OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [java/] [util/] [BitSet.java] - Blame information for rev 867

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 771 jeremybenn
/* BitSet.java -- A vector of bits.
2
   Copyright (C) 1998, 1999, 2000, 2001, 2004, 2005  Free Software Foundation, Inc.
3
 
4
This file is part of GNU Classpath.
5
 
6
GNU Classpath is free software; you can redistribute it and/or modify
7
it under the terms of the GNU General Public License as published by
8
the Free Software Foundation; either version 2, or (at your option)
9
any later version.
10
 
11
GNU Classpath is distributed in the hope that it will be useful, but
12
WITHOUT ANY WARRANTY; without even the implied warranty of
13
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
General Public License for more details.
15
 
16
You should have received a copy of the GNU General Public License
17
along with GNU Classpath; see the file COPYING.  If not, write to the
18
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
19
02110-1301 USA.
20
 
21
Linking this library statically or dynamically with other modules is
22
making a combined work based on this library.  Thus, the terms and
23
conditions of the GNU General Public License cover the whole
24
combination.
25
 
26
As a special exception, the copyright holders of this library give you
27
permission to link this library with independent modules to produce an
28
executable, regardless of the license terms of these independent
29
modules, and to copy and distribute the resulting executable under
30
terms of your choice, provided that you also meet, for each linked
31
independent module, the terms and conditions of the license of that
32
module.  An independent module is a module which is not derived from
33
or based on this library.  If you modify this library, you may extend
34
this exception to your version of the library, but you are not
35
obligated to do so.  If you do not wish to do so, delete this
36
exception statement from your version. */
37
 
38
package java.util;
39
 
40
import gnu.java.lang.CPStringBuilder;
41
 
42
import java.io.Serializable;
43
 
44
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
45
 * hashCode algorithm taken from JDK 1.2 docs.
46
 */
47
 
48
/**
49
 * This class can be thought of in two ways.  You can see it as a
50
 * vector of bits or as a set of non-negative integers.  The name
51
 * <code>BitSet</code> is a bit misleading.
52
 *
53
 * It is implemented by a bit vector, but its equally possible to see
54
 * it as set of non-negative integer; each integer in the set is
55
 * represented by a set bit at the corresponding index.  The size of
56
 * this structure is determined by the highest integer in the set.
57
 *
58
 * You can union, intersect and build (symmetric) remainders, by
59
 * invoking the logical operations and, or, andNot, resp. xor.
60
 *
61
 * This implementation is NOT synchronized against concurrent access from
62
 * multiple threads. Specifically, if one thread is reading from a bitset
63
 * while another thread is simultaneously modifying it, the results are
64
 * undefined.
65
 *
66
 * @author Jochen Hoenicke
67
 * @author Tom Tromey (tromey@cygnus.com)
68
 * @author Eric Blake (ebb9@email.byu.edu)
69
 * @status updated to 1.4
70
 */
71
public class BitSet implements Cloneable, Serializable
72
{
73
  /**
74
   * Compatible with JDK 1.0.
75
   */
76
  private static final long serialVersionUID = 7997698588986878753L;
77
 
78
  /**
79
   * A common mask.
80
   */
81
  private static final int LONG_MASK = 0x3f;
82
 
83
  /**
84
   * The actual bits.
85
   * @serial the i'th bit is in bits[i/64] at position i%64 (where position
86
   *         0 is the least significant).
87
   */
88
  private long[] bits;
89
 
90
  /**
91
   * Create a new empty bit set. All bits are initially false.
92
   */
93
  public BitSet()
94
  {
95
    this(64);
96
  }
97
 
98
  /**
99
   * Create a new empty bit set, with a given size.  This
100
   * constructor reserves enough space to represent the integers
101
   * from <code>0</code> to <code>nbits-1</code>.
102
   *
103
   * @param nbits the initial size of the bit set
104
   * @throws NegativeArraySizeException if nbits &lt; 0
105
   */
106
  public BitSet(int nbits)
107
  {
108
    if (nbits < 0)
109
      throw new NegativeArraySizeException();
110
 
111
    int length = nbits >>> 6;
112
    if ((nbits & LONG_MASK) != 0)
113
      ++length;
114
    bits = new long[length];
115
  }
116
 
117
  /**
118
   * Performs the logical AND operation on this bit set and the
119
   * given <code>set</code>.  This means it builds the intersection
120
   * of the two sets.  The result is stored into this bit set.
121
   *
122
   * @param bs the second bit set
123
   * @throws NullPointerException if bs is null
124
   */
125
  public void and(BitSet bs)
126
  {
127
    int max = Math.min(bits.length, bs.bits.length);
128
    int i;
129
    for (i = 0; i < max; ++i)
130
      bits[i] &= bs.bits[i];
131
    while (i < bits.length)
132
      bits[i++] = 0;
133
  }
134
 
135
  /**
136
   * Performs the logical AND operation on this bit set and the
137
   * complement of the given <code>bs</code>.  This means it
138
   * selects every element in the first set, that isn't in the
139
   * second set.  The result is stored into this bit set and is
140
   * effectively the set difference of the two.
141
   *
142
   * @param bs the second bit set
143
   * @throws NullPointerException if bs is null
144
   * @since 1.2
145
   */
146
  public void andNot(BitSet bs)
147
  {
148
    int i = Math.min(bits.length, bs.bits.length);
149
    while (--i >= 0)
150
      bits[i] &= ~bs.bits[i];
151
  }
152
 
153
  /**
154
   * Returns the number of bits set to true.
155
   *
156
   * @return the number of true bits
157
   * @since 1.4
158
   */
159
  public int cardinality()
160
  {
161
    int card = 0;
162
    for (int i = bits.length - 1; i >= 0; i--)
163
      {
164
        long a = bits[i];
165
        // Take care of common cases.
166
        if (a == 0)
167
          continue;
168
        if (a == -1)
169
          {
170
            card += 64;
171
            continue;
172
          }
173
 
174
        // Successively collapse alternating bit groups into a sum.
175
        a = ((a >> 1) & 0x5555555555555555L) + (a & 0x5555555555555555L);
176
        a = ((a >> 2) & 0x3333333333333333L) + (a & 0x3333333333333333L);
177
        int b = (int) ((a >>> 32) + a);
178
        b = ((b >> 4) & 0x0f0f0f0f) + (b & 0x0f0f0f0f);
179
        b = ((b >> 8) & 0x00ff00ff) + (b & 0x00ff00ff);
180
        card += ((b >> 16) & 0x0000ffff) + (b & 0x0000ffff);
181
      }
182
    return card;
183
  }
184
 
185
  /**
186
   * Sets all bits in the set to false.
187
   *
188
   * @since 1.4
189
   */
190
  public void clear()
191
  {
192
    Arrays.fill(bits, 0);
193
  }
194
 
195
  /**
196
   * Removes the integer <code>pos</code> from this set. That is
197
   * the corresponding bit is cleared.  If the index is not in the set,
198
   * this method does nothing.
199
   *
200
   * @param pos a non-negative integer
201
   * @throws IndexOutOfBoundsException if pos &lt; 0
202
   */
203
  public void clear(int pos)
204
  {
205
    int offset = pos >> 6;
206
    ensure(offset);
207
    // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
208
    // so we'll just let that be our exception.
209
    bits[offset] &= ~(1L << pos);
210
  }
211
 
212
  /**
213
   * Sets the bits between from (inclusive) and to (exclusive) to false.
214
   *
215
   * @param from the start range (inclusive)
216
   * @param to the end range (exclusive)
217
   * @throws IndexOutOfBoundsException if from &lt; 0 || to &lt; 0 ||
218
   *         from &gt; to
219
   * @since 1.4
220
   */
221
  public void clear(int from, int to)
222
  {
223
    if (from < 0 || from > to)
224
      throw new IndexOutOfBoundsException();
225
    if (from == to)
226
      return;
227
    int lo_offset = from >>> 6;
228
    int hi_offset = to >>> 6;
229
    ensure(hi_offset);
230
    if (lo_offset == hi_offset)
231
      {
232
        bits[hi_offset] &= ((1L << from) - 1) | (-1L << to);
233
        return;
234
      }
235
 
236
    bits[lo_offset] &= (1L << from) - 1;
237
    bits[hi_offset] &= -1L << to;
238
    for (int i = lo_offset + 1; i < hi_offset; i++)
239
      bits[i] = 0;
240
  }
241
 
242
  /**
243
   * Create a clone of this bit set, that is an instance of the same
244
   * class and contains the same elements.  But it doesn't change when
245
   * this bit set changes.
246
   *
247
   * @return the clone of this object.
248
   */
249
  public Object clone()
250
  {
251
    try
252
      {
253
        BitSet bs = (BitSet) super.clone();
254
        bs.bits = (long[]) bits.clone();
255
        return bs;
256
      }
257
    catch (CloneNotSupportedException e)
258
      {
259
        // Impossible to get here.
260
        return null;
261
      }
262
  }
263
 
264
  /**
265
   * Returns true if the <code>obj</code> is a bit set that contains
266
   * exactly the same elements as this bit set, otherwise false.
267
   *
268
   * @param obj the object to compare to
269
   * @return true if obj equals this bit set
270
   */
271
  public boolean equals(Object obj)
272
  {
273
    if (!(obj instanceof BitSet))
274
      return false;
275
    BitSet bs = (BitSet) obj;
276
    int max = Math.min(bits.length, bs.bits.length);
277
    int i;
278
    for (i = 0; i < max; ++i)
279
      if (bits[i] != bs.bits[i])
280
        return false;
281
    // If one is larger, check to make sure all extra bits are 0.
282
    for (int j = i; j < bits.length; ++j)
283
      if (bits[j] != 0)
284
        return false;
285
    for (int j = i; j < bs.bits.length; ++j)
286
      if (bs.bits[j] != 0)
287
        return false;
288
    return true;
289
  }
290
 
291
  /**
292
   * Sets the bit at the index to the opposite value.
293
   *
294
   * @param index the index of the bit
295
   * @throws IndexOutOfBoundsException if index is negative
296
   * @since 1.4
297
   */
298
  public void flip(int index)
299
  {
300
    int offset = index >> 6;
301
    ensure(offset);
302
    // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
303
    // so we'll just let that be our exception.
304
    bits[offset] ^= 1L << index;
305
  }
306
 
307
  /**
308
   * Sets a range of bits to the opposite value.
309
   *
310
   * @param from the low index (inclusive)
311
   * @param to the high index (exclusive)
312
   * @throws IndexOutOfBoundsException if from &gt; to || from &lt; 0 ||
313
   *         to &lt; 0
314
   * @since 1.4
315
   */
316
  public void flip(int from, int to)
317
  {
318
    if (from < 0 || from > to)
319
      throw new IndexOutOfBoundsException();
320
    if (from == to)
321
      return;
322
    int lo_offset = from >>> 6;
323
    int hi_offset = to >>> 6;
324
    ensure(hi_offset);
325
    if (lo_offset == hi_offset)
326
      {
327
        bits[hi_offset] ^= (-1L << from) & ((1L << to) - 1);
328
        return;
329
      }
330
 
331
    bits[lo_offset] ^= -1L << from;
332
    bits[hi_offset] ^= (1L << to) - 1;
333
    for (int i = lo_offset + 1; i < hi_offset; i++)
334
      bits[i] ^= -1;
335
  }
336
 
337
  /**
338
   * Returns true if the integer <code>bitIndex</code> is in this bit
339
   * set, otherwise false.
340
   *
341
   * @param pos a non-negative integer
342
   * @return the value of the bit at the specified position
343
   * @throws IndexOutOfBoundsException if the pos is negative
344
   */
345
  public boolean get(int pos)
346
  {
347
    int offset = pos >> 6;
348
    if (offset >= bits.length)
349
      return false;
350
    // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
351
    // so we'll just let that be our exception.
352
    return (bits[offset] & (1L << pos)) != 0;
353
  }
354
 
355
  /**
356
   * Returns a new <code>BitSet</code> composed of a range of bits from
357
   * this one.
358
   *
359
   * @param from the low index (inclusive)
360
   * @param to the high index (exclusive)
361
   * @throws IndexOutOfBoundsException if from &gt; to || from &lt; 0 ||
362
   *         to &lt; 0
363
   * @since 1.4
364
   */
365
  public BitSet get(int from, int to)
366
  {
367
    if (from < 0 || from > to)
368
      throw new IndexOutOfBoundsException();
369
    BitSet bs = new BitSet(to - from);
370
    int lo_offset = from >>> 6;
371
    if (lo_offset >= bits.length || to == from)
372
      return bs;
373
 
374
    int lo_bit = from & LONG_MASK;
375
    int hi_offset = to >>> 6;
376
    if (lo_bit == 0)
377
      {
378
        int len = Math.min(hi_offset - lo_offset + 1, bits.length - lo_offset);
379
        System.arraycopy(bits, lo_offset, bs.bits, 0, len);
380
        if (hi_offset < bits.length)
381
          bs.bits[hi_offset - lo_offset] &= (1L << to) - 1;
382
        return bs;
383
      }
384
 
385
    int len = Math.min(hi_offset, bits.length - 1);
386
    int reverse = 64 - lo_bit;
387
    int i;
388
    for (i = 0; lo_offset < len; lo_offset++, i++)
389
      bs.bits[i] = ((bits[lo_offset] >>> lo_bit)
390
                    | (bits[lo_offset + 1] << reverse));
391
    if ((to & LONG_MASK) > lo_bit)
392
      bs.bits[i++] = bits[lo_offset] >>> lo_bit;
393
    if (hi_offset < bits.length)
394
      bs.bits[i - 1] &= (1L << (to - from)) - 1;
395
    return bs;
396
  }
397
 
398
  /**
399
   * Returns a hash code value for this bit set.  The hash code of
400
   * two bit sets containing the same integers is identical.  The algorithm
401
   * used to compute it is as follows:
402
   *
403
   * Suppose the bits in the BitSet were to be stored in an array of
404
   * long integers called <code>bits</code>, in such a manner that
405
   * bit <code>k</code> is set in the BitSet (for non-negative values
406
   * of <code>k</code>) if and only if
407
   *
408
   * <code>((k/64) &lt; bits.length)
409
   * && ((bits[k/64] & (1L &lt;&lt; (bit % 64))) != 0)
410
   * </code>
411
   *
412
   * Then the following definition of the hashCode method
413
   * would be a correct implementation of the actual algorithm:
414
   *
415
   *
416
<pre>public int hashCode()
417
{
418
  long h = 1234;
419
  for (int i = bits.length-1; i &gt;= 0; i--)
420
  {
421
    h ^= bits[i] * (i + 1);
422
  }
423
 
424
  return (int)((h >> 32) ^ h);
425
}</pre>
426
   *
427
   * Note that the hash code values changes, if the set is changed.
428
   *
429
   * @return the hash code value for this bit set.
430
   */
431
  public int hashCode()
432
  {
433
    long h = 1234;
434
    for (int i = bits.length; i > 0; )
435
      h ^= i * bits[--i];
436
    return (int) ((h >> 32) ^ h);
437
  }
438
 
439
  /**
440
   * Returns true if the specified BitSet and this one share at least one
441
   * common true bit.
442
   *
443
   * @param set the set to check for intersection
444
   * @return true if the sets intersect
445
   * @throws NullPointerException if set is null
446
   * @since 1.4
447
   */
448
  public boolean intersects(BitSet set)
449
  {
450
    int i = Math.min(bits.length, set.bits.length);
451
    while (--i >= 0)
452
      if ((bits[i] & set.bits[i]) != 0)
453
        return true;
454
    return false;
455
  }
456
 
457
  /**
458
   * Returns true if this set contains no true bits.
459
   *
460
   * @return true if all bits are false
461
   * @since 1.4
462
   */
463
  public boolean isEmpty()
464
  {
465
    for (int i = bits.length - 1; i >= 0; i--)
466
      if (bits[i] != 0)
467
        return false;
468
    return true;
469
  }
470
 
471
  /**
472
   * Returns the logical number of bits actually used by this bit
473
   * set.  It returns the index of the highest set bit plus one.
474
   * Note that this method doesn't return the number of set bits.
475
   *
476
   * @return the index of the highest set bit plus one.
477
   */
478
  public int length()
479
  {
480
    // Set i to highest index that contains a non-zero value.
481
    int i;
482
    for (i = bits.length - 1; i >= 0 && bits[i] == 0; --i)
483
      ;
484
 
485
    // if i < 0 all bits are cleared.
486
    if (i < 0)
487
      return 0;
488
 
489
    // Now determine the exact length.
490
    long b = bits[i];
491
    int len = (i + 1) * 64;
492
    // b >= 0 checks if the highest bit is zero.
493
    while (b >= 0)
494
      {
495
        --len;
496
        b <<= 1;
497
      }
498
 
499
    return len;
500
  }
501
 
502
  /**
503
   * Returns the index of the next false bit, from the specified bit
504
   * (inclusive).
505
   *
506
   * @param from the start location
507
   * @return the first false bit
508
   * @throws IndexOutOfBoundsException if from is negative
509
   * @since 1.4
510
   */
511
  public int nextClearBit(int from)
512
  {
513
    int offset = from >> 6;
514
    long mask = 1L << from;
515
    while (offset < bits.length)
516
      {
517
        // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
518
        // so we'll just let that be our exception.
519
        long h = bits[offset];
520
        do
521
          {
522
            if ((h & mask) == 0)
523
              return from;
524
            mask <<= 1;
525
            from++;
526
          }
527
        while (mask != 0);
528
        mask = 1;
529
        offset++;
530
      }
531
    return from;
532
  }
533
 
534
  /**
535
   * Returns the index of the next true bit, from the specified bit
536
   * (inclusive). If there is none, -1 is returned. You can iterate over
537
   * all true bits with this loop:<br>
538
   *
539
<pre>for (int i = bs.nextSetBit(0); i &gt;= 0; i = bs.nextSetBit(i + 1))
540
{
541
  // operate on i here
542
}</pre>
543
   *
544
   * @param from the start location
545
   * @return the first true bit, or -1
546
   * @throws IndexOutOfBoundsException if from is negative
547
   * @since 1.4
548
   */
549
  public int nextSetBit(int from)
550
  {
551
    int offset = from >> 6;
552
    long mask = 1L << from;
553
    while (offset < bits.length)
554
      {
555
        // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
556
        // so we'll just let that be our exception.
557
        long h = bits[offset];
558
        do
559
          {
560
            if ((h & mask) != 0)
561
              return from;
562
            mask <<= 1;
563
            from++;
564
          }
565
        while (mask != 0);
566
        mask = 1;
567
        offset++;
568
      }
569
    return -1;
570
  }
571
 
572
  /**
573
   * Performs the logical OR operation on this bit set and the
574
   * given <code>set</code>.  This means it builds the union
575
   * of the two sets.  The result is stored into this bit set, which
576
   * grows as necessary.
577
   *
578
   * @param bs the second bit set
579
   * @throws NullPointerException if bs is null
580
   */
581
  public void or(BitSet bs)
582
  {
583
    ensure(bs.bits.length - 1);
584
    for (int i = bs.bits.length - 1; i >= 0; i--)
585
      bits[i] |= bs.bits[i];
586
  }
587
 
588
  /**
589
   * Add the integer <code>bitIndex</code> to this set.  That is
590
   * the corresponding bit is set to true.  If the index was already in
591
   * the set, this method does nothing.  The size of this structure
592
   * is automatically increased as necessary.
593
   *
594
   * @param pos a non-negative integer.
595
   * @throws IndexOutOfBoundsException if pos is negative
596
   */
597
  public void set(int pos)
598
  {
599
    int offset = pos >> 6;
600
    ensure(offset);
601
    // ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
602
    // so we'll just let that be our exception.
603
    bits[offset] |= 1L << pos;
604
  }
605
 
606
  /**
607
   * Sets the bit at the given index to the specified value. The size of
608
   * this structure is automatically increased as necessary.
609
   *
610
   * @param index the position to set
611
   * @param value the value to set it to
612
   * @throws IndexOutOfBoundsException if index is negative
613
   * @since 1.4
614
   */
615
  public void set(int index, boolean value)
616
  {
617
    if (value)
618
      set(index);
619
    else
620
      clear(index);
621
  }
622
 
623
  /**
624
   * Sets the bits between from (inclusive) and to (exclusive) to true.
625
   *
626
   * @param from the start range (inclusive)
627
   * @param to the end range (exclusive)
628
   * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to ||
629
   *         to &lt; 0
630
   * @since 1.4
631
   */
632
  public void set(int from, int to)
633
  {
634
    if (from < 0 || from > to)
635
      throw new IndexOutOfBoundsException();
636
    if (from == to)
637
      return;
638
    int lo_offset = from >>> 6;
639
    int hi_offset = to >>> 6;
640
    ensure(hi_offset);
641
    if (lo_offset == hi_offset)
642
      {
643
        bits[hi_offset] |= (-1L << from) & ((1L << to) - 1);
644
        return;
645
      }
646
 
647
    bits[lo_offset] |= -1L << from;
648
    bits[hi_offset] |= (1L << to) - 1;
649
    for (int i = lo_offset + 1; i < hi_offset; i++)
650
      bits[i] = -1;
651
  }
652
 
653
  /**
654
   * Sets the bits between from (inclusive) and to (exclusive) to the
655
   * specified value.
656
   *
657
   * @param from the start range (inclusive)
658
   * @param to the end range (exclusive)
659
   * @param value the value to set it to
660
   * @throws IndexOutOfBoundsException if from &lt; 0 || from &gt; to ||
661
   *         to &lt; 0
662
   * @since 1.4
663
   */
664
  public void set(int from, int to, boolean value)
665
  {
666
    if (value)
667
      set(from, to);
668
    else
669
      clear(from, to);
670
  }
671
 
672
  /**
673
   * Returns the number of bits actually used by this bit set.  Note
674
   * that this method doesn't return the number of set bits, and that
675
   * future requests for larger bits will make this automatically grow.
676
   *
677
   * @return the number of bits currently used.
678
   */
679
  public int size()
680
  {
681
    return bits.length * 64;
682
  }
683
 
684
  /**
685
   * Returns the string representation of this bit set.  This
686
   * consists of a comma separated list of the integers in this set
687
   * surrounded by curly braces.  There is a space after each comma.
688
   * A sample string is thus "{1, 3, 53}".
689
   * @return the string representation.
690
   */
691
  public String toString()
692
  {
693
    CPStringBuilder r = new CPStringBuilder("{");
694
    boolean first = true;
695
    for (int i = 0; i < bits.length; ++i)
696
      {
697
        long bit = 1;
698
        long word = bits[i];
699
        if (word == 0)
700
          continue;
701
        for (int j = 0; j < 64; ++j)
702
          {
703
            if ((word & bit) != 0)
704
              {
705
                if (! first)
706
                  r.append(", ");
707
                r.append(64 * i + j);
708
                first = false;
709
              }
710
            bit <<= 1;
711
          }
712
      }
713
    return r.append("}").toString();
714
  }
715
 
716
  /**
717
   * Performs the logical XOR operation on this bit set and the
718
   * given <code>set</code>.  This means it builds the symmetric
719
   * remainder of the two sets (the elements that are in one set,
720
   * but not in the other).  The result is stored into this bit set,
721
   * which grows as necessary.
722
   *
723
   * @param bs the second bit set
724
   * @throws NullPointerException if bs is null
725
   */
726
  public void xor(BitSet bs)
727
  {
728
    ensure(bs.bits.length - 1);
729
    for (int i = bs.bits.length - 1; i >= 0; i--)
730
      bits[i] ^= bs.bits[i];
731
  }
732
 
733
  /**
734
   * Make sure the vector is big enough.
735
   *
736
   * @param lastElt the size needed for the bits array
737
   */
738
  private void ensure(int lastElt)
739
  {
740
    if (lastElt >= bits.length)
741
      {
742
        long[] nd = new long[lastElt + 1];
743
        System.arraycopy(bits, 0, nd, 0, bits.length);
744
        bits = nd;
745
      }
746
  }
747
 
748
  // This is used by EnumSet for efficiency.
749
  final boolean containsAll(BitSet other)
750
  {
751
    for (int i = other.bits.length - 1; i >= 0; i--)
752
      {
753
        if ((bits[i] & other.bits[i]) != other.bits[i])
754
          return false;
755
      }
756
    return true;
757
  }
758
}

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.