
* notation. If the unscaled value has more than one digit, a decimal
|
1061 |
|
|
* as inserted after the first digit, the character 'E' is appended
|
1062 |
|
|
* and adjExp is appended.
|
1063 |
|
|
*/
|
1064 |
|
|
public String toString()
|
1065 |
|
|
{
|
1066 |
|
|
// bigStr is the String representation of the unscaled value. If
|
1067 |
|
|
// scale is zero we simply return this.
|
1068 |
|
|
String bigStr = intVal.toString();
|
1069 |
|
|
if (scale == 0)
|
1070 |
|
|
return bigStr;
|
1071 |
|
|
|
1072 |
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
1073 |
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
1074 |
|
|
|
1075 |
|
|
CPStringBuilder val = new CPStringBuilder();
|
1076 |
|
|
|
1077 |
|
|
if (scale >= 0 && (point - 1) >= -6)
|
1078 |
|
|
{
|
1079 |
|
|
// Convert to character form without scientific notation.
|
1080 |
|
|
if (point <= 0)
|
1081 |
|
|
{
|
1082 |
|
|
// Zeros need to be prepended to the StringBuilder.
|
1083 |
|
|
if (negative)
|
1084 |
|
|
val.append('-');
|
1085 |
|
|
// Prepend a '0' and a '.' and then as many more '0's as necessary.
|
1086 |
|
|
val.append('0').append('.');
|
1087 |
|
|
while (point < 0)
|
1088 |
|
|
{
|
1089 |
|
|
val.append('0');
|
1090 |
|
|
point++;
|
1091 |
|
|
}
|
1092 |
|
|
// Append the unscaled value.
|
1093 |
|
|
val.append(bigStr.substring(negative ? 1 : 0));
|
1094 |
|
|
}
|
1095 |
|
|
else
|
1096 |
|
|
{
|
1097 |
|
|
// No zeros need to be prepended so the String is simply the
|
1098 |
|
|
// unscaled value with the decimal point inserted.
|
1099 |
|
|
val.append(bigStr);
|
1100 |
|
|
val.insert(point + (negative ? 1 : 0), '.');
|
1101 |
|
|
}
|
1102 |
|
|
}
|
1103 |
|
|
else
|
1104 |
|
|
{
|
1105 |
|
|
// We must use scientific notation to represent this BigDecimal.
|
1106 |
|
|
val.append(bigStr);
|
1107 |
|
|
// If there is more than one digit in the unscaled value we put a
|
1108 |
|
|
// decimal after the first digit.
|
1109 |
|
|
if (bigStr.length() > 1)
|
1110 |
|
|
val.insert( ( negative ? 2 : 1 ), '.');
|
1111 |
|
|
// And then append 'E' and the exponent = (point - 1).
|
1112 |
|
|
val.append('E');
|
1113 |
|
|
if (point - 1 >= 0)
|
1114 |
|
|
val.append('+');
|
1115 |
|
|
val.append( point - 1 );
|
1116 |
|
|
}
|
1117 |
|
|
return val.toString();
|
1118 |
|
|
}
|
1119 |
|
|
|
1120 |
|
|
/**
|
1121 |
|
|
* Returns the String representation of this BigDecimal, using engineering
|
1122 |
|
|
* notation if necessary. This is similar to toString() but when exponents
|
1123 |
|
|
* are used the exponent is made to be a multiple of 3 such that the integer
|
1124 |
|
|
* part is between 1 and 999.
|
1125 |
|
|
*
|
1126 |
|
|
* @return a String representation of this BigDecimal in engineering notation
|
1127 |
|
|
* @since 1.5
|
1128 |
|
|
*/
|
1129 |
|
|
public String toEngineeringString()
|
1130 |
|
|
{
|
1131 |
|
|
// bigStr is the String representation of the unscaled value. If
|
1132 |
|
|
// scale is zero we simply return this.
|
1133 |
|
|
String bigStr = intVal.toString();
|
1134 |
|
|
if (scale == 0)
|
1135 |
|
|
return bigStr;
|
1136 |
|
|
|
1137 |
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
1138 |
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
1139 |
|
|
|
1140 |
|
|
// This is the adjusted exponent described above.
|
1141 |
|
|
int adjExp = point - 1;
|
1142 |
|
|
CPStringBuilder val = new CPStringBuilder();
|
1143 |
|
|
|
1144 |
|
|
if (scale >= 0 && adjExp >= -6)
|
1145 |
|
|
{
|
1146 |
|
|
// Convert to character form without scientific notation.
|
1147 |
|
|
if (point <= 0)
|
1148 |
|
|
{
|
1149 |
|
|
// Zeros need to be prepended to the StringBuilder.
|
1150 |
|
|
if (negative)
|
1151 |
|
|
val.append('-');
|
1152 |
|
|
// Prepend a '0' and a '.' and then as many more '0's as necessary.
|
1153 |
|
|
val.append('0').append('.');
|
1154 |
|
|
while (point < 0)
|
1155 |
|
|
{
|
1156 |
|
|
val.append('0');
|
1157 |
|
|
point++;
|
1158 |
|
|
}
|
1159 |
|
|
// Append the unscaled value.
|
1160 |
|
|
val.append(bigStr.substring(negative ? 1 : 0));
|
1161 |
|
|
}
|
1162 |
|
|
else
|
1163 |
|
|
{
|
1164 |
|
|
// No zeros need to be prepended so the String is simply the
|
1165 |
|
|
// unscaled value with the decimal point inserted.
|
1166 |
|
|
val.append(bigStr);
|
1167 |
|
|
val.insert(point + (negative ? 1 : 0), '.');
|
1168 |
|
|
}
|
1169 |
|
|
}
|
1170 |
|
|
else
|
1171 |
|
|
{
|
1172 |
|
|
// We must use scientific notation to represent this BigDecimal.
|
1173 |
|
|
// The exponent must be a multiple of 3 and the integer part
|
1174 |
|
|
// must be between 1 and 999.
|
1175 |
|
|
val.append(bigStr);
|
1176 |
|
|
int zeros = adjExp % 3;
|
1177 |
|
|
int dot = 1;
|
1178 |
|
|
if (adjExp > 0)
|
1179 |
|
|
{
|
1180 |
|
|
// If the exponent is positive we just move the decimal to the
|
1181 |
|
|
// right and decrease the exponent until it is a multiple of 3.
|
1182 |
|
|
dot += zeros;
|
1183 |
|
|
adjExp -= zeros;
|
1184 |
|
|
}
|
1185 |
|
|
else
|
1186 |
|
|
{
|
1187 |
|
|
// If the exponent is negative then we move the dot to the right
|
1188 |
|
|
// and decrease the exponent (increase its magnitude) until
|
1189 |
|
|
// it is a multiple of 3. Note that this is not adjExp -= zeros
|
1190 |
|
|
// because the mod operator doesn't give us the distance to the
|
1191 |
|
|
// correct multiple of 3. (-5 mod 3) is -2 but the distance from
|
1192 |
|
|
// -5 to the correct multiple of 3 (-6) is 1, not 2.
|
1193 |
|
|
if (zeros == -2)
|
1194 |
|
|
{
|
1195 |
|
|
dot += 1;
|
1196 |
|
|
adjExp -= 1;
|
1197 |
|
|
}
|
1198 |
|
|
else if (zeros == -1)
|
1199 |
|
|
{
|
1200 |
|
|
dot += 2;
|
1201 |
|
|
adjExp -= 2;
|
1202 |
|
|
}
|
1203 |
|
|
}
|
1204 |
|
|
|
1205 |
|
|
// Either we have to append zeros because, for example, 1.1E+5 should
|
1206 |
|
|
// be 110E+3, or we just have to put the decimal in the right place.
|
1207 |
|
|
if (dot > val.length())
|
1208 |
|
|
{
|
1209 |
|
|
while (dot > val.length())
|
1210 |
|
|
val.append('0');
|
1211 |
|
|
}
|
1212 |
|
|
else if (bigStr.length() > dot)
|
1213 |
|
|
val.insert(dot + (negative ? 1 : 0), '.');
|
1214 |
|
|
|
1215 |
|
|
// And then append 'E' and the exponent (adjExp).
|
1216 |
|
|
val.append('E');
|
1217 |
|
|
if (adjExp >= 0)
|
1218 |
|
|
val.append('+');
|
1219 |
|
|
val.append(adjExp);
|
1220 |
|
|
}
|
1221 |
|
|
return val.toString();
|
1222 |
|
|
}
|
1223 |
|
|
|
1224 |
|
|
/**
|
1225 |
|
|
* Returns a String representation of this BigDecimal without using
|
1226 |
|
|
* scientific notation. This is how toString() worked for releases 1.4
|
1227 |
|
|
* and previous. Zeros may be added to the end of the String. For
|
1228 |
|
|
* example, an unscaled value of 1234 and a scale of -3 would result in
|
1229 |
|
|
* the String 1234000, but the toString() method would return
|
1230 |
|
|
* 1.234E+6.
|
1231 |
|
|
* @return a String representation of this BigDecimal
|
1232 |
|
|
* @since 1.5
|
1233 |
|
|
*/
|
1234 |
|
|
public String toPlainString()
|
1235 |
|
|
{
|
1236 |
|
|
// If the scale is zero we simply return the String representation of the
|
1237 |
|
|
// unscaled value.
|
1238 |
|
|
String bigStr = intVal.toString();
|
1239 |
|
|
if (scale == 0)
|
1240 |
|
|
return bigStr;
|
1241 |
|
|
|
1242 |
|
|
// Remember if we have to put a negative sign at the start.
|
1243 |
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
1244 |
|
|
|
1245 |
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
1246 |
|
|
|
1247 |
|
|
CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
|
1248 |
|
|
+ (point <= 0 ? (-point + 1) : 0));
|
1249 |
|
|
if (point <= 0)
|
1250 |
|
|
{
|
1251 |
|
|
// We have to prepend zeros and a decimal point.
|
1252 |
|
|
if (negative)
|
1253 |
|
|
sb.append('-');
|
1254 |
|
|
sb.append('0').append('.');
|
1255 |
|
|
while (point < 0)
|
1256 |
|
|
{
|
1257 |
|
|
sb.append('0');
|
1258 |
|
|
point++;
|
1259 |
|
|
}
|
1260 |
|
|
sb.append(bigStr.substring(negative ? 1 : 0));
|
1261 |
|
|
}
|
1262 |
|
|
else if (point < bigStr.length())
|
1263 |
|
|
{
|
1264 |
|
|
// No zeros need to be prepended or appended, just put the decimal
|
1265 |
|
|
// in the right place.
|
1266 |
|
|
sb.append(bigStr);
|
1267 |
|
|
sb.insert(point + (negative ? 1 : 0), '.');
|
1268 |
|
|
}
|
1269 |
|
|
else
|
1270 |
|
|
{
|
1271 |
|
|
// We must append zeros instead of using scientific notation.
|
1272 |
|
|
sb.append(bigStr);
|
1273 |
|
|
for (int i = bigStr.length(); i < point; i++)
|
1274 |
|
|
sb.append('0');
|
1275 |
|
|
}
|
1276 |
|
|
return sb.toString();
|
1277 |
|
|
}
|
1278 |
|
|
|
1279 |
|
|
/**
|
1280 |
|
|
* Converts this BigDecimal to a BigInteger. Any fractional part will
|
1281 |
|
|
* be discarded.
|
1282 |
|
|
* @return a BigDecimal whose value is equal to floor[this]
|
1283 |
|
|
*/
|
1284 |
|
|
public BigInteger toBigInteger ()
|
1285 |
|
|
{
|
1286 |
|
|
// If scale > 0 then we must divide, if scale > 0 then we must multiply,
|
1287 |
|
|
// and if scale is zero then we just return intVal;
|
1288 |
|
|
if (scale > 0)
|
1289 |
|
|
return intVal.divide (BigInteger.TEN.pow (scale));
|
1290 |
|
|
else if (scale < 0)
|
1291 |
|
|
return intVal.multiply(BigInteger.TEN.pow(-scale));
|
1292 |
|
|
return intVal;
|
1293 |
|
|
}
|
1294 |
|
|
|
1295 |
|
|
/**
|
1296 |
|
|
* Converts this BigDecimal into a BigInteger, throwing an
|
1297 |
|
|
* ArithmeticException if the conversion is not exact.
|
1298 |
|
|
* @return a BigInteger whose value is equal to the value of this BigDecimal
|
1299 |
|
|
* @since 1.5
|
1300 |
|
|
*/
|
1301 |
|
|
public BigInteger toBigIntegerExact()
|
1302 |
|
|
{
|
1303 |
|
|
if (scale > 0)
|
1304 |
|
|
{
|
1305 |
|
|
// If we have to divide, we must check if the result is exact.
|
1306 |
|
|
BigInteger[] result =
|
1307 |
|
|
intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
|
1308 |
|
|
if (result[1].equals(BigInteger.ZERO))
|
1309 |
|
|
return result[0];
|
1310 |
|
|
throw new ArithmeticException("No exact BigInteger representation");
|
1311 |
|
|
}
|
1312 |
|
|
else if (scale < 0)
|
1313 |
|
|
// If we're multiplying instead, then we needn't check for exactness.
|
1314 |
|
|
return intVal.multiply(BigInteger.TEN.pow(-scale));
|
1315 |
|
|
// If the scale is zero we can simply return intVal.
|
1316 |
|
|
return intVal;
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
public int intValue ()
|
1320 |
|
|
{
|
1321 |
|
|
return toBigInteger ().intValue ();
|
1322 |
|
|
}
|
1323 |
|
|
|
1324 |
|
|
/**
|
1325 |
|
|
* Returns a BigDecimal which is numerically equal to this BigDecimal but
|
1326 |
|
|
* with no trailing zeros in the representation. For example, if this
|
1327 |
|
|
* BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
|
1328 |
|
|
* a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
|
1329 |
|
|
* example, [12400, -2] would become [124, -4].
|
1330 |
|
|
* @return a numerically equal BigDecimal with no trailing zeros
|
1331 |
|
|
*/
|
1332 |
|
|
public BigDecimal stripTrailingZeros()
|
1333 |
|
|
{
|
1334 |
|
|
String intValStr = intVal.toString();
|
1335 |
|
|
int newScale = scale;
|
1336 |
|
|
int pointer = intValStr.length() - 1;
|
1337 |
|
|
// This loop adjusts pointer which will be used to give us the substring
|
1338 |
|
|
// of intValStr to use in our new BigDecimal, and also accordingly
|
1339 |
|
|
// adjusts the scale of our new BigDecimal.
|
1340 |
|
|
while (intValStr.charAt(pointer) == '0')
|
1341 |
|
|
{
|
1342 |
|
|
pointer --;
|
1343 |
|
|
newScale --;
|
1344 |
|
|
}
|
1345 |
|
|
// Create a new BigDecimal with the appropriate substring and then
|
1346 |
|
|
// set its scale.
|
1347 |
|
|
BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
|
1348 |
|
|
result.scale = newScale;
|
1349 |
|
|
return result;
|
1350 |
|
|
}
|
1351 |
|
|
|
1352 |
|
|
public long longValue ()
|
1353 |
|
|
{
|
1354 |
|
|
return toBigInteger().longValue();
|
1355 |
|
|
}
|
1356 |
|
|
|
1357 |
|
|
public float floatValue()
|
1358 |
|
|
{
|
1359 |
|
|
return Float.valueOf(toString()).floatValue();
|
1360 |
|
|
}
|
1361 |
|
|
|
1362 |
|
|
public double doubleValue()
|
1363 |
|
|
{
|
1364 |
|
|
return Double.valueOf(toString()).doubleValue();
|
1365 |
|
|
}
|
1366 |
|
|
|
1367 |
|
|
public BigDecimal setScale (int scale) throws ArithmeticException
|
1368 |
|
|
{
|
1369 |
|
|
return setScale (scale, ROUND_UNNECESSARY);
|
1370 |
|
|
}
|
1371 |
|
|
|
1372 |
|
|
public BigDecimal setScale (int scale, int roundingMode)
|
1373 |
|
|
throws ArithmeticException, IllegalArgumentException
|
1374 |
|
|
{
|
1375 |
|
|
// NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
|
1376 |
|
|
// the spec says it should. Nevertheless, if 1.6 doesn't fix this
|
1377 |
|
|
// we should consider removing it.
|
1378 |
|
|
if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
|
1379 |
|
|
return divide (ONE, scale, roundingMode);
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
/**
|
1383 |
|
|
* Returns a BigDecimal whose value is the same as this BigDecimal but whose
|
1384 |
|
|
* representation has a scale of <code>newScale</code>. If the scale is
|
1385 |
|
|
* reduced then rounding may occur, according to the RoundingMode.
|
1386 |
|
|
* @param newScale
|
1387 |
|
|
* @param roundingMode
|
1388 |
|
|
* @return a BigDecimal whose scale is as given, whose value is
|
1389 |
|
|
* <code>this</code> with possible rounding
|
1390 |
|
|
* @throws ArithmeticException if the rounding mode is UNNECESSARY but
|
1391 |
|
|
* rounding is required
|
1392 |
|
|
* @since 1.5
|
1393 |
|
|
*/
|
1394 |
|
|
public BigDecimal setScale(int newScale, RoundingMode roundingMode)
|
1395 |
|
|
{
|
1396 |
|
|
return setScale(newScale, roundingMode.ordinal());
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
/**
|
1400 |
|
|
* Returns a new BigDecimal constructed from the BigDecimal(String)
|
1401 |
|
|
* constructor using the Double.toString(double) method to obtain
|
1402 |
|
|
* the String.
|
1403 |
|
|
* @param val the double value used in Double.toString(double)
|
1404 |
|
|
* @return a BigDecimal representation of val
|
1405 |
|
|
* @throws NumberFormatException if val is NaN or infinite
|
1406 |
|
|
* @since 1.5
|
1407 |
|
|
*/
|
1408 |
|
|
public static BigDecimal valueOf(double val)
|
1409 |
|
|
{
|
1410 |
|
|
if (Double.isInfinite(val) || Double.isNaN(val))
|
1411 |
|
|
throw new NumberFormatException("argument cannot be NaN or infinite.");
|
1412 |
|
|
return new BigDecimal(Double.toString(val));
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/**
|
1416 |
|
|
* Returns a BigDecimal whose numerical value is the numerical value
|
1417 |
|
|
* of this BigDecimal multiplied by 10 to the power of <code>n</code>.
|
1418 |
|
|
* @param n the power of ten
|
1419 |
|
|
* @return the new BigDecimal
|
1420 |
|
|
* @since 1.5
|
1421 |
|
|
*/
|
1422 |
|
|
public BigDecimal scaleByPowerOfTen(int n)
|
1423 |
|
|
{
|
1424 |
|
|
BigDecimal result = new BigDecimal(intVal, scale - n);
|
1425 |
|
|
result.precision = precision;
|
1426 |
|
|
return result;
|
1427 |
|
|
}
|
1428 |
|
|
|
1429 |
|
|
/**
|
1430 |
|
|
* Returns a BigDecimal whose value is <code>this</code> to the power of
|
1431 |
|
|
* <code>n</code>.
|
1432 |
|
|
* @param n the power
|
1433 |
|
|
* @return the new BigDecimal
|
1434 |
|
|
* @since 1.5
|
1435 |
|
|
*/
|
1436 |
|
|
public BigDecimal pow(int n)
|
1437 |
|
|
{
|
1438 |
|
|
if (n < 0 || n > 999999999)
|
1439 |
|
|
throw new ArithmeticException("n must be between 0 and 999999999");
|
1440 |
|
|
BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
|
1441 |
|
|
return result;
|
1442 |
|
|
}
|
1443 |
|
|
|
1444 |
|
|
/**
|
1445 |
|
|
* Returns a BigDecimal whose value is determined by first calling pow(n)
|
1446 |
|
|
* and then by rounding according to the MathContext mc.
|
1447 |
|
|
* @param n the power
|
1448 |
|
|
* @param mc the MathContext
|
1449 |
|
|
* @return the new BigDecimal
|
1450 |
|
|
* @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
|
1451 |
|
|
* inexact but the rounding is RoundingMode.UNNECESSARY
|
1452 |
|
|
* @since 1.5
|
1453 |
|
|
*/
|
1454 |
|
|
public BigDecimal pow(int n, MathContext mc)
|
1455 |
|
|
{
|
1456 |
|
|
// FIXME: The specs claim to use the X3.274-1996 algorithm. We
|
1457 |
|
|
// currently do not.
|
1458 |
|
|
return pow(n).round(mc);
|
1459 |
|
|
}
|
1460 |
|
|
|
1461 |
|
|
/**
|
1462 |
|
|
* Returns a BigDecimal whose value is the absolute value of this BigDecimal
|
1463 |
|
|
* with rounding according to the given MathContext.
|
1464 |
|
|
* @param mc the MathContext
|
1465 |
|
|
* @return the new BigDecimal
|
1466 |
|
|
*/
|
1467 |
|
|
public BigDecimal abs(MathContext mc)
|
1468 |
|
|
{
|
1469 |
|
|
BigDecimal result = abs();
|
1470 |
|
|
result = result.round(mc);
|
1471 |
|
|
return result;
|
1472 |
|
|
}
|
1473 |
|
|
|
1474 |
|
|
/**
|
1475 |
|
|
* Returns the size of a unit in the last place of this BigDecimal. This
|
1476 |
|
|
* returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
|
1477 |
|
|
* @return the size of a unit in the last place of <code>this</code>.
|
1478 |
|
|
* @since 1.5
|
1479 |
|
|
*/
|
1480 |
|
|
public BigDecimal ulp()
|
1481 |
|
|
{
|
1482 |
|
|
return new BigDecimal(BigInteger.ONE, scale);
|
1483 |
|
|
}
|
1484 |
|
|
|
1485 |
|
|
/**
|
1486 |
|
|
* Converts this BigDecimal to a long value.
|
1487 |
|
|
* @return the long value
|
1488 |
|
|
* @throws ArithmeticException if rounding occurs or if overflow occurs
|
1489 |
|
|
* @since 1.5
|
1490 |
|
|
*/
|
1491 |
|
|
public long longValueExact()
|
1492 |
|
|
{
|
1493 |
|
|
// Set scale will throw an exception if rounding occurs.
|
1494 |
|
|
BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
|
1495 |
|
|
BigInteger tempVal = temp.intVal;
|
1496 |
|
|
// Check for overflow.
|
1497 |
|
|
long result = intVal.longValue();
|
1498 |
|
|
if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
|
1499 |
|
|
|| (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
|
1500 |
|
|
throw new ArithmeticException("this BigDecimal is too " +
|
1501 |
|
|
"large to fit into the return type");
|
1502 |
|
|
|
1503 |
|
|
return intVal.longValue();
|
1504 |
|
|
}
|
1505 |
|
|
|
1506 |
|
|
/**
|
1507 |
|
|
* Converts this BigDecimal into an int by first calling longValueExact
|
1508 |
|
|
* and then checking that the <code>long</code> returned from that
|
1509 |
|
|
* method fits into an <code>int</code>.
|
1510 |
|
|
* @return an int whose value is <code>this</code>
|
1511 |
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
1512 |
|
|
* or is too large to fit into an int.
|
1513 |
|
|
* @since 1.5
|
1514 |
|
|
*/
|
1515 |
|
|
public int intValueExact()
|
1516 |
|
|
{
|
1517 |
|
|
long temp = longValueExact();
|
1518 |
|
|
int result = (int)temp;
|
1519 |
|
|
if (result != temp)
|
1520 |
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into an int");
|
1521 |
|
|
return result;
|
1522 |
|
|
}
|
1523 |
|
|
|
1524 |
|
|
/**
|
1525 |
|
|
* Converts this BigDecimal into a byte by first calling longValueExact
|
1526 |
|
|
* and then checking that the <code>long</code> returned from that
|
1527 |
|
|
* method fits into a <code>byte</code>.
|
1528 |
|
|
* @return a byte whose value is <code>this</code>
|
1529 |
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
1530 |
|
|
* or is too large to fit into a byte.
|
1531 |
|
|
* @since 1.5
|
1532 |
|
|
*/
|
1533 |
|
|
public byte byteValueExact()
|
1534 |
|
|
{
|
1535 |
|
|
long temp = longValueExact();
|
1536 |
|
|
byte result = (byte)temp;
|
1537 |
|
|
if (result != temp)
|
1538 |
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
|
1539 |
|
|
return result;
|
1540 |
|
|
}
|
1541 |
|
|
|
1542 |
|
|
/**
|
1543 |
|
|
* Converts this BigDecimal into a short by first calling longValueExact
|
1544 |
|
|
* and then checking that the <code>long</code> returned from that
|
1545 |
|
|
* method fits into a <code>short</code>.
|
1546 |
|
|
* @return a short whose value is <code>this</code>
|
1547 |
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
1548 |
|
|
* or is too large to fit into a short.
|
1549 |
|
|
* @since 1.5
|
1550 |
|
|
*/
|
1551 |
|
|
public short shortValueExact()
|
1552 |
|
|
{
|
1553 |
|
|
long temp = longValueExact();
|
1554 |
|
|
short result = (short)temp;
|
1555 |
|
|
if (result != temp)
|
1556 |
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into a short");
|
1557 |
|
|
return result;
|
1558 |
|
|
}
|
1559 |
|
|
}
|