1 |
771 |
jeremybenn |
/* Arrays.java -- Utility class with methods to operate on arrays
|
2 |
|
|
Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
|
3 |
|
|
Free Software Foundation, Inc.
|
4 |
|
|
|
5 |
|
|
This file is part of GNU Classpath.
|
6 |
|
|
|
7 |
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
8 |
|
|
it under the terms of the GNU General Public License as published by
|
9 |
|
|
the Free Software Foundation; either version 2, or (at your option)
|
10 |
|
|
any later version.
|
11 |
|
|
|
12 |
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
13 |
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
14 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
15 |
|
|
General Public License for more details.
|
16 |
|
|
|
17 |
|
|
You should have received a copy of the GNU General Public License
|
18 |
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
19 |
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
20 |
|
|
02110-1301 USA.
|
21 |
|
|
|
22 |
|
|
Linking this library statically or dynamically with other modules is
|
23 |
|
|
making a combined work based on this library. Thus, the terms and
|
24 |
|
|
conditions of the GNU General Public License cover the whole
|
25 |
|
|
combination.
|
26 |
|
|
|
27 |
|
|
As a special exception, the copyright holders of this library give you
|
28 |
|
|
permission to link this library with independent modules to produce an
|
29 |
|
|
executable, regardless of the license terms of these independent
|
30 |
|
|
modules, and to copy and distribute the resulting executable under
|
31 |
|
|
terms of your choice, provided that you also meet, for each linked
|
32 |
|
|
independent module, the terms and conditions of the license of that
|
33 |
|
|
module. An independent module is a module which is not derived from
|
34 |
|
|
or based on this library. If you modify this library, you may extend
|
35 |
|
|
this exception to your version of the library, but you are not
|
36 |
|
|
obligated to do so. If you do not wish to do so, delete this
|
37 |
|
|
exception statement from your version. */
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
package java.util;
|
41 |
|
|
|
42 |
|
|
import gnu.java.lang.CPStringBuilder;
|
43 |
|
|
|
44 |
|
|
import java.io.Serializable;
|
45 |
|
|
import java.lang.reflect.Array;
|
46 |
|
|
|
47 |
|
|
/**
|
48 |
|
|
* This class contains various static utility methods performing operations on
|
49 |
|
|
* arrays, and a method to provide a List "view" of an array to facilitate
|
50 |
|
|
* using arrays with Collection-based APIs. All methods throw a
|
51 |
|
|
* {@link NullPointerException} if the parameter array is null.
|
52 |
|
|
* <p>
|
53 |
|
|
*
|
54 |
|
|
* Implementations may use their own algorithms, but must obey the general
|
55 |
|
|
* properties; for example, the sort must be stable and n*log(n) complexity.
|
56 |
|
|
* Sun's implementation of sort, and therefore ours, is a tuned quicksort,
|
57 |
|
|
* adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort
|
58 |
|
|
* Function", Software-Practice and Experience, Vol. 23(11) P. 1249-1265
|
59 |
|
|
* (November 1993). This algorithm offers n*log(n) performance on many data
|
60 |
|
|
* sets that cause other quicksorts to degrade to quadratic performance.
|
61 |
|
|
*
|
62 |
|
|
* @author Original author unknown
|
63 |
|
|
* @author Bryce McKinlay
|
64 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
65 |
|
|
* @see Comparable
|
66 |
|
|
* @see Comparator
|
67 |
|
|
* @since 1.2
|
68 |
|
|
* @status updated to 1.4
|
69 |
|
|
*/
|
70 |
|
|
public class Arrays
|
71 |
|
|
{
|
72 |
|
|
/**
|
73 |
|
|
* This class is non-instantiable.
|
74 |
|
|
*/
|
75 |
|
|
private Arrays()
|
76 |
|
|
{
|
77 |
|
|
}
|
78 |
|
|
|
79 |
|
|
|
80 |
|
|
// binarySearch
|
81 |
|
|
/**
|
82 |
|
|
* Perform a binary search of a byte array for a key. The array must be
|
83 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
84 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
85 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
86 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
87 |
|
|
* will not happen in this implementation.
|
88 |
|
|
*
|
89 |
|
|
* @param a the array to search (must be sorted)
|
90 |
|
|
* @param key the value to search for
|
91 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
92 |
|
|
* found, where n is the index of the first value higher than key or
|
93 |
|
|
* a.length if there is no such value.
|
94 |
|
|
*/
|
95 |
|
|
public static int binarySearch(byte[] a, byte key)
|
96 |
|
|
{
|
97 |
|
|
if (a.length == 0)
|
98 |
|
|
return -1;
|
99 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
/**
|
103 |
|
|
* Perform a binary search of a range of a byte array for a key. The range
|
104 |
|
|
* must be sorted (as by the <code>sort(byte[], int, int)</code> method) -
|
105 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
106 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
107 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
108 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
109 |
|
|
*
|
110 |
|
|
* @param a the array to search (must be sorted)
|
111 |
|
|
* @param low the lowest index to search from.
|
112 |
|
|
* @param hi the highest index to search to.
|
113 |
|
|
* @param key the value to search for
|
114 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
115 |
|
|
* found, where n is the index of the first value higher than key or
|
116 |
|
|
* a.length if there is no such value.
|
117 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
118 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
119 |
|
|
* <code>hi > a.length</code>.
|
120 |
|
|
*/
|
121 |
|
|
public static int binarySearch(byte[] a, int low, int hi, byte key)
|
122 |
|
|
{
|
123 |
|
|
if (low > hi)
|
124 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
125 |
|
|
"the finish index.");
|
126 |
|
|
if (low < 0 || hi > a.length)
|
127 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
128 |
|
|
"of bounds.");
|
129 |
|
|
int mid = 0;
|
130 |
|
|
while (low <= hi)
|
131 |
|
|
{
|
132 |
|
|
mid = (low + hi) >>> 1;
|
133 |
|
|
final byte d = a[mid];
|
134 |
|
|
if (d == key)
|
135 |
|
|
return mid;
|
136 |
|
|
else if (d > key)
|
137 |
|
|
hi = mid - 1;
|
138 |
|
|
else
|
139 |
|
|
// This gets the insertion point right on the last loop.
|
140 |
|
|
low = ++mid;
|
141 |
|
|
}
|
142 |
|
|
return -mid - 1;
|
143 |
|
|
}
|
144 |
|
|
|
145 |
|
|
/**
|
146 |
|
|
* Perform a binary search of a char array for a key. The array must be
|
147 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
148 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
149 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
150 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
151 |
|
|
* will not happen in this implementation.
|
152 |
|
|
*
|
153 |
|
|
* @param a the array to search (must be sorted)
|
154 |
|
|
* @param key the value to search for
|
155 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
156 |
|
|
* found, where n is the index of the first value higher than key or
|
157 |
|
|
* a.length if there is no such value.
|
158 |
|
|
*/
|
159 |
|
|
public static int binarySearch(char[] a, char key)
|
160 |
|
|
{
|
161 |
|
|
if (a.length == 0)
|
162 |
|
|
return -1;
|
163 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
/**
|
167 |
|
|
* Perform a binary search of a range of a char array for a key. The range
|
168 |
|
|
* must be sorted (as by the <code>sort(char[], int, int)</code> method) -
|
169 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
170 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
171 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
172 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
173 |
|
|
*
|
174 |
|
|
* @param a the array to search (must be sorted)
|
175 |
|
|
* @param low the lowest index to search from.
|
176 |
|
|
* @param hi the highest index to search to.
|
177 |
|
|
* @param key the value to search for
|
178 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
179 |
|
|
* found, where n is the index of the first value higher than key or
|
180 |
|
|
* a.length if there is no such value.
|
181 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
182 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
183 |
|
|
* <code>hi > a.length</code>.
|
184 |
|
|
*/
|
185 |
|
|
public static int binarySearch(char[] a, int low, int hi, char key)
|
186 |
|
|
{
|
187 |
|
|
if (low > hi)
|
188 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
189 |
|
|
"the finish index.");
|
190 |
|
|
if (low < 0 || hi > a.length)
|
191 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
192 |
|
|
"of bounds.");
|
193 |
|
|
int mid = 0;
|
194 |
|
|
while (low <= hi)
|
195 |
|
|
{
|
196 |
|
|
mid = (low + hi) >>> 1;
|
197 |
|
|
final char d = a[mid];
|
198 |
|
|
if (d == key)
|
199 |
|
|
return mid;
|
200 |
|
|
else if (d > key)
|
201 |
|
|
hi = mid - 1;
|
202 |
|
|
else
|
203 |
|
|
// This gets the insertion point right on the last loop.
|
204 |
|
|
low = ++mid;
|
205 |
|
|
}
|
206 |
|
|
return -mid - 1;
|
207 |
|
|
}
|
208 |
|
|
|
209 |
|
|
/**
|
210 |
|
|
* Perform a binary search of a short array for a key. The array must be
|
211 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
212 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
213 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
214 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
215 |
|
|
* will not happen in this implementation.
|
216 |
|
|
*
|
217 |
|
|
* @param a the array to search (must be sorted)
|
218 |
|
|
* @param key the value to search for
|
219 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
220 |
|
|
* found, where n is the index of the first value higher than key or
|
221 |
|
|
* a.length if there is no such value.
|
222 |
|
|
*/
|
223 |
|
|
public static int binarySearch(short[] a, short key)
|
224 |
|
|
{
|
225 |
|
|
if (a.length == 0)
|
226 |
|
|
return -1;
|
227 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
228 |
|
|
}
|
229 |
|
|
|
230 |
|
|
/**
|
231 |
|
|
* Perform a binary search of a range of a short array for a key. The range
|
232 |
|
|
* must be sorted (as by the <code>sort(short[], int, int)</code> method) -
|
233 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
234 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
235 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
236 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
237 |
|
|
*
|
238 |
|
|
* @param a the array to search (must be sorted)
|
239 |
|
|
* @param low the lowest index to search from.
|
240 |
|
|
* @param hi the highest index to search to.
|
241 |
|
|
* @param key the value to search for
|
242 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
243 |
|
|
* found, where n is the index of the first value higher than key or
|
244 |
|
|
* a.length if there is no such value.
|
245 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
246 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
247 |
|
|
* <code>hi > a.length</code>.
|
248 |
|
|
*/
|
249 |
|
|
public static int binarySearch(short[] a, int low, int hi, short key)
|
250 |
|
|
{
|
251 |
|
|
if (low > hi)
|
252 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
253 |
|
|
"the finish index.");
|
254 |
|
|
if (low < 0 || hi > a.length)
|
255 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
256 |
|
|
"of bounds.");
|
257 |
|
|
int mid = 0;
|
258 |
|
|
while (low <= hi)
|
259 |
|
|
{
|
260 |
|
|
mid = (low + hi) >>> 1;
|
261 |
|
|
final short d = a[mid];
|
262 |
|
|
if (d == key)
|
263 |
|
|
return mid;
|
264 |
|
|
else if (d > key)
|
265 |
|
|
hi = mid - 1;
|
266 |
|
|
else
|
267 |
|
|
// This gets the insertion point right on the last loop.
|
268 |
|
|
low = ++mid;
|
269 |
|
|
}
|
270 |
|
|
return -mid - 1;
|
271 |
|
|
}
|
272 |
|
|
|
273 |
|
|
/**
|
274 |
|
|
* Perform a binary search of an int array for a key. The array must be
|
275 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
276 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
277 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
278 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
279 |
|
|
* will not happen in this implementation.
|
280 |
|
|
*
|
281 |
|
|
* @param a the array to search (must be sorted)
|
282 |
|
|
* @param key the value to search for
|
283 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
284 |
|
|
* found, where n is the index of the first value higher than key or
|
285 |
|
|
* a.length if there is no such value.
|
286 |
|
|
*/
|
287 |
|
|
public static int binarySearch(int[] a, int key)
|
288 |
|
|
{
|
289 |
|
|
if (a.length == 0)
|
290 |
|
|
return -1;
|
291 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
292 |
|
|
}
|
293 |
|
|
|
294 |
|
|
/**
|
295 |
|
|
* Perform a binary search of a range of an integer array for a key. The range
|
296 |
|
|
* must be sorted (as by the <code>sort(int[], int, int)</code> method) -
|
297 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
298 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
299 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
300 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
301 |
|
|
*
|
302 |
|
|
* @param a the array to search (must be sorted)
|
303 |
|
|
* @param low the lowest index to search from.
|
304 |
|
|
* @param hi the highest index to search to.
|
305 |
|
|
* @param key the value to search for
|
306 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
307 |
|
|
* found, where n is the index of the first value higher than key or
|
308 |
|
|
* a.length if there is no such value.
|
309 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
310 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
311 |
|
|
* <code>hi > a.length</code>.
|
312 |
|
|
*/
|
313 |
|
|
public static int binarySearch(int[] a, int low, int hi, int key)
|
314 |
|
|
{
|
315 |
|
|
if (low > hi)
|
316 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
317 |
|
|
"the finish index.");
|
318 |
|
|
if (low < 0 || hi > a.length)
|
319 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
320 |
|
|
"of bounds.");
|
321 |
|
|
int mid = 0;
|
322 |
|
|
while (low <= hi)
|
323 |
|
|
{
|
324 |
|
|
mid = (low + hi) >>> 1;
|
325 |
|
|
final int d = a[mid];
|
326 |
|
|
if (d == key)
|
327 |
|
|
return mid;
|
328 |
|
|
else if (d > key)
|
329 |
|
|
hi = mid - 1;
|
330 |
|
|
else
|
331 |
|
|
// This gets the insertion point right on the last loop.
|
332 |
|
|
low = ++mid;
|
333 |
|
|
}
|
334 |
|
|
return -mid - 1;
|
335 |
|
|
}
|
336 |
|
|
|
337 |
|
|
/**
|
338 |
|
|
* Perform a binary search of a long array for a key. The array must be
|
339 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
340 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
341 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
342 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
343 |
|
|
* will not happen in this implementation.
|
344 |
|
|
*
|
345 |
|
|
* @param a the array to search (must be sorted)
|
346 |
|
|
* @param key the value to search for
|
347 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
348 |
|
|
* found, where n is the index of the first value higher than key or
|
349 |
|
|
* a.length if there is no such value.
|
350 |
|
|
*/
|
351 |
|
|
public static int binarySearch(long[] a, long key)
|
352 |
|
|
{
|
353 |
|
|
if (a.length == 0)
|
354 |
|
|
return -1;
|
355 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
356 |
|
|
}
|
357 |
|
|
|
358 |
|
|
/**
|
359 |
|
|
* Perform a binary search of a range of a long array for a key. The range
|
360 |
|
|
* must be sorted (as by the <code>sort(long[], int, int)</code> method) -
|
361 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
362 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
363 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
364 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
365 |
|
|
*
|
366 |
|
|
* @param a the array to search (must be sorted)
|
367 |
|
|
* @param low the lowest index to search from.
|
368 |
|
|
* @param hi the highest index to search to.
|
369 |
|
|
* @param key the value to search for
|
370 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
371 |
|
|
* found, where n is the index of the first value higher than key or
|
372 |
|
|
* a.length if there is no such value.
|
373 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
374 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
375 |
|
|
* <code>hi > a.length</code>.
|
376 |
|
|
*/
|
377 |
|
|
public static int binarySearch(long[] a, int low, int hi, long key)
|
378 |
|
|
{
|
379 |
|
|
if (low > hi)
|
380 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
381 |
|
|
"the finish index.");
|
382 |
|
|
if (low < 0 || hi > a.length)
|
383 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
384 |
|
|
"of bounds.");
|
385 |
|
|
int mid = 0;
|
386 |
|
|
while (low <= hi)
|
387 |
|
|
{
|
388 |
|
|
mid = (low + hi) >>> 1;
|
389 |
|
|
final long d = a[mid];
|
390 |
|
|
if (d == key)
|
391 |
|
|
return mid;
|
392 |
|
|
else if (d > key)
|
393 |
|
|
hi = mid - 1;
|
394 |
|
|
else
|
395 |
|
|
// This gets the insertion point right on the last loop.
|
396 |
|
|
low = ++mid;
|
397 |
|
|
}
|
398 |
|
|
return -mid - 1;
|
399 |
|
|
}
|
400 |
|
|
|
401 |
|
|
/**
|
402 |
|
|
* Perform a binary search of a float array for a key. The array must be
|
403 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
404 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
405 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
406 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
407 |
|
|
* will not happen in this implementation.
|
408 |
|
|
*
|
409 |
|
|
* @param a the array to search (must be sorted)
|
410 |
|
|
* @param key the value to search for
|
411 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
412 |
|
|
* found, where n is the index of the first value higher than key or
|
413 |
|
|
* a.length if there is no such value.
|
414 |
|
|
*/
|
415 |
|
|
public static int binarySearch(float[] a, float key)
|
416 |
|
|
{
|
417 |
|
|
if (a.length == 0)
|
418 |
|
|
return -1;
|
419 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
420 |
|
|
}
|
421 |
|
|
|
422 |
|
|
/**
|
423 |
|
|
* Perform a binary search of a range of a float array for a key. The range
|
424 |
|
|
* must be sorted (as by the <code>sort(float[], int, int)</code> method) -
|
425 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
426 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
427 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
428 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
429 |
|
|
*
|
430 |
|
|
* @param a the array to search (must be sorted)
|
431 |
|
|
* @param low the lowest index to search from.
|
432 |
|
|
* @param hi the highest index to search to.
|
433 |
|
|
* @param key the value to search for
|
434 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
435 |
|
|
* found, where n is the index of the first value higher than key or
|
436 |
|
|
* a.length if there is no such value.
|
437 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
438 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
439 |
|
|
* <code>hi > a.length</code>.
|
440 |
|
|
*/
|
441 |
|
|
public static int binarySearch(float[] a, int low, int hi, float key)
|
442 |
|
|
{
|
443 |
|
|
if (low > hi)
|
444 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
445 |
|
|
"the finish index.");
|
446 |
|
|
if (low < 0 || hi > a.length)
|
447 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
448 |
|
|
"of bounds.");
|
449 |
|
|
// Must use Float.compare to take into account NaN, +-0.
|
450 |
|
|
int mid = 0;
|
451 |
|
|
while (low <= hi)
|
452 |
|
|
{
|
453 |
|
|
mid = (low + hi) >>> 1;
|
454 |
|
|
final int r = Float.compare(a[mid], key);
|
455 |
|
|
if (r == 0)
|
456 |
|
|
return mid;
|
457 |
|
|
else if (r > 0)
|
458 |
|
|
hi = mid - 1;
|
459 |
|
|
else
|
460 |
|
|
// This gets the insertion point right on the last loop
|
461 |
|
|
low = ++mid;
|
462 |
|
|
}
|
463 |
|
|
return -mid - 1;
|
464 |
|
|
}
|
465 |
|
|
|
466 |
|
|
/**
|
467 |
|
|
* Perform a binary search of a double array for a key. The array must be
|
468 |
|
|
* sorted (as by the sort() method) - if it is not, the behaviour of this
|
469 |
|
|
* method is undefined, and may be an infinite loop. If the array contains
|
470 |
|
|
* the key more than once, any one of them may be found. Note: although the
|
471 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
472 |
|
|
* will not happen in this implementation.
|
473 |
|
|
*
|
474 |
|
|
* @param a the array to search (must be sorted)
|
475 |
|
|
* @param key the value to search for
|
476 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
477 |
|
|
* found, where n is the index of the first value higher than key or
|
478 |
|
|
* a.length if there is no such value.
|
479 |
|
|
*/
|
480 |
|
|
public static int binarySearch(double[] a, double key)
|
481 |
|
|
{
|
482 |
|
|
if (a.length == 0)
|
483 |
|
|
return -1;
|
484 |
|
|
return binarySearch(a, 0, a.length - 1, key);
|
485 |
|
|
}
|
486 |
|
|
|
487 |
|
|
/**
|
488 |
|
|
* Perform a binary search of a range of a double array for a key. The range
|
489 |
|
|
* must be sorted (as by the <code>sort(double[], int, int)</code> method) -
|
490 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
491 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
492 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
493 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
494 |
|
|
*
|
495 |
|
|
* @param a the array to search (must be sorted)
|
496 |
|
|
* @param low the lowest index to search from.
|
497 |
|
|
* @param hi the highest index to search to.
|
498 |
|
|
* @param key the value to search for
|
499 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
500 |
|
|
* found, where n is the index of the first value higher than key or
|
501 |
|
|
* a.length if there is no such value.
|
502 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
503 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
504 |
|
|
* <code>hi > a.length</code>.
|
505 |
|
|
*/
|
506 |
|
|
public static int binarySearch(double[] a, int low, int hi, double key)
|
507 |
|
|
{
|
508 |
|
|
if (low > hi)
|
509 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
510 |
|
|
"the finish index.");
|
511 |
|
|
if (low < 0 || hi > a.length)
|
512 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
513 |
|
|
"of bounds.");
|
514 |
|
|
// Must use Double.compare to take into account NaN, +-0.
|
515 |
|
|
int mid = 0;
|
516 |
|
|
while (low <= hi)
|
517 |
|
|
{
|
518 |
|
|
mid = (low + hi) >>> 1;
|
519 |
|
|
final int r = Double.compare(a[mid], key);
|
520 |
|
|
if (r == 0)
|
521 |
|
|
return mid;
|
522 |
|
|
else if (r > 0)
|
523 |
|
|
hi = mid - 1;
|
524 |
|
|
else
|
525 |
|
|
// This gets the insertion point right on the last loop
|
526 |
|
|
low = ++mid;
|
527 |
|
|
}
|
528 |
|
|
return -mid - 1;
|
529 |
|
|
}
|
530 |
|
|
|
531 |
|
|
/**
|
532 |
|
|
* Perform a binary search of an Object array for a key, using the natural
|
533 |
|
|
* ordering of the elements. The array must be sorted (as by the sort()
|
534 |
|
|
* method) - if it is not, the behaviour of this method is undefined, and may
|
535 |
|
|
* be an infinite loop. Further, the key must be comparable with every item
|
536 |
|
|
* in the array. If the array contains the key more than once, any one of
|
537 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
538 |
|
|
* loop if the array is unsorted, it will not happen in this (JCL)
|
539 |
|
|
* implementation.
|
540 |
|
|
*
|
541 |
|
|
* @param a the array to search (must be sorted)
|
542 |
|
|
* @param key the value to search for
|
543 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
544 |
|
|
* found, where n is the index of the first value higher than key or
|
545 |
|
|
* a.length if there is no such value.
|
546 |
|
|
* @throws ClassCastException if key could not be compared with one of the
|
547 |
|
|
* elements of a
|
548 |
|
|
* @throws NullPointerException if a null element in a is compared
|
549 |
|
|
*/
|
550 |
|
|
public static int binarySearch(Object[] a, Object key)
|
551 |
|
|
{
|
552 |
|
|
if (a.length == 0)
|
553 |
|
|
return -1;
|
554 |
|
|
return binarySearch(a, key, null);
|
555 |
|
|
}
|
556 |
|
|
|
557 |
|
|
/**
|
558 |
|
|
* Perform a binary search of a range of an Object array for a key. The range
|
559 |
|
|
* must be sorted (as by the <code>sort(Object[], int, int)</code> method) -
|
560 |
|
|
* if it is not, the behaviour of this method is undefined, and may be an
|
561 |
|
|
* infinite loop. If the array contains the key more than once, any one of
|
562 |
|
|
* them may be found. Note: although the specification allows for an infinite
|
563 |
|
|
* loop if the array is unsorted, it will not happen in this implementation.
|
564 |
|
|
*
|
565 |
|
|
* @param a the array to search (must be sorted)
|
566 |
|
|
* @param low the lowest index to search from.
|
567 |
|
|
* @param hi the highest index to search to.
|
568 |
|
|
* @param key the value to search for
|
569 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
570 |
|
|
* found, where n is the index of the first value higher than key or
|
571 |
|
|
* a.length if there is no such value.
|
572 |
|
|
*/
|
573 |
|
|
public static int binarySearch(Object[] a, int low, int hi, Object key)
|
574 |
|
|
{
|
575 |
|
|
return binarySearch(a, low, hi, key, null);
|
576 |
|
|
}
|
577 |
|
|
|
578 |
|
|
/**
|
579 |
|
|
* Perform a binary search of an Object array for a key, using a supplied
|
580 |
|
|
* Comparator. The array must be sorted (as by the sort() method with the
|
581 |
|
|
* same Comparator) - if it is not, the behaviour of this method is
|
582 |
|
|
* undefined, and may be an infinite loop. Further, the key must be
|
583 |
|
|
* comparable with every item in the array. If the array contains the key
|
584 |
|
|
* more than once, any one of them may be found. Note: although the
|
585 |
|
|
* specification allows for an infinite loop if the array is unsorted, it
|
586 |
|
|
* will not happen in this (JCL) implementation.
|
587 |
|
|
*
|
588 |
|
|
* @param a the array to search (must be sorted)
|
589 |
|
|
* @param key the value to search for
|
590 |
|
|
* @param c the comparator by which the array is sorted; or null to
|
591 |
|
|
* use the elements' natural order
|
592 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
593 |
|
|
* found, where n is the index of the first value higher than key or
|
594 |
|
|
* a.length if there is no such value.
|
595 |
|
|
* @throws ClassCastException if key could not be compared with one of the
|
596 |
|
|
* elements of a
|
597 |
|
|
* @throws NullPointerException if a null element is compared with natural
|
598 |
|
|
* ordering (only possible when c is null)
|
599 |
|
|
*/
|
600 |
|
|
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)
|
601 |
|
|
{
|
602 |
|
|
if (a.length == 0)
|
603 |
|
|
return -1;
|
604 |
|
|
return binarySearch(a, 0, a.length - 1, key, c);
|
605 |
|
|
}
|
606 |
|
|
|
607 |
|
|
/**
|
608 |
|
|
* Perform a binary search of a range of an Object array for a key using
|
609 |
|
|
* a {@link Comparator}. The range must be sorted (as by the
|
610 |
|
|
* <code>sort(Object[], int, int)</code> method) - if it is not, the
|
611 |
|
|
* behaviour of this method is undefined, and may be an infinite loop. If
|
612 |
|
|
* the array contains the key more than once, any one of them may be found.
|
613 |
|
|
* Note: although the specification allows for an infinite loop if the array
|
614 |
|
|
* is unsorted, it will not happen in this implementation.
|
615 |
|
|
*
|
616 |
|
|
* @param a the array to search (must be sorted)
|
617 |
|
|
* @param low the lowest index to search from.
|
618 |
|
|
* @param hi the highest index to search to.
|
619 |
|
|
* @param key the value to search for
|
620 |
|
|
* @param c the comparator by which the array is sorted; or null to
|
621 |
|
|
* use the elements' natural order
|
622 |
|
|
* @return the index at which the key was found, or -n-1 if it was not
|
623 |
|
|
* found, where n is the index of the first value higher than key or
|
624 |
|
|
* a.length if there is no such value.
|
625 |
|
|
* @throws ClassCastException if key could not be compared with one of the
|
626 |
|
|
* elements of a
|
627 |
|
|
* @throws IllegalArgumentException if <code>low > hi</code>
|
628 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>low < 0</code> or
|
629 |
|
|
* <code>hi > a.length</code>.
|
630 |
|
|
*/
|
631 |
|
|
public static <T> int binarySearch(T[] a, int low, int hi, T key,
|
632 |
|
|
Comparator<? super T> c)
|
633 |
|
|
{
|
634 |
|
|
if (low > hi)
|
635 |
|
|
throw new IllegalArgumentException("The start index is higher than " +
|
636 |
|
|
"the finish index.");
|
637 |
|
|
if (low < 0 || hi > a.length)
|
638 |
|
|
throw new ArrayIndexOutOfBoundsException("One of the indices is out " +
|
639 |
|
|
"of bounds.");
|
640 |
|
|
int mid = 0;
|
641 |
|
|
while (low <= hi)
|
642 |
|
|
{
|
643 |
|
|
mid = (low + hi) >>> 1;
|
644 |
|
|
// NOTE: Please keep the order of a[mid] and key. Although
|
645 |
|
|
// not required by the specs, the RI has it in this order as
|
646 |
|
|
// well, and real programs (erroneously) depend on it.
|
647 |
|
|
final int d = Collections.compare(a[mid], key, c);
|
648 |
|
|
if (d == 0)
|
649 |
|
|
return mid;
|
650 |
|
|
else if (d > 0)
|
651 |
|
|
hi = mid - 1;
|
652 |
|
|
else
|
653 |
|
|
// This gets the insertion point right on the last loop
|
654 |
|
|
low = ++mid;
|
655 |
|
|
}
|
656 |
|
|
return -mid - 1;
|
657 |
|
|
}
|
658 |
|
|
|
659 |
|
|
|
660 |
|
|
// equals
|
661 |
|
|
/**
|
662 |
|
|
* Compare two boolean arrays for equality.
|
663 |
|
|
*
|
664 |
|
|
* @param a1 the first array to compare
|
665 |
|
|
* @param a2 the second array to compare
|
666 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
667 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
668 |
|
|
*/
|
669 |
|
|
public static boolean equals(boolean[] a1, boolean[] a2)
|
670 |
|
|
{
|
671 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
672 |
|
|
// catches the case that both are null.
|
673 |
|
|
if (a1 == a2)
|
674 |
|
|
return true;
|
675 |
|
|
|
676 |
|
|
if (null == a1 || null == a2)
|
677 |
|
|
return false;
|
678 |
|
|
|
679 |
|
|
// If they're the same length, test each element
|
680 |
|
|
if (a1.length == a2.length)
|
681 |
|
|
{
|
682 |
|
|
int i = a1.length;
|
683 |
|
|
while (--i >= 0)
|
684 |
|
|
if (a1[i] != a2[i])
|
685 |
|
|
return false;
|
686 |
|
|
return true;
|
687 |
|
|
}
|
688 |
|
|
return false;
|
689 |
|
|
}
|
690 |
|
|
|
691 |
|
|
/**
|
692 |
|
|
* Compare two byte arrays for equality.
|
693 |
|
|
*
|
694 |
|
|
* @param a1 the first array to compare
|
695 |
|
|
* @param a2 the second array to compare
|
696 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
697 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
698 |
|
|
*/
|
699 |
|
|
public static boolean equals(byte[] a1, byte[] a2)
|
700 |
|
|
{
|
701 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
702 |
|
|
// catches the case that both are null.
|
703 |
|
|
if (a1 == a2)
|
704 |
|
|
return true;
|
705 |
|
|
|
706 |
|
|
if (null == a1 || null == a2)
|
707 |
|
|
return false;
|
708 |
|
|
|
709 |
|
|
// If they're the same length, test each element
|
710 |
|
|
if (a1.length == a2.length)
|
711 |
|
|
{
|
712 |
|
|
int i = a1.length;
|
713 |
|
|
while (--i >= 0)
|
714 |
|
|
if (a1[i] != a2[i])
|
715 |
|
|
return false;
|
716 |
|
|
return true;
|
717 |
|
|
}
|
718 |
|
|
return false;
|
719 |
|
|
}
|
720 |
|
|
|
721 |
|
|
/**
|
722 |
|
|
* Compare two char arrays for equality.
|
723 |
|
|
*
|
724 |
|
|
* @param a1 the first array to compare
|
725 |
|
|
* @param a2 the second array to compare
|
726 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
727 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
728 |
|
|
*/
|
729 |
|
|
public static boolean equals(char[] a1, char[] a2)
|
730 |
|
|
{
|
731 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
732 |
|
|
// catches the case that both are null.
|
733 |
|
|
if (a1 == a2)
|
734 |
|
|
return true;
|
735 |
|
|
|
736 |
|
|
if (null == a1 || null == a2)
|
737 |
|
|
return false;
|
738 |
|
|
|
739 |
|
|
// If they're the same length, test each element
|
740 |
|
|
if (a1.length == a2.length)
|
741 |
|
|
{
|
742 |
|
|
int i = a1.length;
|
743 |
|
|
while (--i >= 0)
|
744 |
|
|
if (a1[i] != a2[i])
|
745 |
|
|
return false;
|
746 |
|
|
return true;
|
747 |
|
|
}
|
748 |
|
|
return false;
|
749 |
|
|
}
|
750 |
|
|
|
751 |
|
|
/**
|
752 |
|
|
* Compare two short arrays for equality.
|
753 |
|
|
*
|
754 |
|
|
* @param a1 the first array to compare
|
755 |
|
|
* @param a2 the second array to compare
|
756 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
757 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
758 |
|
|
*/
|
759 |
|
|
public static boolean equals(short[] a1, short[] a2)
|
760 |
|
|
{
|
761 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
762 |
|
|
// catches the case that both are null.
|
763 |
|
|
if (a1 == a2)
|
764 |
|
|
return true;
|
765 |
|
|
|
766 |
|
|
if (null == a1 || null == a2)
|
767 |
|
|
return false;
|
768 |
|
|
|
769 |
|
|
// If they're the same length, test each element
|
770 |
|
|
if (a1.length == a2.length)
|
771 |
|
|
{
|
772 |
|
|
int i = a1.length;
|
773 |
|
|
while (--i >= 0)
|
774 |
|
|
if (a1[i] != a2[i])
|
775 |
|
|
return false;
|
776 |
|
|
return true;
|
777 |
|
|
}
|
778 |
|
|
return false;
|
779 |
|
|
}
|
780 |
|
|
|
781 |
|
|
/**
|
782 |
|
|
* Compare two int arrays for equality.
|
783 |
|
|
*
|
784 |
|
|
* @param a1 the first array to compare
|
785 |
|
|
* @param a2 the second array to compare
|
786 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
787 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
788 |
|
|
*/
|
789 |
|
|
public static boolean equals(int[] a1, int[] a2)
|
790 |
|
|
{
|
791 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
792 |
|
|
// catches the case that both are null.
|
793 |
|
|
if (a1 == a2)
|
794 |
|
|
return true;
|
795 |
|
|
|
796 |
|
|
if (null == a1 || null == a2)
|
797 |
|
|
return false;
|
798 |
|
|
|
799 |
|
|
// If they're the same length, test each element
|
800 |
|
|
if (a1.length == a2.length)
|
801 |
|
|
{
|
802 |
|
|
int i = a1.length;
|
803 |
|
|
while (--i >= 0)
|
804 |
|
|
if (a1[i] != a2[i])
|
805 |
|
|
return false;
|
806 |
|
|
return true;
|
807 |
|
|
}
|
808 |
|
|
return false;
|
809 |
|
|
}
|
810 |
|
|
|
811 |
|
|
/**
|
812 |
|
|
* Compare two long arrays for equality.
|
813 |
|
|
*
|
814 |
|
|
* @param a1 the first array to compare
|
815 |
|
|
* @param a2 the second array to compare
|
816 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
817 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
818 |
|
|
*/
|
819 |
|
|
public static boolean equals(long[] a1, long[] a2)
|
820 |
|
|
{
|
821 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
822 |
|
|
// catches the case that both are null.
|
823 |
|
|
if (a1 == a2)
|
824 |
|
|
return true;
|
825 |
|
|
|
826 |
|
|
if (null == a1 || null == a2)
|
827 |
|
|
return false;
|
828 |
|
|
|
829 |
|
|
// If they're the same length, test each element
|
830 |
|
|
if (a1.length == a2.length)
|
831 |
|
|
{
|
832 |
|
|
int i = a1.length;
|
833 |
|
|
while (--i >= 0)
|
834 |
|
|
if (a1[i] != a2[i])
|
835 |
|
|
return false;
|
836 |
|
|
return true;
|
837 |
|
|
}
|
838 |
|
|
return false;
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
/**
|
842 |
|
|
* Compare two float arrays for equality.
|
843 |
|
|
*
|
844 |
|
|
* @param a1 the first array to compare
|
845 |
|
|
* @param a2 the second array to compare
|
846 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
847 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
848 |
|
|
*/
|
849 |
|
|
public static boolean equals(float[] a1, float[] a2)
|
850 |
|
|
{
|
851 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
852 |
|
|
// catches the case that both are null.
|
853 |
|
|
if (a1 == a2)
|
854 |
|
|
return true;
|
855 |
|
|
|
856 |
|
|
if (null == a1 || null == a2)
|
857 |
|
|
return false;
|
858 |
|
|
|
859 |
|
|
// Must use Float.compare to take into account NaN, +-0.
|
860 |
|
|
// If they're the same length, test each element
|
861 |
|
|
if (a1.length == a2.length)
|
862 |
|
|
{
|
863 |
|
|
int i = a1.length;
|
864 |
|
|
while (--i >= 0)
|
865 |
|
|
if (Float.compare(a1[i], a2[i]) != 0)
|
866 |
|
|
return false;
|
867 |
|
|
return true;
|
868 |
|
|
}
|
869 |
|
|
return false;
|
870 |
|
|
}
|
871 |
|
|
|
872 |
|
|
/**
|
873 |
|
|
* Compare two double arrays for equality.
|
874 |
|
|
*
|
875 |
|
|
* @param a1 the first array to compare
|
876 |
|
|
* @param a2 the second array to compare
|
877 |
|
|
* @return true if a1 and a2 are both null, or if a2 is of the same length
|
878 |
|
|
* as a1, and for each 0 <= i < a1.length, a1[i] == a2[i]
|
879 |
|
|
*/
|
880 |
|
|
public static boolean equals(double[] a1, double[] a2)
|
881 |
|
|
{
|
882 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
883 |
|
|
// catches the case that both are null.
|
884 |
|
|
if (a1 == a2)
|
885 |
|
|
return true;
|
886 |
|
|
|
887 |
|
|
if (null == a1 || null == a2)
|
888 |
|
|
return false;
|
889 |
|
|
|
890 |
|
|
// Must use Double.compare to take into account NaN, +-0.
|
891 |
|
|
// If they're the same length, test each element
|
892 |
|
|
if (a1.length == a2.length)
|
893 |
|
|
{
|
894 |
|
|
int i = a1.length;
|
895 |
|
|
while (--i >= 0)
|
896 |
|
|
if (Double.compare(a1[i], a2[i]) != 0)
|
897 |
|
|
return false;
|
898 |
|
|
return true;
|
899 |
|
|
}
|
900 |
|
|
return false;
|
901 |
|
|
}
|
902 |
|
|
|
903 |
|
|
/**
|
904 |
|
|
* Compare two Object arrays for equality.
|
905 |
|
|
*
|
906 |
|
|
* @param a1 the first array to compare
|
907 |
|
|
* @param a2 the second array to compare
|
908 |
|
|
* @return true if a1 and a2 are both null, or if a1 is of the same length
|
909 |
|
|
* as a2, and for each 0 <= i < a.length, a1[i] == null ?
|
910 |
|
|
* a2[i] == null : a1[i].equals(a2[i]).
|
911 |
|
|
*/
|
912 |
|
|
public static boolean equals(Object[] a1, Object[] a2)
|
913 |
|
|
{
|
914 |
|
|
// Quick test which saves comparing elements of the same array, and also
|
915 |
|
|
// catches the case that both are null.
|
916 |
|
|
if (a1 == a2)
|
917 |
|
|
return true;
|
918 |
|
|
|
919 |
|
|
if (null == a1 || null == a2)
|
920 |
|
|
return false;
|
921 |
|
|
|
922 |
|
|
// If they're the same length, test each element
|
923 |
|
|
if (a1.length == a2.length)
|
924 |
|
|
{
|
925 |
|
|
int i = a1.length;
|
926 |
|
|
while (--i >= 0)
|
927 |
|
|
if (! AbstractCollection.equals(a1[i], a2[i]))
|
928 |
|
|
return false;
|
929 |
|
|
return true;
|
930 |
|
|
}
|
931 |
|
|
return false;
|
932 |
|
|
}
|
933 |
|
|
|
934 |
|
|
|
935 |
|
|
// fill
|
936 |
|
|
/**
|
937 |
|
|
* Fill an array with a boolean value.
|
938 |
|
|
*
|
939 |
|
|
* @param a the array to fill
|
940 |
|
|
* @param val the value to fill it with
|
941 |
|
|
*/
|
942 |
|
|
public static void fill(boolean[] a, boolean val)
|
943 |
|
|
{
|
944 |
|
|
fill(a, 0, a.length, val);
|
945 |
|
|
}
|
946 |
|
|
|
947 |
|
|
/**
|
948 |
|
|
* Fill a range of an array with a boolean value.
|
949 |
|
|
*
|
950 |
|
|
* @param a the array to fill
|
951 |
|
|
* @param fromIndex the index to fill from, inclusive
|
952 |
|
|
* @param toIndex the index to fill to, exclusive
|
953 |
|
|
* @param val the value to fill with
|
954 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
955 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
956 |
|
|
* || toIndex > a.length
|
957 |
|
|
*/
|
958 |
|
|
public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val)
|
959 |
|
|
{
|
960 |
|
|
if (fromIndex > toIndex)
|
961 |
|
|
throw new IllegalArgumentException();
|
962 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
963 |
|
|
a[i] = val;
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
/**
|
967 |
|
|
* Fill an array with a byte value.
|
968 |
|
|
*
|
969 |
|
|
* @param a the array to fill
|
970 |
|
|
* @param val the value to fill it with
|
971 |
|
|
*/
|
972 |
|
|
public static void fill(byte[] a, byte val)
|
973 |
|
|
{
|
974 |
|
|
fill(a, 0, a.length, val);
|
975 |
|
|
}
|
976 |
|
|
|
977 |
|
|
/**
|
978 |
|
|
* Fill a range of an array with a byte value.
|
979 |
|
|
*
|
980 |
|
|
* @param a the array to fill
|
981 |
|
|
* @param fromIndex the index to fill from, inclusive
|
982 |
|
|
* @param toIndex the index to fill to, exclusive
|
983 |
|
|
* @param val the value to fill with
|
984 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
985 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
986 |
|
|
* || toIndex > a.length
|
987 |
|
|
*/
|
988 |
|
|
public static void fill(byte[] a, int fromIndex, int toIndex, byte val)
|
989 |
|
|
{
|
990 |
|
|
if (fromIndex > toIndex)
|
991 |
|
|
throw new IllegalArgumentException();
|
992 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
993 |
|
|
a[i] = val;
|
994 |
|
|
}
|
995 |
|
|
|
996 |
|
|
/**
|
997 |
|
|
* Fill an array with a char value.
|
998 |
|
|
*
|
999 |
|
|
* @param a the array to fill
|
1000 |
|
|
* @param val the value to fill it with
|
1001 |
|
|
*/
|
1002 |
|
|
public static void fill(char[] a, char val)
|
1003 |
|
|
{
|
1004 |
|
|
fill(a, 0, a.length, val);
|
1005 |
|
|
}
|
1006 |
|
|
|
1007 |
|
|
/**
|
1008 |
|
|
* Fill a range of an array with a char value.
|
1009 |
|
|
*
|
1010 |
|
|
* @param a the array to fill
|
1011 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1012 |
|
|
* @param toIndex the index to fill to, exclusive
|
1013 |
|
|
* @param val the value to fill with
|
1014 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1015 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1016 |
|
|
* || toIndex > a.length
|
1017 |
|
|
*/
|
1018 |
|
|
public static void fill(char[] a, int fromIndex, int toIndex, char val)
|
1019 |
|
|
{
|
1020 |
|
|
if (fromIndex > toIndex)
|
1021 |
|
|
throw new IllegalArgumentException();
|
1022 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1023 |
|
|
a[i] = val;
|
1024 |
|
|
}
|
1025 |
|
|
|
1026 |
|
|
/**
|
1027 |
|
|
* Fill an array with a short value.
|
1028 |
|
|
*
|
1029 |
|
|
* @param a the array to fill
|
1030 |
|
|
* @param val the value to fill it with
|
1031 |
|
|
*/
|
1032 |
|
|
public static void fill(short[] a, short val)
|
1033 |
|
|
{
|
1034 |
|
|
fill(a, 0, a.length, val);
|
1035 |
|
|
}
|
1036 |
|
|
|
1037 |
|
|
/**
|
1038 |
|
|
* Fill a range of an array with a short value.
|
1039 |
|
|
*
|
1040 |
|
|
* @param a the array to fill
|
1041 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1042 |
|
|
* @param toIndex the index to fill to, exclusive
|
1043 |
|
|
* @param val the value to fill with
|
1044 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1045 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1046 |
|
|
* || toIndex > a.length
|
1047 |
|
|
*/
|
1048 |
|
|
public static void fill(short[] a, int fromIndex, int toIndex, short val)
|
1049 |
|
|
{
|
1050 |
|
|
if (fromIndex > toIndex)
|
1051 |
|
|
throw new IllegalArgumentException();
|
1052 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1053 |
|
|
a[i] = val;
|
1054 |
|
|
}
|
1055 |
|
|
|
1056 |
|
|
/**
|
1057 |
|
|
* Fill an array with an int value.
|
1058 |
|
|
*
|
1059 |
|
|
* @param a the array to fill
|
1060 |
|
|
* @param val the value to fill it with
|
1061 |
|
|
*/
|
1062 |
|
|
public static void fill(int[] a, int val)
|
1063 |
|
|
{
|
1064 |
|
|
fill(a, 0, a.length, val);
|
1065 |
|
|
}
|
1066 |
|
|
|
1067 |
|
|
/**
|
1068 |
|
|
* Fill a range of an array with an int value.
|
1069 |
|
|
*
|
1070 |
|
|
* @param a the array to fill
|
1071 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1072 |
|
|
* @param toIndex the index to fill to, exclusive
|
1073 |
|
|
* @param val the value to fill with
|
1074 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1075 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1076 |
|
|
* || toIndex > a.length
|
1077 |
|
|
*/
|
1078 |
|
|
public static void fill(int[] a, int fromIndex, int toIndex, int val)
|
1079 |
|
|
{
|
1080 |
|
|
if (fromIndex > toIndex)
|
1081 |
|
|
throw new IllegalArgumentException();
|
1082 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1083 |
|
|
a[i] = val;
|
1084 |
|
|
}
|
1085 |
|
|
|
1086 |
|
|
/**
|
1087 |
|
|
* Fill an array with a long value.
|
1088 |
|
|
*
|
1089 |
|
|
* @param a the array to fill
|
1090 |
|
|
* @param val the value to fill it with
|
1091 |
|
|
*/
|
1092 |
|
|
public static void fill(long[] a, long val)
|
1093 |
|
|
{
|
1094 |
|
|
fill(a, 0, a.length, val);
|
1095 |
|
|
}
|
1096 |
|
|
|
1097 |
|
|
/**
|
1098 |
|
|
* Fill a range of an array with a long value.
|
1099 |
|
|
*
|
1100 |
|
|
* @param a the array to fill
|
1101 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1102 |
|
|
* @param toIndex the index to fill to, exclusive
|
1103 |
|
|
* @param val the value to fill with
|
1104 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1105 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1106 |
|
|
* || toIndex > a.length
|
1107 |
|
|
*/
|
1108 |
|
|
public static void fill(long[] a, int fromIndex, int toIndex, long val)
|
1109 |
|
|
{
|
1110 |
|
|
if (fromIndex > toIndex)
|
1111 |
|
|
throw new IllegalArgumentException();
|
1112 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1113 |
|
|
a[i] = val;
|
1114 |
|
|
}
|
1115 |
|
|
|
1116 |
|
|
/**
|
1117 |
|
|
* Fill an array with a float value.
|
1118 |
|
|
*
|
1119 |
|
|
* @param a the array to fill
|
1120 |
|
|
* @param val the value to fill it with
|
1121 |
|
|
*/
|
1122 |
|
|
public static void fill(float[] a, float val)
|
1123 |
|
|
{
|
1124 |
|
|
fill(a, 0, a.length, val);
|
1125 |
|
|
}
|
1126 |
|
|
|
1127 |
|
|
/**
|
1128 |
|
|
* Fill a range of an array with a float value.
|
1129 |
|
|
*
|
1130 |
|
|
* @param a the array to fill
|
1131 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1132 |
|
|
* @param toIndex the index to fill to, exclusive
|
1133 |
|
|
* @param val the value to fill with
|
1134 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1135 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1136 |
|
|
* || toIndex > a.length
|
1137 |
|
|
*/
|
1138 |
|
|
public static void fill(float[] a, int fromIndex, int toIndex, float val)
|
1139 |
|
|
{
|
1140 |
|
|
if (fromIndex > toIndex)
|
1141 |
|
|
throw new IllegalArgumentException();
|
1142 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1143 |
|
|
a[i] = val;
|
1144 |
|
|
}
|
1145 |
|
|
|
1146 |
|
|
/**
|
1147 |
|
|
* Fill an array with a double value.
|
1148 |
|
|
*
|
1149 |
|
|
* @param a the array to fill
|
1150 |
|
|
* @param val the value to fill it with
|
1151 |
|
|
*/
|
1152 |
|
|
public static void fill(double[] a, double val)
|
1153 |
|
|
{
|
1154 |
|
|
fill(a, 0, a.length, val);
|
1155 |
|
|
}
|
1156 |
|
|
|
1157 |
|
|
/**
|
1158 |
|
|
* Fill a range of an array with a double value.
|
1159 |
|
|
*
|
1160 |
|
|
* @param a the array to fill
|
1161 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1162 |
|
|
* @param toIndex the index to fill to, exclusive
|
1163 |
|
|
* @param val the value to fill with
|
1164 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1165 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1166 |
|
|
* || toIndex > a.length
|
1167 |
|
|
*/
|
1168 |
|
|
public static void fill(double[] a, int fromIndex, int toIndex, double val)
|
1169 |
|
|
{
|
1170 |
|
|
if (fromIndex > toIndex)
|
1171 |
|
|
throw new IllegalArgumentException();
|
1172 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1173 |
|
|
a[i] = val;
|
1174 |
|
|
}
|
1175 |
|
|
|
1176 |
|
|
/**
|
1177 |
|
|
* Fill an array with an Object value.
|
1178 |
|
|
*
|
1179 |
|
|
* @param a the array to fill
|
1180 |
|
|
* @param val the value to fill it with
|
1181 |
|
|
* @throws ClassCastException if val is not an instance of the element
|
1182 |
|
|
* type of a.
|
1183 |
|
|
*/
|
1184 |
|
|
public static void fill(Object[] a, Object val)
|
1185 |
|
|
{
|
1186 |
|
|
fill(a, 0, a.length, val);
|
1187 |
|
|
}
|
1188 |
|
|
|
1189 |
|
|
/**
|
1190 |
|
|
* Fill a range of an array with an Object value.
|
1191 |
|
|
*
|
1192 |
|
|
* @param a the array to fill
|
1193 |
|
|
* @param fromIndex the index to fill from, inclusive
|
1194 |
|
|
* @param toIndex the index to fill to, exclusive
|
1195 |
|
|
* @param val the value to fill with
|
1196 |
|
|
* @throws ClassCastException if val is not an instance of the element
|
1197 |
|
|
* type of a.
|
1198 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1199 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1200 |
|
|
* || toIndex > a.length
|
1201 |
|
|
*/
|
1202 |
|
|
public static void fill(Object[] a, int fromIndex, int toIndex, Object val)
|
1203 |
|
|
{
|
1204 |
|
|
if (fromIndex > toIndex)
|
1205 |
|
|
throw new IllegalArgumentException();
|
1206 |
|
|
for (int i = fromIndex; i < toIndex; i++)
|
1207 |
|
|
a[i] = val;
|
1208 |
|
|
}
|
1209 |
|
|
|
1210 |
|
|
|
1211 |
|
|
// sort
|
1212 |
|
|
// Thanks to Paul Fisher (rao@gnu.org) for finding this quicksort algorithm
|
1213 |
|
|
// as specified by Sun and porting it to Java. The algorithm is an optimised
|
1214 |
|
|
// quicksort, as described in Jon L. Bentley and M. Douglas McIlroy's
|
1215 |
|
|
// "Engineering a Sort Function", Software-Practice and Experience, Vol.
|
1216 |
|
|
// 23(11) P. 1249-1265 (November 1993). This algorithm gives n*log(n)
|
1217 |
|
|
// performance on many arrays that would take quadratic time with a standard
|
1218 |
|
|
// quicksort.
|
1219 |
|
|
|
1220 |
|
|
/**
|
1221 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1222 |
|
|
* natural order.
|
1223 |
|
|
*
|
1224 |
|
|
* @param a the byte array to sort
|
1225 |
|
|
*/
|
1226 |
|
|
public static void sort(byte[] a)
|
1227 |
|
|
{
|
1228 |
|
|
qsort(a, 0, a.length);
|
1229 |
|
|
}
|
1230 |
|
|
|
1231 |
|
|
/**
|
1232 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1233 |
|
|
* natural order.
|
1234 |
|
|
*
|
1235 |
|
|
* @param a the byte array to sort
|
1236 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
1237 |
|
|
* @param toIndex the last index to sort (exclusive)
|
1238 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1239 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1240 |
|
|
* || toIndex > a.length
|
1241 |
|
|
*/
|
1242 |
|
|
public static void sort(byte[] a, int fromIndex, int toIndex)
|
1243 |
|
|
{
|
1244 |
|
|
if (fromIndex > toIndex)
|
1245 |
|
|
throw new IllegalArgumentException();
|
1246 |
|
|
if (fromIndex < 0)
|
1247 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
1248 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
/**
|
1252 |
|
|
* Finds the index of the median of three array elements.
|
1253 |
|
|
*
|
1254 |
|
|
* @param a the first index
|
1255 |
|
|
* @param b the second index
|
1256 |
|
|
* @param c the third index
|
1257 |
|
|
* @param d the array
|
1258 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
1259 |
|
|
*/
|
1260 |
|
|
private static int med3(int a, int b, int c, byte[] d)
|
1261 |
|
|
{
|
1262 |
|
|
return (d[a] < d[b]
|
1263 |
|
|
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
1264 |
|
|
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
1265 |
|
|
}
|
1266 |
|
|
|
1267 |
|
|
/**
|
1268 |
|
|
* Swaps the elements at two locations of an array
|
1269 |
|
|
*
|
1270 |
|
|
* @param i the first index
|
1271 |
|
|
* @param j the second index
|
1272 |
|
|
* @param a the array
|
1273 |
|
|
*/
|
1274 |
|
|
private static void swap(int i, int j, byte[] a)
|
1275 |
|
|
{
|
1276 |
|
|
byte c = a[i];
|
1277 |
|
|
a[i] = a[j];
|
1278 |
|
|
a[j] = c;
|
1279 |
|
|
}
|
1280 |
|
|
|
1281 |
|
|
/**
|
1282 |
|
|
* Swaps two ranges of an array.
|
1283 |
|
|
*
|
1284 |
|
|
* @param i the first range start
|
1285 |
|
|
* @param j the second range start
|
1286 |
|
|
* @param n the element count
|
1287 |
|
|
* @param a the array
|
1288 |
|
|
*/
|
1289 |
|
|
private static void vecswap(int i, int j, int n, byte[] a)
|
1290 |
|
|
{
|
1291 |
|
|
for ( ; n > 0; i++, j++, n--)
|
1292 |
|
|
swap(i, j, a);
|
1293 |
|
|
}
|
1294 |
|
|
|
1295 |
|
|
/**
|
1296 |
|
|
* Performs a recursive modified quicksort.
|
1297 |
|
|
*
|
1298 |
|
|
* @param array the array to sort
|
1299 |
|
|
* @param from the start index (inclusive)
|
1300 |
|
|
* @param count the number of elements to sort
|
1301 |
|
|
*/
|
1302 |
|
|
private static void qsort(byte[] array, int from, int count)
|
1303 |
|
|
{
|
1304 |
|
|
// Use an insertion sort on small arrays.
|
1305 |
|
|
if (count <= 7)
|
1306 |
|
|
{
|
1307 |
|
|
for (int i = from + 1; i < from + count; i++)
|
1308 |
|
|
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
1309 |
|
|
swap(j, j - 1, array);
|
1310 |
|
|
return;
|
1311 |
|
|
}
|
1312 |
|
|
|
1313 |
|
|
// Determine a good median element.
|
1314 |
|
|
int mid = from + count / 2;
|
1315 |
|
|
int lo = from;
|
1316 |
|
|
int hi = from + count - 1;
|
1317 |
|
|
|
1318 |
|
|
if (count > 40)
|
1319 |
|
|
{ // big arrays, pseudomedian of 9
|
1320 |
|
|
int s = count / 8;
|
1321 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
1322 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
1323 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
1324 |
|
|
}
|
1325 |
|
|
mid = med3(lo, mid, hi, array);
|
1326 |
|
|
|
1327 |
|
|
int a, b, c, d;
|
1328 |
|
|
int comp;
|
1329 |
|
|
|
1330 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
1331 |
|
|
swap(from, mid, array);
|
1332 |
|
|
a = b = from;
|
1333 |
|
|
c = d = from + count - 1;
|
1334 |
|
|
|
1335 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
1336 |
|
|
// that all elements before index b are less than the pivot, and all
|
1337 |
|
|
// elements after index c are greater than the pivot. a and b track
|
1338 |
|
|
// the elements equal to the pivot.
|
1339 |
|
|
while (true)
|
1340 |
|
|
{
|
1341 |
|
|
while (b <= c && (comp = array[b] - array[from]) <= 0)
|
1342 |
|
|
{
|
1343 |
|
|
if (comp == 0)
|
1344 |
|
|
{
|
1345 |
|
|
swap(a, b, array);
|
1346 |
|
|
a++;
|
1347 |
|
|
}
|
1348 |
|
|
b++;
|
1349 |
|
|
}
|
1350 |
|
|
while (c >= b && (comp = array[c] - array[from]) >= 0)
|
1351 |
|
|
{
|
1352 |
|
|
if (comp == 0)
|
1353 |
|
|
{
|
1354 |
|
|
swap(c, d, array);
|
1355 |
|
|
d--;
|
1356 |
|
|
}
|
1357 |
|
|
c--;
|
1358 |
|
|
}
|
1359 |
|
|
if (b > c)
|
1360 |
|
|
break;
|
1361 |
|
|
swap(b, c, array);
|
1362 |
|
|
b++;
|
1363 |
|
|
c--;
|
1364 |
|
|
}
|
1365 |
|
|
|
1366 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
1367 |
|
|
hi = from + count;
|
1368 |
|
|
int span;
|
1369 |
|
|
span = Math.min(a - from, b - a);
|
1370 |
|
|
vecswap(from, b - span, span, array);
|
1371 |
|
|
|
1372 |
|
|
span = Math.min(d - c, hi - d - 1);
|
1373 |
|
|
vecswap(b, hi - span, span, array);
|
1374 |
|
|
|
1375 |
|
|
span = b - a;
|
1376 |
|
|
if (span > 1)
|
1377 |
|
|
qsort(array, from, span);
|
1378 |
|
|
|
1379 |
|
|
span = d - c;
|
1380 |
|
|
if (span > 1)
|
1381 |
|
|
qsort(array, hi - span, span);
|
1382 |
|
|
}
|
1383 |
|
|
|
1384 |
|
|
/**
|
1385 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1386 |
|
|
* natural order.
|
1387 |
|
|
*
|
1388 |
|
|
* @param a the char array to sort
|
1389 |
|
|
*/
|
1390 |
|
|
public static void sort(char[] a)
|
1391 |
|
|
{
|
1392 |
|
|
qsort(a, 0, a.length);
|
1393 |
|
|
}
|
1394 |
|
|
|
1395 |
|
|
/**
|
1396 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1397 |
|
|
* natural order.
|
1398 |
|
|
*
|
1399 |
|
|
* @param a the char array to sort
|
1400 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
1401 |
|
|
* @param toIndex the last index to sort (exclusive)
|
1402 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1403 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1404 |
|
|
* || toIndex > a.length
|
1405 |
|
|
*/
|
1406 |
|
|
public static void sort(char[] a, int fromIndex, int toIndex)
|
1407 |
|
|
{
|
1408 |
|
|
if (fromIndex > toIndex)
|
1409 |
|
|
throw new IllegalArgumentException();
|
1410 |
|
|
if (fromIndex < 0)
|
1411 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
1412 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
1413 |
|
|
}
|
1414 |
|
|
|
1415 |
|
|
/**
|
1416 |
|
|
* Finds the index of the median of three array elements.
|
1417 |
|
|
*
|
1418 |
|
|
* @param a the first index
|
1419 |
|
|
* @param b the second index
|
1420 |
|
|
* @param c the third index
|
1421 |
|
|
* @param d the array
|
1422 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
1423 |
|
|
*/
|
1424 |
|
|
private static int med3(int a, int b, int c, char[] d)
|
1425 |
|
|
{
|
1426 |
|
|
return (d[a] < d[b]
|
1427 |
|
|
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
1428 |
|
|
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
1429 |
|
|
}
|
1430 |
|
|
|
1431 |
|
|
/**
|
1432 |
|
|
* Swaps the elements at two locations of an array
|
1433 |
|
|
*
|
1434 |
|
|
* @param i the first index
|
1435 |
|
|
* @param j the second index
|
1436 |
|
|
* @param a the array
|
1437 |
|
|
*/
|
1438 |
|
|
private static void swap(int i, int j, char[] a)
|
1439 |
|
|
{
|
1440 |
|
|
char c = a[i];
|
1441 |
|
|
a[i] = a[j];
|
1442 |
|
|
a[j] = c;
|
1443 |
|
|
}
|
1444 |
|
|
|
1445 |
|
|
/**
|
1446 |
|
|
* Swaps two ranges of an array.
|
1447 |
|
|
*
|
1448 |
|
|
* @param i the first range start
|
1449 |
|
|
* @param j the second range start
|
1450 |
|
|
* @param n the element count
|
1451 |
|
|
* @param a the array
|
1452 |
|
|
*/
|
1453 |
|
|
private static void vecswap(int i, int j, int n, char[] a)
|
1454 |
|
|
{
|
1455 |
|
|
for ( ; n > 0; i++, j++, n--)
|
1456 |
|
|
swap(i, j, a);
|
1457 |
|
|
}
|
1458 |
|
|
|
1459 |
|
|
/**
|
1460 |
|
|
* Performs a recursive modified quicksort.
|
1461 |
|
|
*
|
1462 |
|
|
* @param array the array to sort
|
1463 |
|
|
* @param from the start index (inclusive)
|
1464 |
|
|
* @param count the number of elements to sort
|
1465 |
|
|
*/
|
1466 |
|
|
private static void qsort(char[] array, int from, int count)
|
1467 |
|
|
{
|
1468 |
|
|
// Use an insertion sort on small arrays.
|
1469 |
|
|
if (count <= 7)
|
1470 |
|
|
{
|
1471 |
|
|
for (int i = from + 1; i < from + count; i++)
|
1472 |
|
|
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
1473 |
|
|
swap(j, j - 1, array);
|
1474 |
|
|
return;
|
1475 |
|
|
}
|
1476 |
|
|
|
1477 |
|
|
// Determine a good median element.
|
1478 |
|
|
int mid = from + count / 2;
|
1479 |
|
|
int lo = from;
|
1480 |
|
|
int hi = from + count - 1;
|
1481 |
|
|
|
1482 |
|
|
if (count > 40)
|
1483 |
|
|
{ // big arrays, pseudomedian of 9
|
1484 |
|
|
int s = count / 8;
|
1485 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
1486 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
1487 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
1488 |
|
|
}
|
1489 |
|
|
mid = med3(lo, mid, hi, array);
|
1490 |
|
|
|
1491 |
|
|
int a, b, c, d;
|
1492 |
|
|
int comp;
|
1493 |
|
|
|
1494 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
1495 |
|
|
swap(from, mid, array);
|
1496 |
|
|
a = b = from;
|
1497 |
|
|
c = d = from + count - 1;
|
1498 |
|
|
|
1499 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
1500 |
|
|
// that all elements before index b are less than the pivot, and all
|
1501 |
|
|
// elements after index c are greater than the pivot. a and b track
|
1502 |
|
|
// the elements equal to the pivot.
|
1503 |
|
|
while (true)
|
1504 |
|
|
{
|
1505 |
|
|
while (b <= c && (comp = array[b] - array[from]) <= 0)
|
1506 |
|
|
{
|
1507 |
|
|
if (comp == 0)
|
1508 |
|
|
{
|
1509 |
|
|
swap(a, b, array);
|
1510 |
|
|
a++;
|
1511 |
|
|
}
|
1512 |
|
|
b++;
|
1513 |
|
|
}
|
1514 |
|
|
while (c >= b && (comp = array[c] - array[from]) >= 0)
|
1515 |
|
|
{
|
1516 |
|
|
if (comp == 0)
|
1517 |
|
|
{
|
1518 |
|
|
swap(c, d, array);
|
1519 |
|
|
d--;
|
1520 |
|
|
}
|
1521 |
|
|
c--;
|
1522 |
|
|
}
|
1523 |
|
|
if (b > c)
|
1524 |
|
|
break;
|
1525 |
|
|
swap(b, c, array);
|
1526 |
|
|
b++;
|
1527 |
|
|
c--;
|
1528 |
|
|
}
|
1529 |
|
|
|
1530 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
1531 |
|
|
hi = from + count;
|
1532 |
|
|
int span;
|
1533 |
|
|
span = Math.min(a - from, b - a);
|
1534 |
|
|
vecswap(from, b - span, span, array);
|
1535 |
|
|
|
1536 |
|
|
span = Math.min(d - c, hi - d - 1);
|
1537 |
|
|
vecswap(b, hi - span, span, array);
|
1538 |
|
|
|
1539 |
|
|
span = b - a;
|
1540 |
|
|
if (span > 1)
|
1541 |
|
|
qsort(array, from, span);
|
1542 |
|
|
|
1543 |
|
|
span = d - c;
|
1544 |
|
|
if (span > 1)
|
1545 |
|
|
qsort(array, hi - span, span);
|
1546 |
|
|
}
|
1547 |
|
|
|
1548 |
|
|
/**
|
1549 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1550 |
|
|
* natural order.
|
1551 |
|
|
*
|
1552 |
|
|
* @param a the short array to sort
|
1553 |
|
|
*/
|
1554 |
|
|
public static void sort(short[] a)
|
1555 |
|
|
{
|
1556 |
|
|
qsort(a, 0, a.length);
|
1557 |
|
|
}
|
1558 |
|
|
|
1559 |
|
|
/**
|
1560 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1561 |
|
|
* natural order.
|
1562 |
|
|
*
|
1563 |
|
|
* @param a the short array to sort
|
1564 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
1565 |
|
|
* @param toIndex the last index to sort (exclusive)
|
1566 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1567 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1568 |
|
|
* || toIndex > a.length
|
1569 |
|
|
*/
|
1570 |
|
|
public static void sort(short[] a, int fromIndex, int toIndex)
|
1571 |
|
|
{
|
1572 |
|
|
if (fromIndex > toIndex)
|
1573 |
|
|
throw new IllegalArgumentException();
|
1574 |
|
|
if (fromIndex < 0)
|
1575 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
1576 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
1577 |
|
|
}
|
1578 |
|
|
|
1579 |
|
|
/**
|
1580 |
|
|
* Finds the index of the median of three array elements.
|
1581 |
|
|
*
|
1582 |
|
|
* @param a the first index
|
1583 |
|
|
* @param b the second index
|
1584 |
|
|
* @param c the third index
|
1585 |
|
|
* @param d the array
|
1586 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
1587 |
|
|
*/
|
1588 |
|
|
private static int med3(int a, int b, int c, short[] d)
|
1589 |
|
|
{
|
1590 |
|
|
return (d[a] < d[b]
|
1591 |
|
|
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
1592 |
|
|
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
1593 |
|
|
}
|
1594 |
|
|
|
1595 |
|
|
/**
|
1596 |
|
|
* Swaps the elements at two locations of an array
|
1597 |
|
|
*
|
1598 |
|
|
* @param i the first index
|
1599 |
|
|
* @param j the second index
|
1600 |
|
|
* @param a the array
|
1601 |
|
|
*/
|
1602 |
|
|
private static void swap(int i, int j, short[] a)
|
1603 |
|
|
{
|
1604 |
|
|
short c = a[i];
|
1605 |
|
|
a[i] = a[j];
|
1606 |
|
|
a[j] = c;
|
1607 |
|
|
}
|
1608 |
|
|
|
1609 |
|
|
/**
|
1610 |
|
|
* Swaps two ranges of an array.
|
1611 |
|
|
*
|
1612 |
|
|
* @param i the first range start
|
1613 |
|
|
* @param j the second range start
|
1614 |
|
|
* @param n the element count
|
1615 |
|
|
* @param a the array
|
1616 |
|
|
*/
|
1617 |
|
|
private static void vecswap(int i, int j, int n, short[] a)
|
1618 |
|
|
{
|
1619 |
|
|
for ( ; n > 0; i++, j++, n--)
|
1620 |
|
|
swap(i, j, a);
|
1621 |
|
|
}
|
1622 |
|
|
|
1623 |
|
|
/**
|
1624 |
|
|
* Performs a recursive modified quicksort.
|
1625 |
|
|
*
|
1626 |
|
|
* @param array the array to sort
|
1627 |
|
|
* @param from the start index (inclusive)
|
1628 |
|
|
* @param count the number of elements to sort
|
1629 |
|
|
*/
|
1630 |
|
|
private static void qsort(short[] array, int from, int count)
|
1631 |
|
|
{
|
1632 |
|
|
// Use an insertion sort on small arrays.
|
1633 |
|
|
if (count <= 7)
|
1634 |
|
|
{
|
1635 |
|
|
for (int i = from + 1; i < from + count; i++)
|
1636 |
|
|
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
1637 |
|
|
swap(j, j - 1, array);
|
1638 |
|
|
return;
|
1639 |
|
|
}
|
1640 |
|
|
|
1641 |
|
|
// Determine a good median element.
|
1642 |
|
|
int mid = from + count / 2;
|
1643 |
|
|
int lo = from;
|
1644 |
|
|
int hi = from + count - 1;
|
1645 |
|
|
|
1646 |
|
|
if (count > 40)
|
1647 |
|
|
{ // big arrays, pseudomedian of 9
|
1648 |
|
|
int s = count / 8;
|
1649 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
1650 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
1651 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
1652 |
|
|
}
|
1653 |
|
|
mid = med3(lo, mid, hi, array);
|
1654 |
|
|
|
1655 |
|
|
int a, b, c, d;
|
1656 |
|
|
int comp;
|
1657 |
|
|
|
1658 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
1659 |
|
|
swap(from, mid, array);
|
1660 |
|
|
a = b = from;
|
1661 |
|
|
c = d = from + count - 1;
|
1662 |
|
|
|
1663 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
1664 |
|
|
// that all elements before index b are less than the pivot, and all
|
1665 |
|
|
// elements after index c are greater than the pivot. a and b track
|
1666 |
|
|
// the elements equal to the pivot.
|
1667 |
|
|
while (true)
|
1668 |
|
|
{
|
1669 |
|
|
while (b <= c && (comp = array[b] - array[from]) <= 0)
|
1670 |
|
|
{
|
1671 |
|
|
if (comp == 0)
|
1672 |
|
|
{
|
1673 |
|
|
swap(a, b, array);
|
1674 |
|
|
a++;
|
1675 |
|
|
}
|
1676 |
|
|
b++;
|
1677 |
|
|
}
|
1678 |
|
|
while (c >= b && (comp = array[c] - array[from]) >= 0)
|
1679 |
|
|
{
|
1680 |
|
|
if (comp == 0)
|
1681 |
|
|
{
|
1682 |
|
|
swap(c, d, array);
|
1683 |
|
|
d--;
|
1684 |
|
|
}
|
1685 |
|
|
c--;
|
1686 |
|
|
}
|
1687 |
|
|
if (b > c)
|
1688 |
|
|
break;
|
1689 |
|
|
swap(b, c, array);
|
1690 |
|
|
b++;
|
1691 |
|
|
c--;
|
1692 |
|
|
}
|
1693 |
|
|
|
1694 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
1695 |
|
|
hi = from + count;
|
1696 |
|
|
int span;
|
1697 |
|
|
span = Math.min(a - from, b - a);
|
1698 |
|
|
vecswap(from, b - span, span, array);
|
1699 |
|
|
|
1700 |
|
|
span = Math.min(d - c, hi - d - 1);
|
1701 |
|
|
vecswap(b, hi - span, span, array);
|
1702 |
|
|
|
1703 |
|
|
span = b - a;
|
1704 |
|
|
if (span > 1)
|
1705 |
|
|
qsort(array, from, span);
|
1706 |
|
|
|
1707 |
|
|
span = d - c;
|
1708 |
|
|
if (span > 1)
|
1709 |
|
|
qsort(array, hi - span, span);
|
1710 |
|
|
}
|
1711 |
|
|
|
1712 |
|
|
/**
|
1713 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1714 |
|
|
* natural order.
|
1715 |
|
|
*
|
1716 |
|
|
* @param a the int array to sort
|
1717 |
|
|
*/
|
1718 |
|
|
public static void sort(int[] a)
|
1719 |
|
|
{
|
1720 |
|
|
qsort(a, 0, a.length);
|
1721 |
|
|
}
|
1722 |
|
|
|
1723 |
|
|
/**
|
1724 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1725 |
|
|
* natural order.
|
1726 |
|
|
*
|
1727 |
|
|
* @param a the int array to sort
|
1728 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
1729 |
|
|
* @param toIndex the last index to sort (exclusive)
|
1730 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1731 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1732 |
|
|
* || toIndex > a.length
|
1733 |
|
|
*/
|
1734 |
|
|
public static void sort(int[] a, int fromIndex, int toIndex)
|
1735 |
|
|
{
|
1736 |
|
|
if (fromIndex > toIndex)
|
1737 |
|
|
throw new IllegalArgumentException();
|
1738 |
|
|
if (fromIndex < 0)
|
1739 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
1740 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
1741 |
|
|
}
|
1742 |
|
|
|
1743 |
|
|
/**
|
1744 |
|
|
* Finds the index of the median of three array elements.
|
1745 |
|
|
*
|
1746 |
|
|
* @param a the first index
|
1747 |
|
|
* @param b the second index
|
1748 |
|
|
* @param c the third index
|
1749 |
|
|
* @param d the array
|
1750 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
1751 |
|
|
*/
|
1752 |
|
|
private static int med3(int a, int b, int c, int[] d)
|
1753 |
|
|
{
|
1754 |
|
|
return (d[a] < d[b]
|
1755 |
|
|
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
1756 |
|
|
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
1757 |
|
|
}
|
1758 |
|
|
|
1759 |
|
|
/**
|
1760 |
|
|
* Swaps the elements at two locations of an array
|
1761 |
|
|
*
|
1762 |
|
|
* @param i the first index
|
1763 |
|
|
* @param j the second index
|
1764 |
|
|
* @param a the array
|
1765 |
|
|
*/
|
1766 |
|
|
private static void swap(int i, int j, int[] a)
|
1767 |
|
|
{
|
1768 |
|
|
int c = a[i];
|
1769 |
|
|
a[i] = a[j];
|
1770 |
|
|
a[j] = c;
|
1771 |
|
|
}
|
1772 |
|
|
|
1773 |
|
|
/**
|
1774 |
|
|
* Swaps two ranges of an array.
|
1775 |
|
|
*
|
1776 |
|
|
* @param i the first range start
|
1777 |
|
|
* @param j the second range start
|
1778 |
|
|
* @param n the element count
|
1779 |
|
|
* @param a the array
|
1780 |
|
|
*/
|
1781 |
|
|
private static void vecswap(int i, int j, int n, int[] a)
|
1782 |
|
|
{
|
1783 |
|
|
for ( ; n > 0; i++, j++, n--)
|
1784 |
|
|
swap(i, j, a);
|
1785 |
|
|
}
|
1786 |
|
|
|
1787 |
|
|
/**
|
1788 |
|
|
* Compares two integers in natural order, since a - b is inadequate.
|
1789 |
|
|
*
|
1790 |
|
|
* @param a the first int
|
1791 |
|
|
* @param b the second int
|
1792 |
|
|
* @return < 0, 0, or > 0 accorting to the comparison
|
1793 |
|
|
*/
|
1794 |
|
|
private static int compare(int a, int b)
|
1795 |
|
|
{
|
1796 |
|
|
return a < b ? -1 : a == b ? 0 : 1;
|
1797 |
|
|
}
|
1798 |
|
|
|
1799 |
|
|
/**
|
1800 |
|
|
* Performs a recursive modified quicksort.
|
1801 |
|
|
*
|
1802 |
|
|
* @param array the array to sort
|
1803 |
|
|
* @param from the start index (inclusive)
|
1804 |
|
|
* @param count the number of elements to sort
|
1805 |
|
|
*/
|
1806 |
|
|
private static void qsort(int[] array, int from, int count)
|
1807 |
|
|
{
|
1808 |
|
|
// Use an insertion sort on small arrays.
|
1809 |
|
|
if (count <= 7)
|
1810 |
|
|
{
|
1811 |
|
|
for (int i = from + 1; i < from + count; i++)
|
1812 |
|
|
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
1813 |
|
|
swap(j, j - 1, array);
|
1814 |
|
|
return;
|
1815 |
|
|
}
|
1816 |
|
|
|
1817 |
|
|
// Determine a good median element.
|
1818 |
|
|
int mid = from + count / 2;
|
1819 |
|
|
int lo = from;
|
1820 |
|
|
int hi = from + count - 1;
|
1821 |
|
|
|
1822 |
|
|
if (count > 40)
|
1823 |
|
|
{ // big arrays, pseudomedian of 9
|
1824 |
|
|
int s = count / 8;
|
1825 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
1826 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
1827 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
1828 |
|
|
}
|
1829 |
|
|
mid = med3(lo, mid, hi, array);
|
1830 |
|
|
|
1831 |
|
|
int a, b, c, d;
|
1832 |
|
|
int comp;
|
1833 |
|
|
|
1834 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
1835 |
|
|
swap(from, mid, array);
|
1836 |
|
|
a = b = from;
|
1837 |
|
|
c = d = from + count - 1;
|
1838 |
|
|
|
1839 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
1840 |
|
|
// that all elements before index b are less than the pivot, and all
|
1841 |
|
|
// elements after index c are greater than the pivot. a and b track
|
1842 |
|
|
// the elements equal to the pivot.
|
1843 |
|
|
while (true)
|
1844 |
|
|
{
|
1845 |
|
|
while (b <= c && (comp = compare(array[b], array[from])) <= 0)
|
1846 |
|
|
{
|
1847 |
|
|
if (comp == 0)
|
1848 |
|
|
{
|
1849 |
|
|
swap(a, b, array);
|
1850 |
|
|
a++;
|
1851 |
|
|
}
|
1852 |
|
|
b++;
|
1853 |
|
|
}
|
1854 |
|
|
while (c >= b && (comp = compare(array[c], array[from])) >= 0)
|
1855 |
|
|
{
|
1856 |
|
|
if (comp == 0)
|
1857 |
|
|
{
|
1858 |
|
|
swap(c, d, array);
|
1859 |
|
|
d--;
|
1860 |
|
|
}
|
1861 |
|
|
c--;
|
1862 |
|
|
}
|
1863 |
|
|
if (b > c)
|
1864 |
|
|
break;
|
1865 |
|
|
swap(b, c, array);
|
1866 |
|
|
b++;
|
1867 |
|
|
c--;
|
1868 |
|
|
}
|
1869 |
|
|
|
1870 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
1871 |
|
|
hi = from + count;
|
1872 |
|
|
int span;
|
1873 |
|
|
span = Math.min(a - from, b - a);
|
1874 |
|
|
vecswap(from, b - span, span, array);
|
1875 |
|
|
|
1876 |
|
|
span = Math.min(d - c, hi - d - 1);
|
1877 |
|
|
vecswap(b, hi - span, span, array);
|
1878 |
|
|
|
1879 |
|
|
span = b - a;
|
1880 |
|
|
if (span > 1)
|
1881 |
|
|
qsort(array, from, span);
|
1882 |
|
|
|
1883 |
|
|
span = d - c;
|
1884 |
|
|
if (span > 1)
|
1885 |
|
|
qsort(array, hi - span, span);
|
1886 |
|
|
}
|
1887 |
|
|
|
1888 |
|
|
/**
|
1889 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1890 |
|
|
* natural order.
|
1891 |
|
|
*
|
1892 |
|
|
* @param a the long array to sort
|
1893 |
|
|
*/
|
1894 |
|
|
public static void sort(long[] a)
|
1895 |
|
|
{
|
1896 |
|
|
qsort(a, 0, a.length);
|
1897 |
|
|
}
|
1898 |
|
|
|
1899 |
|
|
/**
|
1900 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
1901 |
|
|
* natural order.
|
1902 |
|
|
*
|
1903 |
|
|
* @param a the long array to sort
|
1904 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
1905 |
|
|
* @param toIndex the last index to sort (exclusive)
|
1906 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
1907 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
1908 |
|
|
* || toIndex > a.length
|
1909 |
|
|
*/
|
1910 |
|
|
public static void sort(long[] a, int fromIndex, int toIndex)
|
1911 |
|
|
{
|
1912 |
|
|
if (fromIndex > toIndex)
|
1913 |
|
|
throw new IllegalArgumentException();
|
1914 |
|
|
if (fromIndex < 0)
|
1915 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
1916 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
1917 |
|
|
}
|
1918 |
|
|
|
1919 |
|
|
/**
|
1920 |
|
|
* Finds the index of the median of three array elements.
|
1921 |
|
|
*
|
1922 |
|
|
* @param a the first index
|
1923 |
|
|
* @param b the second index
|
1924 |
|
|
* @param c the third index
|
1925 |
|
|
* @param d the array
|
1926 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
1927 |
|
|
*/
|
1928 |
|
|
private static int med3(int a, int b, int c, long[] d)
|
1929 |
|
|
{
|
1930 |
|
|
return (d[a] < d[b]
|
1931 |
|
|
? (d[b] < d[c] ? b : d[a] < d[c] ? c : a)
|
1932 |
|
|
: (d[b] > d[c] ? b : d[a] > d[c] ? c : a));
|
1933 |
|
|
}
|
1934 |
|
|
|
1935 |
|
|
/**
|
1936 |
|
|
* Swaps the elements at two locations of an array
|
1937 |
|
|
*
|
1938 |
|
|
* @param i the first index
|
1939 |
|
|
* @param j the second index
|
1940 |
|
|
* @param a the array
|
1941 |
|
|
*/
|
1942 |
|
|
private static void swap(int i, int j, long[] a)
|
1943 |
|
|
{
|
1944 |
|
|
long c = a[i];
|
1945 |
|
|
a[i] = a[j];
|
1946 |
|
|
a[j] = c;
|
1947 |
|
|
}
|
1948 |
|
|
|
1949 |
|
|
/**
|
1950 |
|
|
* Swaps two ranges of an array.
|
1951 |
|
|
*
|
1952 |
|
|
* @param i the first range start
|
1953 |
|
|
* @param j the second range start
|
1954 |
|
|
* @param n the element count
|
1955 |
|
|
* @param a the array
|
1956 |
|
|
*/
|
1957 |
|
|
private static void vecswap(int i, int j, int n, long[] a)
|
1958 |
|
|
{
|
1959 |
|
|
for ( ; n > 0; i++, j++, n--)
|
1960 |
|
|
swap(i, j, a);
|
1961 |
|
|
}
|
1962 |
|
|
|
1963 |
|
|
/**
|
1964 |
|
|
* Compares two longs in natural order, since a - b is inadequate.
|
1965 |
|
|
*
|
1966 |
|
|
* @param a the first long
|
1967 |
|
|
* @param b the second long
|
1968 |
|
|
* @return < 0, 0, or > 0 accorting to the comparison
|
1969 |
|
|
*/
|
1970 |
|
|
private static int compare(long a, long b)
|
1971 |
|
|
{
|
1972 |
|
|
return a < b ? -1 : a == b ? 0 : 1;
|
1973 |
|
|
}
|
1974 |
|
|
|
1975 |
|
|
/**
|
1976 |
|
|
* Performs a recursive modified quicksort.
|
1977 |
|
|
*
|
1978 |
|
|
* @param array the array to sort
|
1979 |
|
|
* @param from the start index (inclusive)
|
1980 |
|
|
* @param count the number of elements to sort
|
1981 |
|
|
*/
|
1982 |
|
|
private static void qsort(long[] array, int from, int count)
|
1983 |
|
|
{
|
1984 |
|
|
// Use an insertion sort on small arrays.
|
1985 |
|
|
if (count <= 7)
|
1986 |
|
|
{
|
1987 |
|
|
for (int i = from + 1; i < from + count; i++)
|
1988 |
|
|
for (int j = i; j > from && array[j - 1] > array[j]; j--)
|
1989 |
|
|
swap(j, j - 1, array);
|
1990 |
|
|
return;
|
1991 |
|
|
}
|
1992 |
|
|
|
1993 |
|
|
// Determine a good median element.
|
1994 |
|
|
int mid = from + count / 2;
|
1995 |
|
|
int lo = from;
|
1996 |
|
|
int hi = from + count - 1;
|
1997 |
|
|
|
1998 |
|
|
if (count > 40)
|
1999 |
|
|
{ // big arrays, pseudomedian of 9
|
2000 |
|
|
int s = count / 8;
|
2001 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
2002 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
2003 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
2004 |
|
|
}
|
2005 |
|
|
mid = med3(lo, mid, hi, array);
|
2006 |
|
|
|
2007 |
|
|
int a, b, c, d;
|
2008 |
|
|
int comp;
|
2009 |
|
|
|
2010 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
2011 |
|
|
swap(from, mid, array);
|
2012 |
|
|
a = b = from;
|
2013 |
|
|
c = d = from + count - 1;
|
2014 |
|
|
|
2015 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
2016 |
|
|
// that all elements before index b are less than the pivot, and all
|
2017 |
|
|
// elements after index c are greater than the pivot. a and b track
|
2018 |
|
|
// the elements equal to the pivot.
|
2019 |
|
|
while (true)
|
2020 |
|
|
{
|
2021 |
|
|
while (b <= c && (comp = compare(array[b], array[from])) <= 0)
|
2022 |
|
|
{
|
2023 |
|
|
if (comp == 0)
|
2024 |
|
|
{
|
2025 |
|
|
swap(a, b, array);
|
2026 |
|
|
a++;
|
2027 |
|
|
}
|
2028 |
|
|
b++;
|
2029 |
|
|
}
|
2030 |
|
|
while (c >= b && (comp = compare(array[c], array[from])) >= 0)
|
2031 |
|
|
{
|
2032 |
|
|
if (comp == 0)
|
2033 |
|
|
{
|
2034 |
|
|
swap(c, d, array);
|
2035 |
|
|
d--;
|
2036 |
|
|
}
|
2037 |
|
|
c--;
|
2038 |
|
|
}
|
2039 |
|
|
if (b > c)
|
2040 |
|
|
break;
|
2041 |
|
|
swap(b, c, array);
|
2042 |
|
|
b++;
|
2043 |
|
|
c--;
|
2044 |
|
|
}
|
2045 |
|
|
|
2046 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
2047 |
|
|
hi = from + count;
|
2048 |
|
|
int span;
|
2049 |
|
|
span = Math.min(a - from, b - a);
|
2050 |
|
|
vecswap(from, b - span, span, array);
|
2051 |
|
|
|
2052 |
|
|
span = Math.min(d - c, hi - d - 1);
|
2053 |
|
|
vecswap(b, hi - span, span, array);
|
2054 |
|
|
|
2055 |
|
|
span = b - a;
|
2056 |
|
|
if (span > 1)
|
2057 |
|
|
qsort(array, from, span);
|
2058 |
|
|
|
2059 |
|
|
span = d - c;
|
2060 |
|
|
if (span > 1)
|
2061 |
|
|
qsort(array, hi - span, span);
|
2062 |
|
|
}
|
2063 |
|
|
|
2064 |
|
|
/**
|
2065 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
2066 |
|
|
* natural order.
|
2067 |
|
|
*
|
2068 |
|
|
* @param a the float array to sort
|
2069 |
|
|
*/
|
2070 |
|
|
public static void sort(float[] a)
|
2071 |
|
|
{
|
2072 |
|
|
qsort(a, 0, a.length);
|
2073 |
|
|
}
|
2074 |
|
|
|
2075 |
|
|
/**
|
2076 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
2077 |
|
|
* natural order.
|
2078 |
|
|
*
|
2079 |
|
|
* @param a the float array to sort
|
2080 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
2081 |
|
|
* @param toIndex the last index to sort (exclusive)
|
2082 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
2083 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
2084 |
|
|
* || toIndex > a.length
|
2085 |
|
|
*/
|
2086 |
|
|
public static void sort(float[] a, int fromIndex, int toIndex)
|
2087 |
|
|
{
|
2088 |
|
|
if (fromIndex > toIndex)
|
2089 |
|
|
throw new IllegalArgumentException();
|
2090 |
|
|
if (fromIndex < 0)
|
2091 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
2092 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
2093 |
|
|
}
|
2094 |
|
|
|
2095 |
|
|
/**
|
2096 |
|
|
* Finds the index of the median of three array elements.
|
2097 |
|
|
*
|
2098 |
|
|
* @param a the first index
|
2099 |
|
|
* @param b the second index
|
2100 |
|
|
* @param c the third index
|
2101 |
|
|
* @param d the array
|
2102 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
2103 |
|
|
*/
|
2104 |
|
|
private static int med3(int a, int b, int c, float[] d)
|
2105 |
|
|
{
|
2106 |
|
|
return (Float.compare(d[a], d[b]) < 0
|
2107 |
|
|
? (Float.compare(d[b], d[c]) < 0 ? b
|
2108 |
|
|
: Float.compare(d[a], d[c]) < 0 ? c : a)
|
2109 |
|
|
: (Float.compare(d[b], d[c]) > 0 ? b
|
2110 |
|
|
: Float.compare(d[a], d[c]) > 0 ? c : a));
|
2111 |
|
|
}
|
2112 |
|
|
|
2113 |
|
|
/**
|
2114 |
|
|
* Swaps the elements at two locations of an array
|
2115 |
|
|
*
|
2116 |
|
|
* @param i the first index
|
2117 |
|
|
* @param j the second index
|
2118 |
|
|
* @param a the array
|
2119 |
|
|
*/
|
2120 |
|
|
private static void swap(int i, int j, float[] a)
|
2121 |
|
|
{
|
2122 |
|
|
float c = a[i];
|
2123 |
|
|
a[i] = a[j];
|
2124 |
|
|
a[j] = c;
|
2125 |
|
|
}
|
2126 |
|
|
|
2127 |
|
|
/**
|
2128 |
|
|
* Swaps two ranges of an array.
|
2129 |
|
|
*
|
2130 |
|
|
* @param i the first range start
|
2131 |
|
|
* @param j the second range start
|
2132 |
|
|
* @param n the element count
|
2133 |
|
|
* @param a the array
|
2134 |
|
|
*/
|
2135 |
|
|
private static void vecswap(int i, int j, int n, float[] a)
|
2136 |
|
|
{
|
2137 |
|
|
for ( ; n > 0; i++, j++, n--)
|
2138 |
|
|
swap(i, j, a);
|
2139 |
|
|
}
|
2140 |
|
|
|
2141 |
|
|
/**
|
2142 |
|
|
* Performs a recursive modified quicksort.
|
2143 |
|
|
*
|
2144 |
|
|
* @param array the array to sort
|
2145 |
|
|
* @param from the start index (inclusive)
|
2146 |
|
|
* @param count the number of elements to sort
|
2147 |
|
|
*/
|
2148 |
|
|
private static void qsort(float[] array, int from, int count)
|
2149 |
|
|
{
|
2150 |
|
|
// Use an insertion sort on small arrays.
|
2151 |
|
|
if (count <= 7)
|
2152 |
|
|
{
|
2153 |
|
|
for (int i = from + 1; i < from + count; i++)
|
2154 |
|
|
for (int j = i;
|
2155 |
|
|
j > from && Float.compare(array[j - 1], array[j]) > 0;
|
2156 |
|
|
j--)
|
2157 |
|
|
{
|
2158 |
|
|
swap(j, j - 1, array);
|
2159 |
|
|
}
|
2160 |
|
|
return;
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
// Determine a good median element.
|
2164 |
|
|
int mid = from + count / 2;
|
2165 |
|
|
int lo = from;
|
2166 |
|
|
int hi = from + count - 1;
|
2167 |
|
|
|
2168 |
|
|
if (count > 40)
|
2169 |
|
|
{ // big arrays, pseudomedian of 9
|
2170 |
|
|
int s = count / 8;
|
2171 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
2172 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
2173 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
2174 |
|
|
}
|
2175 |
|
|
mid = med3(lo, mid, hi, array);
|
2176 |
|
|
|
2177 |
|
|
int a, b, c, d;
|
2178 |
|
|
int comp;
|
2179 |
|
|
|
2180 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
2181 |
|
|
swap(from, mid, array);
|
2182 |
|
|
a = b = from;
|
2183 |
|
|
c = d = from + count - 1;
|
2184 |
|
|
|
2185 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
2186 |
|
|
// that all elements before index b are less than the pivot, and all
|
2187 |
|
|
// elements after index c are greater than the pivot. a and b track
|
2188 |
|
|
// the elements equal to the pivot.
|
2189 |
|
|
while (true)
|
2190 |
|
|
{
|
2191 |
|
|
while (b <= c && (comp = Float.compare(array[b], array[from])) <= 0)
|
2192 |
|
|
{
|
2193 |
|
|
if (comp == 0)
|
2194 |
|
|
{
|
2195 |
|
|
swap(a, b, array);
|
2196 |
|
|
a++;
|
2197 |
|
|
}
|
2198 |
|
|
b++;
|
2199 |
|
|
}
|
2200 |
|
|
while (c >= b && (comp = Float.compare(array[c], array[from])) >= 0)
|
2201 |
|
|
{
|
2202 |
|
|
if (comp == 0)
|
2203 |
|
|
{
|
2204 |
|
|
swap(c, d, array);
|
2205 |
|
|
d--;
|
2206 |
|
|
}
|
2207 |
|
|
c--;
|
2208 |
|
|
}
|
2209 |
|
|
if (b > c)
|
2210 |
|
|
break;
|
2211 |
|
|
swap(b, c, array);
|
2212 |
|
|
b++;
|
2213 |
|
|
c--;
|
2214 |
|
|
}
|
2215 |
|
|
|
2216 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
2217 |
|
|
hi = from + count;
|
2218 |
|
|
int span;
|
2219 |
|
|
span = Math.min(a - from, b - a);
|
2220 |
|
|
vecswap(from, b - span, span, array);
|
2221 |
|
|
|
2222 |
|
|
span = Math.min(d - c, hi - d - 1);
|
2223 |
|
|
vecswap(b, hi - span, span, array);
|
2224 |
|
|
|
2225 |
|
|
span = b - a;
|
2226 |
|
|
if (span > 1)
|
2227 |
|
|
qsort(array, from, span);
|
2228 |
|
|
|
2229 |
|
|
span = d - c;
|
2230 |
|
|
if (span > 1)
|
2231 |
|
|
qsort(array, hi - span, span);
|
2232 |
|
|
}
|
2233 |
|
|
|
2234 |
|
|
/**
|
2235 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
2236 |
|
|
* natural order.
|
2237 |
|
|
*
|
2238 |
|
|
* @param a the double array to sort
|
2239 |
|
|
*/
|
2240 |
|
|
public static void sort(double[] a)
|
2241 |
|
|
{
|
2242 |
|
|
qsort(a, 0, a.length);
|
2243 |
|
|
}
|
2244 |
|
|
|
2245 |
|
|
/**
|
2246 |
|
|
* Performs a stable sort on the elements, arranging them according to their
|
2247 |
|
|
* natural order.
|
2248 |
|
|
*
|
2249 |
|
|
* @param a the double array to sort
|
2250 |
|
|
* @param fromIndex the first index to sort (inclusive)
|
2251 |
|
|
* @param toIndex the last index to sort (exclusive)
|
2252 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
2253 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex < 0
|
2254 |
|
|
* || toIndex > a.length
|
2255 |
|
|
*/
|
2256 |
|
|
public static void sort(double[] a, int fromIndex, int toIndex)
|
2257 |
|
|
{
|
2258 |
|
|
if (fromIndex > toIndex)
|
2259 |
|
|
throw new IllegalArgumentException();
|
2260 |
|
|
if (fromIndex < 0)
|
2261 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
2262 |
|
|
qsort(a, fromIndex, toIndex - fromIndex);
|
2263 |
|
|
}
|
2264 |
|
|
|
2265 |
|
|
/**
|
2266 |
|
|
* Finds the index of the median of three array elements.
|
2267 |
|
|
*
|
2268 |
|
|
* @param a the first index
|
2269 |
|
|
* @param b the second index
|
2270 |
|
|
* @param c the third index
|
2271 |
|
|
* @param d the array
|
2272 |
|
|
* @return the index (a, b, or c) which has the middle value of the three
|
2273 |
|
|
*/
|
2274 |
|
|
private static int med3(int a, int b, int c, double[] d)
|
2275 |
|
|
{
|
2276 |
|
|
return (Double.compare(d[a], d[b]) < 0
|
2277 |
|
|
? (Double.compare(d[b], d[c]) < 0 ? b
|
2278 |
|
|
: Double.compare(d[a], d[c]) < 0 ? c : a)
|
2279 |
|
|
: (Double.compare(d[b], d[c]) > 0 ? b
|
2280 |
|
|
: Double.compare(d[a], d[c]) > 0 ? c : a));
|
2281 |
|
|
}
|
2282 |
|
|
|
2283 |
|
|
/**
|
2284 |
|
|
* Swaps the elements at two locations of an array
|
2285 |
|
|
*
|
2286 |
|
|
* @param i the first index
|
2287 |
|
|
* @param j the second index
|
2288 |
|
|
* @param a the array
|
2289 |
|
|
*/
|
2290 |
|
|
private static void swap(int i, int j, double[] a)
|
2291 |
|
|
{
|
2292 |
|
|
double c = a[i];
|
2293 |
|
|
a[i] = a[j];
|
2294 |
|
|
a[j] = c;
|
2295 |
|
|
}
|
2296 |
|
|
|
2297 |
|
|
/**
|
2298 |
|
|
* Swaps two ranges of an array.
|
2299 |
|
|
*
|
2300 |
|
|
* @param i the first range start
|
2301 |
|
|
* @param j the second range start
|
2302 |
|
|
* @param n the element count
|
2303 |
|
|
* @param a the array
|
2304 |
|
|
*/
|
2305 |
|
|
private static void vecswap(int i, int j, int n, double[] a)
|
2306 |
|
|
{
|
2307 |
|
|
for ( ; n > 0; i++, j++, n--)
|
2308 |
|
|
swap(i, j, a);
|
2309 |
|
|
}
|
2310 |
|
|
|
2311 |
|
|
/**
|
2312 |
|
|
* Performs a recursive modified quicksort.
|
2313 |
|
|
*
|
2314 |
|
|
* @param array the array to sort
|
2315 |
|
|
* @param from the start index (inclusive)
|
2316 |
|
|
* @param count the number of elements to sort
|
2317 |
|
|
*/
|
2318 |
|
|
private static void qsort(double[] array, int from, int count)
|
2319 |
|
|
{
|
2320 |
|
|
// Use an insertion sort on small arrays.
|
2321 |
|
|
if (count <= 7)
|
2322 |
|
|
{
|
2323 |
|
|
for (int i = from + 1; i < from + count; i++)
|
2324 |
|
|
for (int j = i;
|
2325 |
|
|
j > from && Double.compare(array[j - 1], array[j]) > 0;
|
2326 |
|
|
j--)
|
2327 |
|
|
{
|
2328 |
|
|
swap(j, j - 1, array);
|
2329 |
|
|
}
|
2330 |
|
|
return;
|
2331 |
|
|
}
|
2332 |
|
|
|
2333 |
|
|
// Determine a good median element.
|
2334 |
|
|
int mid = from + count / 2;
|
2335 |
|
|
int lo = from;
|
2336 |
|
|
int hi = from + count - 1;
|
2337 |
|
|
|
2338 |
|
|
if (count > 40)
|
2339 |
|
|
{ // big arrays, pseudomedian of 9
|
2340 |
|
|
int s = count / 8;
|
2341 |
|
|
lo = med3(lo, lo + s, lo + 2 * s, array);
|
2342 |
|
|
mid = med3(mid - s, mid, mid + s, array);
|
2343 |
|
|
hi = med3(hi - 2 * s, hi - s, hi, array);
|
2344 |
|
|
}
|
2345 |
|
|
mid = med3(lo, mid, hi, array);
|
2346 |
|
|
|
2347 |
|
|
int a, b, c, d;
|
2348 |
|
|
int comp;
|
2349 |
|
|
|
2350 |
|
|
// Pull the median element out of the fray, and use it as a pivot.
|
2351 |
|
|
swap(from, mid, array);
|
2352 |
|
|
a = b = from;
|
2353 |
|
|
c = d = from + count - 1;
|
2354 |
|
|
|
2355 |
|
|
// Repeatedly move b and c to each other, swapping elements so
|
2356 |
|
|
// that all elements before index b are less than the pivot, and all
|
2357 |
|
|
// elements after index c are greater than the pivot. a and b track
|
2358 |
|
|
// the elements equal to the pivot.
|
2359 |
|
|
while (true)
|
2360 |
|
|
{
|
2361 |
|
|
while (b <= c && (comp = Double.compare(array[b], array[from])) <= 0)
|
2362 |
|
|
{
|
2363 |
|
|
if (comp == 0)
|
2364 |
|
|
{
|
2365 |
|
|
swap(a, b, array);
|
2366 |
|
|
a++;
|
2367 |
|
|
}
|
2368 |
|
|
b++;
|
2369 |
|
|
}
|
2370 |
|
|
while (c >= b && (comp = Double.compare(array[c], array[from])) >= 0)
|
2371 |
|
|
{
|
2372 |
|
|
if (comp == 0)
|
2373 |
|
|
{
|
2374 |
|
|
swap(c, d, array);
|
2375 |
|
|
d--;
|
2376 |
|
|
}
|
2377 |
|
|
c--;
|
2378 |
|
|
}
|
2379 |
|
|
if (b > c)
|
2380 |
|
|
break;
|
2381 |
|
|
swap(b, c, array);
|
2382 |
|
|
b++;
|
2383 |
|
|
c--;
|
2384 |
|
|
}
|
2385 |
|
|
|
2386 |
|
|
// Swap pivot(s) back in place, the recurse on left and right sections.
|
2387 |
|
|
hi = from + count;
|
2388 |
|
|
int span;
|
2389 |
|
|
span = Math.min(a - from, b - a);
|
2390 |
|
|
vecswap(from, b - span, span, array);
|
2391 |
|
|
|
2392 |
|
|
span = Math.min(d - c, hi - d - 1);
|
2393 |
|
|
vecswap(b, hi - span, span, array);
|
2394 |
|
|
|
2395 |
|
|
span = b - a;
|
2396 |
|
|
if (span > 1)
|
2397 |
|
|
qsort(array, from, span);
|
2398 |
|
|
|
2399 |
|
|
span = d - c;
|
2400 |
|
|
if (span > 1)
|
2401 |
|
|
qsort(array, hi - span, span);
|
2402 |
|
|
}
|
2403 |
|
|
|
2404 |
|
|
/**
|
2405 |
|
|
* Sort an array of Objects according to their natural ordering. The sort is
|
2406 |
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
2407 |
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
2408 |
|
|
* element of one half comes before the first element of the other half. This
|
2409 |
|
|
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
2410 |
|
|
* copy of the array.
|
2411 |
|
|
*
|
2412 |
|
|
* @param a the array to be sorted
|
2413 |
|
|
* @throws ClassCastException if any two elements are not mutually
|
2414 |
|
|
* comparable
|
2415 |
|
|
* @throws NullPointerException if an element is null (since
|
2416 |
|
|
* null.compareTo cannot work)
|
2417 |
|
|
* @see Comparable
|
2418 |
|
|
*/
|
2419 |
|
|
public static void sort(Object[] a)
|
2420 |
|
|
{
|
2421 |
|
|
sort(a, 0, a.length, null);
|
2422 |
|
|
}
|
2423 |
|
|
|
2424 |
|
|
/**
|
2425 |
|
|
* Sort an array of Objects according to a Comparator. The sort is
|
2426 |
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
2427 |
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
2428 |
|
|
* element of one half comes before the first element of the other half. This
|
2429 |
|
|
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
2430 |
|
|
* copy of the array.
|
2431 |
|
|
*
|
2432 |
|
|
* @param a the array to be sorted
|
2433 |
|
|
* @param c a Comparator to use in sorting the array; or null to indicate
|
2434 |
|
|
* the elements' natural order
|
2435 |
|
|
* @throws ClassCastException if any two elements are not mutually
|
2436 |
|
|
* comparable by the Comparator provided
|
2437 |
|
|
* @throws NullPointerException if a null element is compared with natural
|
2438 |
|
|
* ordering (only possible when c is null)
|
2439 |
|
|
*/
|
2440 |
|
|
public static <T> void sort(T[] a, Comparator<? super T> c)
|
2441 |
|
|
{
|
2442 |
|
|
sort(a, 0, a.length, c);
|
2443 |
|
|
}
|
2444 |
|
|
|
2445 |
|
|
/**
|
2446 |
|
|
* Sort an array of Objects according to their natural ordering. The sort is
|
2447 |
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
2448 |
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
2449 |
|
|
* element of one half comes before the first element of the other half. This
|
2450 |
|
|
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
2451 |
|
|
* copy of the array.
|
2452 |
|
|
*
|
2453 |
|
|
* @param a the array to be sorted
|
2454 |
|
|
* @param fromIndex the index of the first element to be sorted
|
2455 |
|
|
* @param toIndex the index of the last element to be sorted plus one
|
2456 |
|
|
* @throws ClassCastException if any two elements are not mutually
|
2457 |
|
|
* comparable
|
2458 |
|
|
* @throws NullPointerException if an element is null (since
|
2459 |
|
|
* null.compareTo cannot work)
|
2460 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex
|
2461 |
|
|
* are not in range.
|
2462 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
2463 |
|
|
*/
|
2464 |
|
|
public static void sort(Object[] a, int fromIndex, int toIndex)
|
2465 |
|
|
{
|
2466 |
|
|
sort(a, fromIndex, toIndex, null);
|
2467 |
|
|
}
|
2468 |
|
|
|
2469 |
|
|
/**
|
2470 |
|
|
* Sort an array of Objects according to a Comparator. The sort is
|
2471 |
|
|
* guaranteed to be stable, that is, equal elements will not be reordered.
|
2472 |
|
|
* The sort algorithm is a mergesort with the merge omitted if the last
|
2473 |
|
|
* element of one half comes before the first element of the other half. This
|
2474 |
|
|
* algorithm gives guaranteed O(n*log(n)) time, at the expense of making a
|
2475 |
|
|
* copy of the array.
|
2476 |
|
|
*
|
2477 |
|
|
* @param a the array to be sorted
|
2478 |
|
|
* @param fromIndex the index of the first element to be sorted
|
2479 |
|
|
* @param toIndex the index of the last element to be sorted plus one
|
2480 |
|
|
* @param c a Comparator to use in sorting the array; or null to indicate
|
2481 |
|
|
* the elements' natural order
|
2482 |
|
|
* @throws ClassCastException if any two elements are not mutually
|
2483 |
|
|
* comparable by the Comparator provided
|
2484 |
|
|
* @throws ArrayIndexOutOfBoundsException if fromIndex and toIndex
|
2485 |
|
|
* are not in range.
|
2486 |
|
|
* @throws IllegalArgumentException if fromIndex > toIndex
|
2487 |
|
|
* @throws NullPointerException if a null element is compared with natural
|
2488 |
|
|
* ordering (only possible when c is null)
|
2489 |
|
|
*/
|
2490 |
|
|
public static <T> void sort(T[] a, int fromIndex, int toIndex,
|
2491 |
|
|
Comparator<? super T> c)
|
2492 |
|
|
{
|
2493 |
|
|
if (fromIndex > toIndex)
|
2494 |
|
|
throw new IllegalArgumentException("fromIndex " + fromIndex
|
2495 |
|
|
+ " > toIndex " + toIndex);
|
2496 |
|
|
if (fromIndex < 0)
|
2497 |
|
|
throw new ArrayIndexOutOfBoundsException();
|
2498 |
|
|
|
2499 |
|
|
// In general, the code attempts to be simple rather than fast, the
|
2500 |
|
|
// idea being that a good optimising JIT will be able to optimise it
|
2501 |
|
|
// better than I can, and if I try it will make it more confusing for
|
2502 |
|
|
// the JIT. First presort the array in chunks of length 6 with insertion
|
2503 |
|
|
// sort. A mergesort would give too much overhead for this length.
|
2504 |
|
|
for (int chunk = fromIndex; chunk < toIndex; chunk += 6)
|
2505 |
|
|
{
|
2506 |
|
|
int end = Math.min(chunk + 6, toIndex);
|
2507 |
|
|
for (int i = chunk + 1; i < end; i++)
|
2508 |
|
|
{
|
2509 |
|
|
if (Collections.compare(a[i - 1], a[i], c) > 0)
|
2510 |
|
|
{
|
2511 |
|
|
// not already sorted
|
2512 |
|
|
int j = i;
|
2513 |
|
|
T elem = a[j];
|
2514 |
|
|
do
|
2515 |
|
|
{
|
2516 |
|
|
a[j] = a[j - 1];
|
2517 |
|
|
j--;
|
2518 |
|
|
}
|
2519 |
|
|
while (j > chunk
|
2520 |
|
|
&& Collections.compare(a[j - 1], elem, c) > 0);
|
2521 |
|
|
a[j] = elem;
|
2522 |
|
|
}
|
2523 |
|
|
}
|
2524 |
|
|
}
|
2525 |
|
|
|
2526 |
|
|
int len = toIndex - fromIndex;
|
2527 |
|
|
// If length is smaller or equal 6 we are done.
|
2528 |
|
|
if (len <= 6)
|
2529 |
|
|
return;
|
2530 |
|
|
|
2531 |
|
|
T[] src = a;
|
2532 |
|
|
T[] dest = (T[]) new Object[len];
|
2533 |
|
|
T[] t = null; // t is used for swapping src and dest
|
2534 |
|
|
|
2535 |
|
|
// The difference of the fromIndex of the src and dest array.
|
2536 |
|
|
int srcDestDiff = -fromIndex;
|
2537 |
|
|
|
2538 |
|
|
// The merges are done in this loop
|
2539 |
|
|
for (int size = 6; size < len; size <<= 1)
|
2540 |
|
|
{
|
2541 |
|
|
for (int start = fromIndex; start < toIndex; start += size << 1)
|
2542 |
|
|
{
|
2543 |
|
|
// mid is the start of the second sublist;
|
2544 |
|
|
// end the start of the next sublist (or end of array).
|
2545 |
|
|
int mid = start + size;
|
2546 |
|
|
int end = Math.min(toIndex, mid + size);
|
2547 |
|
|
|
2548 |
|
|
// The second list is empty or the elements are already in
|
2549 |
|
|
// order - no need to merge
|
2550 |
|
|
if (mid >= end
|
2551 |
|
|
|| Collections.compare(src[mid - 1], src[mid], c) <= 0)
|
2552 |
|
|
{
|
2553 |
|
|
System.arraycopy(src, start,
|
2554 |
|
|
dest, start + srcDestDiff, end - start);
|
2555 |
|
|
|
2556 |
|
|
// The two halves just need swapping - no need to merge
|
2557 |
|
|
}
|
2558 |
|
|
else if (Collections.compare(src[start], src[end - 1], c) > 0)
|
2559 |
|
|
{
|
2560 |
|
|
System.arraycopy(src, start,
|
2561 |
|
|
dest, end - size + srcDestDiff, size);
|
2562 |
|
|
System.arraycopy(src, mid,
|
2563 |
|
|
dest, start + srcDestDiff, end - mid);
|
2564 |
|
|
|
2565 |
|
|
}
|
2566 |
|
|
else
|
2567 |
|
|
{
|
2568 |
|
|
// Declare a lot of variables to save repeating
|
2569 |
|
|
// calculations. Hopefully a decent JIT will put these
|
2570 |
|
|
// in registers and make this fast
|
2571 |
|
|
int p1 = start;
|
2572 |
|
|
int p2 = mid;
|
2573 |
|
|
int i = start + srcDestDiff;
|
2574 |
|
|
|
2575 |
|
|
// The main merge loop; terminates as soon as either
|
2576 |
|
|
// half is ended
|
2577 |
|
|
while (p1 < mid && p2 < end)
|
2578 |
|
|
{
|
2579 |
|
|
dest[i++] =
|
2580 |
|
|
src[(Collections.compare(src[p1], src[p2], c) <= 0
|
2581 |
|
|
? p1++ : p2++)];
|
2582 |
|
|
}
|
2583 |
|
|
|
2584 |
|
|
// Finish up by copying the remainder of whichever half
|
2585 |
|
|
// wasn't finished.
|
2586 |
|
|
if (p1 < mid)
|
2587 |
|
|
System.arraycopy(src, p1, dest, i, mid - p1);
|
2588 |
|
|
else
|
2589 |
|
|
System.arraycopy(src, p2, dest, i, end - p2);
|
2590 |
|
|
}
|
2591 |
|
|
}
|
2592 |
|
|
// swap src and dest ready for the next merge
|
2593 |
|
|
t = src;
|
2594 |
|
|
src = dest;
|
2595 |
|
|
dest = t;
|
2596 |
|
|
fromIndex += srcDestDiff;
|
2597 |
|
|
toIndex += srcDestDiff;
|
2598 |
|
|
srcDestDiff = -srcDestDiff;
|
2599 |
|
|
}
|
2600 |
|
|
|
2601 |
|
|
// make sure the result ends up back in the right place. Note
|
2602 |
|
|
// that src and dest may have been swapped above, so src
|
2603 |
|
|
// contains the sorted array.
|
2604 |
|
|
if (src != a)
|
2605 |
|
|
{
|
2606 |
|
|
// Note that fromIndex == 0.
|
2607 |
|
|
System.arraycopy(src, 0, a, srcDestDiff, toIndex);
|
2608 |
|
|
}
|
2609 |
|
|
}
|
2610 |
|
|
|
2611 |
|
|
/**
|
2612 |
|
|
* Returns a list "view" of the specified array. This method is intended to
|
2613 |
|
|
* make it easy to use the Collections API with existing array-based APIs and
|
2614 |
|
|
* programs. Changes in the list or the array show up in both places. The
|
2615 |
|
|
* list does not support element addition or removal, but does permit
|
2616 |
|
|
* value modification. The returned list implements both Serializable and
|
2617 |
|
|
* RandomAccess.
|
2618 |
|
|
*
|
2619 |
|
|
* @param a the array to return a view of (<code>null</code> not permitted)
|
2620 |
|
|
* @return a fixed-size list, changes to which "write through" to the array
|
2621 |
|
|
*
|
2622 |
|
|
* @throws NullPointerException if <code>a</code> is <code>null</code>.
|
2623 |
|
|
* @see Serializable
|
2624 |
|
|
* @see RandomAccess
|
2625 |
|
|
* @see Arrays.ArrayList
|
2626 |
|
|
*/
|
2627 |
|
|
public static <T> List<T> asList(final T... a)
|
2628 |
|
|
{
|
2629 |
|
|
return new Arrays.ArrayList(a);
|
2630 |
|
|
}
|
2631 |
|
|
|
2632 |
|
|
/**
|
2633 |
|
|
* Returns the hashcode of an array of long numbers. If two arrays
|
2634 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2635 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2636 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2637 |
|
|
* data, but represents longs in their wrapper class, <code>Long</code>.
|
2638 |
|
|
* For <code>null</code>, 0 is returned.
|
2639 |
|
|
*
|
2640 |
|
|
* @param v an array of long numbers for which the hash code should be
|
2641 |
|
|
* computed.
|
2642 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2643 |
|
|
* @since 1.5
|
2644 |
|
|
*/
|
2645 |
|
|
public static int hashCode(long[] v)
|
2646 |
|
|
{
|
2647 |
|
|
if (v == null)
|
2648 |
|
|
return 0;
|
2649 |
|
|
int result = 1;
|
2650 |
|
|
for (int i = 0; i < v.length; ++i)
|
2651 |
|
|
{
|
2652 |
|
|
int elt = (int) (v[i] ^ (v[i] >>> 32));
|
2653 |
|
|
result = 31 * result + elt;
|
2654 |
|
|
}
|
2655 |
|
|
return result;
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
/**
|
2659 |
|
|
* Returns the hashcode of an array of integer numbers. If two arrays
|
2660 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2661 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2662 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2663 |
|
|
* data, but represents ints in their wrapper class, <code>Integer</code>.
|
2664 |
|
|
* For <code>null</code>, 0 is returned.
|
2665 |
|
|
*
|
2666 |
|
|
* @param v an array of integer numbers for which the hash code should be
|
2667 |
|
|
* computed.
|
2668 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2669 |
|
|
* @since 1.5
|
2670 |
|
|
*/
|
2671 |
|
|
public static int hashCode(int[] v)
|
2672 |
|
|
{
|
2673 |
|
|
if (v == null)
|
2674 |
|
|
return 0;
|
2675 |
|
|
int result = 1;
|
2676 |
|
|
for (int i = 0; i < v.length; ++i)
|
2677 |
|
|
result = 31 * result + v[i];
|
2678 |
|
|
return result;
|
2679 |
|
|
}
|
2680 |
|
|
|
2681 |
|
|
/**
|
2682 |
|
|
* Returns the hashcode of an array of short numbers. If two arrays
|
2683 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2684 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2685 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2686 |
|
|
* data, but represents shorts in their wrapper class, <code>Short</code>.
|
2687 |
|
|
* For <code>null</code>, 0 is returned.
|
2688 |
|
|
*
|
2689 |
|
|
* @param v an array of short numbers for which the hash code should be
|
2690 |
|
|
* computed.
|
2691 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2692 |
|
|
* @since 1.5
|
2693 |
|
|
*/
|
2694 |
|
|
public static int hashCode(short[] v)
|
2695 |
|
|
{
|
2696 |
|
|
if (v == null)
|
2697 |
|
|
return 0;
|
2698 |
|
|
int result = 1;
|
2699 |
|
|
for (int i = 0; i < v.length; ++i)
|
2700 |
|
|
result = 31 * result + v[i];
|
2701 |
|
|
return result;
|
2702 |
|
|
}
|
2703 |
|
|
|
2704 |
|
|
/**
|
2705 |
|
|
* Returns the hashcode of an array of characters. If two arrays
|
2706 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2707 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2708 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2709 |
|
|
* data, but represents chars in their wrapper class, <code>Character</code>.
|
2710 |
|
|
* For <code>null</code>, 0 is returned.
|
2711 |
|
|
*
|
2712 |
|
|
* @param v an array of characters for which the hash code should be
|
2713 |
|
|
* computed.
|
2714 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2715 |
|
|
* @since 1.5
|
2716 |
|
|
*/
|
2717 |
|
|
public static int hashCode(char[] v)
|
2718 |
|
|
{
|
2719 |
|
|
if (v == null)
|
2720 |
|
|
return 0;
|
2721 |
|
|
int result = 1;
|
2722 |
|
|
for (int i = 0; i < v.length; ++i)
|
2723 |
|
|
result = 31 * result + v[i];
|
2724 |
|
|
return result;
|
2725 |
|
|
}
|
2726 |
|
|
|
2727 |
|
|
/**
|
2728 |
|
|
* Returns the hashcode of an array of bytes. If two arrays
|
2729 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2730 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2731 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2732 |
|
|
* data, but represents bytes in their wrapper class, <code>Byte</code>.
|
2733 |
|
|
* For <code>null</code>, 0 is returned.
|
2734 |
|
|
*
|
2735 |
|
|
* @param v an array of bytes for which the hash code should be
|
2736 |
|
|
* computed.
|
2737 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2738 |
|
|
* @since 1.5
|
2739 |
|
|
*/
|
2740 |
|
|
public static int hashCode(byte[] v)
|
2741 |
|
|
{
|
2742 |
|
|
if (v == null)
|
2743 |
|
|
return 0;
|
2744 |
|
|
int result = 1;
|
2745 |
|
|
for (int i = 0; i < v.length; ++i)
|
2746 |
|
|
result = 31 * result + v[i];
|
2747 |
|
|
return result;
|
2748 |
|
|
}
|
2749 |
|
|
|
2750 |
|
|
/**
|
2751 |
|
|
* Returns the hashcode of an array of booleans. If two arrays
|
2752 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2753 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2754 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2755 |
|
|
* data, but represents booleans in their wrapper class,
|
2756 |
|
|
* <code>Boolean</code>. For <code>null</code>, 0 is returned.
|
2757 |
|
|
*
|
2758 |
|
|
* @param v an array of booleans for which the hash code should be
|
2759 |
|
|
* computed.
|
2760 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2761 |
|
|
* @since 1.5
|
2762 |
|
|
*/
|
2763 |
|
|
public static int hashCode(boolean[] v)
|
2764 |
|
|
{
|
2765 |
|
|
if (v == null)
|
2766 |
|
|
return 0;
|
2767 |
|
|
int result = 1;
|
2768 |
|
|
for (int i = 0; i < v.length; ++i)
|
2769 |
|
|
result = 31 * result + (v[i] ? 1231 : 1237);
|
2770 |
|
|
return result;
|
2771 |
|
|
}
|
2772 |
|
|
|
2773 |
|
|
/**
|
2774 |
|
|
* Returns the hashcode of an array of floats. If two arrays
|
2775 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2776 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2777 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2778 |
|
|
* data, but represents floats in their wrapper class, <code>Float</code>.
|
2779 |
|
|
* For <code>null</code>, 0 is returned.
|
2780 |
|
|
*
|
2781 |
|
|
* @param v an array of floats for which the hash code should be
|
2782 |
|
|
* computed.
|
2783 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2784 |
|
|
* @since 1.5
|
2785 |
|
|
*/
|
2786 |
|
|
public static int hashCode(float[] v)
|
2787 |
|
|
{
|
2788 |
|
|
if (v == null)
|
2789 |
|
|
return 0;
|
2790 |
|
|
int result = 1;
|
2791 |
|
|
for (int i = 0; i < v.length; ++i)
|
2792 |
|
|
result = 31 * result + Float.floatToIntBits(v[i]);
|
2793 |
|
|
return result;
|
2794 |
|
|
}
|
2795 |
|
|
|
2796 |
|
|
/**
|
2797 |
|
|
* Returns the hashcode of an array of doubles. If two arrays
|
2798 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2799 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2800 |
|
|
* obtained by the corresponding <code>List</code> object. This has the same
|
2801 |
|
|
* data, but represents doubles in their wrapper class, <code>Double</code>.
|
2802 |
|
|
* For <code>null</code>, 0 is returned.
|
2803 |
|
|
*
|
2804 |
|
|
* @param v an array of doubles for which the hash code should be
|
2805 |
|
|
* computed.
|
2806 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2807 |
|
|
* @since 1.5
|
2808 |
|
|
*/
|
2809 |
|
|
public static int hashCode(double[] v)
|
2810 |
|
|
{
|
2811 |
|
|
if (v == null)
|
2812 |
|
|
return 0;
|
2813 |
|
|
int result = 1;
|
2814 |
|
|
for (int i = 0; i < v.length; ++i)
|
2815 |
|
|
{
|
2816 |
|
|
long l = Double.doubleToLongBits(v[i]);
|
2817 |
|
|
int elt = (int) (l ^ (l >>> 32));
|
2818 |
|
|
result = 31 * result + elt;
|
2819 |
|
|
}
|
2820 |
|
|
return result;
|
2821 |
|
|
}
|
2822 |
|
|
|
2823 |
|
|
/**
|
2824 |
|
|
* Returns the hashcode of an array of objects. If two arrays
|
2825 |
|
|
* are equal, according to <code>equals()</code>, they should have the
|
2826 |
|
|
* same hashcode. The hashcode returned by the method is equal to that
|
2827 |
|
|
* obtained by the corresponding <code>List</code> object.
|
2828 |
|
|
* For <code>null</code>, 0 is returned.
|
2829 |
|
|
*
|
2830 |
|
|
* @param v an array of integer numbers for which the hash code should be
|
2831 |
|
|
* computed.
|
2832 |
|
|
* @return the hash code of the array, or 0 if null was given.
|
2833 |
|
|
* @since 1.5
|
2834 |
|
|
*/
|
2835 |
|
|
public static int hashCode(Object[] v)
|
2836 |
|
|
{
|
2837 |
|
|
if (v == null)
|
2838 |
|
|
return 0;
|
2839 |
|
|
int result = 1;
|
2840 |
|
|
for (int i = 0; i < v.length; ++i)
|
2841 |
|
|
{
|
2842 |
|
|
int elt = v[i] == null ? 0 : v[i].hashCode();
|
2843 |
|
|
result = 31 * result + elt;
|
2844 |
|
|
}
|
2845 |
|
|
return result;
|
2846 |
|
|
}
|
2847 |
|
|
|
2848 |
|
|
public static int deepHashCode(Object[] v)
|
2849 |
|
|
{
|
2850 |
|
|
if (v == null)
|
2851 |
|
|
return 0;
|
2852 |
|
|
int result = 1;
|
2853 |
|
|
for (int i = 0; i < v.length; ++i)
|
2854 |
|
|
{
|
2855 |
|
|
int elt;
|
2856 |
|
|
if (v[i] == null)
|
2857 |
|
|
elt = 0;
|
2858 |
|
|
else if (v[i] instanceof boolean[])
|
2859 |
|
|
elt = hashCode((boolean[]) v[i]);
|
2860 |
|
|
else if (v[i] instanceof byte[])
|
2861 |
|
|
elt = hashCode((byte[]) v[i]);
|
2862 |
|
|
else if (v[i] instanceof char[])
|
2863 |
|
|
elt = hashCode((char[]) v[i]);
|
2864 |
|
|
else if (v[i] instanceof short[])
|
2865 |
|
|
elt = hashCode((short[]) v[i]);
|
2866 |
|
|
else if (v[i] instanceof int[])
|
2867 |
|
|
elt = hashCode((int[]) v[i]);
|
2868 |
|
|
else if (v[i] instanceof long[])
|
2869 |
|
|
elt = hashCode((long[]) v[i]);
|
2870 |
|
|
else if (v[i] instanceof float[])
|
2871 |
|
|
elt = hashCode((float[]) v[i]);
|
2872 |
|
|
else if (v[i] instanceof double[])
|
2873 |
|
|
elt = hashCode((double[]) v[i]);
|
2874 |
|
|
else if (v[i] instanceof Object[])
|
2875 |
|
|
elt = hashCode((Object[]) v[i]);
|
2876 |
|
|
else
|
2877 |
|
|
elt = v[i].hashCode();
|
2878 |
|
|
result = 31 * result + elt;
|
2879 |
|
|
}
|
2880 |
|
|
return result;
|
2881 |
|
|
}
|
2882 |
|
|
|
2883 |
|
|
/** @since 1.5 */
|
2884 |
|
|
public static boolean deepEquals(Object[] v1, Object[] v2)
|
2885 |
|
|
{
|
2886 |
|
|
if (v1 == null)
|
2887 |
|
|
return v2 == null;
|
2888 |
|
|
if (v2 == null || v1.length != v2.length)
|
2889 |
|
|
return false;
|
2890 |
|
|
|
2891 |
|
|
for (int i = 0; i < v1.length; ++i)
|
2892 |
|
|
{
|
2893 |
|
|
Object e1 = v1[i];
|
2894 |
|
|
Object e2 = v2[i];
|
2895 |
|
|
|
2896 |
|
|
if (e1 == e2)
|
2897 |
|
|
continue;
|
2898 |
|
|
if (e1 == null || e2 == null)
|
2899 |
|
|
return false;
|
2900 |
|
|
|
2901 |
|
|
boolean check;
|
2902 |
|
|
if (e1 instanceof boolean[] && e2 instanceof boolean[])
|
2903 |
|
|
check = equals((boolean[]) e1, (boolean[]) e2);
|
2904 |
|
|
else if (e1 instanceof byte[] && e2 instanceof byte[])
|
2905 |
|
|
check = equals((byte[]) e1, (byte[]) e2);
|
2906 |
|
|
else if (e1 instanceof char[] && e2 instanceof char[])
|
2907 |
|
|
check = equals((char[]) e1, (char[]) e2);
|
2908 |
|
|
else if (e1 instanceof short[] && e2 instanceof short[])
|
2909 |
|
|
check = equals((short[]) e1, (short[]) e2);
|
2910 |
|
|
else if (e1 instanceof int[] && e2 instanceof int[])
|
2911 |
|
|
check = equals((int[]) e1, (int[]) e2);
|
2912 |
|
|
else if (e1 instanceof long[] && e2 instanceof long[])
|
2913 |
|
|
check = equals((long[]) e1, (long[]) e2);
|
2914 |
|
|
else if (e1 instanceof float[] && e2 instanceof float[])
|
2915 |
|
|
check = equals((float[]) e1, (float[]) e2);
|
2916 |
|
|
else if (e1 instanceof double[] && e2 instanceof double[])
|
2917 |
|
|
check = equals((double[]) e1, (double[]) e2);
|
2918 |
|
|
else if (e1 instanceof Object[] && e2 instanceof Object[])
|
2919 |
|
|
check = equals((Object[]) e1, (Object[]) e2);
|
2920 |
|
|
else
|
2921 |
|
|
check = e1.equals(e2);
|
2922 |
|
|
if (! check)
|
2923 |
|
|
return false;
|
2924 |
|
|
}
|
2925 |
|
|
|
2926 |
|
|
return true;
|
2927 |
|
|
}
|
2928 |
|
|
|
2929 |
|
|
/**
|
2930 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
2931 |
|
|
* if <code>a</code> is null.
|
2932 |
|
|
* @param v the array to represent
|
2933 |
|
|
* @return a String representing this array
|
2934 |
|
|
* @since 1.5
|
2935 |
|
|
*/
|
2936 |
|
|
public static String toString(boolean[] v)
|
2937 |
|
|
{
|
2938 |
|
|
if (v == null)
|
2939 |
|
|
return "null";
|
2940 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
2941 |
|
|
for (int i = 0; i < v.length; ++i)
|
2942 |
|
|
{
|
2943 |
|
|
if (i > 0)
|
2944 |
|
|
b.append(", ");
|
2945 |
|
|
b.append(v[i]);
|
2946 |
|
|
}
|
2947 |
|
|
b.append("]");
|
2948 |
|
|
return b.toString();
|
2949 |
|
|
}
|
2950 |
|
|
|
2951 |
|
|
/**
|
2952 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
2953 |
|
|
* if <code>a</code> is null.
|
2954 |
|
|
* @param v the array to represent
|
2955 |
|
|
* @return a String representing this array
|
2956 |
|
|
* @since 1.5
|
2957 |
|
|
*/
|
2958 |
|
|
public static String toString(byte[] v)
|
2959 |
|
|
{
|
2960 |
|
|
if (v == null)
|
2961 |
|
|
return "null";
|
2962 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
2963 |
|
|
for (int i = 0; i < v.length; ++i)
|
2964 |
|
|
{
|
2965 |
|
|
if (i > 0)
|
2966 |
|
|
b.append(", ");
|
2967 |
|
|
b.append(v[i]);
|
2968 |
|
|
}
|
2969 |
|
|
b.append("]");
|
2970 |
|
|
return b.toString();
|
2971 |
|
|
}
|
2972 |
|
|
|
2973 |
|
|
/**
|
2974 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
2975 |
|
|
* if <code>a</code> is null.
|
2976 |
|
|
* @param v the array to represent
|
2977 |
|
|
* @return a String representing this array
|
2978 |
|
|
* @since 1.5
|
2979 |
|
|
*/
|
2980 |
|
|
public static String toString(char[] v)
|
2981 |
|
|
{
|
2982 |
|
|
if (v == null)
|
2983 |
|
|
return "null";
|
2984 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
2985 |
|
|
for (int i = 0; i < v.length; ++i)
|
2986 |
|
|
{
|
2987 |
|
|
if (i > 0)
|
2988 |
|
|
b.append(", ");
|
2989 |
|
|
b.append(v[i]);
|
2990 |
|
|
}
|
2991 |
|
|
b.append("]");
|
2992 |
|
|
return b.toString();
|
2993 |
|
|
}
|
2994 |
|
|
|
2995 |
|
|
/**
|
2996 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
2997 |
|
|
* if <code>a</code> is null.
|
2998 |
|
|
* @param v the array to represent
|
2999 |
|
|
* @return a String representing this array
|
3000 |
|
|
* @since 1.5
|
3001 |
|
|
*/
|
3002 |
|
|
public static String toString(short[] v)
|
3003 |
|
|
{
|
3004 |
|
|
if (v == null)
|
3005 |
|
|
return "null";
|
3006 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
3007 |
|
|
for (int i = 0; i < v.length; ++i)
|
3008 |
|
|
{
|
3009 |
|
|
if (i > 0)
|
3010 |
|
|
b.append(", ");
|
3011 |
|
|
b.append(v[i]);
|
3012 |
|
|
}
|
3013 |
|
|
b.append("]");
|
3014 |
|
|
return b.toString();
|
3015 |
|
|
}
|
3016 |
|
|
|
3017 |
|
|
/**
|
3018 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
3019 |
|
|
* if <code>a</code> is null.
|
3020 |
|
|
* @param v the array to represent
|
3021 |
|
|
* @return a String representing this array
|
3022 |
|
|
* @since 1.5
|
3023 |
|
|
*/
|
3024 |
|
|
public static String toString(int[] v)
|
3025 |
|
|
{
|
3026 |
|
|
if (v == null)
|
3027 |
|
|
return "null";
|
3028 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
3029 |
|
|
for (int i = 0; i < v.length; ++i)
|
3030 |
|
|
{
|
3031 |
|
|
if (i > 0)
|
3032 |
|
|
b.append(", ");
|
3033 |
|
|
b.append(v[i]);
|
3034 |
|
|
}
|
3035 |
|
|
b.append("]");
|
3036 |
|
|
return b.toString();
|
3037 |
|
|
}
|
3038 |
|
|
|
3039 |
|
|
/**
|
3040 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
3041 |
|
|
* if <code>a</code> is null.
|
3042 |
|
|
* @param v the array to represent
|
3043 |
|
|
* @return a String representing this array
|
3044 |
|
|
* @since 1.5
|
3045 |
|
|
*/
|
3046 |
|
|
public static String toString(long[] v)
|
3047 |
|
|
{
|
3048 |
|
|
if (v == null)
|
3049 |
|
|
return "null";
|
3050 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
3051 |
|
|
for (int i = 0; i < v.length; ++i)
|
3052 |
|
|
{
|
3053 |
|
|
if (i > 0)
|
3054 |
|
|
b.append(", ");
|
3055 |
|
|
b.append(v[i]);
|
3056 |
|
|
}
|
3057 |
|
|
b.append("]");
|
3058 |
|
|
return b.toString();
|
3059 |
|
|
}
|
3060 |
|
|
|
3061 |
|
|
/**
|
3062 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
3063 |
|
|
* if <code>a</code> is null.
|
3064 |
|
|
* @param v the array to represent
|
3065 |
|
|
* @return a String representing this array
|
3066 |
|
|
* @since 1.5
|
3067 |
|
|
*/
|
3068 |
|
|
public static String toString(float[] v)
|
3069 |
|
|
{
|
3070 |
|
|
if (v == null)
|
3071 |
|
|
return "null";
|
3072 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
3073 |
|
|
for (int i = 0; i < v.length; ++i)
|
3074 |
|
|
{
|
3075 |
|
|
if (i > 0)
|
3076 |
|
|
b.append(", ");
|
3077 |
|
|
b.append(v[i]);
|
3078 |
|
|
}
|
3079 |
|
|
b.append("]");
|
3080 |
|
|
return b.toString();
|
3081 |
|
|
}
|
3082 |
|
|
|
3083 |
|
|
/**
|
3084 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
3085 |
|
|
* if <code>a</code> is null.
|
3086 |
|
|
* @param v the array to represent
|
3087 |
|
|
* @return a String representing this array
|
3088 |
|
|
* @since 1.5
|
3089 |
|
|
*/
|
3090 |
|
|
public static String toString(double[] v)
|
3091 |
|
|
{
|
3092 |
|
|
if (v == null)
|
3093 |
|
|
return "null";
|
3094 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
3095 |
|
|
for (int i = 0; i < v.length; ++i)
|
3096 |
|
|
{
|
3097 |
|
|
if (i > 0)
|
3098 |
|
|
b.append(", ");
|
3099 |
|
|
b.append(v[i]);
|
3100 |
|
|
}
|
3101 |
|
|
b.append("]");
|
3102 |
|
|
return b.toString();
|
3103 |
|
|
}
|
3104 |
|
|
|
3105 |
|
|
/**
|
3106 |
|
|
* Returns a String representation of the argument array. Returns "null"
|
3107 |
|
|
* if <code>a</code> is null.
|
3108 |
|
|
* @param v the array to represent
|
3109 |
|
|
* @return a String representing this array
|
3110 |
|
|
* @since 1.5
|
3111 |
|
|
*/
|
3112 |
|
|
public static String toString(Object[] v)
|
3113 |
|
|
{
|
3114 |
|
|
if (v == null)
|
3115 |
|
|
return "null";
|
3116 |
|
|
CPStringBuilder b = new CPStringBuilder("[");
|
3117 |
|
|
for (int i = 0; i < v.length; ++i)
|
3118 |
|
|
{
|
3119 |
|
|
if (i > 0)
|
3120 |
|
|
b.append(", ");
|
3121 |
|
|
b.append(v[i]);
|
3122 |
|
|
}
|
3123 |
|
|
b.append("]");
|
3124 |
|
|
return b.toString();
|
3125 |
|
|
}
|
3126 |
|
|
|
3127 |
|
|
private static void deepToString(Object[] v, CPStringBuilder b, HashSet seen)
|
3128 |
|
|
{
|
3129 |
|
|
b.append("[");
|
3130 |
|
|
for (int i = 0; i < v.length; ++i)
|
3131 |
|
|
{
|
3132 |
|
|
if (i > 0)
|
3133 |
|
|
b.append(", ");
|
3134 |
|
|
Object elt = v[i];
|
3135 |
|
|
if (elt == null)
|
3136 |
|
|
b.append("null");
|
3137 |
|
|
else if (elt instanceof boolean[])
|
3138 |
|
|
b.append(toString((boolean[]) elt));
|
3139 |
|
|
else if (elt instanceof byte[])
|
3140 |
|
|
b.append(toString((byte[]) elt));
|
3141 |
|
|
else if (elt instanceof char[])
|
3142 |
|
|
b.append(toString((char[]) elt));
|
3143 |
|
|
else if (elt instanceof short[])
|
3144 |
|
|
b.append(toString((short[]) elt));
|
3145 |
|
|
else if (elt instanceof int[])
|
3146 |
|
|
b.append(toString((int[]) elt));
|
3147 |
|
|
else if (elt instanceof long[])
|
3148 |
|
|
b.append(toString((long[]) elt));
|
3149 |
|
|
else if (elt instanceof float[])
|
3150 |
|
|
b.append(toString((float[]) elt));
|
3151 |
|
|
else if (elt instanceof double[])
|
3152 |
|
|
b.append(toString((double[]) elt));
|
3153 |
|
|
else if (elt instanceof Object[])
|
3154 |
|
|
{
|
3155 |
|
|
Object[] os = (Object[]) elt;
|
3156 |
|
|
if (seen.contains(os))
|
3157 |
|
|
b.append("[...]");
|
3158 |
|
|
else
|
3159 |
|
|
{
|
3160 |
|
|
seen.add(os);
|
3161 |
|
|
deepToString(os, b, seen);
|
3162 |
|
|
}
|
3163 |
|
|
}
|
3164 |
|
|
else
|
3165 |
|
|
b.append(elt);
|
3166 |
|
|
}
|
3167 |
|
|
b.append("]");
|
3168 |
|
|
}
|
3169 |
|
|
|
3170 |
|
|
/** @since 1.5 */
|
3171 |
|
|
public static String deepToString(Object[] v)
|
3172 |
|
|
{
|
3173 |
|
|
if (v == null)
|
3174 |
|
|
return "null";
|
3175 |
|
|
HashSet seen = new HashSet();
|
3176 |
|
|
CPStringBuilder b = new CPStringBuilder();
|
3177 |
|
|
deepToString(v, b, seen);
|
3178 |
|
|
return b.toString();
|
3179 |
|
|
}
|
3180 |
|
|
|
3181 |
|
|
/**
|
3182 |
|
|
* Inner class used by {@link #asList(Object[])} to provide a list interface
|
3183 |
|
|
* to an array. The name, though it clashes with java.util.ArrayList, is
|
3184 |
|
|
* Sun's choice for Serialization purposes. Element addition and removal
|
3185 |
|
|
* is prohibited, but values can be modified.
|
3186 |
|
|
*
|
3187 |
|
|
* @author Eric Blake (ebb9@email.byu.edu)
|
3188 |
|
|
* @status updated to 1.4
|
3189 |
|
|
*/
|
3190 |
|
|
private static final class ArrayList<E> extends AbstractList<E>
|
3191 |
|
|
implements Serializable, RandomAccess
|
3192 |
|
|
{
|
3193 |
|
|
// We override the necessary methods, plus others which will be much
|
3194 |
|
|
// more efficient with direct iteration rather than relying on iterator().
|
3195 |
|
|
|
3196 |
|
|
/**
|
3197 |
|
|
* Compatible with JDK 1.4.
|
3198 |
|
|
*/
|
3199 |
|
|
private static final long serialVersionUID = -2764017481108945198L;
|
3200 |
|
|
|
3201 |
|
|
/**
|
3202 |
|
|
* The array we are viewing.
|
3203 |
|
|
* @serial the array
|
3204 |
|
|
*/
|
3205 |
|
|
private final E[] a;
|
3206 |
|
|
|
3207 |
|
|
/**
|
3208 |
|
|
* Construct a list view of the array.
|
3209 |
|
|
* @param a the array to view
|
3210 |
|
|
* @throws NullPointerException if a is null
|
3211 |
|
|
*/
|
3212 |
|
|
ArrayList(E[] a)
|
3213 |
|
|
{
|
3214 |
|
|
// We have to explicitly check.
|
3215 |
|
|
if (a == null)
|
3216 |
|
|
throw new NullPointerException();
|
3217 |
|
|
this.a = a;
|
3218 |
|
|
}
|
3219 |
|
|
|
3220 |
|
|
/**
|
3221 |
|
|
* Returns the object at the specified index in
|
3222 |
|
|
* the array.
|
3223 |
|
|
*
|
3224 |
|
|
* @param index The index to retrieve an object from.
|
3225 |
|
|
* @return The object at the array index specified.
|
3226 |
|
|
*/
|
3227 |
|
|
public E get(int index)
|
3228 |
|
|
{
|
3229 |
|
|
return a[index];
|
3230 |
|
|
}
|
3231 |
|
|
|
3232 |
|
|
/**
|
3233 |
|
|
* Returns the size of the array.
|
3234 |
|
|
*
|
3235 |
|
|
* @return The size.
|
3236 |
|
|
*/
|
3237 |
|
|
public int size()
|
3238 |
|
|
{
|
3239 |
|
|
return a.length;
|
3240 |
|
|
}
|
3241 |
|
|
|
3242 |
|
|
/**
|
3243 |
|
|
* Replaces the object at the specified index
|
3244 |
|
|
* with the supplied element.
|
3245 |
|
|
*
|
3246 |
|
|
* @param index The index at which to place the new object.
|
3247 |
|
|
* @param element The new object.
|
3248 |
|
|
* @return The object replaced by this operation.
|
3249 |
|
|
*/
|
3250 |
|
|
public E set(int index, E element)
|
3251 |
|
|
{
|
3252 |
|
|
E old = a[index];
|
3253 |
|
|
a[index] = element;
|
3254 |
|
|
return old;
|
3255 |
|
|
}
|
3256 |
|
|
|
3257 |
|
|
/**
|
3258 |
|
|
* Returns true if the array contains the
|
3259 |
|
|
* supplied object.
|
3260 |
|
|
*
|
3261 |
|
|
* @param o The object to look for.
|
3262 |
|
|
* @return True if the object was found.
|
3263 |
|
|
*/
|
3264 |
|
|
public boolean contains(Object o)
|
3265 |
|
|
{
|
3266 |
|
|
return lastIndexOf(o) >= 0;
|
3267 |
|
|
}
|
3268 |
|
|
|
3269 |
|
|
/**
|
3270 |
|
|
* Returns the first index at which the
|
3271 |
|
|
* object, o, occurs in the array.
|
3272 |
|
|
*
|
3273 |
|
|
* @param o The object to search for.
|
3274 |
|
|
* @return The first relevant index.
|
3275 |
|
|
*/
|
3276 |
|
|
public int indexOf(Object o)
|
3277 |
|
|
{
|
3278 |
|
|
int size = a.length;
|
3279 |
|
|
for (int i = 0; i < size; i++)
|
3280 |
|
|
if (ArrayList.equals(o, a[i]))
|
3281 |
|
|
return i;
|
3282 |
|
|
return -1;
|
3283 |
|
|
}
|
3284 |
|
|
|
3285 |
|
|
/**
|
3286 |
|
|
* Returns the last index at which the
|
3287 |
|
|
* object, o, occurs in the array.
|
3288 |
|
|
*
|
3289 |
|
|
* @param o The object to search for.
|
3290 |
|
|
* @return The last relevant index.
|
3291 |
|
|
*/
|
3292 |
|
|
public int lastIndexOf(Object o)
|
3293 |
|
|
{
|
3294 |
|
|
int i = a.length;
|
3295 |
|
|
while (--i >= 0)
|
3296 |
|
|
if (ArrayList.equals(o, a[i]))
|
3297 |
|
|
return i;
|
3298 |
|
|
return -1;
|
3299 |
|
|
}
|
3300 |
|
|
|
3301 |
|
|
/**
|
3302 |
|
|
* Transforms the list into an array of
|
3303 |
|
|
* objects, by simplying cloning the array
|
3304 |
|
|
* wrapped by this list.
|
3305 |
|
|
*
|
3306 |
|
|
* @return A clone of the internal array.
|
3307 |
|
|
*/
|
3308 |
|
|
public Object[] toArray()
|
3309 |
|
|
{
|
3310 |
|
|
return (Object[]) a.clone();
|
3311 |
|
|
}
|
3312 |
|
|
|
3313 |
|
|
/**
|
3314 |
|
|
* Copies the objects from this list into
|
3315 |
|
|
* the supplied array. The supplied array
|
3316 |
|
|
* is shrunk or enlarged to the size of the
|
3317 |
|
|
* internal array, and filled with its objects.
|
3318 |
|
|
*
|
3319 |
|
|
* @param array The array to fill with the objects in this list.
|
3320 |
|
|
* @return The array containing the objects in this list,
|
3321 |
|
|
* which may or may not be == to array.
|
3322 |
|
|
*/
|
3323 |
|
|
public <T> T[] toArray(T[] array)
|
3324 |
|
|
{
|
3325 |
|
|
int size = a.length;
|
3326 |
|
|
if (array.length < size)
|
3327 |
|
|
array = (T[]) Array.newInstance(array.getClass().getComponentType(),
|
3328 |
|
|
size);
|
3329 |
|
|
else if (array.length > size)
|
3330 |
|
|
array[size] = null;
|
3331 |
|
|
|
3332 |
|
|
System.arraycopy(a, 0, array, 0, size);
|
3333 |
|
|
return array;
|
3334 |
|
|
}
|
3335 |
|
|
}
|
3336 |
|
|
|
3337 |
|
|
/**
|
3338 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3339 |
|
|
* necessary with <code>false</code> to obtain the specified length.
|
3340 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3341 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3342 |
|
|
* being greater than the original length) will return <code>false</code>.
|
3343 |
|
|
* This is equivalent to calling
|
3344 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3345 |
|
|
*
|
3346 |
|
|
* @param original the original array to be copied.
|
3347 |
|
|
* @param newLength the length of the returned array.
|
3348 |
|
|
* @return a copy of the original array, truncated or padded with
|
3349 |
|
|
* <code>false</code> to obtain the required length.
|
3350 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3351 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3352 |
|
|
* @since 1.6
|
3353 |
|
|
* @see #copyOfRange(boolean[],int,int)
|
3354 |
|
|
*/
|
3355 |
|
|
public static boolean[] copyOf(boolean[] original, int newLength)
|
3356 |
|
|
{
|
3357 |
|
|
if (newLength < 0)
|
3358 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3359 |
|
|
return copyOfRange(original, 0, newLength);
|
3360 |
|
|
}
|
3361 |
|
|
|
3362 |
|
|
/**
|
3363 |
|
|
* Copies the specified range of the supplied array to a new
|
3364 |
|
|
* array, padding as necessary with <code>false</code>
|
3365 |
|
|
* if <code>to</code> is greater than the length of the original
|
3366 |
|
|
* array. <code>from</code> must be in the range zero to
|
3367 |
|
|
* <code>original.length</code> and can not be greater than
|
3368 |
|
|
* <code>to</code>. The initial element of the
|
3369 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3370 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3371 |
|
|
* (where a zero-length array will be returned) or <code>
|
3372 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3373 |
|
|
* (where an array padded with <code>false</code> will be
|
3374 |
|
|
* returned). The returned array is always of length
|
3375 |
|
|
* <code>to - from</code>.
|
3376 |
|
|
*
|
3377 |
|
|
* @param original the array from which to copy.
|
3378 |
|
|
* @param from the initial index of the range, inclusive.
|
3379 |
|
|
* @param to the final index of the range, exclusive.
|
3380 |
|
|
* @return a copy of the specified range, with padding to
|
3381 |
|
|
* obtain the required length.
|
3382 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3383 |
|
|
* or <code>from > original.length</code>
|
3384 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3385 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3386 |
|
|
* @since 1.6
|
3387 |
|
|
* @see #copyOf(boolean[],int)
|
3388 |
|
|
*/
|
3389 |
|
|
public static boolean[] copyOfRange(boolean[] original, int from, int to)
|
3390 |
|
|
{
|
3391 |
|
|
if (from > to)
|
3392 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3393 |
|
|
"the final index.");
|
3394 |
|
|
boolean[] newArray = new boolean[to - from];
|
3395 |
|
|
if (to > original.length)
|
3396 |
|
|
{
|
3397 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3398 |
|
|
original.length - from);
|
3399 |
|
|
fill(newArray, original.length, newArray.length, false);
|
3400 |
|
|
}
|
3401 |
|
|
else
|
3402 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3403 |
|
|
return newArray;
|
3404 |
|
|
}
|
3405 |
|
|
|
3406 |
|
|
/**
|
3407 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3408 |
|
|
* necessary with <code>(byte)0</code> to obtain the specified length.
|
3409 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3410 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3411 |
|
|
* being greater than the original length) will return <code>(byte)0</code>.
|
3412 |
|
|
* This is equivalent to calling
|
3413 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3414 |
|
|
*
|
3415 |
|
|
* @param original the original array to be copied.
|
3416 |
|
|
* @param newLength the length of the returned array.
|
3417 |
|
|
* @return a copy of the original array, truncated or padded with
|
3418 |
|
|
* <code>(byte)0</code> to obtain the required length.
|
3419 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3420 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3421 |
|
|
* @since 1.6
|
3422 |
|
|
* @see #copyOfRange(byte[],int,int)
|
3423 |
|
|
*/
|
3424 |
|
|
public static byte[] copyOf(byte[] original, int newLength)
|
3425 |
|
|
{
|
3426 |
|
|
if (newLength < 0)
|
3427 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3428 |
|
|
return copyOfRange(original, 0, newLength);
|
3429 |
|
|
}
|
3430 |
|
|
|
3431 |
|
|
/**
|
3432 |
|
|
* Copies the specified range of the supplied array to a new
|
3433 |
|
|
* array, padding as necessary with <code>(byte)0</code>
|
3434 |
|
|
* if <code>to</code> is greater than the length of the original
|
3435 |
|
|
* array. <code>from</code> must be in the range zero to
|
3436 |
|
|
* <code>original.length</code> and can not be greater than
|
3437 |
|
|
* <code>to</code>. The initial element of the
|
3438 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3439 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3440 |
|
|
* (where a zero-length array will be returned) or <code>
|
3441 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3442 |
|
|
* (where an array padded with <code>(byte)0</code> will be
|
3443 |
|
|
* returned). The returned array is always of length
|
3444 |
|
|
* <code>to - from</code>.
|
3445 |
|
|
*
|
3446 |
|
|
* @param original the array from which to copy.
|
3447 |
|
|
* @param from the initial index of the range, inclusive.
|
3448 |
|
|
* @param to the final index of the range, exclusive.
|
3449 |
|
|
* @return a copy of the specified range, with padding to
|
3450 |
|
|
* obtain the required length.
|
3451 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3452 |
|
|
* or <code>from > original.length</code>
|
3453 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3454 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3455 |
|
|
* @since 1.6
|
3456 |
|
|
* @see #copyOf(byte[],int)
|
3457 |
|
|
*/
|
3458 |
|
|
public static byte[] copyOfRange(byte[] original, int from, int to)
|
3459 |
|
|
{
|
3460 |
|
|
if (from > to)
|
3461 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3462 |
|
|
"the final index.");
|
3463 |
|
|
byte[] newArray = new byte[to - from];
|
3464 |
|
|
if (to > original.length)
|
3465 |
|
|
{
|
3466 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3467 |
|
|
original.length - from);
|
3468 |
|
|
fill(newArray, original.length, newArray.length, (byte)0);
|
3469 |
|
|
}
|
3470 |
|
|
else
|
3471 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3472 |
|
|
return newArray;
|
3473 |
|
|
}
|
3474 |
|
|
|
3475 |
|
|
/**
|
3476 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3477 |
|
|
* necessary with <code>'\0'</code> to obtain the specified length.
|
3478 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3479 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3480 |
|
|
* being greater than the original length) will return <code>'\0'</code>.
|
3481 |
|
|
* This is equivalent to calling
|
3482 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3483 |
|
|
*
|
3484 |
|
|
* @param original the original array to be copied.
|
3485 |
|
|
* @param newLength the length of the returned array.
|
3486 |
|
|
* @return a copy of the original array, truncated or padded with
|
3487 |
|
|
* <code>'\0'</code> to obtain the required length.
|
3488 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3489 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3490 |
|
|
* @since 1.6
|
3491 |
|
|
* @see #copyOfRange(char[],int,int)
|
3492 |
|
|
*/
|
3493 |
|
|
public static char[] copyOf(char[] original, int newLength)
|
3494 |
|
|
{
|
3495 |
|
|
if (newLength < 0)
|
3496 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3497 |
|
|
return copyOfRange(original, 0, newLength);
|
3498 |
|
|
}
|
3499 |
|
|
|
3500 |
|
|
/**
|
3501 |
|
|
* Copies the specified range of the supplied array to a new
|
3502 |
|
|
* array, padding as necessary with <code>'\0'</code>
|
3503 |
|
|
* if <code>to</code> is greater than the length of the original
|
3504 |
|
|
* array. <code>from</code> must be in the range zero to
|
3505 |
|
|
* <code>original.length</code> and can not be greater than
|
3506 |
|
|
* <code>to</code>. The initial element of the
|
3507 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3508 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3509 |
|
|
* (where a zero-length array will be returned) or <code>
|
3510 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3511 |
|
|
* (where an array padded with <code>'\0'</code> will be
|
3512 |
|
|
* returned). The returned array is always of length
|
3513 |
|
|
* <code>to - from</code>.
|
3514 |
|
|
*
|
3515 |
|
|
* @param original the array from which to copy.
|
3516 |
|
|
* @param from the initial index of the range, inclusive.
|
3517 |
|
|
* @param to the final index of the range, exclusive.
|
3518 |
|
|
* @return a copy of the specified range, with padding to
|
3519 |
|
|
* obtain the required length.
|
3520 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3521 |
|
|
* or <code>from > original.length</code>
|
3522 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3523 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3524 |
|
|
* @since 1.6
|
3525 |
|
|
* @see #copyOf(char[],int)
|
3526 |
|
|
*/
|
3527 |
|
|
public static char[] copyOfRange(char[] original, int from, int to)
|
3528 |
|
|
{
|
3529 |
|
|
if (from > to)
|
3530 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3531 |
|
|
"the final index.");
|
3532 |
|
|
char[] newArray = new char[to - from];
|
3533 |
|
|
if (to > original.length)
|
3534 |
|
|
{
|
3535 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3536 |
|
|
original.length - from);
|
3537 |
|
|
fill(newArray, original.length, newArray.length, '\0');
|
3538 |
|
|
}
|
3539 |
|
|
else
|
3540 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3541 |
|
|
return newArray;
|
3542 |
|
|
}
|
3543 |
|
|
|
3544 |
|
|
/**
|
3545 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3546 |
|
|
* necessary with <code>0d</code> to obtain the specified length.
|
3547 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3548 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3549 |
|
|
* being greater than the original length) will return <code>0d</code>.
|
3550 |
|
|
* This is equivalent to calling
|
3551 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3552 |
|
|
*
|
3553 |
|
|
* @param original the original array to be copied.
|
3554 |
|
|
* @param newLength the length of the returned array.
|
3555 |
|
|
* @return a copy of the original array, truncated or padded with
|
3556 |
|
|
* <code>0d</code> to obtain the required length.
|
3557 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3558 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3559 |
|
|
* @since 1.6
|
3560 |
|
|
* @see #copyOfRange(double[],int,int)
|
3561 |
|
|
*/
|
3562 |
|
|
public static double[] copyOf(double[] original, int newLength)
|
3563 |
|
|
{
|
3564 |
|
|
if (newLength < 0)
|
3565 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3566 |
|
|
return copyOfRange(original, 0, newLength);
|
3567 |
|
|
}
|
3568 |
|
|
|
3569 |
|
|
/**
|
3570 |
|
|
* Copies the specified range of the supplied array to a new
|
3571 |
|
|
* array, padding as necessary with <code>0d</code>
|
3572 |
|
|
* if <code>to</code> is greater than the length of the original
|
3573 |
|
|
* array. <code>from</code> must be in the range zero to
|
3574 |
|
|
* <code>original.length</code> and can not be greater than
|
3575 |
|
|
* <code>to</code>. The initial element of the
|
3576 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3577 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3578 |
|
|
* (where a zero-length array will be returned) or <code>
|
3579 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3580 |
|
|
* (where an array padded with <code>0d</code> will be
|
3581 |
|
|
* returned). The returned array is always of length
|
3582 |
|
|
* <code>to - from</code>.
|
3583 |
|
|
*
|
3584 |
|
|
* @param original the array from which to copy.
|
3585 |
|
|
* @param from the initial index of the range, inclusive.
|
3586 |
|
|
* @param to the final index of the range, exclusive.
|
3587 |
|
|
* @return a copy of the specified range, with padding to
|
3588 |
|
|
* obtain the required length.
|
3589 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3590 |
|
|
* or <code>from > original.length</code>
|
3591 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3592 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3593 |
|
|
* @since 1.6
|
3594 |
|
|
* @see #copyOf(double[],int)
|
3595 |
|
|
*/
|
3596 |
|
|
public static double[] copyOfRange(double[] original, int from, int to)
|
3597 |
|
|
{
|
3598 |
|
|
if (from > to)
|
3599 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3600 |
|
|
"the final index.");
|
3601 |
|
|
double[] newArray = new double[to - from];
|
3602 |
|
|
if (to > original.length)
|
3603 |
|
|
{
|
3604 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3605 |
|
|
original.length - from);
|
3606 |
|
|
fill(newArray, original.length, newArray.length, 0d);
|
3607 |
|
|
}
|
3608 |
|
|
else
|
3609 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3610 |
|
|
return newArray;
|
3611 |
|
|
}
|
3612 |
|
|
|
3613 |
|
|
/**
|
3614 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3615 |
|
|
* necessary with <code>0f</code> to obtain the specified length.
|
3616 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3617 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3618 |
|
|
* being greater than the original length) will return <code>0f</code>.
|
3619 |
|
|
* This is equivalent to calling
|
3620 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3621 |
|
|
*
|
3622 |
|
|
* @param original the original array to be copied.
|
3623 |
|
|
* @param newLength the length of the returned array.
|
3624 |
|
|
* @return a copy of the original array, truncated or padded with
|
3625 |
|
|
* <code>0f</code> to obtain the required length.
|
3626 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3627 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3628 |
|
|
* @since 1.6
|
3629 |
|
|
* @see #copyOfRange(float[],int,int)
|
3630 |
|
|
*/
|
3631 |
|
|
public static float[] copyOf(float[] original, int newLength)
|
3632 |
|
|
{
|
3633 |
|
|
if (newLength < 0)
|
3634 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3635 |
|
|
return copyOfRange(original, 0, newLength);
|
3636 |
|
|
}
|
3637 |
|
|
|
3638 |
|
|
/**
|
3639 |
|
|
* Copies the specified range of the supplied array to a new
|
3640 |
|
|
* array, padding as necessary with <code>0f</code>
|
3641 |
|
|
* if <code>to</code> is greater than the length of the original
|
3642 |
|
|
* array. <code>from</code> must be in the range zero to
|
3643 |
|
|
* <code>original.length</code> and can not be greater than
|
3644 |
|
|
* <code>to</code>. The initial element of the
|
3645 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3646 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3647 |
|
|
* (where a zero-length array will be returned) or <code>
|
3648 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3649 |
|
|
* (where an array padded with <code>0f</code> will be
|
3650 |
|
|
* returned). The returned array is always of length
|
3651 |
|
|
* <code>to - from</code>.
|
3652 |
|
|
*
|
3653 |
|
|
* @param original the array from which to copy.
|
3654 |
|
|
* @param from the initial index of the range, inclusive.
|
3655 |
|
|
* @param to the final index of the range, exclusive.
|
3656 |
|
|
* @return a copy of the specified range, with padding to
|
3657 |
|
|
* obtain the required length.
|
3658 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3659 |
|
|
* or <code>from > original.length</code>
|
3660 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3661 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3662 |
|
|
* @since 1.6
|
3663 |
|
|
* @see #copyOf(float[],int)
|
3664 |
|
|
*/
|
3665 |
|
|
public static float[] copyOfRange(float[] original, int from, int to)
|
3666 |
|
|
{
|
3667 |
|
|
if (from > to)
|
3668 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3669 |
|
|
"the final index.");
|
3670 |
|
|
float[] newArray = new float[to - from];
|
3671 |
|
|
if (to > original.length)
|
3672 |
|
|
{
|
3673 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3674 |
|
|
original.length - from);
|
3675 |
|
|
fill(newArray, original.length, newArray.length, 0f);
|
3676 |
|
|
}
|
3677 |
|
|
else
|
3678 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3679 |
|
|
return newArray;
|
3680 |
|
|
}
|
3681 |
|
|
|
3682 |
|
|
/**
|
3683 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3684 |
|
|
* necessary with <code>0</code> to obtain the specified length.
|
3685 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3686 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3687 |
|
|
* being greater than the original length) will return <code>0</code>.
|
3688 |
|
|
* This is equivalent to calling
|
3689 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3690 |
|
|
*
|
3691 |
|
|
* @param original the original array to be copied.
|
3692 |
|
|
* @param newLength the length of the returned array.
|
3693 |
|
|
* @return a copy of the original array, truncated or padded with
|
3694 |
|
|
* <code>0</code> to obtain the required length.
|
3695 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3696 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3697 |
|
|
* @since 1.6
|
3698 |
|
|
* @see #copyOfRange(int[],int,int)
|
3699 |
|
|
*/
|
3700 |
|
|
public static int[] copyOf(int[] original, int newLength)
|
3701 |
|
|
{
|
3702 |
|
|
if (newLength < 0)
|
3703 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3704 |
|
|
return copyOfRange(original, 0, newLength);
|
3705 |
|
|
}
|
3706 |
|
|
|
3707 |
|
|
/**
|
3708 |
|
|
* Copies the specified range of the supplied array to a new
|
3709 |
|
|
* array, padding as necessary with <code>0</code>
|
3710 |
|
|
* if <code>to</code> is greater than the length of the original
|
3711 |
|
|
* array. <code>from</code> must be in the range zero to
|
3712 |
|
|
* <code>original.length</code> and can not be greater than
|
3713 |
|
|
* <code>to</code>. The initial element of the
|
3714 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3715 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3716 |
|
|
* (where a zero-length array will be returned) or <code>
|
3717 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3718 |
|
|
* (where an array padded with <code>0</code> will be
|
3719 |
|
|
* returned). The returned array is always of length
|
3720 |
|
|
* <code>to - from</code>.
|
3721 |
|
|
*
|
3722 |
|
|
* @param original the array from which to copy.
|
3723 |
|
|
* @param from the initial index of the range, inclusive.
|
3724 |
|
|
* @param to the final index of the range, exclusive.
|
3725 |
|
|
* @return a copy of the specified range, with padding to
|
3726 |
|
|
* obtain the required length.
|
3727 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3728 |
|
|
* or <code>from > original.length</code>
|
3729 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3730 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3731 |
|
|
* @since 1.6
|
3732 |
|
|
* @see #copyOf(int[],int)
|
3733 |
|
|
*/
|
3734 |
|
|
public static int[] copyOfRange(int[] original, int from, int to)
|
3735 |
|
|
{
|
3736 |
|
|
if (from > to)
|
3737 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3738 |
|
|
"the final index.");
|
3739 |
|
|
int[] newArray = new int[to - from];
|
3740 |
|
|
if (to > original.length)
|
3741 |
|
|
{
|
3742 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3743 |
|
|
original.length - from);
|
3744 |
|
|
fill(newArray, original.length, newArray.length, 0);
|
3745 |
|
|
}
|
3746 |
|
|
else
|
3747 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3748 |
|
|
return newArray;
|
3749 |
|
|
}
|
3750 |
|
|
|
3751 |
|
|
/**
|
3752 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3753 |
|
|
* necessary with <code>0L</code> to obtain the specified length.
|
3754 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3755 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3756 |
|
|
* being greater than the original length) will return <code>0L</code>.
|
3757 |
|
|
* This is equivalent to calling
|
3758 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3759 |
|
|
*
|
3760 |
|
|
* @param original the original array to be copied.
|
3761 |
|
|
* @param newLength the length of the returned array.
|
3762 |
|
|
* @return a copy of the original array, truncated or padded with
|
3763 |
|
|
* <code>0L</code> to obtain the required length.
|
3764 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3765 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3766 |
|
|
* @since 1.6
|
3767 |
|
|
* @see #copyOfRange(long[],int,int)
|
3768 |
|
|
*/
|
3769 |
|
|
public static long[] copyOf(long[] original, int newLength)
|
3770 |
|
|
{
|
3771 |
|
|
if (newLength < 0)
|
3772 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3773 |
|
|
return copyOfRange(original, 0, newLength);
|
3774 |
|
|
}
|
3775 |
|
|
|
3776 |
|
|
/**
|
3777 |
|
|
* Copies the specified range of the supplied array to a new
|
3778 |
|
|
* array, padding as necessary with <code>0L</code>
|
3779 |
|
|
* if <code>to</code> is greater than the length of the original
|
3780 |
|
|
* array. <code>from</code> must be in the range zero to
|
3781 |
|
|
* <code>original.length</code> and can not be greater than
|
3782 |
|
|
* <code>to</code>. The initial element of the
|
3783 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3784 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3785 |
|
|
* (where a zero-length array will be returned) or <code>
|
3786 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3787 |
|
|
* (where an array padded with <code>0L</code> will be
|
3788 |
|
|
* returned). The returned array is always of length
|
3789 |
|
|
* <code>to - from</code>.
|
3790 |
|
|
*
|
3791 |
|
|
* @param original the array from which to copy.
|
3792 |
|
|
* @param from the initial index of the range, inclusive.
|
3793 |
|
|
* @param to the final index of the range, exclusive.
|
3794 |
|
|
* @return a copy of the specified range, with padding to
|
3795 |
|
|
* obtain the required length.
|
3796 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3797 |
|
|
* or <code>from > original.length</code>
|
3798 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3799 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3800 |
|
|
* @since 1.6
|
3801 |
|
|
* @see #copyOf(long[],int)
|
3802 |
|
|
*/
|
3803 |
|
|
public static long[] copyOfRange(long[] original, int from, int to)
|
3804 |
|
|
{
|
3805 |
|
|
if (from > to)
|
3806 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3807 |
|
|
"the final index.");
|
3808 |
|
|
long[] newArray = new long[to - from];
|
3809 |
|
|
if (to > original.length)
|
3810 |
|
|
{
|
3811 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3812 |
|
|
original.length - from);
|
3813 |
|
|
fill(newArray, original.length, newArray.length, 0L);
|
3814 |
|
|
}
|
3815 |
|
|
else
|
3816 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3817 |
|
|
return newArray;
|
3818 |
|
|
}
|
3819 |
|
|
|
3820 |
|
|
/**
|
3821 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3822 |
|
|
* necessary with <code>(short)0</code> to obtain the specified length.
|
3823 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3824 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3825 |
|
|
* being greater than the original length) will return <code>(short)0</code>.
|
3826 |
|
|
* This is equivalent to calling
|
3827 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3828 |
|
|
*
|
3829 |
|
|
* @param original the original array to be copied.
|
3830 |
|
|
* @param newLength the length of the returned array.
|
3831 |
|
|
* @return a copy of the original array, truncated or padded with
|
3832 |
|
|
* <code>(short)0</code> to obtain the required length.
|
3833 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3834 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3835 |
|
|
* @since 1.6
|
3836 |
|
|
* @see #copyOfRange(short[],int,int)
|
3837 |
|
|
*/
|
3838 |
|
|
public static short[] copyOf(short[] original, int newLength)
|
3839 |
|
|
{
|
3840 |
|
|
if (newLength < 0)
|
3841 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3842 |
|
|
return copyOfRange(original, 0, newLength);
|
3843 |
|
|
}
|
3844 |
|
|
|
3845 |
|
|
/**
|
3846 |
|
|
* Copies the specified range of the supplied array to a new
|
3847 |
|
|
* array, padding as necessary with <code>(short)0</code>
|
3848 |
|
|
* if <code>to</code> is greater than the length of the original
|
3849 |
|
|
* array. <code>from</code> must be in the range zero to
|
3850 |
|
|
* <code>original.length</code> and can not be greater than
|
3851 |
|
|
* <code>to</code>. The initial element of the
|
3852 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3853 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3854 |
|
|
* (where a zero-length array will be returned) or <code>
|
3855 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3856 |
|
|
* (where an array padded with <code>(short)0</code> will be
|
3857 |
|
|
* returned). The returned array is always of length
|
3858 |
|
|
* <code>to - from</code>.
|
3859 |
|
|
*
|
3860 |
|
|
* @param original the array from which to copy.
|
3861 |
|
|
* @param from the initial index of the range, inclusive.
|
3862 |
|
|
* @param to the final index of the range, exclusive.
|
3863 |
|
|
* @return a copy of the specified range, with padding to
|
3864 |
|
|
* obtain the required length.
|
3865 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3866 |
|
|
* or <code>from > original.length</code>
|
3867 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3868 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3869 |
|
|
* @since 1.6
|
3870 |
|
|
* @see #copyOf(short[],int)
|
3871 |
|
|
*/
|
3872 |
|
|
public static short[] copyOfRange(short[] original, int from, int to)
|
3873 |
|
|
{
|
3874 |
|
|
if (from > to)
|
3875 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3876 |
|
|
"the final index.");
|
3877 |
|
|
short[] newArray = new short[to - from];
|
3878 |
|
|
if (to > original.length)
|
3879 |
|
|
{
|
3880 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3881 |
|
|
original.length - from);
|
3882 |
|
|
fill(newArray, original.length, newArray.length, (short)0);
|
3883 |
|
|
}
|
3884 |
|
|
else
|
3885 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3886 |
|
|
return newArray;
|
3887 |
|
|
}
|
3888 |
|
|
|
3889 |
|
|
/**
|
3890 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3891 |
|
|
* necessary with <code>null</code> to obtain the specified length.
|
3892 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3893 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3894 |
|
|
* being greater than the original length) will return <code>null</code>.
|
3895 |
|
|
* This is equivalent to calling
|
3896 |
|
|
* <code>copyOfRange(original, 0, newLength)</code>.
|
3897 |
|
|
*
|
3898 |
|
|
* @param original the original array to be copied.
|
3899 |
|
|
* @param newLength the length of the returned array.
|
3900 |
|
|
* @return a copy of the original array, truncated or padded with
|
3901 |
|
|
* <code>null</code> to obtain the required length.
|
3902 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3903 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3904 |
|
|
* @since 1.6
|
3905 |
|
|
* @see #copyOfRange(T[],int,int)
|
3906 |
|
|
*/
|
3907 |
|
|
public static <T> T[] copyOf(T[] original, int newLength)
|
3908 |
|
|
{
|
3909 |
|
|
if (newLength < 0)
|
3910 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3911 |
|
|
return copyOfRange(original, 0, newLength);
|
3912 |
|
|
}
|
3913 |
|
|
|
3914 |
|
|
/**
|
3915 |
|
|
* Copies the specified range of the supplied array to a new
|
3916 |
|
|
* array, padding as necessary with <code>null</code>
|
3917 |
|
|
* if <code>to</code> is greater than the length of the original
|
3918 |
|
|
* array. <code>from</code> must be in the range zero to
|
3919 |
|
|
* <code>original.length</code> and can not be greater than
|
3920 |
|
|
* <code>to</code>. The initial element of the
|
3921 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3922 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3923 |
|
|
* (where a zero-length array will be returned) or <code>
|
3924 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3925 |
|
|
* (where an array padded with <code>null</code> will be
|
3926 |
|
|
* returned). The returned array is always of length
|
3927 |
|
|
* <code>to - from</code>.
|
3928 |
|
|
*
|
3929 |
|
|
* @param original the array from which to copy.
|
3930 |
|
|
* @param from the initial index of the range, inclusive.
|
3931 |
|
|
* @param to the final index of the range, exclusive.
|
3932 |
|
|
* @return a copy of the specified range, with padding to
|
3933 |
|
|
* obtain the required length.
|
3934 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
3935 |
|
|
* or <code>from > original.length</code>
|
3936 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
3937 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3938 |
|
|
* @since 1.6
|
3939 |
|
|
* @see #copyOf(T[],int)
|
3940 |
|
|
*/
|
3941 |
|
|
public static <T> T[] copyOfRange(T[] original, int from, int to)
|
3942 |
|
|
{
|
3943 |
|
|
if (from > to)
|
3944 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
3945 |
|
|
"the final index.");
|
3946 |
|
|
Class elemType = original.getClass().getComponentType();
|
3947 |
|
|
T[] newArray = (T[]) Array.newInstance(elemType, to - from);
|
3948 |
|
|
if (to > original.length)
|
3949 |
|
|
{
|
3950 |
|
|
System.arraycopy(original, from, newArray, 0,
|
3951 |
|
|
original.length - from);
|
3952 |
|
|
fill(newArray, original.length, newArray.length, null);
|
3953 |
|
|
}
|
3954 |
|
|
else
|
3955 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
3956 |
|
|
return newArray;
|
3957 |
|
|
}
|
3958 |
|
|
|
3959 |
|
|
/**
|
3960 |
|
|
* Returns a copy of the supplied array, truncating or padding as
|
3961 |
|
|
* necessary with <code>null</code> to obtain the specified length.
|
3962 |
|
|
* Indices that are valid for both arrays will return the same value.
|
3963 |
|
|
* Indices that only exist in the returned array (due to the new length
|
3964 |
|
|
* being greater than the original length) will return <code>null</code>.
|
3965 |
|
|
* This is equivalent to calling
|
3966 |
|
|
* <code>copyOfRange(original, 0, newLength, newType)</code>. The returned
|
3967 |
|
|
* array will be of the specified type, <code>newType</code>.
|
3968 |
|
|
*
|
3969 |
|
|
* @param original the original array to be copied.
|
3970 |
|
|
* @param newLength the length of the returned array.
|
3971 |
|
|
* @param newType the type of the returned array.
|
3972 |
|
|
* @return a copy of the original array, truncated or padded with
|
3973 |
|
|
* <code>null</code> to obtain the required length.
|
3974 |
|
|
* @throws NegativeArraySizeException if <code>newLength</code> is negative.
|
3975 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
3976 |
|
|
* @since 1.6
|
3977 |
|
|
* @see #copyOfRange(U[],int,int,Class)
|
3978 |
|
|
*/
|
3979 |
|
|
public static <T,U> T[] copyOf(U[] original, int newLength,
|
3980 |
|
|
Class<? extends T[]> newType)
|
3981 |
|
|
{
|
3982 |
|
|
if (newLength < 0)
|
3983 |
|
|
throw new NegativeArraySizeException("The array size is negative.");
|
3984 |
|
|
return copyOfRange(original, 0, newLength, newType);
|
3985 |
|
|
}
|
3986 |
|
|
|
3987 |
|
|
/**
|
3988 |
|
|
* Copies the specified range of the supplied array to a new
|
3989 |
|
|
* array, padding as necessary with <code>null</code>
|
3990 |
|
|
* if <code>to</code> is greater than the length of the original
|
3991 |
|
|
* array. <code>from</code> must be in the range zero to
|
3992 |
|
|
* <code>original.length</code> and can not be greater than
|
3993 |
|
|
* <code>to</code>. The initial element of the
|
3994 |
|
|
* returned array will be equal to <code>original[from]</code>,
|
3995 |
|
|
* except where <code>from</code> is equal to <code>to</code>
|
3996 |
|
|
* (where a zero-length array will be returned) or <code>
|
3997 |
|
|
* <code>from</code> is equal to <code>original.length</code>
|
3998 |
|
|
* (where an array padded with <code>null</code> will be
|
3999 |
|
|
* returned). The returned array is always of length
|
4000 |
|
|
* <code>to - from</code> and will be of the specified type,
|
4001 |
|
|
* <code>newType</code>.
|
4002 |
|
|
*
|
4003 |
|
|
* @param original the array from which to copy.
|
4004 |
|
|
* @param from the initial index of the range, inclusive.
|
4005 |
|
|
* @param to the final index of the range, exclusive.
|
4006 |
|
|
* @param newType the type of the returned array.
|
4007 |
|
|
* @return a copy of the specified range, with padding to
|
4008 |
|
|
* obtain the required length.
|
4009 |
|
|
* @throws ArrayIndexOutOfBoundsException if <code>from < 0</code>
|
4010 |
|
|
* or <code>from > original.length</code>
|
4011 |
|
|
* @throws IllegalArgumentException if <code>from > to</code>
|
4012 |
|
|
* @throws NullPointerException if <code>original</code> is <code>null</code>.
|
4013 |
|
|
* @since 1.6
|
4014 |
|
|
* @see #copyOf(T[],int)
|
4015 |
|
|
*/
|
4016 |
|
|
public static <T,U> T[] copyOfRange(U[] original, int from, int to,
|
4017 |
|
|
Class<? extends T[]> newType)
|
4018 |
|
|
{
|
4019 |
|
|
if (from > to)
|
4020 |
|
|
throw new IllegalArgumentException("The initial index is after " +
|
4021 |
|
|
"the final index.");
|
4022 |
|
|
T[] newArray = (T[]) Array.newInstance(newType.getComponentType(),
|
4023 |
|
|
to - from);
|
4024 |
|
|
if (to > original.length)
|
4025 |
|
|
{
|
4026 |
|
|
System.arraycopy(original, from, newArray, 0,
|
4027 |
|
|
original.length - from);
|
4028 |
|
|
fill(newArray, original.length, newArray.length, null);
|
4029 |
|
|
}
|
4030 |
|
|
else
|
4031 |
|
|
System.arraycopy(original, from, newArray, 0, to - from);
|
4032 |
|
|
return newArray;
|
4033 |
|
|
}
|
4034 |
|
|
}
|