| 1 |
771 |
jeremybenn |
/* java.math.BigDecimal -- Arbitrary precision decimals.
|
| 2 |
|
|
Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
| 9 |
|
|
any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
| 18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
| 19 |
|
|
02110-1301 USA.
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
package java.math;
|
| 39 |
|
|
|
| 40 |
|
|
import gnu.java.lang.CPStringBuilder;
|
| 41 |
|
|
|
| 42 |
|
|
public class BigDecimal extends Number implements Comparable<BigDecimal>
|
| 43 |
|
|
{
|
| 44 |
|
|
private BigInteger intVal;
|
| 45 |
|
|
private int scale;
|
| 46 |
|
|
private int precision = 0;
|
| 47 |
|
|
private static final long serialVersionUID = 6108874887143696463L;
|
| 48 |
|
|
|
| 49 |
|
|
/**
|
| 50 |
|
|
* The constant zero as a BigDecimal with scale zero.
|
| 51 |
|
|
* @since 1.5
|
| 52 |
|
|
*/
|
| 53 |
|
|
public static final BigDecimal ZERO =
|
| 54 |
|
|
new BigDecimal (BigInteger.ZERO, 0);
|
| 55 |
|
|
|
| 56 |
|
|
/**
|
| 57 |
|
|
* The constant one as a BigDecimal with scale zero.
|
| 58 |
|
|
* @since 1.5
|
| 59 |
|
|
*/
|
| 60 |
|
|
public static final BigDecimal ONE =
|
| 61 |
|
|
new BigDecimal (BigInteger.ONE, 0);
|
| 62 |
|
|
|
| 63 |
|
|
/**
|
| 64 |
|
|
* The constant ten as a BigDecimal with scale zero.
|
| 65 |
|
|
* @since 1.5
|
| 66 |
|
|
*/
|
| 67 |
|
|
public static final BigDecimal TEN =
|
| 68 |
|
|
new BigDecimal (BigInteger.TEN, 0);
|
| 69 |
|
|
|
| 70 |
|
|
public static final int ROUND_UP = 0;
|
| 71 |
|
|
public static final int ROUND_DOWN = 1;
|
| 72 |
|
|
public static final int ROUND_CEILING = 2;
|
| 73 |
|
|
public static final int ROUND_FLOOR = 3;
|
| 74 |
|
|
public static final int ROUND_HALF_UP = 4;
|
| 75 |
|
|
public static final int ROUND_HALF_DOWN = 5;
|
| 76 |
|
|
public static final int ROUND_HALF_EVEN = 6;
|
| 77 |
|
|
public static final int ROUND_UNNECESSARY = 7;
|
| 78 |
|
|
|
| 79 |
|
|
/**
|
| 80 |
|
|
* Constructs a new BigDecimal whose unscaled value is val and whose
|
| 81 |
|
|
* scale is zero.
|
| 82 |
|
|
* @param val the value of the new BigDecimal
|
| 83 |
|
|
* @since 1.5
|
| 84 |
|
|
*/
|
| 85 |
|
|
public BigDecimal (int val)
|
| 86 |
|
|
{
|
| 87 |
|
|
this.intVal = BigInteger.valueOf(val);
|
| 88 |
|
|
this.scale = 0;
|
| 89 |
|
|
}
|
| 90 |
|
|
|
| 91 |
|
|
/**
|
| 92 |
|
|
* Constructs a BigDecimal using the BigDecimal(int) constructor and then
|
| 93 |
|
|
* rounds according to the MathContext.
|
| 94 |
|
|
* @param val the value for the initial (unrounded) BigDecimal
|
| 95 |
|
|
* @param mc the MathContext specifying the rounding
|
| 96 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
| 97 |
|
|
* is RoundingMode.UNNECESSARY
|
| 98 |
|
|
* @since 1.5
|
| 99 |
|
|
*/
|
| 100 |
|
|
public BigDecimal (int val, MathContext mc)
|
| 101 |
|
|
{
|
| 102 |
|
|
this (val);
|
| 103 |
|
|
if (mc.getPrecision() != 0)
|
| 104 |
|
|
{
|
| 105 |
|
|
BigDecimal result = this.round(mc);
|
| 106 |
|
|
this.intVal = result.intVal;
|
| 107 |
|
|
this.scale = result.scale;
|
| 108 |
|
|
this.precision = result.precision;
|
| 109 |
|
|
}
|
| 110 |
|
|
}
|
| 111 |
|
|
|
| 112 |
|
|
/**
|
| 113 |
|
|
* Constructs a new BigDecimal whose unscaled value is val and whose
|
| 114 |
|
|
* scale is zero.
|
| 115 |
|
|
* @param val the value of the new BigDecimal
|
| 116 |
|
|
*/
|
| 117 |
|
|
public BigDecimal (long val)
|
| 118 |
|
|
{
|
| 119 |
|
|
this.intVal = BigInteger.valueOf(val);
|
| 120 |
|
|
this.scale = 0;
|
| 121 |
|
|
}
|
| 122 |
|
|
|
| 123 |
|
|
/**
|
| 124 |
|
|
* Constructs a BigDecimal from the long in the same way as BigDecimal(long)
|
| 125 |
|
|
* and then rounds according to the MathContext.
|
| 126 |
|
|
* @param val the long from which we create the initial BigDecimal
|
| 127 |
|
|
* @param mc the MathContext that specifies the rounding behaviour
|
| 128 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
| 129 |
|
|
* is RoundingMode.UNNECESSARY
|
| 130 |
|
|
* @since 1.5
|
| 131 |
|
|
*/
|
| 132 |
|
|
public BigDecimal (long val, MathContext mc)
|
| 133 |
|
|
{
|
| 134 |
|
|
this(val);
|
| 135 |
|
|
if (mc.getPrecision() != 0)
|
| 136 |
|
|
{
|
| 137 |
|
|
BigDecimal result = this.round(mc);
|
| 138 |
|
|
this.intVal = result.intVal;
|
| 139 |
|
|
this.scale = result.scale;
|
| 140 |
|
|
this.precision = result.precision;
|
| 141 |
|
|
}
|
| 142 |
|
|
}
|
| 143 |
|
|
|
| 144 |
|
|
/**
|
| 145 |
|
|
* Constructs a BigDecimal whose value is given by num rounded according to
|
| 146 |
|
|
* mc. Since num is already a BigInteger, the rounding refers only to the
|
| 147 |
|
|
* precision setting in mc, if mc.getPrecision() returns an int lower than
|
| 148 |
|
|
* the number of digits in num, then rounding is necessary.
|
| 149 |
|
|
* @param num the unscaledValue, before rounding
|
| 150 |
|
|
* @param mc the MathContext that specifies the precision
|
| 151 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
| 152 |
|
|
* is RoundingMode.UNNECESSARY
|
| 153 |
|
|
* * @since 1.5
|
| 154 |
|
|
*/
|
| 155 |
|
|
public BigDecimal (BigInteger num, MathContext mc)
|
| 156 |
|
|
{
|
| 157 |
|
|
this (num, 0);
|
| 158 |
|
|
if (mc.getPrecision() != 0)
|
| 159 |
|
|
{
|
| 160 |
|
|
BigDecimal result = this.round(mc);
|
| 161 |
|
|
this.intVal = result.intVal;
|
| 162 |
|
|
this.scale = result.scale;
|
| 163 |
|
|
this.precision = result.precision;
|
| 164 |
|
|
}
|
| 165 |
|
|
}
|
| 166 |
|
|
|
| 167 |
|
|
/**
|
| 168 |
|
|
* Constructs a BigDecimal from the String val according to the same
|
| 169 |
|
|
* rules as the BigDecimal(String) constructor and then rounds
|
| 170 |
|
|
* according to the MathContext mc.
|
| 171 |
|
|
* @param val the String from which we construct the initial BigDecimal
|
| 172 |
|
|
* @param mc the MathContext that specifies the rounding
|
| 173 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
| 174 |
|
|
* is RoundingMode.UNNECESSARY
|
| 175 |
|
|
* @since 1.5
|
| 176 |
|
|
*/
|
| 177 |
|
|
public BigDecimal (String val, MathContext mc)
|
| 178 |
|
|
{
|
| 179 |
|
|
this (val);
|
| 180 |
|
|
if (mc.getPrecision() != 0)
|
| 181 |
|
|
{
|
| 182 |
|
|
BigDecimal result = this.round(mc);
|
| 183 |
|
|
this.intVal = result.intVal;
|
| 184 |
|
|
this.scale = result.scale;
|
| 185 |
|
|
this.precision = result.precision;
|
| 186 |
|
|
}
|
| 187 |
|
|
}
|
| 188 |
|
|
|
| 189 |
|
|
/**
|
| 190 |
|
|
* Constructs a BigDecimal whose unscaled value is num and whose
|
| 191 |
|
|
* scale is zero.
|
| 192 |
|
|
* @param num the value of the new BigDecimal
|
| 193 |
|
|
*/
|
| 194 |
|
|
public BigDecimal (BigInteger num)
|
| 195 |
|
|
{
|
| 196 |
|
|
this (num, 0);
|
| 197 |
|
|
}
|
| 198 |
|
|
|
| 199 |
|
|
/**
|
| 200 |
|
|
* Constructs a BigDecimal whose unscaled value is num and whose
|
| 201 |
|
|
* scale is scale.
|
| 202 |
|
|
* @param num
|
| 203 |
|
|
* @param scale
|
| 204 |
|
|
*/
|
| 205 |
|
|
public BigDecimal (BigInteger num, int scale)
|
| 206 |
|
|
{
|
| 207 |
|
|
this.intVal = num;
|
| 208 |
|
|
this.scale = scale;
|
| 209 |
|
|
}
|
| 210 |
|
|
|
| 211 |
|
|
/**
|
| 212 |
|
|
* Constructs a BigDecimal using the BigDecimal(BigInteger, int)
|
| 213 |
|
|
* constructor and then rounds according to the MathContext.
|
| 214 |
|
|
* @param num the unscaled value of the unrounded BigDecimal
|
| 215 |
|
|
* @param scale the scale of the unrounded BigDecimal
|
| 216 |
|
|
* @param mc the MathContext specifying the rounding
|
| 217 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
| 218 |
|
|
* is RoundingMode.UNNECESSARY
|
| 219 |
|
|
* @since 1.5
|
| 220 |
|
|
*/
|
| 221 |
|
|
public BigDecimal (BigInteger num, int scale, MathContext mc)
|
| 222 |
|
|
{
|
| 223 |
|
|
this (num, scale);
|
| 224 |
|
|
if (mc.getPrecision() != 0)
|
| 225 |
|
|
{
|
| 226 |
|
|
BigDecimal result = this.round(mc);
|
| 227 |
|
|
this.intVal = result.intVal;
|
| 228 |
|
|
this.scale = result.scale;
|
| 229 |
|
|
this.precision = result.precision;
|
| 230 |
|
|
}
|
| 231 |
|
|
}
|
| 232 |
|
|
|
| 233 |
|
|
/**
|
| 234 |
|
|
* Constructs a BigDecimal in the same way as BigDecimal(double) and then
|
| 235 |
|
|
* rounds according to the MathContext.
|
| 236 |
|
|
* @param num the double from which the initial BigDecimal is created
|
| 237 |
|
|
* @param mc the MathContext that specifies the rounding behaviour
|
| 238 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
| 239 |
|
|
* is RoundingMode.UNNECESSARY
|
| 240 |
|
|
* @since 1.5
|
| 241 |
|
|
*/
|
| 242 |
|
|
public BigDecimal (double num, MathContext mc)
|
| 243 |
|
|
{
|
| 244 |
|
|
this (num);
|
| 245 |
|
|
if (mc.getPrecision() != 0)
|
| 246 |
|
|
{
|
| 247 |
|
|
BigDecimal result = this.round(mc);
|
| 248 |
|
|
this.intVal = result.intVal;
|
| 249 |
|
|
this.scale = result.scale;
|
| 250 |
|
|
this.precision = result.precision;
|
| 251 |
|
|
}
|
| 252 |
|
|
}
|
| 253 |
|
|
|
| 254 |
|
|
public BigDecimal (double num) throws NumberFormatException
|
| 255 |
|
|
{
|
| 256 |
|
|
if (Double.isInfinite (num) || Double.isNaN (num))
|
| 257 |
|
|
throw new NumberFormatException ("invalid argument: " + num);
|
| 258 |
|
|
// Note we can't convert NUM to a String and then use the
|
| 259 |
|
|
// String-based constructor. The BigDecimal documentation makes
|
| 260 |
|
|
// it clear that the two constructors work differently.
|
| 261 |
|
|
|
| 262 |
|
|
final int mantissaBits = 52;
|
| 263 |
|
|
final int exponentBits = 11;
|
| 264 |
|
|
final long mantMask = (1L << mantissaBits) - 1;
|
| 265 |
|
|
final long expMask = (1L << exponentBits) - 1;
|
| 266 |
|
|
|
| 267 |
|
|
long bits = Double.doubleToLongBits (num);
|
| 268 |
|
|
long mantissa = bits & mantMask;
|
| 269 |
|
|
long exponent = (bits >>> mantissaBits) & expMask;
|
| 270 |
|
|
boolean denormal = exponent == 0;
|
| 271 |
|
|
|
| 272 |
|
|
// Correct the exponent for the bias.
|
| 273 |
|
|
exponent -= denormal ? 1022 : 1023;
|
| 274 |
|
|
|
| 275 |
|
|
// Now correct the exponent to account for the bits to the right
|
| 276 |
|
|
// of the decimal.
|
| 277 |
|
|
exponent -= mantissaBits;
|
| 278 |
|
|
// Ordinary numbers have an implied leading `1' bit.
|
| 279 |
|
|
if (! denormal)
|
| 280 |
|
|
mantissa |= (1L << mantissaBits);
|
| 281 |
|
|
|
| 282 |
|
|
// Shave off factors of 10.
|
| 283 |
|
|
while (exponent < 0 && (mantissa & 1) == 0)
|
| 284 |
|
|
{
|
| 285 |
|
|
++exponent;
|
| 286 |
|
|
mantissa >>= 1;
|
| 287 |
|
|
}
|
| 288 |
|
|
|
| 289 |
|
|
intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
|
| 290 |
|
|
if (exponent < 0)
|
| 291 |
|
|
{
|
| 292 |
|
|
// We have MANTISSA * 2 ^ (EXPONENT).
|
| 293 |
|
|
// Since (1/2)^N == 5^N * 10^-N we can easily convert this
|
| 294 |
|
|
// into a power of 10.
|
| 295 |
|
|
scale = (int) (- exponent);
|
| 296 |
|
|
BigInteger mult = BigInteger.valueOf (5).pow (scale);
|
| 297 |
|
|
intVal = intVal.multiply (mult);
|
| 298 |
|
|
}
|
| 299 |
|
|
else
|
| 300 |
|
|
{
|
| 301 |
|
|
intVal = intVal.shiftLeft ((int) exponent);
|
| 302 |
|
|
scale = 0;
|
| 303 |
|
|
}
|
| 304 |
|
|
}
|
| 305 |
|
|
|
| 306 |
|
|
/**
|
| 307 |
|
|
* Constructs a BigDecimal from the char subarray and rounding
|
| 308 |
|
|
* according to the MathContext.
|
| 309 |
|
|
* @param in the char array
|
| 310 |
|
|
* @param offset the start of the subarray
|
| 311 |
|
|
* @param len the length of the subarray
|
| 312 |
|
|
* @param mc the MathContext for rounding
|
| 313 |
|
|
* @throws NumberFormatException if the char subarray is not a valid
|
| 314 |
|
|
* BigDecimal representation
|
| 315 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding
|
| 316 |
|
|
* mode is RoundingMode.UNNECESSARY
|
| 317 |
|
|
* @since 1.5
|
| 318 |
|
|
*/
|
| 319 |
|
|
public BigDecimal(char[] in, int offset, int len, MathContext mc)
|
| 320 |
|
|
{
|
| 321 |
|
|
this(in, offset, len);
|
| 322 |
|
|
// If mc has precision other than zero then we must round.
|
| 323 |
|
|
if (mc.getPrecision() != 0)
|
| 324 |
|
|
{
|
| 325 |
|
|
BigDecimal temp = this.round(mc);
|
| 326 |
|
|
this.intVal = temp.intVal;
|
| 327 |
|
|
this.scale = temp.scale;
|
| 328 |
|
|
this.precision = temp.precision;
|
| 329 |
|
|
}
|
| 330 |
|
|
}
|
| 331 |
|
|
|
| 332 |
|
|
/**
|
| 333 |
|
|
* Constructs a BigDecimal from the char array and rounding according
|
| 334 |
|
|
* to the MathContext.
|
| 335 |
|
|
* @param in the char array
|
| 336 |
|
|
* @param mc the MathContext
|
| 337 |
|
|
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
|
| 338 |
|
|
* representation
|
| 339 |
|
|
* @throws ArithmeticException if the result is inexact but the rounding mode
|
| 340 |
|
|
* is RoundingMode.UNNECESSARY
|
| 341 |
|
|
* @since 1.5
|
| 342 |
|
|
*/
|
| 343 |
|
|
public BigDecimal(char[] in, MathContext mc)
|
| 344 |
|
|
{
|
| 345 |
|
|
this(in, 0, in.length);
|
| 346 |
|
|
// If mc has precision other than zero then we must round.
|
| 347 |
|
|
if (mc.getPrecision() != 0)
|
| 348 |
|
|
{
|
| 349 |
|
|
BigDecimal temp = this.round(mc);
|
| 350 |
|
|
this.intVal = temp.intVal;
|
| 351 |
|
|
this.scale = temp.scale;
|
| 352 |
|
|
this.precision = temp.precision;
|
| 353 |
|
|
}
|
| 354 |
|
|
}
|
| 355 |
|
|
|
| 356 |
|
|
/**
|
| 357 |
|
|
* Constructs a BigDecimal from the given char array, accepting the same
|
| 358 |
|
|
* sequence of characters as the BigDecimal(String) constructor.
|
| 359 |
|
|
* @param in the char array
|
| 360 |
|
|
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
|
| 361 |
|
|
* representation
|
| 362 |
|
|
* @since 1.5
|
| 363 |
|
|
*/
|
| 364 |
|
|
public BigDecimal(char[] in)
|
| 365 |
|
|
{
|
| 366 |
|
|
this(in, 0, in.length);
|
| 367 |
|
|
}
|
| 368 |
|
|
|
| 369 |
|
|
/**
|
| 370 |
|
|
* Constructs a BigDecimal from a char subarray, accepting the same sequence
|
| 371 |
|
|
* of characters as the BigDecimal(String) constructor.
|
| 372 |
|
|
* @param in the char array
|
| 373 |
|
|
* @param offset the start of the subarray
|
| 374 |
|
|
* @param len the length of the subarray
|
| 375 |
|
|
* @throws NumberFormatException if <code>in</code> is not a valid
|
| 376 |
|
|
* BigDecimal representation.
|
| 377 |
|
|
* @since 1.5
|
| 378 |
|
|
*/
|
| 379 |
|
|
public BigDecimal(char[] in, int offset, int len)
|
| 380 |
|
|
{
|
| 381 |
|
|
// start is the index into the char array where the significand starts
|
| 382 |
|
|
int start = offset;
|
| 383 |
|
|
// end is one greater than the index of the last character used
|
| 384 |
|
|
int end = offset + len;
|
| 385 |
|
|
// point is the index into the char array where the exponent starts
|
| 386 |
|
|
// (or, if there is no exponent, this is equal to end)
|
| 387 |
|
|
int point = offset;
|
| 388 |
|
|
// dot is the index into the char array where the decimal point is
|
| 389 |
|
|
// found, or -1 if there is no decimal point
|
| 390 |
|
|
int dot = -1;
|
| 391 |
|
|
|
| 392 |
|
|
// The following examples show what these variables mean. Note that
|
| 393 |
|
|
// point and dot don't yet have the correct values, they will be
|
| 394 |
|
|
// properly assigned in a loop later on in this method.
|
| 395 |
|
|
//
|
| 396 |
|
|
// Example 1
|
| 397 |
|
|
//
|
| 398 |
|
|
// + 1 0 2 . 4 6 9
|
| 399 |
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
| 400 |
|
|
//
|
| 401 |
|
|
// offset = 2, len = 8, start = 3, dot = 6, point = end = 10
|
| 402 |
|
|
//
|
| 403 |
|
|
// Example 2
|
| 404 |
|
|
//
|
| 405 |
|
|
// + 2 3 4 . 6 1 3 E - 1
|
| 406 |
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
| 407 |
|
|
//
|
| 408 |
|
|
// offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
|
| 409 |
|
|
//
|
| 410 |
|
|
// Example 3
|
| 411 |
|
|
//
|
| 412 |
|
|
// - 1 2 3 4 5 e 7
|
| 413 |
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
| 414 |
|
|
//
|
| 415 |
|
|
// offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
|
| 416 |
|
|
|
| 417 |
|
|
// Determine the sign of the number.
|
| 418 |
|
|
boolean negative = false;
|
| 419 |
|
|
if (in[offset] == '+')
|
| 420 |
|
|
{
|
| 421 |
|
|
++start;
|
| 422 |
|
|
++point;
|
| 423 |
|
|
}
|
| 424 |
|
|
else if (in[offset] == '-')
|
| 425 |
|
|
{
|
| 426 |
|
|
++start;
|
| 427 |
|
|
++point;
|
| 428 |
|
|
negative = true;
|
| 429 |
|
|
}
|
| 430 |
|
|
|
| 431 |
|
|
// Check each character looking for the decimal point and the
|
| 432 |
|
|
// start of the exponent.
|
| 433 |
|
|
while (point < end)
|
| 434 |
|
|
{
|
| 435 |
|
|
char c = in[point];
|
| 436 |
|
|
if (c == '.')
|
| 437 |
|
|
{
|
| 438 |
|
|
// If dot != -1 then we've seen more than one decimal point.
|
| 439 |
|
|
if (dot != -1)
|
| 440 |
|
|
throw new NumberFormatException("multiple `.'s in number");
|
| 441 |
|
|
dot = point;
|
| 442 |
|
|
}
|
| 443 |
|
|
// Break when we reach the start of the exponent.
|
| 444 |
|
|
else if (c == 'e' || c == 'E')
|
| 445 |
|
|
break;
|
| 446 |
|
|
// Throw an exception if the character was not a decimal or an
|
| 447 |
|
|
// exponent and is not a digit.
|
| 448 |
|
|
else if (!Character.isDigit(c))
|
| 449 |
|
|
throw new NumberFormatException("unrecognized character at " + point
|
| 450 |
|
|
+ ": " + c);
|
| 451 |
|
|
++point;
|
| 452 |
|
|
}
|
| 453 |
|
|
|
| 454 |
|
|
// val is a StringBuilder from which we'll create a BigInteger
|
| 455 |
|
|
// which will be the unscaled value for this BigDecimal
|
| 456 |
|
|
CPStringBuilder val = new CPStringBuilder(point - start - 1);
|
| 457 |
|
|
if (dot != -1)
|
| 458 |
|
|
{
|
| 459 |
|
|
// If there was a decimal we must combine the two parts that
|
| 460 |
|
|
// contain only digits and we must set the scale properly.
|
| 461 |
|
|
val.append(in, start, dot - start);
|
| 462 |
|
|
val.append(in, dot + 1, point - dot - 1);
|
| 463 |
|
|
scale = point - 1 - dot;
|
| 464 |
|
|
}
|
| 465 |
|
|
else
|
| 466 |
|
|
{
|
| 467 |
|
|
// If there was no decimal then the unscaled value is just the number
|
| 468 |
|
|
// formed from all the digits and the scale is zero.
|
| 469 |
|
|
val.append(in, start, point - start);
|
| 470 |
|
|
scale = 0;
|
| 471 |
|
|
}
|
| 472 |
|
|
if (val.length() == 0)
|
| 473 |
|
|
throw new NumberFormatException("no digits seen");
|
| 474 |
|
|
|
| 475 |
|
|
// Prepend a negative sign if necessary.
|
| 476 |
|
|
if (negative)
|
| 477 |
|
|
val.insert(0, '-');
|
| 478 |
|
|
intVal = new BigInteger(val.toString());
|
| 479 |
|
|
|
| 480 |
|
|
// Now parse exponent.
|
| 481 |
|
|
// If point < end that means we broke out of the previous loop when we
|
| 482 |
|
|
// saw an 'e' or an 'E'.
|
| 483 |
|
|
if (point < end)
|
| 484 |
|
|
{
|
| 485 |
|
|
point++;
|
| 486 |
|
|
// Ignore a '+' sign.
|
| 487 |
|
|
if (in[point] == '+')
|
| 488 |
|
|
point++;
|
| 489 |
|
|
|
| 490 |
|
|
// Throw an exception if there were no digits found after the 'e'
|
| 491 |
|
|
// or 'E'.
|
| 492 |
|
|
if (point >= end)
|
| 493 |
|
|
throw new NumberFormatException("no exponent following e or E");
|
| 494 |
|
|
|
| 495 |
|
|
try
|
| 496 |
|
|
{
|
| 497 |
|
|
// Adjust the scale according to the exponent.
|
| 498 |
|
|
// Remember that the value of a BigDecimal is
|
| 499 |
|
|
// unscaledValue x Math.pow(10, -scale)
|
| 500 |
|
|
scale -= Integer.parseInt(new String(in, point, end - point));
|
| 501 |
|
|
}
|
| 502 |
|
|
catch (NumberFormatException ex)
|
| 503 |
|
|
{
|
| 504 |
|
|
throw new NumberFormatException("malformed exponent");
|
| 505 |
|
|
}
|
| 506 |
|
|
}
|
| 507 |
|
|
}
|
| 508 |
|
|
|
| 509 |
|
|
public BigDecimal (String num) throws NumberFormatException
|
| 510 |
|
|
{
|
| 511 |
|
|
int len = num.length();
|
| 512 |
|
|
int start = 0, point = 0;
|
| 513 |
|
|
int dot = -1;
|
| 514 |
|
|
boolean negative = false;
|
| 515 |
|
|
if (num.charAt(0) == '+')
|
| 516 |
|
|
{
|
| 517 |
|
|
++start;
|
| 518 |
|
|
++point;
|
| 519 |
|
|
}
|
| 520 |
|
|
else if (num.charAt(0) == '-')
|
| 521 |
|
|
{
|
| 522 |
|
|
++start;
|
| 523 |
|
|
++point;
|
| 524 |
|
|
negative = true;
|
| 525 |
|
|
}
|
| 526 |
|
|
|
| 527 |
|
|
while (point < len)
|
| 528 |
|
|
{
|
| 529 |
|
|
char c = num.charAt (point);
|
| 530 |
|
|
if (c == '.')
|
| 531 |
|
|
{
|
| 532 |
|
|
if (dot >= 0)
|
| 533 |
|
|
throw new NumberFormatException ("multiple `.'s in number");
|
| 534 |
|
|
dot = point;
|
| 535 |
|
|
}
|
| 536 |
|
|
else if (c == 'e' || c == 'E')
|
| 537 |
|
|
break;
|
| 538 |
|
|
else if (Character.digit (c, 10) < 0)
|
| 539 |
|
|
throw new NumberFormatException ("unrecognized character: " + c);
|
| 540 |
|
|
++point;
|
| 541 |
|
|
}
|
| 542 |
|
|
|
| 543 |
|
|
String val;
|
| 544 |
|
|
if (dot >= 0)
|
| 545 |
|
|
{
|
| 546 |
|
|
val = num.substring (start, dot) + num.substring (dot + 1, point);
|
| 547 |
|
|
scale = point - 1 - dot;
|
| 548 |
|
|
}
|
| 549 |
|
|
else
|
| 550 |
|
|
{
|
| 551 |
|
|
val = num.substring (start, point);
|
| 552 |
|
|
scale = 0;
|
| 553 |
|
|
}
|
| 554 |
|
|
if (val.length () == 0)
|
| 555 |
|
|
throw new NumberFormatException ("no digits seen");
|
| 556 |
|
|
|
| 557 |
|
|
if (negative)
|
| 558 |
|
|
val = "-" + val;
|
| 559 |
|
|
intVal = new BigInteger (val);
|
| 560 |
|
|
|
| 561 |
|
|
// Now parse exponent.
|
| 562 |
|
|
if (point < len)
|
| 563 |
|
|
{
|
| 564 |
|
|
point++;
|
| 565 |
|
|
if (num.charAt(point) == '+')
|
| 566 |
|
|
point++;
|
| 567 |
|
|
|
| 568 |
|
|
if (point >= len )
|
| 569 |
|
|
throw new NumberFormatException ("no exponent following e or E");
|
| 570 |
|
|
|
| 571 |
|
|
try
|
| 572 |
|
|
{
|
| 573 |
|
|
scale -= Integer.parseInt (num.substring (point));
|
| 574 |
|
|
}
|
| 575 |
|
|
catch (NumberFormatException ex)
|
| 576 |
|
|
{
|
| 577 |
|
|
throw new NumberFormatException ("malformed exponent");
|
| 578 |
|
|
}
|
| 579 |
|
|
}
|
| 580 |
|
|
}
|
| 581 |
|
|
|
| 582 |
|
|
public static BigDecimal valueOf (long val)
|
| 583 |
|
|
{
|
| 584 |
|
|
return valueOf (val, 0);
|
| 585 |
|
|
}
|
| 586 |
|
|
|
| 587 |
|
|
public static BigDecimal valueOf (long val, int scale)
|
| 588 |
|
|
throws NumberFormatException
|
| 589 |
|
|
{
|
| 590 |
|
|
if ((scale == 0) && ((int)val == val))
|
| 591 |
|
|
switch ((int) val)
|
| 592 |
|
|
{
|
| 593 |
|
|
case 0:
|
| 594 |
|
|
return ZERO;
|
| 595 |
|
|
case 1:
|
| 596 |
|
|
return ONE;
|
| 597 |
|
|
}
|
| 598 |
|
|
|
| 599 |
|
|
return new BigDecimal (BigInteger.valueOf (val), scale);
|
| 600 |
|
|
}
|
| 601 |
|
|
|
| 602 |
|
|
public BigDecimal add (BigDecimal val)
|
| 603 |
|
|
{
|
| 604 |
|
|
// For addition, need to line up decimals. Note that the movePointRight
|
| 605 |
|
|
// method cannot be used for this as it might return a BigDecimal with
|
| 606 |
|
|
// scale == 0 instead of the scale we need.
|
| 607 |
|
|
BigInteger op1 = intVal;
|
| 608 |
|
|
BigInteger op2 = val.intVal;
|
| 609 |
|
|
if (scale < val.scale)
|
| 610 |
|
|
op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
|
| 611 |
|
|
else if (scale > val.scale)
|
| 612 |
|
|
op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
|
| 613 |
|
|
|
| 614 |
|
|
return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
|
| 615 |
|
|
}
|
| 616 |
|
|
|
| 617 |
|
|
/**
|
| 618 |
|
|
* Returns a BigDecimal whose value is found first by calling the
|
| 619 |
|
|
* method add(val) and then by rounding according to the MathContext mc.
|
| 620 |
|
|
* @param val the augend
|
| 621 |
|
|
* @param mc the MathContext for rounding
|
| 622 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding is
|
| 623 |
|
|
* RoundingMode.UNNECESSARY
|
| 624 |
|
|
* @return <code>this</code> + <code>val</code>, rounded if need be
|
| 625 |
|
|
* @since 1.5
|
| 626 |
|
|
*/
|
| 627 |
|
|
public BigDecimal add (BigDecimal val, MathContext mc)
|
| 628 |
|
|
{
|
| 629 |
|
|
return add(val).round(mc);
|
| 630 |
|
|
}
|
| 631 |
|
|
|
| 632 |
|
|
public BigDecimal subtract (BigDecimal val)
|
| 633 |
|
|
{
|
| 634 |
|
|
return this.add(val.negate());
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
/**
|
| 638 |
|
|
* Returns a BigDecimal whose value is found first by calling the
|
| 639 |
|
|
* method subtract(val) and then by rounding according to the MathContext mc.
|
| 640 |
|
|
* @param val the subtrahend
|
| 641 |
|
|
* @param mc the MathContext for rounding
|
| 642 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding is
|
| 643 |
|
|
* RoundingMode.UNNECESSARY
|
| 644 |
|
|
* @return <code>this</code> - <code>val</code>, rounded if need be
|
| 645 |
|
|
* @since 1.5
|
| 646 |
|
|
*/
|
| 647 |
|
|
public BigDecimal subtract (BigDecimal val, MathContext mc)
|
| 648 |
|
|
{
|
| 649 |
|
|
return subtract(val).round(mc);
|
| 650 |
|
|
}
|
| 651 |
|
|
|
| 652 |
|
|
public BigDecimal multiply (BigDecimal val)
|
| 653 |
|
|
{
|
| 654 |
|
|
return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
|
| 655 |
|
|
}
|
| 656 |
|
|
|
| 657 |
|
|
/**
|
| 658 |
|
|
* Returns a BigDecimal whose value is (this x val) before it is rounded
|
| 659 |
|
|
* according to the MathContext mc.
|
| 660 |
|
|
* @param val the multiplicand
|
| 661 |
|
|
* @param mc the MathContext for rounding
|
| 662 |
|
|
* @return a new BigDecimal with value approximately (this x val)
|
| 663 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
| 664 |
|
|
* is RoundingMode.UNNECESSARY
|
| 665 |
|
|
* @since 1.5
|
| 666 |
|
|
*/
|
| 667 |
|
|
public BigDecimal multiply (BigDecimal val, MathContext mc)
|
| 668 |
|
|
{
|
| 669 |
|
|
return multiply(val).round(mc);
|
| 670 |
|
|
}
|
| 671 |
|
|
|
| 672 |
|
|
public BigDecimal divide (BigDecimal val, int roundingMode)
|
| 673 |
|
|
throws ArithmeticException, IllegalArgumentException
|
| 674 |
|
|
{
|
| 675 |
|
|
return divide (val, scale, roundingMode);
|
| 676 |
|
|
}
|
| 677 |
|
|
|
| 678 |
|
|
/**
|
| 679 |
|
|
* Returns a BigDecimal whose value is (this / val), with the specified scale
|
| 680 |
|
|
* and rounding according to the RoundingMode
|
| 681 |
|
|
* @param val the divisor
|
| 682 |
|
|
* @param scale the scale of the BigDecimal returned
|
| 683 |
|
|
* @param roundingMode the rounding mode to use
|
| 684 |
|
|
* @return a BigDecimal whose value is approximately (this / val)
|
| 685 |
|
|
* @throws ArithmeticException if divisor is zero or the rounding mode is
|
| 686 |
|
|
* UNNECESSARY but the specified scale cannot represent the value exactly
|
| 687 |
|
|
* @since 1.5
|
| 688 |
|
|
*/
|
| 689 |
|
|
public BigDecimal divide(BigDecimal val,
|
| 690 |
|
|
int scale, RoundingMode roundingMode)
|
| 691 |
|
|
{
|
| 692 |
|
|
return divide (val, scale, roundingMode.ordinal());
|
| 693 |
|
|
}
|
| 694 |
|
|
|
| 695 |
|
|
/**
|
| 696 |
|
|
* Returns a BigDecimal whose value is (this / val) rounded according to the
|
| 697 |
|
|
* RoundingMode
|
| 698 |
|
|
* @param val the divisor
|
| 699 |
|
|
* @param roundingMode the rounding mode to use
|
| 700 |
|
|
* @return a BigDecimal whose value is approximately (this / val)
|
| 701 |
|
|
* @throws ArithmeticException if divisor is zero or the rounding mode is
|
| 702 |
|
|
* UNNECESSARY but the specified scale cannot represent the value exactly
|
| 703 |
|
|
*/
|
| 704 |
|
|
public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
|
| 705 |
|
|
{
|
| 706 |
|
|
return divide (val, scale, roundingMode.ordinal());
|
| 707 |
|
|
}
|
| 708 |
|
|
|
| 709 |
|
|
public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
|
| 710 |
|
|
throws ArithmeticException, IllegalArgumentException
|
| 711 |
|
|
{
|
| 712 |
|
|
if (roundingMode < 0 || roundingMode > 7)
|
| 713 |
|
|
throw
|
| 714 |
|
|
new IllegalArgumentException("illegal rounding mode: " + roundingMode);
|
| 715 |
|
|
|
| 716 |
|
|
if (intVal.signum () == 0) // handle special case of 0.0/0.0
|
| 717 |
|
|
return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
|
| 718 |
|
|
|
| 719 |
|
|
// Ensure that pow gets a non-negative value.
|
| 720 |
|
|
BigInteger valIntVal = val.intVal;
|
| 721 |
|
|
int power = newScale - (scale - val.scale);
|
| 722 |
|
|
if (power < 0)
|
| 723 |
|
|
{
|
| 724 |
|
|
// Effectively increase the scale of val to avoid an
|
| 725 |
|
|
// ArithmeticException for a negative power.
|
| 726 |
|
|
valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
|
| 727 |
|
|
power = 0;
|
| 728 |
|
|
}
|
| 729 |
|
|
|
| 730 |
|
|
BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
|
| 731 |
|
|
|
| 732 |
|
|
BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
|
| 733 |
|
|
|
| 734 |
|
|
BigInteger unrounded = parts[0];
|
| 735 |
|
|
if (parts[1].signum () == 0) // no remainder, no rounding necessary
|
| 736 |
|
|
return new BigDecimal (unrounded, newScale);
|
| 737 |
|
|
|
| 738 |
|
|
if (roundingMode == ROUND_UNNECESSARY)
|
| 739 |
|
|
throw new ArithmeticException ("Rounding necessary");
|
| 740 |
|
|
|
| 741 |
|
|
int sign = intVal.signum () * valIntVal.signum ();
|
| 742 |
|
|
|
| 743 |
|
|
if (roundingMode == ROUND_CEILING)
|
| 744 |
|
|
roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
|
| 745 |
|
|
else if (roundingMode == ROUND_FLOOR)
|
| 746 |
|
|
roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
|
| 747 |
|
|
else
|
| 748 |
|
|
{
|
| 749 |
|
|
// half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
|
| 750 |
|
|
// 1 if >. This implies that the remainder to round is less than,
|
| 751 |
|
|
// equal to, or greater than half way to the next digit.
|
| 752 |
|
|
BigInteger posRemainder
|
| 753 |
|
|
= parts[1].signum () < 0 ? parts[1].negate() : parts[1];
|
| 754 |
|
|
valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
|
| 755 |
|
|
int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
|
| 756 |
|
|
|
| 757 |
|
|
switch(roundingMode)
|
| 758 |
|
|
{
|
| 759 |
|
|
case ROUND_HALF_UP:
|
| 760 |
|
|
roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
|
| 761 |
|
|
break;
|
| 762 |
|
|
case ROUND_HALF_DOWN:
|
| 763 |
|
|
roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
|
| 764 |
|
|
break;
|
| 765 |
|
|
case ROUND_HALF_EVEN:
|
| 766 |
|
|
if (half < 0)
|
| 767 |
|
|
roundingMode = ROUND_DOWN;
|
| 768 |
|
|
else if (half > 0)
|
| 769 |
|
|
roundingMode = ROUND_UP;
|
| 770 |
|
|
else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
|
| 771 |
|
|
roundingMode = ROUND_UP;
|
| 772 |
|
|
else // even, ROUND_HALF_DOWN
|
| 773 |
|
|
roundingMode = ROUND_DOWN;
|
| 774 |
|
|
break;
|
| 775 |
|
|
}
|
| 776 |
|
|
}
|
| 777 |
|
|
|
| 778 |
|
|
if (roundingMode == ROUND_UP)
|
| 779 |
|
|
unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
|
| 780 |
|
|
|
| 781 |
|
|
// roundingMode == ROUND_DOWN
|
| 782 |
|
|
return new BigDecimal (unrounded, newScale);
|
| 783 |
|
|
}
|
| 784 |
|
|
|
| 785 |
|
|
/**
|
| 786 |
|
|
* Performs division, if the resulting quotient requires rounding
|
| 787 |
|
|
* (has a nonterminating decimal expansion),
|
| 788 |
|
|
* an ArithmeticException is thrown.
|
| 789 |
|
|
* #see divide(BigDecimal, int, int)
|
| 790 |
|
|
* @since 1.5
|
| 791 |
|
|
*/
|
| 792 |
|
|
public BigDecimal divide(BigDecimal divisor)
|
| 793 |
|
|
throws ArithmeticException, IllegalArgumentException
|
| 794 |
|
|
{
|
| 795 |
|
|
return divide(divisor, scale, ROUND_UNNECESSARY);
|
| 796 |
|
|
}
|
| 797 |
|
|
|
| 798 |
|
|
/**
|
| 799 |
|
|
* Returns a BigDecimal whose value is the remainder in the quotient
|
| 800 |
|
|
* this / val. This is obtained by
|
| 801 |
|
|
* subtract(divideToIntegralValue(val).multiply(val)).
|
| 802 |
|
|
* @param val the divisor
|
| 803 |
|
|
* @return a BigDecimal whose value is the remainder
|
| 804 |
|
|
* @throws ArithmeticException if val == 0
|
| 805 |
|
|
* @since 1.5
|
| 806 |
|
|
*/
|
| 807 |
|
|
public BigDecimal remainder(BigDecimal val)
|
| 808 |
|
|
{
|
| 809 |
|
|
return subtract(divideToIntegralValue(val).multiply(val));
|
| 810 |
|
|
}
|
| 811 |
|
|
|
| 812 |
|
|
/**
|
| 813 |
|
|
* Returns a BigDecimal array, the first element of which is the integer part
|
| 814 |
|
|
* of this / val, and the second element of which is the remainder of
|
| 815 |
|
|
* that quotient.
|
| 816 |
|
|
* @param val the divisor
|
| 817 |
|
|
* @return the above described BigDecimal array
|
| 818 |
|
|
* @throws ArithmeticException if val == 0
|
| 819 |
|
|
* @since 1.5
|
| 820 |
|
|
*/
|
| 821 |
|
|
public BigDecimal[] divideAndRemainder(BigDecimal val)
|
| 822 |
|
|
{
|
| 823 |
|
|
BigDecimal[] result = new BigDecimal[2];
|
| 824 |
|
|
result[0] = divideToIntegralValue(val);
|
| 825 |
|
|
result[1] = subtract(result[0].multiply(val));
|
| 826 |
|
|
return result;
|
| 827 |
|
|
}
|
| 828 |
|
|
|
| 829 |
|
|
/**
|
| 830 |
|
|
* Returns a BigDecimal whose value is the integer part of the quotient
|
| 831 |
|
|
* this / val. The preferred scale is this.scale - val.scale.
|
| 832 |
|
|
* @param val the divisor
|
| 833 |
|
|
* @return a BigDecimal whose value is the integer part of this / val.
|
| 834 |
|
|
* @throws ArithmeticException if val == 0
|
| 835 |
|
|
* @since 1.5
|
| 836 |
|
|
*/
|
| 837 |
|
|
public BigDecimal divideToIntegralValue(BigDecimal val)
|
| 838 |
|
|
{
|
| 839 |
|
|
return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
|
| 840 |
|
|
}
|
| 841 |
|
|
|
| 842 |
|
|
/**
|
| 843 |
|
|
* Mutates this BigDecimal into one with no fractional part, whose value is
|
| 844 |
|
|
* equal to the largest integer that is <= to this BigDecimal. Note that
|
| 845 |
|
|
* since this method is private it is okay to mutate this BigDecimal.
|
| 846 |
|
|
* @return the BigDecimal obtained through the floor operation on this
|
| 847 |
|
|
* BigDecimal.
|
| 848 |
|
|
*/
|
| 849 |
|
|
private BigDecimal floor()
|
| 850 |
|
|
{
|
| 851 |
|
|
if (scale <= 0)
|
| 852 |
|
|
return this;
|
| 853 |
|
|
String intValStr = intVal.toString();
|
| 854 |
|
|
intValStr = intValStr.substring(0, intValStr.length() - scale);
|
| 855 |
|
|
intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
|
| 856 |
|
|
return this;
|
| 857 |
|
|
}
|
| 858 |
|
|
|
| 859 |
|
|
public int compareTo (BigDecimal val)
|
| 860 |
|
|
{
|
| 861 |
|
|
if (scale == val.scale)
|
| 862 |
|
|
return intVal.compareTo (val.intVal);
|
| 863 |
|
|
|
| 864 |
|
|
BigInteger thisParts[] =
|
| 865 |
|
|
intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
|
| 866 |
|
|
BigInteger valParts[] =
|
| 867 |
|
|
val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
|
| 868 |
|
|
|
| 869 |
|
|
int compare;
|
| 870 |
|
|
if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
|
| 871 |
|
|
return compare;
|
| 872 |
|
|
|
| 873 |
|
|
// quotients are the same, so compare remainders
|
| 874 |
|
|
|
| 875 |
|
|
// Add some trailing zeros to the remainder with the smallest scale
|
| 876 |
|
|
if (scale < val.scale)
|
| 877 |
|
|
thisParts[1] = thisParts[1].multiply
|
| 878 |
|
|
(BigInteger.valueOf (10).pow (val.scale - scale));
|
| 879 |
|
|
else if (scale > val.scale)
|
| 880 |
|
|
valParts[1] = valParts[1].multiply
|
| 881 |
|
|
(BigInteger.valueOf (10).pow (scale - val.scale));
|
| 882 |
|
|
|
| 883 |
|
|
// and compare them
|
| 884 |
|
|
return thisParts[1].compareTo (valParts[1]);
|
| 885 |
|
|
}
|
| 886 |
|
|
|
| 887 |
|
|
public boolean equals (Object o)
|
| 888 |
|
|
{
|
| 889 |
|
|
return (o instanceof BigDecimal
|
| 890 |
|
|
&& scale == ((BigDecimal) o).scale
|
| 891 |
|
|
&& compareTo ((BigDecimal) o) == 0);
|
| 892 |
|
|
}
|
| 893 |
|
|
|
| 894 |
|
|
public int hashCode()
|
| 895 |
|
|
{
|
| 896 |
|
|
return intValue() ^ scale;
|
| 897 |
|
|
}
|
| 898 |
|
|
|
| 899 |
|
|
public BigDecimal max (BigDecimal val)
|
| 900 |
|
|
{
|
| 901 |
|
|
switch (compareTo (val))
|
| 902 |
|
|
{
|
| 903 |
|
|
case 1:
|
| 904 |
|
|
return this;
|
| 905 |
|
|
default:
|
| 906 |
|
|
return val;
|
| 907 |
|
|
}
|
| 908 |
|
|
}
|
| 909 |
|
|
|
| 910 |
|
|
public BigDecimal min (BigDecimal val)
|
| 911 |
|
|
{
|
| 912 |
|
|
switch (compareTo (val))
|
| 913 |
|
|
{
|
| 914 |
|
|
case -1:
|
| 915 |
|
|
return this;
|
| 916 |
|
|
default:
|
| 917 |
|
|
return val;
|
| 918 |
|
|
}
|
| 919 |
|
|
}
|
| 920 |
|
|
|
| 921 |
|
|
public BigDecimal movePointLeft (int n)
|
| 922 |
|
|
{
|
| 923 |
|
|
return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
|
| 924 |
|
|
}
|
| 925 |
|
|
|
| 926 |
|
|
public BigDecimal movePointRight (int n)
|
| 927 |
|
|
{
|
| 928 |
|
|
if (n < 0)
|
| 929 |
|
|
return movePointLeft (-n);
|
| 930 |
|
|
|
| 931 |
|
|
if (scale >= n)
|
| 932 |
|
|
return new BigDecimal (intVal, scale - n);
|
| 933 |
|
|
|
| 934 |
|
|
return new BigDecimal (intVal.multiply
|
| 935 |
|
|
(BigInteger.TEN.pow (n - scale)), 0);
|
| 936 |
|
|
}
|
| 937 |
|
|
|
| 938 |
|
|
public int signum ()
|
| 939 |
|
|
{
|
| 940 |
|
|
return intVal.signum ();
|
| 941 |
|
|
}
|
| 942 |
|
|
|
| 943 |
|
|
public int scale ()
|
| 944 |
|
|
{
|
| 945 |
|
|
return scale;
|
| 946 |
|
|
}
|
| 947 |
|
|
|
| 948 |
|
|
public BigInteger unscaledValue()
|
| 949 |
|
|
{
|
| 950 |
|
|
return intVal;
|
| 951 |
|
|
}
|
| 952 |
|
|
|
| 953 |
|
|
public BigDecimal abs ()
|
| 954 |
|
|
{
|
| 955 |
|
|
return new BigDecimal (intVal.abs (), scale);
|
| 956 |
|
|
}
|
| 957 |
|
|
|
| 958 |
|
|
public BigDecimal negate ()
|
| 959 |
|
|
{
|
| 960 |
|
|
return new BigDecimal (intVal.negate (), scale);
|
| 961 |
|
|
}
|
| 962 |
|
|
|
| 963 |
|
|
/**
|
| 964 |
|
|
* Returns a BigDecimal whose value is found first by negating this via
|
| 965 |
|
|
* the negate() method, then by rounding according to the MathContext mc.
|
| 966 |
|
|
* @param mc the MathContext for rounding
|
| 967 |
|
|
* @return a BigDecimal whose value is approximately (-this)
|
| 968 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
| 969 |
|
|
* is RoundingMode.UNNECESSARY
|
| 970 |
|
|
* @since 1.5
|
| 971 |
|
|
*/
|
| 972 |
|
|
public BigDecimal negate(MathContext mc)
|
| 973 |
|
|
{
|
| 974 |
|
|
BigDecimal result = negate();
|
| 975 |
|
|
if (mc.getPrecision() != 0)
|
| 976 |
|
|
result = result.round(mc);
|
| 977 |
|
|
return result;
|
| 978 |
|
|
}
|
| 979 |
|
|
|
| 980 |
|
|
/**
|
| 981 |
|
|
* Returns this BigDecimal. This is included for symmetry with the
|
| 982 |
|
|
* method negate().
|
| 983 |
|
|
* @return this
|
| 984 |
|
|
* @since 1.5
|
| 985 |
|
|
*/
|
| 986 |
|
|
public BigDecimal plus()
|
| 987 |
|
|
{
|
| 988 |
|
|
return this;
|
| 989 |
|
|
}
|
| 990 |
|
|
|
| 991 |
|
|
/**
|
| 992 |
|
|
* Returns a BigDecimal whose value is found by rounding <code>this</code>
|
| 993 |
|
|
* according to the MathContext. This is the same as round(MathContext).
|
| 994 |
|
|
* @param mc the MathContext for rounding
|
| 995 |
|
|
* @return a BigDecimal whose value is <code>this</code> before being rounded
|
| 996 |
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
| 997 |
|
|
* is RoundingMode.UNNECESSARY
|
| 998 |
|
|
* @since 1.5
|
| 999 |
|
|
*/
|
| 1000 |
|
|
public BigDecimal plus(MathContext mc)
|
| 1001 |
|
|
{
|
| 1002 |
|
|
return round(mc);
|
| 1003 |
|
|
}
|
| 1004 |
|
|
|
| 1005 |
|
|
/**
|
| 1006 |
|
|
* Returns a BigDecimal which is this BigDecimal rounded according to the
|
| 1007 |
|
|
* MathContext rounding settings.
|
| 1008 |
|
|
* @param mc the MathContext that tells us how to round
|
| 1009 |
|
|
* @return the rounded BigDecimal
|
| 1010 |
|
|
*/
|
| 1011 |
|
|
public BigDecimal round(MathContext mc)
|
| 1012 |
|
|
{
|
| 1013 |
|
|
int mcPrecision = mc.getPrecision();
|
| 1014 |
|
|
int numToChop = precision() - mcPrecision;
|
| 1015 |
|
|
// If mc specifies not to chop any digits or if we've already chopped
|
| 1016 |
|
|
// enough digits (say by using a MathContext in the constructor for this
|
| 1017 |
|
|
// BigDecimal) then just return this.
|
| 1018 |
|
|
if (mcPrecision == 0 || numToChop <= 0)
|
| 1019 |
|
|
return this;
|
| 1020 |
|
|
|
| 1021 |
|
|
// Make a new BigDecimal which is the correct power of 10 to chop off
|
| 1022 |
|
|
// the required number of digits and then call divide.
|
| 1023 |
|
|
BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
|
| 1024 |
|
|
BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
|
| 1025 |
|
|
rounded.scale -= numToChop;
|
| 1026 |
|
|
rounded.precision = mcPrecision;
|
| 1027 |
|
|
return rounded;
|
| 1028 |
|
|
}
|
| 1029 |
|
|
|
| 1030 |
|
|
/**
|
| 1031 |
|
|
* Returns the precision of this BigDecimal (the number of digits in the
|
| 1032 |
|
|
* unscaled value). The precision of a zero value is 1.
|
| 1033 |
|
|
* @return the number of digits in the unscaled value, or 1 if the value
|
| 1034 |
|
|
* is zero.
|
| 1035 |
|
|
*/
|
| 1036 |
|
|
public int precision()
|
| 1037 |
|
|
{
|
| 1038 |
|
|
if (precision == 0)
|
| 1039 |
|
|
{
|
| 1040 |
|
|
String s = intVal.toString();
|
| 1041 |
|
|
precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
|
| 1042 |
|
|
}
|
| 1043 |
|
|
return precision;
|
| 1044 |
|
|
}
|
| 1045 |
|
|
|
| 1046 |
|
|
/**
|
| 1047 |
|
|
* Returns the String representation of this BigDecimal, using scientific
|
| 1048 |
|
|
* notation if necessary. The following steps are taken to generate
|
| 1049 |
|
|
* the result:
|
| 1050 |
|
|
*
|
| 1051 |
|
|
* 1. the BigInteger unscaledValue's toString method is called and if
|
| 1052 |
|
|
* <code>scale == 0<code> is returned.
|
| 1053 |
|
|
* 2. an <code>int adjExp</code> is created which is equal to the negation
|
| 1054 |
|
|
* of <code>scale</code> plus the number of digits in the unscaled value,
|
| 1055 |
|
|
* minus one.
|
| 1056 |
|
|
* 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
|
| 1057 |
|
|
* BigDecimal without scientific notation. A decimal is added if the
|
| 1058 |
|
|
* scale is positive and zeros are prepended as necessary.
|
| 1059 |
|
|
* 4. if scale is negative or adjExp is less than -6 we use scientific
|
| 1060 |
|
|
* notation. If the unscaled value has more than one digit, a decimal
|
| 1061 |
|
|
* as inserted after the first digit, the character 'E' is appended
|
| 1062 |
|
|
* and adjExp is appended.
|
| 1063 |
|
|
*/
|
| 1064 |
|
|
public String toString()
|
| 1065 |
|
|
{
|
| 1066 |
|
|
// bigStr is the String representation of the unscaled value. If
|
| 1067 |
|
|
// scale is zero we simply return this.
|
| 1068 |
|
|
String bigStr = intVal.toString();
|
| 1069 |
|
|
if (scale == 0)
|
| 1070 |
|
|
return bigStr;
|
| 1071 |
|
|
|
| 1072 |
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
| 1073 |
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
| 1074 |
|
|
|
| 1075 |
|
|
CPStringBuilder val = new CPStringBuilder();
|
| 1076 |
|
|
|
| 1077 |
|
|
if (scale >= 0 && (point - 1) >= -6)
|
| 1078 |
|
|
{
|
| 1079 |
|
|
// Convert to character form without scientific notation.
|
| 1080 |
|
|
if (point <= 0)
|
| 1081 |
|
|
{
|
| 1082 |
|
|
// Zeros need to be prepended to the StringBuilder.
|
| 1083 |
|
|
if (negative)
|
| 1084 |
|
|
val.append('-');
|
| 1085 |
|
|
// Prepend a '0' and a '.' and then as many more '0's as necessary.
|
| 1086 |
|
|
val.append('0').append('.');
|
| 1087 |
|
|
while (point < 0)
|
| 1088 |
|
|
{
|
| 1089 |
|
|
val.append('0');
|
| 1090 |
|
|
point++;
|
| 1091 |
|
|
}
|
| 1092 |
|
|
// Append the unscaled value.
|
| 1093 |
|
|
val.append(bigStr.substring(negative ? 1 : 0));
|
| 1094 |
|
|
}
|
| 1095 |
|
|
else
|
| 1096 |
|
|
{
|
| 1097 |
|
|
// No zeros need to be prepended so the String is simply the
|
| 1098 |
|
|
// unscaled value with the decimal point inserted.
|
| 1099 |
|
|
val.append(bigStr);
|
| 1100 |
|
|
val.insert(point + (negative ? 1 : 0), '.');
|
| 1101 |
|
|
}
|
| 1102 |
|
|
}
|
| 1103 |
|
|
else
|
| 1104 |
|
|
{
|
| 1105 |
|
|
// We must use scientific notation to represent this BigDecimal.
|
| 1106 |
|
|
val.append(bigStr);
|
| 1107 |
|
|
// If there is more than one digit in the unscaled value we put a
|
| 1108 |
|
|
// decimal after the first digit.
|
| 1109 |
|
|
if (bigStr.length() > 1)
|
| 1110 |
|
|
val.insert( ( negative ? 2 : 1 ), '.');
|
| 1111 |
|
|
// And then append 'E' and the exponent = (point - 1).
|
| 1112 |
|
|
val.append('E');
|
| 1113 |
|
|
if (point - 1 >= 0)
|
| 1114 |
|
|
val.append('+');
|
| 1115 |
|
|
val.append( point - 1 );
|
| 1116 |
|
|
}
|
| 1117 |
|
|
return val.toString();
|
| 1118 |
|
|
}
|
| 1119 |
|
|
|
| 1120 |
|
|
/**
|
| 1121 |
|
|
* Returns the String representation of this BigDecimal, using engineering
|
| 1122 |
|
|
* notation if necessary. This is similar to toString() but when exponents
|
| 1123 |
|
|
* are used the exponent is made to be a multiple of 3 such that the integer
|
| 1124 |
|
|
* part is between 1 and 999.
|
| 1125 |
|
|
*
|
| 1126 |
|
|
* @return a String representation of this BigDecimal in engineering notation
|
| 1127 |
|
|
* @since 1.5
|
| 1128 |
|
|
*/
|
| 1129 |
|
|
public String toEngineeringString()
|
| 1130 |
|
|
{
|
| 1131 |
|
|
// bigStr is the String representation of the unscaled value. If
|
| 1132 |
|
|
// scale is zero we simply return this.
|
| 1133 |
|
|
String bigStr = intVal.toString();
|
| 1134 |
|
|
if (scale == 0)
|
| 1135 |
|
|
return bigStr;
|
| 1136 |
|
|
|
| 1137 |
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
| 1138 |
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
| 1139 |
|
|
|
| 1140 |
|
|
// This is the adjusted exponent described above.
|
| 1141 |
|
|
int adjExp = point - 1;
|
| 1142 |
|
|
CPStringBuilder val = new CPStringBuilder();
|
| 1143 |
|
|
|
| 1144 |
|
|
if (scale >= 0 && adjExp >= -6)
|
| 1145 |
|
|
{
|
| 1146 |
|
|
// Convert to character form without scientific notation.
|
| 1147 |
|
|
if (point <= 0)
|
| 1148 |
|
|
{
|
| 1149 |
|
|
// Zeros need to be prepended to the StringBuilder.
|
| 1150 |
|
|
if (negative)
|
| 1151 |
|
|
val.append('-');
|
| 1152 |
|
|
// Prepend a '0' and a '.' and then as many more '0's as necessary.
|
| 1153 |
|
|
val.append('0').append('.');
|
| 1154 |
|
|
while (point < 0)
|
| 1155 |
|
|
{
|
| 1156 |
|
|
val.append('0');
|
| 1157 |
|
|
point++;
|
| 1158 |
|
|
}
|
| 1159 |
|
|
// Append the unscaled value.
|
| 1160 |
|
|
val.append(bigStr.substring(negative ? 1 : 0));
|
| 1161 |
|
|
}
|
| 1162 |
|
|
else
|
| 1163 |
|
|
{
|
| 1164 |
|
|
// No zeros need to be prepended so the String is simply the
|
| 1165 |
|
|
// unscaled value with the decimal point inserted.
|
| 1166 |
|
|
val.append(bigStr);
|
| 1167 |
|
|
val.insert(point + (negative ? 1 : 0), '.');
|
| 1168 |
|
|
}
|
| 1169 |
|
|
}
|
| 1170 |
|
|
else
|
| 1171 |
|
|
{
|
| 1172 |
|
|
// We must use scientific notation to represent this BigDecimal.
|
| 1173 |
|
|
// The exponent must be a multiple of 3 and the integer part
|
| 1174 |
|
|
// must be between 1 and 999.
|
| 1175 |
|
|
val.append(bigStr);
|
| 1176 |
|
|
int zeros = adjExp % 3;
|
| 1177 |
|
|
int dot = 1;
|
| 1178 |
|
|
if (adjExp > 0)
|
| 1179 |
|
|
{
|
| 1180 |
|
|
// If the exponent is positive we just move the decimal to the
|
| 1181 |
|
|
// right and decrease the exponent until it is a multiple of 3.
|
| 1182 |
|
|
dot += zeros;
|
| 1183 |
|
|
adjExp -= zeros;
|
| 1184 |
|
|
}
|
| 1185 |
|
|
else
|
| 1186 |
|
|
{
|
| 1187 |
|
|
// If the exponent is negative then we move the dot to the right
|
| 1188 |
|
|
// and decrease the exponent (increase its magnitude) until
|
| 1189 |
|
|
// it is a multiple of 3. Note that this is not adjExp -= zeros
|
| 1190 |
|
|
// because the mod operator doesn't give us the distance to the
|
| 1191 |
|
|
// correct multiple of 3. (-5 mod 3) is -2 but the distance from
|
| 1192 |
|
|
// -5 to the correct multiple of 3 (-6) is 1, not 2.
|
| 1193 |
|
|
if (zeros == -2)
|
| 1194 |
|
|
{
|
| 1195 |
|
|
dot += 1;
|
| 1196 |
|
|
adjExp -= 1;
|
| 1197 |
|
|
}
|
| 1198 |
|
|
else if (zeros == -1)
|
| 1199 |
|
|
{
|
| 1200 |
|
|
dot += 2;
|
| 1201 |
|
|
adjExp -= 2;
|
| 1202 |
|
|
}
|
| 1203 |
|
|
}
|
| 1204 |
|
|
|
| 1205 |
|
|
// Either we have to append zeros because, for example, 1.1E+5 should
|
| 1206 |
|
|
// be 110E+3, or we just have to put the decimal in the right place.
|
| 1207 |
|
|
if (dot > val.length())
|
| 1208 |
|
|
{
|
| 1209 |
|
|
while (dot > val.length())
|
| 1210 |
|
|
val.append('0');
|
| 1211 |
|
|
}
|
| 1212 |
|
|
else if (bigStr.length() > dot)
|
| 1213 |
|
|
val.insert(dot + (negative ? 1 : 0), '.');
|
| 1214 |
|
|
|
| 1215 |
|
|
// And then append 'E' and the exponent (adjExp).
|
| 1216 |
|
|
val.append('E');
|
| 1217 |
|
|
if (adjExp >= 0)
|
| 1218 |
|
|
val.append('+');
|
| 1219 |
|
|
val.append(adjExp);
|
| 1220 |
|
|
}
|
| 1221 |
|
|
return val.toString();
|
| 1222 |
|
|
}
|
| 1223 |
|
|
|
| 1224 |
|
|
/**
|
| 1225 |
|
|
* Returns a String representation of this BigDecimal without using
|
| 1226 |
|
|
* scientific notation. This is how toString() worked for releases 1.4
|
| 1227 |
|
|
* and previous. Zeros may be added to the end of the String. For
|
| 1228 |
|
|
* example, an unscaled value of 1234 and a scale of -3 would result in
|
| 1229 |
|
|
* the String 1234000, but the toString() method would return
|
| 1230 |
|
|
* 1.234E+6.
|
| 1231 |
|
|
* @return a String representation of this BigDecimal
|
| 1232 |
|
|
* @since 1.5
|
| 1233 |
|
|
*/
|
| 1234 |
|
|
public String toPlainString()
|
| 1235 |
|
|
{
|
| 1236 |
|
|
// If the scale is zero we simply return the String representation of the
|
| 1237 |
|
|
// unscaled value.
|
| 1238 |
|
|
String bigStr = intVal.toString();
|
| 1239 |
|
|
if (scale == 0)
|
| 1240 |
|
|
return bigStr;
|
| 1241 |
|
|
|
| 1242 |
|
|
// Remember if we have to put a negative sign at the start.
|
| 1243 |
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
| 1244 |
|
|
|
| 1245 |
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
| 1246 |
|
|
|
| 1247 |
|
|
CPStringBuilder sb = new CPStringBuilder(bigStr.length() + 2
|
| 1248 |
|
|
+ (point <= 0 ? (-point + 1) : 0));
|
| 1249 |
|
|
if (point <= 0)
|
| 1250 |
|
|
{
|
| 1251 |
|
|
// We have to prepend zeros and a decimal point.
|
| 1252 |
|
|
if (negative)
|
| 1253 |
|
|
sb.append('-');
|
| 1254 |
|
|
sb.append('0').append('.');
|
| 1255 |
|
|
while (point < 0)
|
| 1256 |
|
|
{
|
| 1257 |
|
|
sb.append('0');
|
| 1258 |
|
|
point++;
|
| 1259 |
|
|
}
|
| 1260 |
|
|
sb.append(bigStr.substring(negative ? 1 : 0));
|
| 1261 |
|
|
}
|
| 1262 |
|
|
else if (point < bigStr.length())
|
| 1263 |
|
|
{
|
| 1264 |
|
|
// No zeros need to be prepended or appended, just put the decimal
|
| 1265 |
|
|
// in the right place.
|
| 1266 |
|
|
sb.append(bigStr);
|
| 1267 |
|
|
sb.insert(point + (negative ? 1 : 0), '.');
|
| 1268 |
|
|
}
|
| 1269 |
|
|
else
|
| 1270 |
|
|
{
|
| 1271 |
|
|
// We must append zeros instead of using scientific notation.
|
| 1272 |
|
|
sb.append(bigStr);
|
| 1273 |
|
|
for (int i = bigStr.length(); i < point; i++)
|
| 1274 |
|
|
sb.append('0');
|
| 1275 |
|
|
}
|
| 1276 |
|
|
return sb.toString();
|
| 1277 |
|
|
}
|
| 1278 |
|
|
|
| 1279 |
|
|
/**
|
| 1280 |
|
|
* Converts this BigDecimal to a BigInteger. Any fractional part will
|
| 1281 |
|
|
* be discarded.
|
| 1282 |
|
|
* @return a BigDecimal whose value is equal to floor[this]
|
| 1283 |
|
|
*/
|
| 1284 |
|
|
public BigInteger toBigInteger ()
|
| 1285 |
|
|
{
|
| 1286 |
|
|
// If scale > 0 then we must divide, if scale > 0 then we must multiply,
|
| 1287 |
|
|
// and if scale is zero then we just return intVal;
|
| 1288 |
|
|
if (scale > 0)
|
| 1289 |
|
|
return intVal.divide (BigInteger.TEN.pow (scale));
|
| 1290 |
|
|
else if (scale < 0)
|
| 1291 |
|
|
return intVal.multiply(BigInteger.TEN.pow(-scale));
|
| 1292 |
|
|
return intVal;
|
| 1293 |
|
|
}
|
| 1294 |
|
|
|
| 1295 |
|
|
/**
|
| 1296 |
|
|
* Converts this BigDecimal into a BigInteger, throwing an
|
| 1297 |
|
|
* ArithmeticException if the conversion is not exact.
|
| 1298 |
|
|
* @return a BigInteger whose value is equal to the value of this BigDecimal
|
| 1299 |
|
|
* @since 1.5
|
| 1300 |
|
|
*/
|
| 1301 |
|
|
public BigInteger toBigIntegerExact()
|
| 1302 |
|
|
{
|
| 1303 |
|
|
if (scale > 0)
|
| 1304 |
|
|
{
|
| 1305 |
|
|
// If we have to divide, we must check if the result is exact.
|
| 1306 |
|
|
BigInteger[] result =
|
| 1307 |
|
|
intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
|
| 1308 |
|
|
if (result[1].equals(BigInteger.ZERO))
|
| 1309 |
|
|
return result[0];
|
| 1310 |
|
|
throw new ArithmeticException("No exact BigInteger representation");
|
| 1311 |
|
|
}
|
| 1312 |
|
|
else if (scale < 0)
|
| 1313 |
|
|
// If we're multiplying instead, then we needn't check for exactness.
|
| 1314 |
|
|
return intVal.multiply(BigInteger.TEN.pow(-scale));
|
| 1315 |
|
|
// If the scale is zero we can simply return intVal.
|
| 1316 |
|
|
return intVal;
|
| 1317 |
|
|
}
|
| 1318 |
|
|
|
| 1319 |
|
|
public int intValue ()
|
| 1320 |
|
|
{
|
| 1321 |
|
|
return toBigInteger ().intValue ();
|
| 1322 |
|
|
}
|
| 1323 |
|
|
|
| 1324 |
|
|
/**
|
| 1325 |
|
|
* Returns a BigDecimal which is numerically equal to this BigDecimal but
|
| 1326 |
|
|
* with no trailing zeros in the representation. For example, if this
|
| 1327 |
|
|
* BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
|
| 1328 |
|
|
* a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
|
| 1329 |
|
|
* example, [12400, -2] would become [124, -4].
|
| 1330 |
|
|
* @return a numerically equal BigDecimal with no trailing zeros
|
| 1331 |
|
|
*/
|
| 1332 |
|
|
public BigDecimal stripTrailingZeros()
|
| 1333 |
|
|
{
|
| 1334 |
|
|
String intValStr = intVal.toString();
|
| 1335 |
|
|
int newScale = scale;
|
| 1336 |
|
|
int pointer = intValStr.length() - 1;
|
| 1337 |
|
|
// This loop adjusts pointer which will be used to give us the substring
|
| 1338 |
|
|
// of intValStr to use in our new BigDecimal, and also accordingly
|
| 1339 |
|
|
// adjusts the scale of our new BigDecimal.
|
| 1340 |
|
|
while (intValStr.charAt(pointer) == '0')
|
| 1341 |
|
|
{
|
| 1342 |
|
|
pointer --;
|
| 1343 |
|
|
newScale --;
|
| 1344 |
|
|
}
|
| 1345 |
|
|
// Create a new BigDecimal with the appropriate substring and then
|
| 1346 |
|
|
// set its scale.
|
| 1347 |
|
|
BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
|
| 1348 |
|
|
result.scale = newScale;
|
| 1349 |
|
|
return result;
|
| 1350 |
|
|
}
|
| 1351 |
|
|
|
| 1352 |
|
|
public long longValue ()
|
| 1353 |
|
|
{
|
| 1354 |
|
|
return toBigInteger().longValue();
|
| 1355 |
|
|
}
|
| 1356 |
|
|
|
| 1357 |
|
|
public float floatValue()
|
| 1358 |
|
|
{
|
| 1359 |
|
|
return Float.valueOf(toString()).floatValue();
|
| 1360 |
|
|
}
|
| 1361 |
|
|
|
| 1362 |
|
|
public double doubleValue()
|
| 1363 |
|
|
{
|
| 1364 |
|
|
return Double.valueOf(toString()).doubleValue();
|
| 1365 |
|
|
}
|
| 1366 |
|
|
|
| 1367 |
|
|
public BigDecimal setScale (int scale) throws ArithmeticException
|
| 1368 |
|
|
{
|
| 1369 |
|
|
return setScale (scale, ROUND_UNNECESSARY);
|
| 1370 |
|
|
}
|
| 1371 |
|
|
|
| 1372 |
|
|
public BigDecimal setScale (int scale, int roundingMode)
|
| 1373 |
|
|
throws ArithmeticException, IllegalArgumentException
|
| 1374 |
|
|
{
|
| 1375 |
|
|
// NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
|
| 1376 |
|
|
// the spec says it should. Nevertheless, if 1.6 doesn't fix this
|
| 1377 |
|
|
// we should consider removing it.
|
| 1378 |
|
|
if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
|
| 1379 |
|
|
return divide (ONE, scale, roundingMode);
|
| 1380 |
|
|
}
|
| 1381 |
|
|
|
| 1382 |
|
|
/**
|
| 1383 |
|
|
* Returns a BigDecimal whose value is the same as this BigDecimal but whose
|
| 1384 |
|
|
* representation has a scale of <code>newScale</code>. If the scale is
|
| 1385 |
|
|
* reduced then rounding may occur, according to the RoundingMode.
|
| 1386 |
|
|
* @param newScale
|
| 1387 |
|
|
* @param roundingMode
|
| 1388 |
|
|
* @return a BigDecimal whose scale is as given, whose value is
|
| 1389 |
|
|
* <code>this</code> with possible rounding
|
| 1390 |
|
|
* @throws ArithmeticException if the rounding mode is UNNECESSARY but
|
| 1391 |
|
|
* rounding is required
|
| 1392 |
|
|
* @since 1.5
|
| 1393 |
|
|
*/
|
| 1394 |
|
|
public BigDecimal setScale(int newScale, RoundingMode roundingMode)
|
| 1395 |
|
|
{
|
| 1396 |
|
|
return setScale(newScale, roundingMode.ordinal());
|
| 1397 |
|
|
}
|
| 1398 |
|
|
|
| 1399 |
|
|
/**
|
| 1400 |
|
|
* Returns a new BigDecimal constructed from the BigDecimal(String)
|
| 1401 |
|
|
* constructor using the Double.toString(double) method to obtain
|
| 1402 |
|
|
* the String.
|
| 1403 |
|
|
* @param val the double value used in Double.toString(double)
|
| 1404 |
|
|
* @return a BigDecimal representation of val
|
| 1405 |
|
|
* @throws NumberFormatException if val is NaN or infinite
|
| 1406 |
|
|
* @since 1.5
|
| 1407 |
|
|
*/
|
| 1408 |
|
|
public static BigDecimal valueOf(double val)
|
| 1409 |
|
|
{
|
| 1410 |
|
|
if (Double.isInfinite(val) || Double.isNaN(val))
|
| 1411 |
|
|
throw new NumberFormatException("argument cannot be NaN or infinite.");
|
| 1412 |
|
|
return new BigDecimal(Double.toString(val));
|
| 1413 |
|
|
}
|
| 1414 |
|
|
|
| 1415 |
|
|
/**
|
| 1416 |
|
|
* Returns a BigDecimal whose numerical value is the numerical value
|
| 1417 |
|
|
* of this BigDecimal multiplied by 10 to the power of <code>n</code>.
|
| 1418 |
|
|
* @param n the power of ten
|
| 1419 |
|
|
* @return the new BigDecimal
|
| 1420 |
|
|
* @since 1.5
|
| 1421 |
|
|
*/
|
| 1422 |
|
|
public BigDecimal scaleByPowerOfTen(int n)
|
| 1423 |
|
|
{
|
| 1424 |
|
|
BigDecimal result = new BigDecimal(intVal, scale - n);
|
| 1425 |
|
|
result.precision = precision;
|
| 1426 |
|
|
return result;
|
| 1427 |
|
|
}
|
| 1428 |
|
|
|
| 1429 |
|
|
/**
|
| 1430 |
|
|
* Returns a BigDecimal whose value is <code>this</code> to the power of
|
| 1431 |
|
|
* <code>n</code>.
|
| 1432 |
|
|
* @param n the power
|
| 1433 |
|
|
* @return the new BigDecimal
|
| 1434 |
|
|
* @since 1.5
|
| 1435 |
|
|
*/
|
| 1436 |
|
|
public BigDecimal pow(int n)
|
| 1437 |
|
|
{
|
| 1438 |
|
|
if (n < 0 || n > 999999999)
|
| 1439 |
|
|
throw new ArithmeticException("n must be between 0 and 999999999");
|
| 1440 |
|
|
BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
|
| 1441 |
|
|
return result;
|
| 1442 |
|
|
}
|
| 1443 |
|
|
|
| 1444 |
|
|
/**
|
| 1445 |
|
|
* Returns a BigDecimal whose value is determined by first calling pow(n)
|
| 1446 |
|
|
* and then by rounding according to the MathContext mc.
|
| 1447 |
|
|
* @param n the power
|
| 1448 |
|
|
* @param mc the MathContext
|
| 1449 |
|
|
* @return the new BigDecimal
|
| 1450 |
|
|
* @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
|
| 1451 |
|
|
* inexact but the rounding is RoundingMode.UNNECESSARY
|
| 1452 |
|
|
* @since 1.5
|
| 1453 |
|
|
*/
|
| 1454 |
|
|
public BigDecimal pow(int n, MathContext mc)
|
| 1455 |
|
|
{
|
| 1456 |
|
|
// FIXME: The specs claim to use the X3.274-1996 algorithm. We
|
| 1457 |
|
|
// currently do not.
|
| 1458 |
|
|
return pow(n).round(mc);
|
| 1459 |
|
|
}
|
| 1460 |
|
|
|
| 1461 |
|
|
/**
|
| 1462 |
|
|
* Returns a BigDecimal whose value is the absolute value of this BigDecimal
|
| 1463 |
|
|
* with rounding according to the given MathContext.
|
| 1464 |
|
|
* @param mc the MathContext
|
| 1465 |
|
|
* @return the new BigDecimal
|
| 1466 |
|
|
*/
|
| 1467 |
|
|
public BigDecimal abs(MathContext mc)
|
| 1468 |
|
|
{
|
| 1469 |
|
|
BigDecimal result = abs();
|
| 1470 |
|
|
result = result.round(mc);
|
| 1471 |
|
|
return result;
|
| 1472 |
|
|
}
|
| 1473 |
|
|
|
| 1474 |
|
|
/**
|
| 1475 |
|
|
* Returns the size of a unit in the last place of this BigDecimal. This
|
| 1476 |
|
|
* returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
|
| 1477 |
|
|
* @return the size of a unit in the last place of <code>this</code>.
|
| 1478 |
|
|
* @since 1.5
|
| 1479 |
|
|
*/
|
| 1480 |
|
|
public BigDecimal ulp()
|
| 1481 |
|
|
{
|
| 1482 |
|
|
return new BigDecimal(BigInteger.ONE, scale);
|
| 1483 |
|
|
}
|
| 1484 |
|
|
|
| 1485 |
|
|
/**
|
| 1486 |
|
|
* Converts this BigDecimal to a long value.
|
| 1487 |
|
|
* @return the long value
|
| 1488 |
|
|
* @throws ArithmeticException if rounding occurs or if overflow occurs
|
| 1489 |
|
|
* @since 1.5
|
| 1490 |
|
|
*/
|
| 1491 |
|
|
public long longValueExact()
|
| 1492 |
|
|
{
|
| 1493 |
|
|
// Set scale will throw an exception if rounding occurs.
|
| 1494 |
|
|
BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
|
| 1495 |
|
|
BigInteger tempVal = temp.intVal;
|
| 1496 |
|
|
// Check for overflow.
|
| 1497 |
|
|
long result = intVal.longValue();
|
| 1498 |
|
|
if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
|
| 1499 |
|
|
|| (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
|
| 1500 |
|
|
throw new ArithmeticException("this BigDecimal is too " +
|
| 1501 |
|
|
"large to fit into the return type");
|
| 1502 |
|
|
|
| 1503 |
|
|
return intVal.longValue();
|
| 1504 |
|
|
}
|
| 1505 |
|
|
|
| 1506 |
|
|
/**
|
| 1507 |
|
|
* Converts this BigDecimal into an int by first calling longValueExact
|
| 1508 |
|
|
* and then checking that the <code>long</code> returned from that
|
| 1509 |
|
|
* method fits into an <code>int</code>.
|
| 1510 |
|
|
* @return an int whose value is <code>this</code>
|
| 1511 |
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
| 1512 |
|
|
* or is too large to fit into an int.
|
| 1513 |
|
|
* @since 1.5
|
| 1514 |
|
|
*/
|
| 1515 |
|
|
public int intValueExact()
|
| 1516 |
|
|
{
|
| 1517 |
|
|
long temp = longValueExact();
|
| 1518 |
|
|
int result = (int)temp;
|
| 1519 |
|
|
if (result != temp)
|
| 1520 |
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into an int");
|
| 1521 |
|
|
return result;
|
| 1522 |
|
|
}
|
| 1523 |
|
|
|
| 1524 |
|
|
/**
|
| 1525 |
|
|
* Converts this BigDecimal into a byte by first calling longValueExact
|
| 1526 |
|
|
* and then checking that the <code>long</code> returned from that
|
| 1527 |
|
|
* method fits into a <code>byte</code>.
|
| 1528 |
|
|
* @return a byte whose value is <code>this</code>
|
| 1529 |
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
| 1530 |
|
|
* or is too large to fit into a byte.
|
| 1531 |
|
|
* @since 1.5
|
| 1532 |
|
|
*/
|
| 1533 |
|
|
public byte byteValueExact()
|
| 1534 |
|
|
{
|
| 1535 |
|
|
long temp = longValueExact();
|
| 1536 |
|
|
byte result = (byte)temp;
|
| 1537 |
|
|
if (result != temp)
|
| 1538 |
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
|
| 1539 |
|
|
return result;
|
| 1540 |
|
|
}
|
| 1541 |
|
|
|
| 1542 |
|
|
/**
|
| 1543 |
|
|
* Converts this BigDecimal into a short by first calling longValueExact
|
| 1544 |
|
|
* and then checking that the <code>long</code> returned from that
|
| 1545 |
|
|
* method fits into a <code>short</code>.
|
| 1546 |
|
|
* @return a short whose value is <code>this</code>
|
| 1547 |
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
| 1548 |
|
|
* or is too large to fit into a short.
|
| 1549 |
|
|
* @since 1.5
|
| 1550 |
|
|
*/
|
| 1551 |
|
|
public short shortValueExact()
|
| 1552 |
|
|
{
|
| 1553 |
|
|
long temp = longValueExact();
|
| 1554 |
|
|
short result = (short)temp;
|
| 1555 |
|
|
if (result != temp)
|
| 1556 |
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into a short");
|
| 1557 |
|
|
return result;
|
| 1558 |
|
|
}
|
| 1559 |
|
|
}
|