| 1 |
771 |
jeremybenn |
/* Bidi.java -- Bidirectional Algorithm implementation
|
| 2 |
|
|
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
|
| 3 |
|
|
|
| 4 |
|
|
This file is part of GNU Classpath.
|
| 5 |
|
|
|
| 6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
| 7 |
|
|
it under the terms of the GNU General Public License as published by
|
| 8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
| 9 |
|
|
any later version.
|
| 10 |
|
|
|
| 11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
| 12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
| 14 |
|
|
General Public License for more details.
|
| 15 |
|
|
|
| 16 |
|
|
You should have received a copy of the GNU General Public License
|
| 17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
| 18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
| 19 |
|
|
02110-1301 USA.
|
| 20 |
|
|
|
| 21 |
|
|
Linking this library statically or dynamically with other modules is
|
| 22 |
|
|
making a combined work based on this library. Thus, the terms and
|
| 23 |
|
|
conditions of the GNU General Public License cover the whole
|
| 24 |
|
|
combination.
|
| 25 |
|
|
|
| 26 |
|
|
As a special exception, the copyright holders of this library give you
|
| 27 |
|
|
permission to link this library with independent modules to produce an
|
| 28 |
|
|
executable, regardless of the license terms of these independent
|
| 29 |
|
|
modules, and to copy and distribute the resulting executable under
|
| 30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
| 31 |
|
|
independent module, the terms and conditions of the license of that
|
| 32 |
|
|
module. An independent module is a module which is not derived from
|
| 33 |
|
|
or based on this library. If you modify this library, you may extend
|
| 34 |
|
|
this exception to your version of the library, but you are not
|
| 35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
| 36 |
|
|
exception statement from your version. */
|
| 37 |
|
|
|
| 38 |
|
|
|
| 39 |
|
|
package java.text;
|
| 40 |
|
|
|
| 41 |
|
|
import java.awt.font.NumericShaper;
|
| 42 |
|
|
import java.awt.font.TextAttribute;
|
| 43 |
|
|
import java.util.ArrayList;
|
| 44 |
|
|
|
| 45 |
|
|
|
| 46 |
|
|
/**
|
| 47 |
|
|
* Bidirectional Algorithm implementation.
|
| 48 |
|
|
*
|
| 49 |
|
|
* The full algorithm is
|
| 50 |
|
|
* <a href="http://www.unicode.org/unicode/reports/tr9/">Unicode Standard
|
| 51 |
|
|
* Annex #9: The Bidirectional Algorithm</a>.
|
| 52 |
|
|
*
|
| 53 |
|
|
* @since 1.4
|
| 54 |
|
|
*/
|
| 55 |
|
|
public final class Bidi
|
| 56 |
|
|
{
|
| 57 |
|
|
/**
|
| 58 |
|
|
* This indicates that a strongly directional character in the text should
|
| 59 |
|
|
* set the initial direction, but if no such character is found, then the
|
| 60 |
|
|
* initial direction will be left-to-right.
|
| 61 |
|
|
*/
|
| 62 |
|
|
public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT = -2;
|
| 63 |
|
|
|
| 64 |
|
|
/**
|
| 65 |
|
|
* This indicates that a strongly directional character in the text should
|
| 66 |
|
|
* set the initial direction, but if no such character is found, then the
|
| 67 |
|
|
* initial direction will be right-to-left.
|
| 68 |
|
|
*/
|
| 69 |
|
|
public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT = -1;
|
| 70 |
|
|
|
| 71 |
|
|
/**
|
| 72 |
|
|
* This indicates that the initial direction should be left-to-right.
|
| 73 |
|
|
*/
|
| 74 |
|
|
public static final int DIRECTION_LEFT_TO_RIGHT = 0;
|
| 75 |
|
|
|
| 76 |
|
|
/**
|
| 77 |
|
|
* This indicates that the initial direction should be right-to-left.
|
| 78 |
|
|
*/
|
| 79 |
|
|
public static final int DIRECTION_RIGHT_TO_LEFT = 1;
|
| 80 |
|
|
|
| 81 |
|
|
// Flags used when computing the result.
|
| 82 |
|
|
private static final int LTOR = 1 << DIRECTION_LEFT_TO_RIGHT;
|
| 83 |
|
|
private static final int RTOL = 1 << DIRECTION_RIGHT_TO_LEFT;
|
| 84 |
|
|
|
| 85 |
|
|
// The text we are examining, and the starting offset.
|
| 86 |
|
|
// If we had a better way to handle createLineBidi, we wouldn't
|
| 87 |
|
|
// need this at all -- which for the String case would be an
|
| 88 |
|
|
// efficiency win.
|
| 89 |
|
|
private char[] text;
|
| 90 |
|
|
private int textOffset;
|
| 91 |
|
|
// The embeddings corresponding to the text, and the starting offset.
|
| 92 |
|
|
private byte[] embeddings;
|
| 93 |
|
|
private int embeddingOffset;
|
| 94 |
|
|
// The length of the text (and embeddings) to use.
|
| 95 |
|
|
private int length;
|
| 96 |
|
|
// The flags.
|
| 97 |
|
|
private int flags;
|
| 98 |
|
|
|
| 99 |
|
|
// All instance fields following this point are initialized
|
| 100 |
|
|
// during analysis. Fields before this must be set by the constructor.
|
| 101 |
|
|
|
| 102 |
|
|
// The initial embedding level.
|
| 103 |
|
|
private int baseEmbedding;
|
| 104 |
|
|
// The type of each character in the text.
|
| 105 |
|
|
private byte[] types;
|
| 106 |
|
|
// The levels we compute.
|
| 107 |
|
|
private byte[] levels;
|
| 108 |
|
|
|
| 109 |
|
|
// A list of indices where a formatting code was found. These
|
| 110 |
|
|
// are indicies into the original text -- not into the text after
|
| 111 |
|
|
// the codes have been removed.
|
| 112 |
|
|
private ArrayList formatterIndices;
|
| 113 |
|
|
|
| 114 |
|
|
// Indices of the starts of runs in the text.
|
| 115 |
|
|
private int[] runs;
|
| 116 |
|
|
|
| 117 |
|
|
// A convenience field where we keep track of what kinds of runs
|
| 118 |
|
|
// we've seen.
|
| 119 |
|
|
private int resultFlags;
|
| 120 |
|
|
|
| 121 |
|
|
/**
|
| 122 |
|
|
* Create a new Bidi object given an attributed character iterator.
|
| 123 |
|
|
* This constructor will examine various attributes of the text:
|
| 124 |
|
|
* <ul>
|
| 125 |
|
|
* <li> {@link TextAttribute#RUN_DIRECTION} is used to determine the
|
| 126 |
|
|
* paragraph's base embedding level. This constructor will recognize
|
| 127 |
|
|
* either {@link TextAttribute#RUN_DIRECTION_LTR} or
|
| 128 |
|
|
* {@link TextAttribute#RUN_DIRECTION_RTL}. If neither is given,
|
| 129 |
|
|
* {@link #DIRECTION_DEFAULT_LEFT_TO_RIGHT} is assumed.
|
| 130 |
|
|
* </li>
|
| 131 |
|
|
*
|
| 132 |
|
|
* <li> If {@link TextAttribute#NUMERIC_SHAPING} is seen, then numeric
|
| 133 |
|
|
* shaping will be done before the Bidi algorithm is run.
|
| 134 |
|
|
* </li>
|
| 135 |
|
|
*
|
| 136 |
|
|
* <li> If {@link TextAttribute#BIDI_EMBEDDING} is seen on a given
|
| 137 |
|
|
* character, then the value of this attribute will be used as an
|
| 138 |
|
|
* embedding level override.
|
| 139 |
|
|
* </li>
|
| 140 |
|
|
* </ul>
|
| 141 |
|
|
* @param iter the attributed character iterator to use
|
| 142 |
|
|
*/
|
| 143 |
|
|
public Bidi(AttributedCharacterIterator iter)
|
| 144 |
|
|
{
|
| 145 |
|
|
// If set, this attribute should be set on all characters.
|
| 146 |
|
|
// We don't check this (should we?) but we do assume that we
|
| 147 |
|
|
// can simply examine the first character.
|
| 148 |
|
|
Object val = iter.getAttribute(TextAttribute.RUN_DIRECTION);
|
| 149 |
|
|
if (val == TextAttribute.RUN_DIRECTION_LTR)
|
| 150 |
|
|
this.flags = DIRECTION_LEFT_TO_RIGHT;
|
| 151 |
|
|
else if (val == TextAttribute.RUN_DIRECTION_RTL)
|
| 152 |
|
|
this.flags = DIRECTION_RIGHT_TO_LEFT;
|
| 153 |
|
|
else
|
| 154 |
|
|
this.flags = DIRECTION_DEFAULT_LEFT_TO_RIGHT;
|
| 155 |
|
|
|
| 156 |
|
|
// Likewise this attribute should be specified on the whole text.
|
| 157 |
|
|
// We read it here and then, if it is set, we apply the numeric shaper
|
| 158 |
|
|
// to the text before processing it.
|
| 159 |
|
|
NumericShaper shaper = null;
|
| 160 |
|
|
val = iter.getAttribute(TextAttribute.NUMERIC_SHAPING);
|
| 161 |
|
|
if (val instanceof NumericShaper)
|
| 162 |
|
|
shaper = (NumericShaper) val;
|
| 163 |
|
|
|
| 164 |
|
|
char[] text = new char[iter.getEndIndex() - iter.getBeginIndex()];
|
| 165 |
|
|
this.embeddings = new byte[this.text.length];
|
| 166 |
|
|
this.embeddingOffset = 0;
|
| 167 |
|
|
this.length = text.length;
|
| 168 |
|
|
for (int i = 0; i < this.text.length; ++i)
|
| 169 |
|
|
{
|
| 170 |
|
|
this.text[i] = iter.current();
|
| 171 |
|
|
|
| 172 |
|
|
val = iter.getAttribute(TextAttribute.BIDI_EMBEDDING);
|
| 173 |
|
|
if (val instanceof Integer)
|
| 174 |
|
|
{
|
| 175 |
|
|
int ival = ((Integer) val).intValue();
|
| 176 |
|
|
byte bval;
|
| 177 |
|
|
if (ival < -62 || ival > 62)
|
| 178 |
|
|
bval = 0;
|
| 179 |
|
|
else
|
| 180 |
|
|
bval = (byte) ival;
|
| 181 |
|
|
this.embeddings[i] = bval;
|
| 182 |
|
|
}
|
| 183 |
|
|
}
|
| 184 |
|
|
|
| 185 |
|
|
// Invoke the numeric shaper, if specified.
|
| 186 |
|
|
if (shaper != null)
|
| 187 |
|
|
shaper.shape(this.text, 0, this.length);
|
| 188 |
|
|
|
| 189 |
|
|
runBidi();
|
| 190 |
|
|
}
|
| 191 |
|
|
|
| 192 |
|
|
/**
|
| 193 |
|
|
* Create a new Bidi object with the indicated text and, possibly, explicit
|
| 194 |
|
|
* embedding settings.
|
| 195 |
|
|
*
|
| 196 |
|
|
* If the embeddings array is null, it is ignored. Otherwise it is taken to
|
| 197 |
|
|
* be explicit embedding settings corresponding to the text. Positive values
|
| 198 |
|
|
* from 1 to 61 are embedding levels, and negative values from -1 to -61 are
|
| 199 |
|
|
* embedding overrides. (FIXME: not at all clear what this really means.)
|
| 200 |
|
|
*
|
| 201 |
|
|
* @param text the text to use
|
| 202 |
|
|
* @param offset the offset of the first character of the text
|
| 203 |
|
|
* @param embeddings the explicit embeddings, or null if there are none
|
| 204 |
|
|
* @param embedOffset the offset of the first embedding value to use
|
| 205 |
|
|
* @param length the length of both the text and the embeddings
|
| 206 |
|
|
* @param flags a flag indicating the base embedding direction
|
| 207 |
|
|
*/
|
| 208 |
|
|
public Bidi(char[] text, int offset, byte[] embeddings, int embedOffset,
|
| 209 |
|
|
int length, int flags)
|
| 210 |
|
|
{
|
| 211 |
|
|
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
| 212 |
|
|
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
|
| 213 |
|
|
&& flags != DIRECTION_LEFT_TO_RIGHT
|
| 214 |
|
|
&& flags != DIRECTION_RIGHT_TO_LEFT)
|
| 215 |
|
|
throw new IllegalArgumentException("unrecognized 'flags' argument: "
|
| 216 |
|
|
+ flags);
|
| 217 |
|
|
this.text = text;
|
| 218 |
|
|
this.textOffset = offset;
|
| 219 |
|
|
this.embeddings = embeddings;
|
| 220 |
|
|
this.embeddingOffset = embedOffset;
|
| 221 |
|
|
this.length = length;
|
| 222 |
|
|
this.flags = flags;
|
| 223 |
|
|
|
| 224 |
|
|
runBidi();
|
| 225 |
|
|
}
|
| 226 |
|
|
|
| 227 |
|
|
/**
|
| 228 |
|
|
* Create a new Bidi object using the contents of the given String
|
| 229 |
|
|
* as the text.
|
| 230 |
|
|
* @param text the text to use
|
| 231 |
|
|
* @param flags a flag indicating the base embedding direction
|
| 232 |
|
|
*/
|
| 233 |
|
|
public Bidi(String text, int flags)
|
| 234 |
|
|
{
|
| 235 |
|
|
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
| 236 |
|
|
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
|
| 237 |
|
|
&& flags != DIRECTION_LEFT_TO_RIGHT
|
| 238 |
|
|
&& flags != DIRECTION_RIGHT_TO_LEFT)
|
| 239 |
|
|
throw new IllegalArgumentException("unrecognized 'flags' argument: "
|
| 240 |
|
|
+ flags);
|
| 241 |
|
|
|
| 242 |
|
|
// This is inefficient, but it isn't clear whether it matters.
|
| 243 |
|
|
// If it does we can change our implementation a bit to allow either
|
| 244 |
|
|
// a String or a char[].
|
| 245 |
|
|
this.text = text.toCharArray();
|
| 246 |
|
|
this.textOffset = 0;
|
| 247 |
|
|
this.embeddings = null;
|
| 248 |
|
|
this.embeddingOffset = 0;
|
| 249 |
|
|
this.length = text.length();
|
| 250 |
|
|
this.flags = flags;
|
| 251 |
|
|
|
| 252 |
|
|
runBidi();
|
| 253 |
|
|
}
|
| 254 |
|
|
|
| 255 |
|
|
/**
|
| 256 |
|
|
* Implementation function which computes the initial type of
|
| 257 |
|
|
* each character in the input.
|
| 258 |
|
|
*/
|
| 259 |
|
|
private void computeTypes()
|
| 260 |
|
|
{
|
| 261 |
|
|
types = new byte[length];
|
| 262 |
|
|
for (int i = 0; i < length; ++i)
|
| 263 |
|
|
types[i] = Character.getDirectionality(text[textOffset + i]);
|
| 264 |
|
|
}
|
| 265 |
|
|
|
| 266 |
|
|
/**
|
| 267 |
|
|
* An internal function which implements rules P2 and P3.
|
| 268 |
|
|
* This computes the base embedding level.
|
| 269 |
|
|
* @return the paragraph's base embedding level
|
| 270 |
|
|
*/
|
| 271 |
|
|
private int computeParagraphEmbeddingLevel()
|
| 272 |
|
|
{
|
| 273 |
|
|
// First check to see if the user supplied a directionality override.
|
| 274 |
|
|
if (flags == DIRECTION_LEFT_TO_RIGHT
|
| 275 |
|
|
|| flags == DIRECTION_RIGHT_TO_LEFT)
|
| 276 |
|
|
return flags;
|
| 277 |
|
|
|
| 278 |
|
|
// This implements rules P2 and P3.
|
| 279 |
|
|
// (Note that we don't need P1, as the user supplies
|
| 280 |
|
|
// a paragraph.)
|
| 281 |
|
|
for (int i = 0; i < length; ++i)
|
| 282 |
|
|
{
|
| 283 |
|
|
int dir = types[i];
|
| 284 |
|
|
if (dir == Character.DIRECTIONALITY_LEFT_TO_RIGHT)
|
| 285 |
|
|
return DIRECTION_LEFT_TO_RIGHT;
|
| 286 |
|
|
if (dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|
| 287 |
|
|
|| dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
|
| 288 |
|
|
return DIRECTION_RIGHT_TO_LEFT;
|
| 289 |
|
|
}
|
| 290 |
|
|
return (flags == DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
| 291 |
|
|
? DIRECTION_LEFT_TO_RIGHT
|
| 292 |
|
|
: DIRECTION_RIGHT_TO_LEFT);
|
| 293 |
|
|
}
|
| 294 |
|
|
|
| 295 |
|
|
/**
|
| 296 |
|
|
* An internal function which implements rules X1 through X9.
|
| 297 |
|
|
* This computes the initial levels for the text, handling
|
| 298 |
|
|
* explicit overrides and embeddings.
|
| 299 |
|
|
*/
|
| 300 |
|
|
private void computeExplicitLevels()
|
| 301 |
|
|
{
|
| 302 |
|
|
levels = new byte[length];
|
| 303 |
|
|
byte currentEmbedding = (byte) baseEmbedding;
|
| 304 |
|
|
// The directional override is a Character directionality
|
| 305 |
|
|
// constant. -1 means there is no override.
|
| 306 |
|
|
byte directionalOverride = -1;
|
| 307 |
|
|
// The stack of pushed embeddings, and the stack pointer.
|
| 308 |
|
|
// Note that because the direction is inherent in the depth,
|
| 309 |
|
|
// and because we have a bit left over in a byte, we can encode
|
| 310 |
|
|
// the override, if any, directly in this value on the stack.
|
| 311 |
|
|
final int MAX_DEPTH = 62;
|
| 312 |
|
|
byte[] embeddingStack = new byte[MAX_DEPTH];
|
| 313 |
|
|
int sp = 0;
|
| 314 |
|
|
|
| 315 |
|
|
for (int i = 0; i < length; ++i)
|
| 316 |
|
|
{
|
| 317 |
|
|
// If we see an explicit embedding, we use that, even if
|
| 318 |
|
|
// the current character is itself a directional override.
|
| 319 |
|
|
if (embeddings != null && embeddings[embeddingOffset + i] != 0)
|
| 320 |
|
|
{
|
| 321 |
|
|
// It isn't at all clear what we're supposed to do here.
|
| 322 |
|
|
// What does a negative value really mean?
|
| 323 |
|
|
// Should we push on the embedding stack here?
|
| 324 |
|
|
currentEmbedding = embeddings[embeddingOffset + i];
|
| 325 |
|
|
if (currentEmbedding < 0)
|
| 326 |
|
|
{
|
| 327 |
|
|
currentEmbedding = (byte) -currentEmbedding;
|
| 328 |
|
|
directionalOverride
|
| 329 |
|
|
= (((currentEmbedding % 2) == 0)
|
| 330 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 331 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 332 |
|
|
}
|
| 333 |
|
|
else
|
| 334 |
|
|
directionalOverride = -1;
|
| 335 |
|
|
continue;
|
| 336 |
|
|
}
|
| 337 |
|
|
// No explicit embedding.
|
| 338 |
|
|
boolean isLtoR = false;
|
| 339 |
|
|
boolean isSpecial = true;
|
| 340 |
|
|
switch (types[i])
|
| 341 |
|
|
{
|
| 342 |
|
|
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING:
|
| 343 |
|
|
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE:
|
| 344 |
|
|
isLtoR = true;
|
| 345 |
|
|
// Fall through.
|
| 346 |
|
|
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING:
|
| 347 |
|
|
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE:
|
| 348 |
|
|
{
|
| 349 |
|
|
byte newEmbedding;
|
| 350 |
|
|
if (isLtoR)
|
| 351 |
|
|
{
|
| 352 |
|
|
// Least greater even.
|
| 353 |
|
|
newEmbedding = (byte) ((currentEmbedding & ~1) + 2);
|
| 354 |
|
|
}
|
| 355 |
|
|
else
|
| 356 |
|
|
{
|
| 357 |
|
|
// Least greater odd.
|
| 358 |
|
|
newEmbedding = (byte) ((currentEmbedding + 1) | 1);
|
| 359 |
|
|
}
|
| 360 |
|
|
// FIXME: we don't properly handle invalid pushes.
|
| 361 |
|
|
if (newEmbedding < MAX_DEPTH)
|
| 362 |
|
|
{
|
| 363 |
|
|
// The new level is valid. Push the old value.
|
| 364 |
|
|
// See above for a comment on the encoding here.
|
| 365 |
|
|
if (directionalOverride != -1)
|
| 366 |
|
|
currentEmbedding |= Byte.MIN_VALUE;
|
| 367 |
|
|
embeddingStack[sp++] = currentEmbedding;
|
| 368 |
|
|
currentEmbedding = newEmbedding;
|
| 369 |
|
|
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE)
|
| 370 |
|
|
directionalOverride = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
|
| 371 |
|
|
else if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE)
|
| 372 |
|
|
directionalOverride = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
|
| 373 |
|
|
else
|
| 374 |
|
|
directionalOverride = -1;
|
| 375 |
|
|
}
|
| 376 |
|
|
}
|
| 377 |
|
|
break;
|
| 378 |
|
|
case Character.DIRECTIONALITY_POP_DIRECTIONAL_FORMAT:
|
| 379 |
|
|
{
|
| 380 |
|
|
// FIXME: we don't properly handle a pop with a corresponding
|
| 381 |
|
|
// invalid push.
|
| 382 |
|
|
if (sp == 0)
|
| 383 |
|
|
{
|
| 384 |
|
|
// We saw a pop without a push. Just ignore it.
|
| 385 |
|
|
break;
|
| 386 |
|
|
}
|
| 387 |
|
|
byte newEmbedding = embeddingStack[--sp];
|
| 388 |
|
|
currentEmbedding = (byte) (newEmbedding & 0x7f);
|
| 389 |
|
|
if (newEmbedding < 0)
|
| 390 |
|
|
directionalOverride
|
| 391 |
|
|
= (((newEmbedding & 1) == 0)
|
| 392 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 393 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 394 |
|
|
else
|
| 395 |
|
|
directionalOverride = -1;
|
| 396 |
|
|
}
|
| 397 |
|
|
break;
|
| 398 |
|
|
default:
|
| 399 |
|
|
isSpecial = false;
|
| 400 |
|
|
break;
|
| 401 |
|
|
}
|
| 402 |
|
|
levels[i] = currentEmbedding;
|
| 403 |
|
|
if (isSpecial)
|
| 404 |
|
|
{
|
| 405 |
|
|
// Mark this character for removal.
|
| 406 |
|
|
if (formatterIndices == null)
|
| 407 |
|
|
formatterIndices = new ArrayList();
|
| 408 |
|
|
formatterIndices.add(Integer.valueOf(i));
|
| 409 |
|
|
}
|
| 410 |
|
|
else if (directionalOverride != -1)
|
| 411 |
|
|
types[i] = directionalOverride;
|
| 412 |
|
|
}
|
| 413 |
|
|
|
| 414 |
|
|
// Remove the formatting codes and update both the arrays
|
| 415 |
|
|
// and 'length'. It would be more efficient not to remove
|
| 416 |
|
|
// these codes, but it is also more complicated. Also, the
|
| 417 |
|
|
// Unicode algorithm reference does not properly describe
|
| 418 |
|
|
// how this is to be done -- from what I can tell, their suggestions
|
| 419 |
|
|
// in this area will not yield the correct results.
|
| 420 |
|
|
if (formatterIndices == null)
|
| 421 |
|
|
return;
|
| 422 |
|
|
int output = 0, input = 0;
|
| 423 |
|
|
final int size = formatterIndices.size();
|
| 424 |
|
|
for (int i = 0; i <= size; ++i)
|
| 425 |
|
|
{
|
| 426 |
|
|
int nextFmt;
|
| 427 |
|
|
if (i == size)
|
| 428 |
|
|
nextFmt = length;
|
| 429 |
|
|
else
|
| 430 |
|
|
nextFmt = ((Integer) formatterIndices.get(i)).intValue();
|
| 431 |
|
|
// Non-formatter codes are from 'input' to 'nextFmt'.
|
| 432 |
|
|
int len = nextFmt - input;
|
| 433 |
|
|
System.arraycopy(levels, input, levels, output, len);
|
| 434 |
|
|
System.arraycopy(types, input, types, output, len);
|
| 435 |
|
|
output += len;
|
| 436 |
|
|
input = nextFmt + 1;
|
| 437 |
|
|
}
|
| 438 |
|
|
length -= formatterIndices.size();
|
| 439 |
|
|
}
|
| 440 |
|
|
|
| 441 |
|
|
/**
|
| 442 |
|
|
* An internal function to compute the boundaries of runs
|
| 443 |
|
|
* in the text. It isn't strictly necessary to do this, but
|
| 444 |
|
|
* it lets us write some following passes in a less complicated
|
| 445 |
|
|
* way. Also it lets us efficiently implement some of the public
|
| 446 |
|
|
* methods. A run is simply a sequence of characters at the
|
| 447 |
|
|
* same level.
|
| 448 |
|
|
*/
|
| 449 |
|
|
private void computeRuns()
|
| 450 |
|
|
{
|
| 451 |
|
|
int runCount = 0;
|
| 452 |
|
|
int currentEmbedding = baseEmbedding;
|
| 453 |
|
|
for (int i = 0; i < length; ++i)
|
| 454 |
|
|
{
|
| 455 |
|
|
if (levels[i] != currentEmbedding)
|
| 456 |
|
|
{
|
| 457 |
|
|
currentEmbedding = levels[i];
|
| 458 |
|
|
++runCount;
|
| 459 |
|
|
}
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
// This may be called multiple times. If so, and if
|
| 463 |
|
|
// the number of runs has not changed, then don't bother
|
| 464 |
|
|
// allocating a new array.
|
| 465 |
|
|
if (runs == null || runs.length != runCount + 1)
|
| 466 |
|
|
runs = new int[runCount + 1];
|
| 467 |
|
|
int where = 0;
|
| 468 |
|
|
int lastRunStart = 0;
|
| 469 |
|
|
currentEmbedding = baseEmbedding;
|
| 470 |
|
|
for (int i = 0; i < length; ++i)
|
| 471 |
|
|
{
|
| 472 |
|
|
if (levels[i] != currentEmbedding)
|
| 473 |
|
|
{
|
| 474 |
|
|
runs[where++] = lastRunStart;
|
| 475 |
|
|
lastRunStart = i;
|
| 476 |
|
|
currentEmbedding = levels[i];
|
| 477 |
|
|
}
|
| 478 |
|
|
}
|
| 479 |
|
|
runs[where++] = lastRunStart;
|
| 480 |
|
|
}
|
| 481 |
|
|
|
| 482 |
|
|
/**
|
| 483 |
|
|
* An internal method to resolve weak types. This implements
|
| 484 |
|
|
* rules W1 through W7.
|
| 485 |
|
|
*/
|
| 486 |
|
|
private void resolveWeakTypes()
|
| 487 |
|
|
{
|
| 488 |
|
|
final int runCount = getRunCount();
|
| 489 |
|
|
|
| 490 |
|
|
int previousLevel = baseEmbedding;
|
| 491 |
|
|
for (int run = 0; run < runCount; ++run)
|
| 492 |
|
|
{
|
| 493 |
|
|
int start = getRunStart(run);
|
| 494 |
|
|
int end = getRunLimit(run);
|
| 495 |
|
|
int level = getRunLevel(run);
|
| 496 |
|
|
|
| 497 |
|
|
// These are the names used in the Bidi algorithm.
|
| 498 |
|
|
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
|
| 499 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 500 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 501 |
|
|
int nextLevel;
|
| 502 |
|
|
if (run == runCount - 1)
|
| 503 |
|
|
nextLevel = baseEmbedding;
|
| 504 |
|
|
else
|
| 505 |
|
|
nextLevel = getRunLevel(run + 1);
|
| 506 |
|
|
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
|
| 507 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 508 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 509 |
|
|
|
| 510 |
|
|
byte prevType = sor;
|
| 511 |
|
|
byte prevStrongType = sor;
|
| 512 |
|
|
for (int i = start; i < end; ++i)
|
| 513 |
|
|
{
|
| 514 |
|
|
final byte nextType = (i == end - 1) ? eor : types[i + 1];
|
| 515 |
|
|
|
| 516 |
|
|
// Rule W1: change NSM to the prevailing direction.
|
| 517 |
|
|
if (types[i] == Character.DIRECTIONALITY_NONSPACING_MARK)
|
| 518 |
|
|
types[i] = prevType;
|
| 519 |
|
|
else
|
| 520 |
|
|
prevType = types[i];
|
| 521 |
|
|
|
| 522 |
|
|
// Rule W2: change EN to AN in some cases.
|
| 523 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 524 |
|
|
{
|
| 525 |
|
|
if (prevStrongType == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
|
| 526 |
|
|
types[i] = Character.DIRECTIONALITY_ARABIC_NUMBER;
|
| 527 |
|
|
}
|
| 528 |
|
|
else if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 529 |
|
|
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|
| 530 |
|
|
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
|
| 531 |
|
|
prevStrongType = types[i];
|
| 532 |
|
|
|
| 533 |
|
|
// Rule W3: change AL to R.
|
| 534 |
|
|
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
|
| 535 |
|
|
types[i] = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
|
| 536 |
|
|
|
| 537 |
|
|
// Rule W4: handle separators between two numbers.
|
| 538 |
|
|
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER
|
| 539 |
|
|
&& nextType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 540 |
|
|
{
|
| 541 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
|
| 542 |
|
|
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
|
| 543 |
|
|
types[i] = nextType;
|
| 544 |
|
|
}
|
| 545 |
|
|
else if (prevType == Character.DIRECTIONALITY_ARABIC_NUMBER
|
| 546 |
|
|
&& nextType == Character.DIRECTIONALITY_ARABIC_NUMBER
|
| 547 |
|
|
&& types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
|
| 548 |
|
|
types[i] = nextType;
|
| 549 |
|
|
|
| 550 |
|
|
// Rule W5: change a sequence of european terminators to
|
| 551 |
|
|
// european numbers, if they are adjacent to european numbers.
|
| 552 |
|
|
// We also include BN characters in this.
|
| 553 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
| 554 |
|
|
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
|
| 555 |
|
|
{
|
| 556 |
|
|
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 557 |
|
|
types[i] = prevType;
|
| 558 |
|
|
else
|
| 559 |
|
|
{
|
| 560 |
|
|
// Look ahead to see if there is an EN terminating this
|
| 561 |
|
|
// sequence of ETs.
|
| 562 |
|
|
int j = i + 1;
|
| 563 |
|
|
while (j < end
|
| 564 |
|
|
&& (types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
| 565 |
|
|
|| types[j] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL))
|
| 566 |
|
|
++j;
|
| 567 |
|
|
if (j < end
|
| 568 |
|
|
&& types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 569 |
|
|
{
|
| 570 |
|
|
// Change them all to EN now.
|
| 571 |
|
|
for (int k = i; k < j; ++k)
|
| 572 |
|
|
types[k] = Character.DIRECTIONALITY_EUROPEAN_NUMBER;
|
| 573 |
|
|
}
|
| 574 |
|
|
}
|
| 575 |
|
|
}
|
| 576 |
|
|
|
| 577 |
|
|
// Rule W6: separators and terminators change to ON.
|
| 578 |
|
|
// Again we include BN.
|
| 579 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
| 580 |
|
|
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
| 581 |
|
|
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
|
| 582 |
|
|
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
|
| 583 |
|
|
types[i] = Character.DIRECTIONALITY_OTHER_NEUTRALS;
|
| 584 |
|
|
|
| 585 |
|
|
// Rule W7: change european number types.
|
| 586 |
|
|
if (prevStrongType == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 587 |
|
|
&& types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 588 |
|
|
types[i] = prevStrongType;
|
| 589 |
|
|
}
|
| 590 |
|
|
|
| 591 |
|
|
previousLevel = level;
|
| 592 |
|
|
}
|
| 593 |
|
|
}
|
| 594 |
|
|
|
| 595 |
|
|
/**
|
| 596 |
|
|
* An internal method to resolve neutral types. This implements
|
| 597 |
|
|
* rules N1 and N2.
|
| 598 |
|
|
*/
|
| 599 |
|
|
private void resolveNeutralTypes()
|
| 600 |
|
|
{
|
| 601 |
|
|
// This implements rules N1 and N2.
|
| 602 |
|
|
final int runCount = getRunCount();
|
| 603 |
|
|
|
| 604 |
|
|
int previousLevel = baseEmbedding;
|
| 605 |
|
|
for (int run = 0; run < runCount; ++run)
|
| 606 |
|
|
{
|
| 607 |
|
|
int start = getRunStart(run);
|
| 608 |
|
|
int end = getRunLimit(run);
|
| 609 |
|
|
int level = getRunLevel(run);
|
| 610 |
|
|
|
| 611 |
|
|
byte embeddingDirection
|
| 612 |
|
|
= (((level % 2) == 0) ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 613 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 614 |
|
|
// These are the names used in the Bidi algorithm.
|
| 615 |
|
|
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
|
| 616 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 617 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 618 |
|
|
int nextLevel;
|
| 619 |
|
|
if (run == runCount - 1)
|
| 620 |
|
|
nextLevel = baseEmbedding;
|
| 621 |
|
|
else
|
| 622 |
|
|
nextLevel = getRunLevel(run + 1);
|
| 623 |
|
|
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
|
| 624 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 625 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
| 626 |
|
|
|
| 627 |
|
|
byte prevStrong = sor;
|
| 628 |
|
|
int neutralStart = -1;
|
| 629 |
|
|
for (int i = start; i <= end; ++i)
|
| 630 |
|
|
{
|
| 631 |
|
|
byte newStrong = -1;
|
| 632 |
|
|
byte thisType = i == end ? eor : types[i];
|
| 633 |
|
|
switch (thisType)
|
| 634 |
|
|
{
|
| 635 |
|
|
case Character.DIRECTIONALITY_LEFT_TO_RIGHT:
|
| 636 |
|
|
newStrong = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
|
| 637 |
|
|
break;
|
| 638 |
|
|
case Character.DIRECTIONALITY_RIGHT_TO_LEFT:
|
| 639 |
|
|
case Character.DIRECTIONALITY_ARABIC_NUMBER:
|
| 640 |
|
|
case Character.DIRECTIONALITY_EUROPEAN_NUMBER:
|
| 641 |
|
|
newStrong = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
|
| 642 |
|
|
break;
|
| 643 |
|
|
case Character.DIRECTIONALITY_BOUNDARY_NEUTRAL:
|
| 644 |
|
|
case Character.DIRECTIONALITY_OTHER_NEUTRALS:
|
| 645 |
|
|
case Character.DIRECTIONALITY_SEGMENT_SEPARATOR:
|
| 646 |
|
|
case Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR:
|
| 647 |
|
|
case Character.DIRECTIONALITY_WHITESPACE:
|
| 648 |
|
|
if (neutralStart == -1)
|
| 649 |
|
|
neutralStart = i;
|
| 650 |
|
|
break;
|
| 651 |
|
|
}
|
| 652 |
|
|
// If we see a strong character, update all the neutrals.
|
| 653 |
|
|
if (newStrong != -1)
|
| 654 |
|
|
{
|
| 655 |
|
|
if (neutralStart != -1)
|
| 656 |
|
|
{
|
| 657 |
|
|
byte override = (prevStrong == newStrong
|
| 658 |
|
|
? prevStrong
|
| 659 |
|
|
: embeddingDirection);
|
| 660 |
|
|
for (int j = neutralStart; j < i; ++j)
|
| 661 |
|
|
types[j] = override;
|
| 662 |
|
|
}
|
| 663 |
|
|
prevStrong = newStrong;
|
| 664 |
|
|
neutralStart = -1;
|
| 665 |
|
|
}
|
| 666 |
|
|
}
|
| 667 |
|
|
|
| 668 |
|
|
previousLevel = level;
|
| 669 |
|
|
}
|
| 670 |
|
|
}
|
| 671 |
|
|
|
| 672 |
|
|
/**
|
| 673 |
|
|
* An internal method to resolve implicit levels.
|
| 674 |
|
|
* This implements rules I1 and I2.
|
| 675 |
|
|
*/
|
| 676 |
|
|
private void resolveImplicitLevels()
|
| 677 |
|
|
{
|
| 678 |
|
|
// This implements rules I1 and I2.
|
| 679 |
|
|
for (int i = 0; i < length; ++i)
|
| 680 |
|
|
{
|
| 681 |
|
|
if ((levels[i] & 1) == 0)
|
| 682 |
|
|
{
|
| 683 |
|
|
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
|
| 684 |
|
|
++levels[i];
|
| 685 |
|
|
else if (types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|
| 686 |
|
|
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 687 |
|
|
levels[i] += 2;
|
| 688 |
|
|
}
|
| 689 |
|
|
else
|
| 690 |
|
|
{
|
| 691 |
|
|
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 692 |
|
|
|| types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|
| 693 |
|
|
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
| 694 |
|
|
++levels[i];
|
| 695 |
|
|
}
|
| 696 |
|
|
|
| 697 |
|
|
// Update the result flags.
|
| 698 |
|
|
resultFlags |= 1 << (levels[i] & 1);
|
| 699 |
|
|
}
|
| 700 |
|
|
// One final update of the result flags, using the base level.
|
| 701 |
|
|
resultFlags |= 1 << baseEmbedding;
|
| 702 |
|
|
}
|
| 703 |
|
|
|
| 704 |
|
|
/**
|
| 705 |
|
|
* This reinserts the formatting codes that we removed early on.
|
| 706 |
|
|
* Actually it does not insert formatting codes per se, but rather
|
| 707 |
|
|
* simply inserts new levels at the appropriate locations in the
|
| 708 |
|
|
* 'levels' array.
|
| 709 |
|
|
*/
|
| 710 |
|
|
private void reinsertFormattingCodes()
|
| 711 |
|
|
{
|
| 712 |
|
|
if (formatterIndices == null)
|
| 713 |
|
|
return;
|
| 714 |
|
|
int input = length;
|
| 715 |
|
|
int output = levels.length;
|
| 716 |
|
|
// Process from the end as we are copying the array over itself here.
|
| 717 |
|
|
for (int index = formatterIndices.size() - 1; index >= 0; --index)
|
| 718 |
|
|
{
|
| 719 |
|
|
int nextFmt = ((Integer) formatterIndices.get(index)).intValue();
|
| 720 |
|
|
|
| 721 |
|
|
// nextFmt points to a location in the original array. So,
|
| 722 |
|
|
// nextFmt+1 is the target of our copying. output is the location
|
| 723 |
|
|
// to which we last copied, thus we can derive the length of the
|
| 724 |
|
|
// copy from it.
|
| 725 |
|
|
int len = output - nextFmt - 1;
|
| 726 |
|
|
output = nextFmt;
|
| 727 |
|
|
input -= len;
|
| 728 |
|
|
// Note that we no longer need 'types' at this point, so we
|
| 729 |
|
|
// only edit 'levels'.
|
| 730 |
|
|
if (nextFmt + 1 < levels.length)
|
| 731 |
|
|
System.arraycopy(levels, input, levels, nextFmt + 1, len);
|
| 732 |
|
|
|
| 733 |
|
|
// Now set the level at the reinsertion point.
|
| 734 |
|
|
int rightLevel;
|
| 735 |
|
|
if (output == levels.length - 1)
|
| 736 |
|
|
rightLevel = baseEmbedding;
|
| 737 |
|
|
else
|
| 738 |
|
|
rightLevel = levels[output + 1];
|
| 739 |
|
|
int leftLevel;
|
| 740 |
|
|
if (input == 0)
|
| 741 |
|
|
leftLevel = baseEmbedding;
|
| 742 |
|
|
else
|
| 743 |
|
|
leftLevel = levels[input];
|
| 744 |
|
|
levels[output] = (byte) Math.max(leftLevel, rightLevel);
|
| 745 |
|
|
}
|
| 746 |
|
|
length = levels.length;
|
| 747 |
|
|
}
|
| 748 |
|
|
|
| 749 |
|
|
/**
|
| 750 |
|
|
* This is the main internal entry point. After a constructor
|
| 751 |
|
|
* has initialized the appropriate local state, it will call
|
| 752 |
|
|
* this method to do all the work.
|
| 753 |
|
|
*/
|
| 754 |
|
|
private void runBidi()
|
| 755 |
|
|
{
|
| 756 |
|
|
computeTypes();
|
| 757 |
|
|
baseEmbedding = computeParagraphEmbeddingLevel();
|
| 758 |
|
|
computeExplicitLevels();
|
| 759 |
|
|
computeRuns();
|
| 760 |
|
|
resolveWeakTypes();
|
| 761 |
|
|
resolveNeutralTypes();
|
| 762 |
|
|
resolveImplicitLevels();
|
| 763 |
|
|
// We're done with the types. Let the GC clean up.
|
| 764 |
|
|
types = null;
|
| 765 |
|
|
reinsertFormattingCodes();
|
| 766 |
|
|
// After resolving the implicit levels, the number
|
| 767 |
|
|
// of runs may have changed.
|
| 768 |
|
|
computeRuns();
|
| 769 |
|
|
}
|
| 770 |
|
|
|
| 771 |
|
|
/**
|
| 772 |
|
|
* Return true if the paragraph base embedding is left-to-right,
|
| 773 |
|
|
* false otherwise.
|
| 774 |
|
|
*/
|
| 775 |
|
|
public boolean baseIsLeftToRight()
|
| 776 |
|
|
{
|
| 777 |
|
|
return baseEmbedding == DIRECTION_LEFT_TO_RIGHT;
|
| 778 |
|
|
}
|
| 779 |
|
|
|
| 780 |
|
|
/**
|
| 781 |
|
|
* Create a new Bidi object for a single line of text, taken
|
| 782 |
|
|
* from the text used when creating the current Bidi object.
|
| 783 |
|
|
* @param start the index of the first character of the line
|
| 784 |
|
|
* @param end the index of the final character of the line
|
| 785 |
|
|
* @return a new Bidi object for the indicated line of text
|
| 786 |
|
|
*/
|
| 787 |
|
|
public Bidi createLineBidi(int start, int end)
|
| 788 |
|
|
{
|
| 789 |
|
|
// This isn't the most efficient implementation possible.
|
| 790 |
|
|
// This probably does not matter, so we choose simplicity instead.
|
| 791 |
|
|
int level = getLevelAt(start);
|
| 792 |
|
|
int flag = (((level % 2) == 0)
|
| 793 |
|
|
? DIRECTION_LEFT_TO_RIGHT
|
| 794 |
|
|
: DIRECTION_RIGHT_TO_LEFT);
|
| 795 |
|
|
return new Bidi(text, textOffset + start,
|
| 796 |
|
|
embeddings, embeddingOffset + start,
|
| 797 |
|
|
end - start, flag);
|
| 798 |
|
|
}
|
| 799 |
|
|
|
| 800 |
|
|
/**
|
| 801 |
|
|
* Return the base embedding level of the paragraph.
|
| 802 |
|
|
*/
|
| 803 |
|
|
public int getBaseLevel()
|
| 804 |
|
|
{
|
| 805 |
|
|
return baseEmbedding;
|
| 806 |
|
|
}
|
| 807 |
|
|
|
| 808 |
|
|
/**
|
| 809 |
|
|
* Return the length of the paragraph, in characters.
|
| 810 |
|
|
*/
|
| 811 |
|
|
public int getLength()
|
| 812 |
|
|
{
|
| 813 |
|
|
return length;
|
| 814 |
|
|
}
|
| 815 |
|
|
|
| 816 |
|
|
/**
|
| 817 |
|
|
* Return the level at the indicated character. If the
|
| 818 |
|
|
* supplied index is less than zero or greater than the length
|
| 819 |
|
|
* of the text, then the paragraph's base embedding level will
|
| 820 |
|
|
* be returned.
|
| 821 |
|
|
* @param offset the character to examine
|
| 822 |
|
|
* @return the level of that character
|
| 823 |
|
|
*/
|
| 824 |
|
|
public int getLevelAt(int offset)
|
| 825 |
|
|
{
|
| 826 |
|
|
if (offset < 0 || offset >= length)
|
| 827 |
|
|
return getBaseLevel();
|
| 828 |
|
|
return levels[offset];
|
| 829 |
|
|
}
|
| 830 |
|
|
|
| 831 |
|
|
/**
|
| 832 |
|
|
* Return the number of runs in the result. A run is
|
| 833 |
|
|
* a sequence of characters at the same embedding level.
|
| 834 |
|
|
*/
|
| 835 |
|
|
public int getRunCount()
|
| 836 |
|
|
{
|
| 837 |
|
|
return runs.length;
|
| 838 |
|
|
}
|
| 839 |
|
|
|
| 840 |
|
|
/**
|
| 841 |
|
|
* Return the level of the indicated run.
|
| 842 |
|
|
* @param which the run to examine
|
| 843 |
|
|
* @return the level of that run
|
| 844 |
|
|
*/
|
| 845 |
|
|
public int getRunLevel(int which)
|
| 846 |
|
|
{
|
| 847 |
|
|
return levels[runs[which]];
|
| 848 |
|
|
}
|
| 849 |
|
|
|
| 850 |
|
|
/**
|
| 851 |
|
|
* Return the index of the character just following the end
|
| 852 |
|
|
* of the indicated run.
|
| 853 |
|
|
* @param which the run to examine
|
| 854 |
|
|
* @return the index of the character after the final character
|
| 855 |
|
|
* of the run
|
| 856 |
|
|
*/
|
| 857 |
|
|
public int getRunLimit(int which)
|
| 858 |
|
|
{
|
| 859 |
|
|
if (which == runs.length - 1)
|
| 860 |
|
|
return length;
|
| 861 |
|
|
return runs[which + 1];
|
| 862 |
|
|
}
|
| 863 |
|
|
|
| 864 |
|
|
/**
|
| 865 |
|
|
* Return the index of the first character in the indicated run.
|
| 866 |
|
|
* @param which the run to examine
|
| 867 |
|
|
* @return the index of the first character of the run
|
| 868 |
|
|
*/
|
| 869 |
|
|
public int getRunStart(int which)
|
| 870 |
|
|
{
|
| 871 |
|
|
return runs[which];
|
| 872 |
|
|
}
|
| 873 |
|
|
|
| 874 |
|
|
/**
|
| 875 |
|
|
* Return true if the text is entirely left-to-right, and the
|
| 876 |
|
|
* base embedding is also left-to-right.
|
| 877 |
|
|
*/
|
| 878 |
|
|
public boolean isLeftToRight()
|
| 879 |
|
|
{
|
| 880 |
|
|
return resultFlags == LTOR;
|
| 881 |
|
|
}
|
| 882 |
|
|
|
| 883 |
|
|
/**
|
| 884 |
|
|
* Return true if the text consists of mixed left-to-right and
|
| 885 |
|
|
* right-to-left runs, or if the text consists of one kind of run
|
| 886 |
|
|
* which differs from the base embedding direction.
|
| 887 |
|
|
*/
|
| 888 |
|
|
public boolean isMixed()
|
| 889 |
|
|
{
|
| 890 |
|
|
return resultFlags == (LTOR | RTOL);
|
| 891 |
|
|
}
|
| 892 |
|
|
|
| 893 |
|
|
/**
|
| 894 |
|
|
* Return true if the text is entirely right-to-left, and the
|
| 895 |
|
|
* base embedding is also right-to-left.
|
| 896 |
|
|
*/
|
| 897 |
|
|
public boolean isRightToLeft()
|
| 898 |
|
|
{
|
| 899 |
|
|
return resultFlags == RTOL;
|
| 900 |
|
|
}
|
| 901 |
|
|
|
| 902 |
|
|
/**
|
| 903 |
|
|
* Return a String describing the internal state of this object.
|
| 904 |
|
|
* This is only useful for debugging.
|
| 905 |
|
|
*/
|
| 906 |
|
|
public String toString()
|
| 907 |
|
|
{
|
| 908 |
|
|
return "Bidi Bidi Bidi I like you, Buck!";
|
| 909 |
|
|
}
|
| 910 |
|
|
|
| 911 |
|
|
/**
|
| 912 |
|
|
* Reorder objects according to the levels passed in. This implements
|
| 913 |
|
|
* reordering as defined by the Unicode bidirectional layout specification.
|
| 914 |
|
|
* The levels are integers from 0 to 62; even numbers represent left-to-right
|
| 915 |
|
|
* runs, and odd numbers represent right-to-left runs.
|
| 916 |
|
|
*
|
| 917 |
|
|
* @param levels the levels associated with each object
|
| 918 |
|
|
* @param levelOffset the index of the first level to use
|
| 919 |
|
|
* @param objs the objects to reorder according to the levels
|
| 920 |
|
|
* @param objOffset the index of the first object to use
|
| 921 |
|
|
* @param count the number of objects (and levels) to manipulate
|
| 922 |
|
|
*/
|
| 923 |
|
|
public static void reorderVisually(byte[] levels, int levelOffset,
|
| 924 |
|
|
Object[] objs, int objOffset, int count)
|
| 925 |
|
|
{
|
| 926 |
|
|
// We need a copy of the 'levels' array, as we are going to modify it.
|
| 927 |
|
|
// This is unfortunate but difficult to avoid.
|
| 928 |
|
|
byte[] levelCopy = new byte[count];
|
| 929 |
|
|
// Do this explicitly so we can also find the maximum depth at the
|
| 930 |
|
|
// same time.
|
| 931 |
|
|
int max = 0;
|
| 932 |
|
|
int lowestOdd = 63;
|
| 933 |
|
|
for (int i = 0; i < count; ++i)
|
| 934 |
|
|
{
|
| 935 |
|
|
levelCopy[i] = levels[levelOffset + i];
|
| 936 |
|
|
max = Math.max(levelCopy[i], max);
|
| 937 |
|
|
if (levelCopy[i] % 2 != 0)
|
| 938 |
|
|
lowestOdd = Math.min(lowestOdd, levelCopy[i]);
|
| 939 |
|
|
}
|
| 940 |
|
|
|
| 941 |
|
|
// Reverse the runs starting with the deepest.
|
| 942 |
|
|
for (int depth = max; depth >= lowestOdd; --depth)
|
| 943 |
|
|
{
|
| 944 |
|
|
int start = 0;
|
| 945 |
|
|
while (start < count)
|
| 946 |
|
|
{
|
| 947 |
|
|
// Find the start of a run >= DEPTH.
|
| 948 |
|
|
while (start < count && levelCopy[start] < depth)
|
| 949 |
|
|
++start;
|
| 950 |
|
|
if (start == count)
|
| 951 |
|
|
break;
|
| 952 |
|
|
// Find the end of the run.
|
| 953 |
|
|
int end = start + 1;
|
| 954 |
|
|
while (end < count && levelCopy[end] >= depth)
|
| 955 |
|
|
++end;
|
| 956 |
|
|
|
| 957 |
|
|
// Reverse this run.
|
| 958 |
|
|
for (int i = 0; i < (end - start) / 2; ++i)
|
| 959 |
|
|
{
|
| 960 |
|
|
byte tmpb = levelCopy[end - i - 1];
|
| 961 |
|
|
levelCopy[end - i - 1] = levelCopy[start + i];
|
| 962 |
|
|
levelCopy[start + i] = tmpb;
|
| 963 |
|
|
Object tmpo = objs[objOffset + end - i - 1];
|
| 964 |
|
|
objs[objOffset + end - i - 1] = objs[objOffset + start + i];
|
| 965 |
|
|
objs[objOffset + start + i] = tmpo;
|
| 966 |
|
|
}
|
| 967 |
|
|
|
| 968 |
|
|
// Handle the next run.
|
| 969 |
|
|
start = end + 1;
|
| 970 |
|
|
}
|
| 971 |
|
|
}
|
| 972 |
|
|
}
|
| 973 |
|
|
|
| 974 |
|
|
/**
|
| 975 |
|
|
* Returns false if all characters in the text between start and end
|
| 976 |
|
|
* are all left-to-right text. This implementation is just calls
|
| 977 |
|
|
* <code>Character.getDirectionality(char)</code> on all characters
|
| 978 |
|
|
* and makes sure all characters are either explicitly left-to-right
|
| 979 |
|
|
* or neutral in directionality (character types L, EN, ES, ET, AN,
|
| 980 |
|
|
* CS, S and WS).
|
| 981 |
|
|
*/
|
| 982 |
|
|
public static boolean requiresBidi(char[] text, int start, int end)
|
| 983 |
|
|
{
|
| 984 |
|
|
for (int i = start; i < end; i++)
|
| 985 |
|
|
{
|
| 986 |
|
|
byte dir = Character.getDirectionality(text[i]);
|
| 987 |
|
|
if (dir != Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
| 988 |
|
|
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER
|
| 989 |
|
|
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
|
| 990 |
|
|
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
| 991 |
|
|
&& dir != Character.DIRECTIONALITY_ARABIC_NUMBER
|
| 992 |
|
|
&& dir != Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
|
| 993 |
|
|
&& dir != Character.DIRECTIONALITY_SEGMENT_SEPARATOR
|
| 994 |
|
|
&& dir != Character.DIRECTIONALITY_WHITESPACE
|
| 995 |
|
|
&& dir != Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR)
|
| 996 |
|
|
return true;
|
| 997 |
|
|
}
|
| 998 |
|
|
|
| 999 |
|
|
return false;
|
| 1000 |
|
|
}
|
| 1001 |
|
|
}
|