OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [native/] [fdlibm/] [k_rem_pio2.c] - Blame information for rev 781

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 774 jeremybenn
 
2
/* @(#)k_rem_pio2.c 1.3 95/01/18 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
8
 * Permission to use, copy, modify, and distribute this
9
 * software is freely granted, provided that this notice
10
 * is preserved.
11
 * ====================================================
12
 */
13
 
14
/*
15
 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
16
 * double x[],y[]; int e0,nx,prec; int ipio2[];
17
 *
18
 * __kernel_rem_pio2 return the last three digits of N with
19
 *              y = x - N*pi/2
20
 * so that |y| < pi/2.
21
 *
22
 * The method is to compute the integer (mod 8) and fraction parts of
23
 * (2/pi)*x without doing the full multiplication. In general we
24
 * skip the part of the product that are known to be a huge integer (
25
 * more accurately, = 0 mod 8 ). Thus the number of operations are
26
 * independent of the exponent of the input.
27
 *
28
 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
29
 *
30
 * Input parameters:
31
 *      x[]     The input value (must be positive) is broken into nx
32
 *              pieces of 24-bit integers in double precision format.
33
 *              x[i] will be the i-th 24 bit of x. The scaled exponent
34
 *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
35
 *              match x's up to 24 bits.
36
 *
37
 *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
38
 *                      e0 = ilogb(z)-23
39
 *                      z  = scalbn(z,-e0)
40
 *              for i = 0,1,2
41
 *                      x[i] = floor(z)
42
 *                      z    = (z-x[i])*2**24
43
 *
44
 *
45
 *      y[]     ouput result in an array of double precision numbers.
46
 *              The dimension of y[] is:
47
 *                      24-bit  precision       1
48
 *                      53-bit  precision       2
49
 *                      64-bit  precision       2
50
 *                      113-bit precision       3
51
 *              The actual value is the sum of them. Thus for 113-bit
52
 *              precison, one may have to do something like:
53
 *
54
 *              long double t,w,r_head, r_tail;
55
 *              t = (long double)y[2] + (long double)y[1];
56
 *              w = (long double)y[0];
57
 *              r_head = t+w;
58
 *              r_tail = w - (r_head - t);
59
 *
60
 *      e0      The exponent of x[0]
61
 *
62
 *      nx      dimension of x[]
63
 *
64
 *      prec    an integer indicating the precision:
65
 *                      0        24  bits (single)
66
 *                      1       53  bits (double)
67
 *                      2       64  bits (extended)
68
 *                      3       113 bits (quad)
69
 *
70
 *      ipio2[]
71
 *              integer array, contains the (24*i)-th to (24*i+23)-th
72
 *              bit of 2/pi after binary point. The corresponding
73
 *              floating value is
74
 *
75
 *                      ipio2[i] * 2^(-24(i+1)).
76
 *
77
 * External function:
78
 *      double scalbn(), floor();
79
 *
80
 *
81
 * Here is the description of some local variables:
82
 *
83
 *      jk      jk+1 is the initial number of terms of ipio2[] needed
84
 *              in the computation. The recommended value is 2,3,4,
85
 *              6 for single, double, extended,and quad.
86
 *
87
 *      jz      local integer variable indicating the number of
88
 *              terms of ipio2[] used.
89
 *
90
 *      jx      nx - 1
91
 *
92
 *      jv      index for pointing to the suitable ipio2[] for the
93
 *              computation. In general, we want
94
 *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
95
 *              is an integer. Thus
96
 *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
97
 *              Hence jv = max(0,(e0-3)/24).
98
 *
99
 *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
100
 *
101
 *      q[]     double array with integral value, representing the
102
 *              24-bits chunk of the product of x and 2/pi.
103
 *
104
 *      q0      the corresponding exponent of q[0]. Note that the
105
 *              exponent for q[i] would be q0-24*i.
106
 *
107
 *      PIo2[]  double precision array, obtained by cutting pi/2
108
 *              into 24 bits chunks.
109
 *
110
 *      f[]     ipio2[] in floating point
111
 *
112
 *      iq[]    integer array by breaking up q[] in 24-bits chunk.
113
 *
114
 *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
115
 *
116
 *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
117
 *              it also indicates the *sign* of the result.
118
 *
119
 */
120
 
121
 
122
/*
123
 * Constants:
124
 * The hexadecimal values are the intended ones for the following
125
 * constants. The decimal values may be used, provided that the
126
 * compiler will convert from decimal to binary accurately enough
127
 * to produce the hexadecimal values shown.
128
 */
129
 
130
#include "fdlibm.h"
131
 
132
#ifdef __STDC__
133
static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
134
#else
135
static int init_jk[] = {2,3,4,6};
136
#endif
137
 
138
#ifdef __STDC__
139
static const double PIo2[] = {
140
#else
141
static double PIo2[] = {
142
#endif
143
  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
144
  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
145
  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
146
  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
147
  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
148
  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
149
  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
150
  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
151
};
152
 
153
#ifdef __STDC__
154
static const double
155
#else
156
static double
157
#endif
158
zero   = 0.0,
159
one    = 1.0,
160
two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
161
twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
162
 
163
#ifdef __STDC__
164
        int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
165
#else
166
        int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
167
        double x[], y[]; int e0,nx,prec; int ipio2[];
168
#endif
169
{
170
        int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
171
        double z,fw,f[20],fq[20],q[20];
172
 
173
    /* initialize jk*/
174
        jk = init_jk[prec];
175
        jp = jk;
176
 
177
    /* determine jx,jv,q0, note that 3>q0 */
178
        jx =  nx-1;
179
        jv = (e0-3)/24; if(jv<0) jv=0;
180
        q0 =  e0-24*(jv+1);
181
 
182
    /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
183
        j = jv-jx; m = jx+jk;
184
        for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
185
 
186
    /* compute q[0],q[1],...q[jk] */
187
        for (i=0;i<=jk;i++) {
188
            for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
189
        }
190
 
191
        jz = jk;
192
recompute:
193
    /* distill q[] into iq[] reversingly */
194
        for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
195
            fw    =  (double)((int)(twon24* z));
196
            iq[i] =  (int)(z-two24*fw);
197
            z     =  q[j-1]+fw;
198
        }
199
 
200
    /* compute n */
201
        z  = scalbn(z,q0);              /* actual value of z */
202
        z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
203
        n  = (int) z;
204
        z -= (double)n;
205
        ih = 0;
206
        if(q0>0) {       /* need iq[jz-1] to determine n */
207
            i  = (iq[jz-1]>>(24-q0)); n += i;
208
            iq[jz-1] -= i<<(24-q0);
209
            ih = iq[jz-1]>>(23-q0);
210
        }
211
        else if(q0==0) ih = iq[jz-1]>>23;
212
        else if(z>=0.5) ih=2;
213
 
214
        if(ih>0) {       /* q > 0.5 */
215
            n += 1; carry = 0;
216
            for(i=0;i<jz ;i++) { /* compute 1-q */
217
                j = iq[i];
218
                if(carry==0) {
219
                    if(j!=0) {
220
                        carry = 1; iq[i] = 0x1000000- j;
221
                    }
222
                } else  iq[i] = 0xffffff - j;
223
            }
224
            if(q0>0) {           /* rare case: chance is 1 in 12 */
225
                switch(q0) {
226
                case 1:
227
                   iq[jz-1] &= 0x7fffff; break;
228
                case 2:
229
                   iq[jz-1] &= 0x3fffff; break;
230
                }
231
            }
232
            if(ih==2) {
233
                z = one - z;
234
                if(carry!=0) z -= scalbn(one,q0);
235
            }
236
        }
237
 
238
    /* check if recomputation is needed */
239
        if(z==zero) {
240
            j = 0;
241
            for (i=jz-1;i>=jk;i--) j |= iq[i];
242
            if(j==0) { /* need recomputation */
243
                for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
244
 
245
                for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
246
                    f[jx+i] = (double) ipio2[jv+i];
247
                    for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
248
                    q[i] = fw;
249
                }
250
                jz += k;
251
                goto recompute;
252
            }
253
        }
254
 
255
    /* chop off zero terms */
256
        if(z==0.0) {
257
            jz -= 1; q0 -= 24;
258
            while(iq[jz]==0) { jz--; q0-=24;}
259
        } else { /* break z into 24-bit if necessary */
260
            z = scalbn(z,-q0);
261
            if(z>=two24) {
262
                fw = (double)((int)(twon24*z));
263
                iq[jz] = (int)(z-two24*fw);
264
                jz += 1; q0 += 24;
265
                iq[jz] = (int) fw;
266
            } else iq[jz] = (int) z ;
267
        }
268
 
269
    /* convert integer "bit" chunk to floating-point value */
270
        fw = scalbn(one,q0);
271
        for(i=jz;i>=0;i--) {
272
            q[i] = fw*(double)iq[i]; fw*=twon24;
273
        }
274
 
275
    /* compute PIo2[0,...,jp]*q[jz,...,0] */
276
        for(i=jz;i>=0;i--) {
277
            for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
278
            fq[jz-i] = fw;
279
        }
280
 
281
    /* compress fq[] into y[] */
282
        switch(prec) {
283
            case 0:
284
                fw = 0.0;
285
                for (i=jz;i>=0;i--) fw += fq[i];
286
                y[0] = (ih==0)? fw: -fw;
287
                break;
288
            case 1:
289
            case 2:
290
                fw = 0.0;
291
                for (i=jz;i>=0;i--) fw += fq[i];
292
                y[0] = (ih==0)? fw: -fw;
293
                fw = fq[0]-fw;
294
                for (i=1;i<=jz;i++) fw += fq[i];
295
                y[1] = (ih==0)? fw: -fw;
296
                break;
297
            case 3:     /* painful */
298
                for (i=jz;i>0;i--) {
299
                    fw      = fq[i-1]+fq[i];
300
                    fq[i]  += fq[i-1]-fw;
301
                    fq[i-1] = fw;
302
                }
303
                for (i=jz;i>1;i--) {
304
                    fw      = fq[i-1]+fq[i];
305
                    fq[i]  += fq[i-1]-fw;
306
                    fq[i-1] = fw;
307
                }
308
                for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
309
                if(ih==0) {
310
                    y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
311
                } else {
312
                    y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
313
                }
314
        }
315
        return n&7;
316
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.