1 |
771 |
jeremybenn |
/* Bidi.java -- Bidirectional Algorithm implementation
|
2 |
|
|
Copyright (C) 2005, 2006 Free Software Foundation, Inc.
|
3 |
|
|
|
4 |
|
|
This file is part of GNU Classpath.
|
5 |
|
|
|
6 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
7 |
|
|
it under the terms of the GNU General Public License as published by
|
8 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
9 |
|
|
any later version.
|
10 |
|
|
|
11 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
12 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
|
|
General Public License for more details.
|
15 |
|
|
|
16 |
|
|
You should have received a copy of the GNU General Public License
|
17 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
18 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
19 |
|
|
02110-1301 USA.
|
20 |
|
|
|
21 |
|
|
Linking this library statically or dynamically with other modules is
|
22 |
|
|
making a combined work based on this library. Thus, the terms and
|
23 |
|
|
conditions of the GNU General Public License cover the whole
|
24 |
|
|
combination.
|
25 |
|
|
|
26 |
|
|
As a special exception, the copyright holders of this library give you
|
27 |
|
|
permission to link this library with independent modules to produce an
|
28 |
|
|
executable, regardless of the license terms of these independent
|
29 |
|
|
modules, and to copy and distribute the resulting executable under
|
30 |
|
|
terms of your choice, provided that you also meet, for each linked
|
31 |
|
|
independent module, the terms and conditions of the license of that
|
32 |
|
|
module. An independent module is a module which is not derived from
|
33 |
|
|
or based on this library. If you modify this library, you may extend
|
34 |
|
|
this exception to your version of the library, but you are not
|
35 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
36 |
|
|
exception statement from your version. */
|
37 |
|
|
|
38 |
|
|
|
39 |
|
|
package java.text;
|
40 |
|
|
|
41 |
|
|
import java.awt.font.NumericShaper;
|
42 |
|
|
import java.awt.font.TextAttribute;
|
43 |
|
|
import java.util.ArrayList;
|
44 |
|
|
|
45 |
|
|
|
46 |
|
|
/**
|
47 |
|
|
* Bidirectional Algorithm implementation.
|
48 |
|
|
*
|
49 |
|
|
* The full algorithm is
|
50 |
|
|
* <a href="http://www.unicode.org/unicode/reports/tr9/">Unicode Standard
|
51 |
|
|
* Annex #9: The Bidirectional Algorithm</a>.
|
52 |
|
|
*
|
53 |
|
|
* @since 1.4
|
54 |
|
|
*/
|
55 |
|
|
public final class Bidi
|
56 |
|
|
{
|
57 |
|
|
/**
|
58 |
|
|
* This indicates that a strongly directional character in the text should
|
59 |
|
|
* set the initial direction, but if no such character is found, then the
|
60 |
|
|
* initial direction will be left-to-right.
|
61 |
|
|
*/
|
62 |
|
|
public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT = -2;
|
63 |
|
|
|
64 |
|
|
/**
|
65 |
|
|
* This indicates that a strongly directional character in the text should
|
66 |
|
|
* set the initial direction, but if no such character is found, then the
|
67 |
|
|
* initial direction will be right-to-left.
|
68 |
|
|
*/
|
69 |
|
|
public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT = -1;
|
70 |
|
|
|
71 |
|
|
/**
|
72 |
|
|
* This indicates that the initial direction should be left-to-right.
|
73 |
|
|
*/
|
74 |
|
|
public static final int DIRECTION_LEFT_TO_RIGHT = 0;
|
75 |
|
|
|
76 |
|
|
/**
|
77 |
|
|
* This indicates that the initial direction should be right-to-left.
|
78 |
|
|
*/
|
79 |
|
|
public static final int DIRECTION_RIGHT_TO_LEFT = 1;
|
80 |
|
|
|
81 |
|
|
// Flags used when computing the result.
|
82 |
|
|
private static final int LTOR = 1 << DIRECTION_LEFT_TO_RIGHT;
|
83 |
|
|
private static final int RTOL = 1 << DIRECTION_RIGHT_TO_LEFT;
|
84 |
|
|
|
85 |
|
|
// The text we are examining, and the starting offset.
|
86 |
|
|
// If we had a better way to handle createLineBidi, we wouldn't
|
87 |
|
|
// need this at all -- which for the String case would be an
|
88 |
|
|
// efficiency win.
|
89 |
|
|
private char[] text;
|
90 |
|
|
private int textOffset;
|
91 |
|
|
// The embeddings corresponding to the text, and the starting offset.
|
92 |
|
|
private byte[] embeddings;
|
93 |
|
|
private int embeddingOffset;
|
94 |
|
|
// The length of the text (and embeddings) to use.
|
95 |
|
|
private int length;
|
96 |
|
|
// The flags.
|
97 |
|
|
private int flags;
|
98 |
|
|
|
99 |
|
|
// All instance fields following this point are initialized
|
100 |
|
|
// during analysis. Fields before this must be set by the constructor.
|
101 |
|
|
|
102 |
|
|
// The initial embedding level.
|
103 |
|
|
private int baseEmbedding;
|
104 |
|
|
// The type of each character in the text.
|
105 |
|
|
private byte[] types;
|
106 |
|
|
// The levels we compute.
|
107 |
|
|
private byte[] levels;
|
108 |
|
|
|
109 |
|
|
// A list of indices where a formatting code was found. These
|
110 |
|
|
// are indicies into the original text -- not into the text after
|
111 |
|
|
// the codes have been removed.
|
112 |
|
|
private ArrayList formatterIndices;
|
113 |
|
|
|
114 |
|
|
// Indices of the starts of runs in the text.
|
115 |
|
|
private int[] runs;
|
116 |
|
|
|
117 |
|
|
// A convenience field where we keep track of what kinds of runs
|
118 |
|
|
// we've seen.
|
119 |
|
|
private int resultFlags;
|
120 |
|
|
|
121 |
|
|
/**
|
122 |
|
|
* Create a new Bidi object given an attributed character iterator.
|
123 |
|
|
* This constructor will examine various attributes of the text:
|
124 |
|
|
* <ul>
|
125 |
|
|
* <li> {@link TextAttribute#RUN_DIRECTION} is used to determine the
|
126 |
|
|
* paragraph's base embedding level. This constructor will recognize
|
127 |
|
|
* either {@link TextAttribute#RUN_DIRECTION_LTR} or
|
128 |
|
|
* {@link TextAttribute#RUN_DIRECTION_RTL}. If neither is given,
|
129 |
|
|
* {@link #DIRECTION_DEFAULT_LEFT_TO_RIGHT} is assumed.
|
130 |
|
|
* </li>
|
131 |
|
|
*
|
132 |
|
|
* <li> If {@link TextAttribute#NUMERIC_SHAPING} is seen, then numeric
|
133 |
|
|
* shaping will be done before the Bidi algorithm is run.
|
134 |
|
|
* </li>
|
135 |
|
|
*
|
136 |
|
|
* <li> If {@link TextAttribute#BIDI_EMBEDDING} is seen on a given
|
137 |
|
|
* character, then the value of this attribute will be used as an
|
138 |
|
|
* embedding level override.
|
139 |
|
|
* </li>
|
140 |
|
|
* </ul>
|
141 |
|
|
* @param iter the attributed character iterator to use
|
142 |
|
|
*/
|
143 |
|
|
public Bidi(AttributedCharacterIterator iter)
|
144 |
|
|
{
|
145 |
|
|
// If set, this attribute should be set on all characters.
|
146 |
|
|
// We don't check this (should we?) but we do assume that we
|
147 |
|
|
// can simply examine the first character.
|
148 |
|
|
Object val = iter.getAttribute(TextAttribute.RUN_DIRECTION);
|
149 |
|
|
if (val == TextAttribute.RUN_DIRECTION_LTR)
|
150 |
|
|
this.flags = DIRECTION_LEFT_TO_RIGHT;
|
151 |
|
|
else if (val == TextAttribute.RUN_DIRECTION_RTL)
|
152 |
|
|
this.flags = DIRECTION_RIGHT_TO_LEFT;
|
153 |
|
|
else
|
154 |
|
|
this.flags = DIRECTION_DEFAULT_LEFT_TO_RIGHT;
|
155 |
|
|
|
156 |
|
|
// Likewise this attribute should be specified on the whole text.
|
157 |
|
|
// We read it here and then, if it is set, we apply the numeric shaper
|
158 |
|
|
// to the text before processing it.
|
159 |
|
|
NumericShaper shaper = null;
|
160 |
|
|
val = iter.getAttribute(TextAttribute.NUMERIC_SHAPING);
|
161 |
|
|
if (val instanceof NumericShaper)
|
162 |
|
|
shaper = (NumericShaper) val;
|
163 |
|
|
|
164 |
|
|
char[] text = new char[iter.getEndIndex() - iter.getBeginIndex()];
|
165 |
|
|
this.embeddings = new byte[this.text.length];
|
166 |
|
|
this.embeddingOffset = 0;
|
167 |
|
|
this.length = text.length;
|
168 |
|
|
for (int i = 0; i < this.text.length; ++i)
|
169 |
|
|
{
|
170 |
|
|
this.text[i] = iter.current();
|
171 |
|
|
|
172 |
|
|
val = iter.getAttribute(TextAttribute.BIDI_EMBEDDING);
|
173 |
|
|
if (val instanceof Integer)
|
174 |
|
|
{
|
175 |
|
|
int ival = ((Integer) val).intValue();
|
176 |
|
|
byte bval;
|
177 |
|
|
if (ival < -62 || ival > 62)
|
178 |
|
|
bval = 0;
|
179 |
|
|
else
|
180 |
|
|
bval = (byte) ival;
|
181 |
|
|
this.embeddings[i] = bval;
|
182 |
|
|
}
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
// Invoke the numeric shaper, if specified.
|
186 |
|
|
if (shaper != null)
|
187 |
|
|
shaper.shape(this.text, 0, this.length);
|
188 |
|
|
|
189 |
|
|
runBidi();
|
190 |
|
|
}
|
191 |
|
|
|
192 |
|
|
/**
|
193 |
|
|
* Create a new Bidi object with the indicated text and, possibly, explicit
|
194 |
|
|
* embedding settings.
|
195 |
|
|
*
|
196 |
|
|
* If the embeddings array is null, it is ignored. Otherwise it is taken to
|
197 |
|
|
* be explicit embedding settings corresponding to the text. Positive values
|
198 |
|
|
* from 1 to 61 are embedding levels, and negative values from -1 to -61 are
|
199 |
|
|
* embedding overrides. (FIXME: not at all clear what this really means.)
|
200 |
|
|
*
|
201 |
|
|
* @param text the text to use
|
202 |
|
|
* @param offset the offset of the first character of the text
|
203 |
|
|
* @param embeddings the explicit embeddings, or null if there are none
|
204 |
|
|
* @param embedOffset the offset of the first embedding value to use
|
205 |
|
|
* @param length the length of both the text and the embeddings
|
206 |
|
|
* @param flags a flag indicating the base embedding direction
|
207 |
|
|
*/
|
208 |
|
|
public Bidi(char[] text, int offset, byte[] embeddings, int embedOffset,
|
209 |
|
|
int length, int flags)
|
210 |
|
|
{
|
211 |
|
|
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
212 |
|
|
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
|
213 |
|
|
&& flags != DIRECTION_LEFT_TO_RIGHT
|
214 |
|
|
&& flags != DIRECTION_RIGHT_TO_LEFT)
|
215 |
|
|
throw new IllegalArgumentException("unrecognized 'flags' argument: "
|
216 |
|
|
+ flags);
|
217 |
|
|
this.text = text;
|
218 |
|
|
this.textOffset = offset;
|
219 |
|
|
this.embeddings = embeddings;
|
220 |
|
|
this.embeddingOffset = embedOffset;
|
221 |
|
|
this.length = length;
|
222 |
|
|
this.flags = flags;
|
223 |
|
|
|
224 |
|
|
runBidi();
|
225 |
|
|
}
|
226 |
|
|
|
227 |
|
|
/**
|
228 |
|
|
* Create a new Bidi object using the contents of the given String
|
229 |
|
|
* as the text.
|
230 |
|
|
* @param text the text to use
|
231 |
|
|
* @param flags a flag indicating the base embedding direction
|
232 |
|
|
*/
|
233 |
|
|
public Bidi(String text, int flags)
|
234 |
|
|
{
|
235 |
|
|
if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
236 |
|
|
&& flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
|
237 |
|
|
&& flags != DIRECTION_LEFT_TO_RIGHT
|
238 |
|
|
&& flags != DIRECTION_RIGHT_TO_LEFT)
|
239 |
|
|
throw new IllegalArgumentException("unrecognized 'flags' argument: "
|
240 |
|
|
+ flags);
|
241 |
|
|
|
242 |
|
|
// This is inefficient, but it isn't clear whether it matters.
|
243 |
|
|
// If it does we can change our implementation a bit to allow either
|
244 |
|
|
// a String or a char[].
|
245 |
|
|
this.text = text.toCharArray();
|
246 |
|
|
this.textOffset = 0;
|
247 |
|
|
this.embeddings = null;
|
248 |
|
|
this.embeddingOffset = 0;
|
249 |
|
|
this.length = text.length();
|
250 |
|
|
this.flags = flags;
|
251 |
|
|
|
252 |
|
|
runBidi();
|
253 |
|
|
}
|
254 |
|
|
|
255 |
|
|
/**
|
256 |
|
|
* Implementation function which computes the initial type of
|
257 |
|
|
* each character in the input.
|
258 |
|
|
*/
|
259 |
|
|
private void computeTypes()
|
260 |
|
|
{
|
261 |
|
|
types = new byte[length];
|
262 |
|
|
for (int i = 0; i < length; ++i)
|
263 |
|
|
types[i] = Character.getDirectionality(text[textOffset + i]);
|
264 |
|
|
}
|
265 |
|
|
|
266 |
|
|
/**
|
267 |
|
|
* An internal function which implements rules P2 and P3.
|
268 |
|
|
* This computes the base embedding level.
|
269 |
|
|
* @return the paragraph's base embedding level
|
270 |
|
|
*/
|
271 |
|
|
private int computeParagraphEmbeddingLevel()
|
272 |
|
|
{
|
273 |
|
|
// First check to see if the user supplied a directionality override.
|
274 |
|
|
if (flags == DIRECTION_LEFT_TO_RIGHT
|
275 |
|
|
|| flags == DIRECTION_RIGHT_TO_LEFT)
|
276 |
|
|
return flags;
|
277 |
|
|
|
278 |
|
|
// This implements rules P2 and P3.
|
279 |
|
|
// (Note that we don't need P1, as the user supplies
|
280 |
|
|
// a paragraph.)
|
281 |
|
|
for (int i = 0; i < length; ++i)
|
282 |
|
|
{
|
283 |
|
|
int dir = types[i];
|
284 |
|
|
if (dir == Character.DIRECTIONALITY_LEFT_TO_RIGHT)
|
285 |
|
|
return DIRECTION_LEFT_TO_RIGHT;
|
286 |
|
|
if (dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|
287 |
|
|
|| dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
|
288 |
|
|
return DIRECTION_RIGHT_TO_LEFT;
|
289 |
|
|
}
|
290 |
|
|
return (flags == DIRECTION_DEFAULT_LEFT_TO_RIGHT
|
291 |
|
|
? DIRECTION_LEFT_TO_RIGHT
|
292 |
|
|
: DIRECTION_RIGHT_TO_LEFT);
|
293 |
|
|
}
|
294 |
|
|
|
295 |
|
|
/**
|
296 |
|
|
* An internal function which implements rules X1 through X9.
|
297 |
|
|
* This computes the initial levels for the text, handling
|
298 |
|
|
* explicit overrides and embeddings.
|
299 |
|
|
*/
|
300 |
|
|
private void computeExplicitLevels()
|
301 |
|
|
{
|
302 |
|
|
levels = new byte[length];
|
303 |
|
|
byte currentEmbedding = (byte) baseEmbedding;
|
304 |
|
|
// The directional override is a Character directionality
|
305 |
|
|
// constant. -1 means there is no override.
|
306 |
|
|
byte directionalOverride = -1;
|
307 |
|
|
// The stack of pushed embeddings, and the stack pointer.
|
308 |
|
|
// Note that because the direction is inherent in the depth,
|
309 |
|
|
// and because we have a bit left over in a byte, we can encode
|
310 |
|
|
// the override, if any, directly in this value on the stack.
|
311 |
|
|
final int MAX_DEPTH = 62;
|
312 |
|
|
byte[] embeddingStack = new byte[MAX_DEPTH];
|
313 |
|
|
int sp = 0;
|
314 |
|
|
|
315 |
|
|
for (int i = 0; i < length; ++i)
|
316 |
|
|
{
|
317 |
|
|
// If we see an explicit embedding, we use that, even if
|
318 |
|
|
// the current character is itself a directional override.
|
319 |
|
|
if (embeddings != null && embeddings[embeddingOffset + i] != 0)
|
320 |
|
|
{
|
321 |
|
|
// It isn't at all clear what we're supposed to do here.
|
322 |
|
|
// What does a negative value really mean?
|
323 |
|
|
// Should we push on the embedding stack here?
|
324 |
|
|
currentEmbedding = embeddings[embeddingOffset + i];
|
325 |
|
|
if (currentEmbedding < 0)
|
326 |
|
|
{
|
327 |
|
|
currentEmbedding = (byte) -currentEmbedding;
|
328 |
|
|
directionalOverride
|
329 |
|
|
= (((currentEmbedding % 2) == 0)
|
330 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
331 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
332 |
|
|
}
|
333 |
|
|
else
|
334 |
|
|
directionalOverride = -1;
|
335 |
|
|
continue;
|
336 |
|
|
}
|
337 |
|
|
// No explicit embedding.
|
338 |
|
|
boolean isLtoR = false;
|
339 |
|
|
boolean isSpecial = true;
|
340 |
|
|
switch (types[i])
|
341 |
|
|
{
|
342 |
|
|
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING:
|
343 |
|
|
case Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE:
|
344 |
|
|
isLtoR = true;
|
345 |
|
|
// Fall through.
|
346 |
|
|
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING:
|
347 |
|
|
case Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE:
|
348 |
|
|
{
|
349 |
|
|
byte newEmbedding;
|
350 |
|
|
if (isLtoR)
|
351 |
|
|
{
|
352 |
|
|
// Least greater even.
|
353 |
|
|
newEmbedding = (byte) ((currentEmbedding & ~1) + 2);
|
354 |
|
|
}
|
355 |
|
|
else
|
356 |
|
|
{
|
357 |
|
|
// Least greater odd.
|
358 |
|
|
newEmbedding = (byte) ((currentEmbedding + 1) | 1);
|
359 |
|
|
}
|
360 |
|
|
// FIXME: we don't properly handle invalid pushes.
|
361 |
|
|
if (newEmbedding < MAX_DEPTH)
|
362 |
|
|
{
|
363 |
|
|
// The new level is valid. Push the old value.
|
364 |
|
|
// See above for a comment on the encoding here.
|
365 |
|
|
if (directionalOverride != -1)
|
366 |
|
|
currentEmbedding |= Byte.MIN_VALUE;
|
367 |
|
|
embeddingStack[sp++] = currentEmbedding;
|
368 |
|
|
currentEmbedding = newEmbedding;
|
369 |
|
|
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE)
|
370 |
|
|
directionalOverride = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
|
371 |
|
|
else if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE)
|
372 |
|
|
directionalOverride = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
|
373 |
|
|
else
|
374 |
|
|
directionalOverride = -1;
|
375 |
|
|
}
|
376 |
|
|
}
|
377 |
|
|
break;
|
378 |
|
|
case Character.DIRECTIONALITY_POP_DIRECTIONAL_FORMAT:
|
379 |
|
|
{
|
380 |
|
|
// FIXME: we don't properly handle a pop with a corresponding
|
381 |
|
|
// invalid push.
|
382 |
|
|
if (sp == 0)
|
383 |
|
|
{
|
384 |
|
|
// We saw a pop without a push. Just ignore it.
|
385 |
|
|
break;
|
386 |
|
|
}
|
387 |
|
|
byte newEmbedding = embeddingStack[--sp];
|
388 |
|
|
currentEmbedding = (byte) (newEmbedding & 0x7f);
|
389 |
|
|
if (newEmbedding < 0)
|
390 |
|
|
directionalOverride
|
391 |
|
|
= (((newEmbedding & 1) == 0)
|
392 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
393 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
394 |
|
|
else
|
395 |
|
|
directionalOverride = -1;
|
396 |
|
|
}
|
397 |
|
|
break;
|
398 |
|
|
default:
|
399 |
|
|
isSpecial = false;
|
400 |
|
|
break;
|
401 |
|
|
}
|
402 |
|
|
levels[i] = currentEmbedding;
|
403 |
|
|
if (isSpecial)
|
404 |
|
|
{
|
405 |
|
|
// Mark this character for removal.
|
406 |
|
|
if (formatterIndices == null)
|
407 |
|
|
formatterIndices = new ArrayList();
|
408 |
|
|
formatterIndices.add(Integer.valueOf(i));
|
409 |
|
|
}
|
410 |
|
|
else if (directionalOverride != -1)
|
411 |
|
|
types[i] = directionalOverride;
|
412 |
|
|
}
|
413 |
|
|
|
414 |
|
|
// Remove the formatting codes and update both the arrays
|
415 |
|
|
// and 'length'. It would be more efficient not to remove
|
416 |
|
|
// these codes, but it is also more complicated. Also, the
|
417 |
|
|
// Unicode algorithm reference does not properly describe
|
418 |
|
|
// how this is to be done -- from what I can tell, their suggestions
|
419 |
|
|
// in this area will not yield the correct results.
|
420 |
|
|
if (formatterIndices == null)
|
421 |
|
|
return;
|
422 |
|
|
int output = 0, input = 0;
|
423 |
|
|
final int size = formatterIndices.size();
|
424 |
|
|
for (int i = 0; i <= size; ++i)
|
425 |
|
|
{
|
426 |
|
|
int nextFmt;
|
427 |
|
|
if (i == size)
|
428 |
|
|
nextFmt = length;
|
429 |
|
|
else
|
430 |
|
|
nextFmt = ((Integer) formatterIndices.get(i)).intValue();
|
431 |
|
|
// Non-formatter codes are from 'input' to 'nextFmt'.
|
432 |
|
|
int len = nextFmt - input;
|
433 |
|
|
System.arraycopy(levels, input, levels, output, len);
|
434 |
|
|
System.arraycopy(types, input, types, output, len);
|
435 |
|
|
output += len;
|
436 |
|
|
input = nextFmt + 1;
|
437 |
|
|
}
|
438 |
|
|
length -= formatterIndices.size();
|
439 |
|
|
}
|
440 |
|
|
|
441 |
|
|
/**
|
442 |
|
|
* An internal function to compute the boundaries of runs
|
443 |
|
|
* in the text. It isn't strictly necessary to do this, but
|
444 |
|
|
* it lets us write some following passes in a less complicated
|
445 |
|
|
* way. Also it lets us efficiently implement some of the public
|
446 |
|
|
* methods. A run is simply a sequence of characters at the
|
447 |
|
|
* same level.
|
448 |
|
|
*/
|
449 |
|
|
private void computeRuns()
|
450 |
|
|
{
|
451 |
|
|
int runCount = 0;
|
452 |
|
|
int currentEmbedding = baseEmbedding;
|
453 |
|
|
for (int i = 0; i < length; ++i)
|
454 |
|
|
{
|
455 |
|
|
if (levels[i] != currentEmbedding)
|
456 |
|
|
{
|
457 |
|
|
currentEmbedding = levels[i];
|
458 |
|
|
++runCount;
|
459 |
|
|
}
|
460 |
|
|
}
|
461 |
|
|
|
462 |
|
|
// This may be called multiple times. If so, and if
|
463 |
|
|
// the number of runs has not changed, then don't bother
|
464 |
|
|
// allocating a new array.
|
465 |
|
|
if (runs == null || runs.length != runCount + 1)
|
466 |
|
|
runs = new int[runCount + 1];
|
467 |
|
|
int where = 0;
|
468 |
|
|
int lastRunStart = 0;
|
469 |
|
|
currentEmbedding = baseEmbedding;
|
470 |
|
|
for (int i = 0; i < length; ++i)
|
471 |
|
|
{
|
472 |
|
|
if (levels[i] != currentEmbedding)
|
473 |
|
|
{
|
474 |
|
|
runs[where++] = lastRunStart;
|
475 |
|
|
lastRunStart = i;
|
476 |
|
|
currentEmbedding = levels[i];
|
477 |
|
|
}
|
478 |
|
|
}
|
479 |
|
|
runs[where++] = lastRunStart;
|
480 |
|
|
}
|
481 |
|
|
|
482 |
|
|
/**
|
483 |
|
|
* An internal method to resolve weak types. This implements
|
484 |
|
|
* rules W1 through W7.
|
485 |
|
|
*/
|
486 |
|
|
private void resolveWeakTypes()
|
487 |
|
|
{
|
488 |
|
|
final int runCount = getRunCount();
|
489 |
|
|
|
490 |
|
|
int previousLevel = baseEmbedding;
|
491 |
|
|
for (int run = 0; run < runCount; ++run)
|
492 |
|
|
{
|
493 |
|
|
int start = getRunStart(run);
|
494 |
|
|
int end = getRunLimit(run);
|
495 |
|
|
int level = getRunLevel(run);
|
496 |
|
|
|
497 |
|
|
// These are the names used in the Bidi algorithm.
|
498 |
|
|
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
|
499 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
500 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
501 |
|
|
int nextLevel;
|
502 |
|
|
if (run == runCount - 1)
|
503 |
|
|
nextLevel = baseEmbedding;
|
504 |
|
|
else
|
505 |
|
|
nextLevel = getRunLevel(run + 1);
|
506 |
|
|
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
|
507 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
508 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
509 |
|
|
|
510 |
|
|
byte prevType = sor;
|
511 |
|
|
byte prevStrongType = sor;
|
512 |
|
|
for (int i = start; i < end; ++i)
|
513 |
|
|
{
|
514 |
|
|
final byte nextType = (i == end - 1) ? eor : types[i + 1];
|
515 |
|
|
|
516 |
|
|
// Rule W1: change NSM to the prevailing direction.
|
517 |
|
|
if (types[i] == Character.DIRECTIONALITY_NONSPACING_MARK)
|
518 |
|
|
types[i] = prevType;
|
519 |
|
|
else
|
520 |
|
|
prevType = types[i];
|
521 |
|
|
|
522 |
|
|
// Rule W2: change EN to AN in some cases.
|
523 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
524 |
|
|
{
|
525 |
|
|
if (prevStrongType == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
|
526 |
|
|
types[i] = Character.DIRECTIONALITY_ARABIC_NUMBER;
|
527 |
|
|
}
|
528 |
|
|
else if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
529 |
|
|
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT
|
530 |
|
|
|| types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
|
531 |
|
|
prevStrongType = types[i];
|
532 |
|
|
|
533 |
|
|
// Rule W3: change AL to R.
|
534 |
|
|
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
|
535 |
|
|
types[i] = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
|
536 |
|
|
|
537 |
|
|
// Rule W4: handle separators between two numbers.
|
538 |
|
|
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER
|
539 |
|
|
&& nextType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
540 |
|
|
{
|
541 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
|
542 |
|
|
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
|
543 |
|
|
types[i] = nextType;
|
544 |
|
|
}
|
545 |
|
|
else if (prevType == Character.DIRECTIONALITY_ARABIC_NUMBER
|
546 |
|
|
&& nextType == Character.DIRECTIONALITY_ARABIC_NUMBER
|
547 |
|
|
&& types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
|
548 |
|
|
types[i] = nextType;
|
549 |
|
|
|
550 |
|
|
// Rule W5: change a sequence of european terminators to
|
551 |
|
|
// european numbers, if they are adjacent to european numbers.
|
552 |
|
|
// We also include BN characters in this.
|
553 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
554 |
|
|
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
|
555 |
|
|
{
|
556 |
|
|
if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
557 |
|
|
types[i] = prevType;
|
558 |
|
|
else
|
559 |
|
|
{
|
560 |
|
|
// Look ahead to see if there is an EN terminating this
|
561 |
|
|
// sequence of ETs.
|
562 |
|
|
int j = i + 1;
|
563 |
|
|
while (j < end
|
564 |
|
|
&& (types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
565 |
|
|
|| types[j] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL))
|
566 |
|
|
++j;
|
567 |
|
|
if (j < end
|
568 |
|
|
&& types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
569 |
|
|
{
|
570 |
|
|
// Change them all to EN now.
|
571 |
|
|
for (int k = i; k < j; ++k)
|
572 |
|
|
types[k] = Character.DIRECTIONALITY_EUROPEAN_NUMBER;
|
573 |
|
|
}
|
574 |
|
|
}
|
575 |
|
|
}
|
576 |
|
|
|
577 |
|
|
// Rule W6: separators and terminators change to ON.
|
578 |
|
|
// Again we include BN.
|
579 |
|
|
if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
580 |
|
|
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
581 |
|
|
|| types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
|
582 |
|
|
|| types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
|
583 |
|
|
types[i] = Character.DIRECTIONALITY_OTHER_NEUTRALS;
|
584 |
|
|
|
585 |
|
|
// Rule W7: change european number types.
|
586 |
|
|
if (prevStrongType == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
587 |
|
|
&& types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
588 |
|
|
types[i] = prevStrongType;
|
589 |
|
|
}
|
590 |
|
|
|
591 |
|
|
previousLevel = level;
|
592 |
|
|
}
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/**
|
596 |
|
|
* An internal method to resolve neutral types. This implements
|
597 |
|
|
* rules N1 and N2.
|
598 |
|
|
*/
|
599 |
|
|
private void resolveNeutralTypes()
|
600 |
|
|
{
|
601 |
|
|
// This implements rules N1 and N2.
|
602 |
|
|
final int runCount = getRunCount();
|
603 |
|
|
|
604 |
|
|
int previousLevel = baseEmbedding;
|
605 |
|
|
for (int run = 0; run < runCount; ++run)
|
606 |
|
|
{
|
607 |
|
|
int start = getRunStart(run);
|
608 |
|
|
int end = getRunLimit(run);
|
609 |
|
|
int level = getRunLevel(run);
|
610 |
|
|
|
611 |
|
|
byte embeddingDirection
|
612 |
|
|
= (((level % 2) == 0) ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
613 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
614 |
|
|
// These are the names used in the Bidi algorithm.
|
615 |
|
|
byte sor = (((Math.max(previousLevel, level) % 2) == 0)
|
616 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
617 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
618 |
|
|
int nextLevel;
|
619 |
|
|
if (run == runCount - 1)
|
620 |
|
|
nextLevel = baseEmbedding;
|
621 |
|
|
else
|
622 |
|
|
nextLevel = getRunLevel(run + 1);
|
623 |
|
|
byte eor = (((Math.max(level, nextLevel) % 2) == 0)
|
624 |
|
|
? Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
625 |
|
|
: Character.DIRECTIONALITY_RIGHT_TO_LEFT);
|
626 |
|
|
|
627 |
|
|
byte prevStrong = sor;
|
628 |
|
|
int neutralStart = -1;
|
629 |
|
|
for (int i = start; i <= end; ++i)
|
630 |
|
|
{
|
631 |
|
|
byte newStrong = -1;
|
632 |
|
|
byte thisType = i == end ? eor : types[i];
|
633 |
|
|
switch (thisType)
|
634 |
|
|
{
|
635 |
|
|
case Character.DIRECTIONALITY_LEFT_TO_RIGHT:
|
636 |
|
|
newStrong = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
|
637 |
|
|
break;
|
638 |
|
|
case Character.DIRECTIONALITY_RIGHT_TO_LEFT:
|
639 |
|
|
case Character.DIRECTIONALITY_ARABIC_NUMBER:
|
640 |
|
|
case Character.DIRECTIONALITY_EUROPEAN_NUMBER:
|
641 |
|
|
newStrong = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
|
642 |
|
|
break;
|
643 |
|
|
case Character.DIRECTIONALITY_BOUNDARY_NEUTRAL:
|
644 |
|
|
case Character.DIRECTIONALITY_OTHER_NEUTRALS:
|
645 |
|
|
case Character.DIRECTIONALITY_SEGMENT_SEPARATOR:
|
646 |
|
|
case Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR:
|
647 |
|
|
case Character.DIRECTIONALITY_WHITESPACE:
|
648 |
|
|
if (neutralStart == -1)
|
649 |
|
|
neutralStart = i;
|
650 |
|
|
break;
|
651 |
|
|
}
|
652 |
|
|
// If we see a strong character, update all the neutrals.
|
653 |
|
|
if (newStrong != -1)
|
654 |
|
|
{
|
655 |
|
|
if (neutralStart != -1)
|
656 |
|
|
{
|
657 |
|
|
byte override = (prevStrong == newStrong
|
658 |
|
|
? prevStrong
|
659 |
|
|
: embeddingDirection);
|
660 |
|
|
for (int j = neutralStart; j < i; ++j)
|
661 |
|
|
types[j] = override;
|
662 |
|
|
}
|
663 |
|
|
prevStrong = newStrong;
|
664 |
|
|
neutralStart = -1;
|
665 |
|
|
}
|
666 |
|
|
}
|
667 |
|
|
|
668 |
|
|
previousLevel = level;
|
669 |
|
|
}
|
670 |
|
|
}
|
671 |
|
|
|
672 |
|
|
/**
|
673 |
|
|
* An internal method to resolve implicit levels.
|
674 |
|
|
* This implements rules I1 and I2.
|
675 |
|
|
*/
|
676 |
|
|
private void resolveImplicitLevels()
|
677 |
|
|
{
|
678 |
|
|
// This implements rules I1 and I2.
|
679 |
|
|
for (int i = 0; i < length; ++i)
|
680 |
|
|
{
|
681 |
|
|
if ((levels[i] & 1) == 0)
|
682 |
|
|
{
|
683 |
|
|
if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
|
684 |
|
|
++levels[i];
|
685 |
|
|
else if (types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|
686 |
|
|
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
687 |
|
|
levels[i] += 2;
|
688 |
|
|
}
|
689 |
|
|
else
|
690 |
|
|
{
|
691 |
|
|
if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
692 |
|
|
|| types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
|
693 |
|
|
|| types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
|
694 |
|
|
++levels[i];
|
695 |
|
|
}
|
696 |
|
|
|
697 |
|
|
// Update the result flags.
|
698 |
|
|
resultFlags |= 1 << (levels[i] & 1);
|
699 |
|
|
}
|
700 |
|
|
// One final update of the result flags, using the base level.
|
701 |
|
|
resultFlags |= 1 << baseEmbedding;
|
702 |
|
|
}
|
703 |
|
|
|
704 |
|
|
/**
|
705 |
|
|
* This reinserts the formatting codes that we removed early on.
|
706 |
|
|
* Actually it does not insert formatting codes per se, but rather
|
707 |
|
|
* simply inserts new levels at the appropriate locations in the
|
708 |
|
|
* 'levels' array.
|
709 |
|
|
*/
|
710 |
|
|
private void reinsertFormattingCodes()
|
711 |
|
|
{
|
712 |
|
|
if (formatterIndices == null)
|
713 |
|
|
return;
|
714 |
|
|
int input = length;
|
715 |
|
|
int output = levels.length;
|
716 |
|
|
// Process from the end as we are copying the array over itself here.
|
717 |
|
|
for (int index = formatterIndices.size() - 1; index >= 0; --index)
|
718 |
|
|
{
|
719 |
|
|
int nextFmt = ((Integer) formatterIndices.get(index)).intValue();
|
720 |
|
|
|
721 |
|
|
// nextFmt points to a location in the original array. So,
|
722 |
|
|
// nextFmt+1 is the target of our copying. output is the location
|
723 |
|
|
// to which we last copied, thus we can derive the length of the
|
724 |
|
|
// copy from it.
|
725 |
|
|
int len = output - nextFmt - 1;
|
726 |
|
|
output = nextFmt;
|
727 |
|
|
input -= len;
|
728 |
|
|
// Note that we no longer need 'types' at this point, so we
|
729 |
|
|
// only edit 'levels'.
|
730 |
|
|
if (nextFmt + 1 < levels.length)
|
731 |
|
|
System.arraycopy(levels, input, levels, nextFmt + 1, len);
|
732 |
|
|
|
733 |
|
|
// Now set the level at the reinsertion point.
|
734 |
|
|
int rightLevel;
|
735 |
|
|
if (output == levels.length - 1)
|
736 |
|
|
rightLevel = baseEmbedding;
|
737 |
|
|
else
|
738 |
|
|
rightLevel = levels[output + 1];
|
739 |
|
|
int leftLevel;
|
740 |
|
|
if (input == 0)
|
741 |
|
|
leftLevel = baseEmbedding;
|
742 |
|
|
else
|
743 |
|
|
leftLevel = levels[input];
|
744 |
|
|
levels[output] = (byte) Math.max(leftLevel, rightLevel);
|
745 |
|
|
}
|
746 |
|
|
length = levels.length;
|
747 |
|
|
}
|
748 |
|
|
|
749 |
|
|
/**
|
750 |
|
|
* This is the main internal entry point. After a constructor
|
751 |
|
|
* has initialized the appropriate local state, it will call
|
752 |
|
|
* this method to do all the work.
|
753 |
|
|
*/
|
754 |
|
|
private void runBidi()
|
755 |
|
|
{
|
756 |
|
|
computeTypes();
|
757 |
|
|
baseEmbedding = computeParagraphEmbeddingLevel();
|
758 |
|
|
computeExplicitLevels();
|
759 |
|
|
computeRuns();
|
760 |
|
|
resolveWeakTypes();
|
761 |
|
|
resolveNeutralTypes();
|
762 |
|
|
resolveImplicitLevels();
|
763 |
|
|
// We're done with the types. Let the GC clean up.
|
764 |
|
|
types = null;
|
765 |
|
|
reinsertFormattingCodes();
|
766 |
|
|
// After resolving the implicit levels, the number
|
767 |
|
|
// of runs may have changed.
|
768 |
|
|
computeRuns();
|
769 |
|
|
}
|
770 |
|
|
|
771 |
|
|
/**
|
772 |
|
|
* Return true if the paragraph base embedding is left-to-right,
|
773 |
|
|
* false otherwise.
|
774 |
|
|
*/
|
775 |
|
|
public boolean baseIsLeftToRight()
|
776 |
|
|
{
|
777 |
|
|
return baseEmbedding == DIRECTION_LEFT_TO_RIGHT;
|
778 |
|
|
}
|
779 |
|
|
|
780 |
|
|
/**
|
781 |
|
|
* Create a new Bidi object for a single line of text, taken
|
782 |
|
|
* from the text used when creating the current Bidi object.
|
783 |
|
|
* @param start the index of the first character of the line
|
784 |
|
|
* @param end the index of the final character of the line
|
785 |
|
|
* @return a new Bidi object for the indicated line of text
|
786 |
|
|
*/
|
787 |
|
|
public Bidi createLineBidi(int start, int end)
|
788 |
|
|
{
|
789 |
|
|
// This isn't the most efficient implementation possible.
|
790 |
|
|
// This probably does not matter, so we choose simplicity instead.
|
791 |
|
|
int level = getLevelAt(start);
|
792 |
|
|
int flag = (((level % 2) == 0)
|
793 |
|
|
? DIRECTION_LEFT_TO_RIGHT
|
794 |
|
|
: DIRECTION_RIGHT_TO_LEFT);
|
795 |
|
|
return new Bidi(text, textOffset + start,
|
796 |
|
|
embeddings, embeddingOffset + start,
|
797 |
|
|
end - start, flag);
|
798 |
|
|
}
|
799 |
|
|
|
800 |
|
|
/**
|
801 |
|
|
* Return the base embedding level of the paragraph.
|
802 |
|
|
*/
|
803 |
|
|
public int getBaseLevel()
|
804 |
|
|
{
|
805 |
|
|
return baseEmbedding;
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
/**
|
809 |
|
|
* Return the length of the paragraph, in characters.
|
810 |
|
|
*/
|
811 |
|
|
public int getLength()
|
812 |
|
|
{
|
813 |
|
|
return length;
|
814 |
|
|
}
|
815 |
|
|
|
816 |
|
|
/**
|
817 |
|
|
* Return the level at the indicated character. If the
|
818 |
|
|
* supplied index is less than zero or greater than the length
|
819 |
|
|
* of the text, then the paragraph's base embedding level will
|
820 |
|
|
* be returned.
|
821 |
|
|
* @param offset the character to examine
|
822 |
|
|
* @return the level of that character
|
823 |
|
|
*/
|
824 |
|
|
public int getLevelAt(int offset)
|
825 |
|
|
{
|
826 |
|
|
if (offset < 0 || offset >= length)
|
827 |
|
|
return getBaseLevel();
|
828 |
|
|
return levels[offset];
|
829 |
|
|
}
|
830 |
|
|
|
831 |
|
|
/**
|
832 |
|
|
* Return the number of runs in the result. A run is
|
833 |
|
|
* a sequence of characters at the same embedding level.
|
834 |
|
|
*/
|
835 |
|
|
public int getRunCount()
|
836 |
|
|
{
|
837 |
|
|
return runs.length;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
/**
|
841 |
|
|
* Return the level of the indicated run.
|
842 |
|
|
* @param which the run to examine
|
843 |
|
|
* @return the level of that run
|
844 |
|
|
*/
|
845 |
|
|
public int getRunLevel(int which)
|
846 |
|
|
{
|
847 |
|
|
return levels[runs[which]];
|
848 |
|
|
}
|
849 |
|
|
|
850 |
|
|
/**
|
851 |
|
|
* Return the index of the character just following the end
|
852 |
|
|
* of the indicated run.
|
853 |
|
|
* @param which the run to examine
|
854 |
|
|
* @return the index of the character after the final character
|
855 |
|
|
* of the run
|
856 |
|
|
*/
|
857 |
|
|
public int getRunLimit(int which)
|
858 |
|
|
{
|
859 |
|
|
if (which == runs.length - 1)
|
860 |
|
|
return length;
|
861 |
|
|
return runs[which + 1];
|
862 |
|
|
}
|
863 |
|
|
|
864 |
|
|
/**
|
865 |
|
|
* Return the index of the first character in the indicated run.
|
866 |
|
|
* @param which the run to examine
|
867 |
|
|
* @return the index of the first character of the run
|
868 |
|
|
*/
|
869 |
|
|
public int getRunStart(int which)
|
870 |
|
|
{
|
871 |
|
|
return runs[which];
|
872 |
|
|
}
|
873 |
|
|
|
874 |
|
|
/**
|
875 |
|
|
* Return true if the text is entirely left-to-right, and the
|
876 |
|
|
* base embedding is also left-to-right.
|
877 |
|
|
*/
|
878 |
|
|
public boolean isLeftToRight()
|
879 |
|
|
{
|
880 |
|
|
return resultFlags == LTOR;
|
881 |
|
|
}
|
882 |
|
|
|
883 |
|
|
/**
|
884 |
|
|
* Return true if the text consists of mixed left-to-right and
|
885 |
|
|
* right-to-left runs, or if the text consists of one kind of run
|
886 |
|
|
* which differs from the base embedding direction.
|
887 |
|
|
*/
|
888 |
|
|
public boolean isMixed()
|
889 |
|
|
{
|
890 |
|
|
return resultFlags == (LTOR | RTOL);
|
891 |
|
|
}
|
892 |
|
|
|
893 |
|
|
/**
|
894 |
|
|
* Return true if the text is entirely right-to-left, and the
|
895 |
|
|
* base embedding is also right-to-left.
|
896 |
|
|
*/
|
897 |
|
|
public boolean isRightToLeft()
|
898 |
|
|
{
|
899 |
|
|
return resultFlags == RTOL;
|
900 |
|
|
}
|
901 |
|
|
|
902 |
|
|
/**
|
903 |
|
|
* Return a String describing the internal state of this object.
|
904 |
|
|
* This is only useful for debugging.
|
905 |
|
|
*/
|
906 |
|
|
public String toString()
|
907 |
|
|
{
|
908 |
|
|
return "Bidi Bidi Bidi I like you, Buck!";
|
909 |
|
|
}
|
910 |
|
|
|
911 |
|
|
/**
|
912 |
|
|
* Reorder objects according to the levels passed in. This implements
|
913 |
|
|
* reordering as defined by the Unicode bidirectional layout specification.
|
914 |
|
|
* The levels are integers from 0 to 62; even numbers represent left-to-right
|
915 |
|
|
* runs, and odd numbers represent right-to-left runs.
|
916 |
|
|
*
|
917 |
|
|
* @param levels the levels associated with each object
|
918 |
|
|
* @param levelOffset the index of the first level to use
|
919 |
|
|
* @param objs the objects to reorder according to the levels
|
920 |
|
|
* @param objOffset the index of the first object to use
|
921 |
|
|
* @param count the number of objects (and levels) to manipulate
|
922 |
|
|
*/
|
923 |
|
|
public static void reorderVisually(byte[] levels, int levelOffset,
|
924 |
|
|
Object[] objs, int objOffset, int count)
|
925 |
|
|
{
|
926 |
|
|
// We need a copy of the 'levels' array, as we are going to modify it.
|
927 |
|
|
// This is unfortunate but difficult to avoid.
|
928 |
|
|
byte[] levelCopy = new byte[count];
|
929 |
|
|
// Do this explicitly so we can also find the maximum depth at the
|
930 |
|
|
// same time.
|
931 |
|
|
int max = 0;
|
932 |
|
|
int lowestOdd = 63;
|
933 |
|
|
for (int i = 0; i < count; ++i)
|
934 |
|
|
{
|
935 |
|
|
levelCopy[i] = levels[levelOffset + i];
|
936 |
|
|
max = Math.max(levelCopy[i], max);
|
937 |
|
|
if (levelCopy[i] % 2 != 0)
|
938 |
|
|
lowestOdd = Math.min(lowestOdd, levelCopy[i]);
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
// Reverse the runs starting with the deepest.
|
942 |
|
|
for (int depth = max; depth >= lowestOdd; --depth)
|
943 |
|
|
{
|
944 |
|
|
int start = 0;
|
945 |
|
|
while (start < count)
|
946 |
|
|
{
|
947 |
|
|
// Find the start of a run >= DEPTH.
|
948 |
|
|
while (start < count && levelCopy[start] < depth)
|
949 |
|
|
++start;
|
950 |
|
|
if (start == count)
|
951 |
|
|
break;
|
952 |
|
|
// Find the end of the run.
|
953 |
|
|
int end = start + 1;
|
954 |
|
|
while (end < count && levelCopy[end] >= depth)
|
955 |
|
|
++end;
|
956 |
|
|
|
957 |
|
|
// Reverse this run.
|
958 |
|
|
for (int i = 0; i < (end - start) / 2; ++i)
|
959 |
|
|
{
|
960 |
|
|
byte tmpb = levelCopy[end - i - 1];
|
961 |
|
|
levelCopy[end - i - 1] = levelCopy[start + i];
|
962 |
|
|
levelCopy[start + i] = tmpb;
|
963 |
|
|
Object tmpo = objs[objOffset + end - i - 1];
|
964 |
|
|
objs[objOffset + end - i - 1] = objs[objOffset + start + i];
|
965 |
|
|
objs[objOffset + start + i] = tmpo;
|
966 |
|
|
}
|
967 |
|
|
|
968 |
|
|
// Handle the next run.
|
969 |
|
|
start = end + 1;
|
970 |
|
|
}
|
971 |
|
|
}
|
972 |
|
|
}
|
973 |
|
|
|
974 |
|
|
/**
|
975 |
|
|
* Returns false if all characters in the text between start and end
|
976 |
|
|
* are all left-to-right text. This implementation is just calls
|
977 |
|
|
* <code>Character.getDirectionality(char)</code> on all characters
|
978 |
|
|
* and makes sure all characters are either explicitly left-to-right
|
979 |
|
|
* or neutral in directionality (character types L, EN, ES, ET, AN,
|
980 |
|
|
* CS, S and WS).
|
981 |
|
|
*/
|
982 |
|
|
public static boolean requiresBidi(char[] text, int start, int end)
|
983 |
|
|
{
|
984 |
|
|
for (int i = start; i < end; i++)
|
985 |
|
|
{
|
986 |
|
|
byte dir = Character.getDirectionality(text[i]);
|
987 |
|
|
if (dir != Character.DIRECTIONALITY_LEFT_TO_RIGHT
|
988 |
|
|
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER
|
989 |
|
|
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
|
990 |
|
|
&& dir != Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
|
991 |
|
|
&& dir != Character.DIRECTIONALITY_ARABIC_NUMBER
|
992 |
|
|
&& dir != Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
|
993 |
|
|
&& dir != Character.DIRECTIONALITY_SEGMENT_SEPARATOR
|
994 |
|
|
&& dir != Character.DIRECTIONALITY_WHITESPACE
|
995 |
|
|
&& dir != Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR)
|
996 |
|
|
return true;
|
997 |
|
|
}
|
998 |
|
|
|
999 |
|
|
return false;
|
1000 |
|
|
}
|
1001 |
|
|
}
|