| 1 | 774 | jeremybenn |  
 | 
      
         | 2 |  |  | /* @(#)k_rem_pio2.c 1.3 95/01/18 */
 | 
      
         | 3 |  |  | /*
 | 
      
         | 4 |  |  |  * ====================================================
 | 
      
         | 5 |  |  |  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | 
      
         | 6 |  |  |  *
 | 
      
         | 7 |  |  |  * Developed at SunSoft, a Sun Microsystems, Inc. business.
 | 
      
         | 8 |  |  |  * Permission to use, copy, modify, and distribute this
 | 
      
         | 9 |  |  |  * software is freely granted, provided that this notice
 | 
      
         | 10 |  |  |  * is preserved.
 | 
      
         | 11 |  |  |  * ====================================================
 | 
      
         | 12 |  |  |  */
 | 
      
         | 13 |  |  |  
 | 
      
         | 14 |  |  | /*
 | 
      
         | 15 |  |  |  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 | 
      
         | 16 |  |  |  * double x[],y[]; int e0,nx,prec; int ipio2[];
 | 
      
         | 17 |  |  |  *
 | 
      
         | 18 |  |  |  * __kernel_rem_pio2 return the last three digits of N with
 | 
      
         | 19 |  |  |  *              y = x - N*pi/2
 | 
      
         | 20 |  |  |  * so that |y| < pi/2.
 | 
      
         | 21 |  |  |  *
 | 
      
         | 22 |  |  |  * The method is to compute the integer (mod 8) and fraction parts of
 | 
      
         | 23 |  |  |  * (2/pi)*x without doing the full multiplication. In general we
 | 
      
         | 24 |  |  |  * skip the part of the product that are known to be a huge integer (
 | 
      
         | 25 |  |  |  * more accurately, = 0 mod 8 ). Thus the number of operations are
 | 
      
         | 26 |  |  |  * independent of the exponent of the input.
 | 
      
         | 27 |  |  |  *
 | 
      
         | 28 |  |  |  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
 | 
      
         | 29 |  |  |  *
 | 
      
         | 30 |  |  |  * Input parameters:
 | 
      
         | 31 |  |  |  *      x[]     The input value (must be positive) is broken into nx
 | 
      
         | 32 |  |  |  *              pieces of 24-bit integers in double precision format.
 | 
      
         | 33 |  |  |  *              x[i] will be the i-th 24 bit of x. The scaled exponent
 | 
      
         | 34 |  |  |  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
 | 
      
         | 35 |  |  |  *              match x's up to 24 bits.
 | 
      
         | 36 |  |  |  *
 | 
      
         | 37 |  |  |  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
 | 
      
         | 38 |  |  |  *                      e0 = ilogb(z)-23
 | 
      
         | 39 |  |  |  *                      z  = scalbn(z,-e0)
 | 
      
         | 40 |  |  |  *              for i = 0,1,2
 | 
      
         | 41 |  |  |  *                      x[i] = floor(z)
 | 
      
         | 42 |  |  |  *                      z    = (z-x[i])*2**24
 | 
      
         | 43 |  |  |  *
 | 
      
         | 44 |  |  |  *
 | 
      
         | 45 |  |  |  *      y[]     ouput result in an array of double precision numbers.
 | 
      
         | 46 |  |  |  *              The dimension of y[] is:
 | 
      
         | 47 |  |  |  *                      24-bit  precision       1
 | 
      
         | 48 |  |  |  *                      53-bit  precision       2
 | 
      
         | 49 |  |  |  *                      64-bit  precision       2
 | 
      
         | 50 |  |  |  *                      113-bit precision       3
 | 
      
         | 51 |  |  |  *              The actual value is the sum of them. Thus for 113-bit
 | 
      
         | 52 |  |  |  *              precison, one may have to do something like:
 | 
      
         | 53 |  |  |  *
 | 
      
         | 54 |  |  |  *              long double t,w,r_head, r_tail;
 | 
      
         | 55 |  |  |  *              t = (long double)y[2] + (long double)y[1];
 | 
      
         | 56 |  |  |  *              w = (long double)y[0];
 | 
      
         | 57 |  |  |  *              r_head = t+w;
 | 
      
         | 58 |  |  |  *              r_tail = w - (r_head - t);
 | 
      
         | 59 |  |  |  *
 | 
      
         | 60 |  |  |  *      e0      The exponent of x[0]
 | 
      
         | 61 |  |  |  *
 | 
      
         | 62 |  |  |  *      nx      dimension of x[]
 | 
      
         | 63 |  |  |  *
 | 
      
         | 64 |  |  |  *      prec    an integer indicating the precision:
 | 
      
         | 65 |  |  |  *                      0        24  bits (single)
 | 
      
         | 66 |  |  |  *                      1       53  bits (double)
 | 
      
         | 67 |  |  |  *                      2       64  bits (extended)
 | 
      
         | 68 |  |  |  *                      3       113 bits (quad)
 | 
      
         | 69 |  |  |  *
 | 
      
         | 70 |  |  |  *      ipio2[]
 | 
      
         | 71 |  |  |  *              integer array, contains the (24*i)-th to (24*i+23)-th
 | 
      
         | 72 |  |  |  *              bit of 2/pi after binary point. The corresponding
 | 
      
         | 73 |  |  |  *              floating value is
 | 
      
         | 74 |  |  |  *
 | 
      
         | 75 |  |  |  *                      ipio2[i] * 2^(-24(i+1)).
 | 
      
         | 76 |  |  |  *
 | 
      
         | 77 |  |  |  * External function:
 | 
      
         | 78 |  |  |  *      double scalbn(), floor();
 | 
      
         | 79 |  |  |  *
 | 
      
         | 80 |  |  |  *
 | 
      
         | 81 |  |  |  * Here is the description of some local variables:
 | 
      
         | 82 |  |  |  *
 | 
      
         | 83 |  |  |  *      jk      jk+1 is the initial number of terms of ipio2[] needed
 | 
      
         | 84 |  |  |  *              in the computation. The recommended value is 2,3,4,
 | 
      
         | 85 |  |  |  *              6 for single, double, extended,and quad.
 | 
      
         | 86 |  |  |  *
 | 
      
         | 87 |  |  |  *      jz      local integer variable indicating the number of
 | 
      
         | 88 |  |  |  *              terms of ipio2[] used.
 | 
      
         | 89 |  |  |  *
 | 
      
         | 90 |  |  |  *      jx      nx - 1
 | 
      
         | 91 |  |  |  *
 | 
      
         | 92 |  |  |  *      jv      index for pointing to the suitable ipio2[] for the
 | 
      
         | 93 |  |  |  *              computation. In general, we want
 | 
      
         | 94 |  |  |  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 | 
      
         | 95 |  |  |  *              is an integer. Thus
 | 
      
         | 96 |  |  |  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 | 
      
         | 97 |  |  |  *              Hence jv = max(0,(e0-3)/24).
 | 
      
         | 98 |  |  |  *
 | 
      
         | 99 |  |  |  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
 | 
      
         | 100 |  |  |  *
 | 
      
         | 101 |  |  |  *      q[]     double array with integral value, representing the
 | 
      
         | 102 |  |  |  *              24-bits chunk of the product of x and 2/pi.
 | 
      
         | 103 |  |  |  *
 | 
      
         | 104 |  |  |  *      q0      the corresponding exponent of q[0]. Note that the
 | 
      
         | 105 |  |  |  *              exponent for q[i] would be q0-24*i.
 | 
      
         | 106 |  |  |  *
 | 
      
         | 107 |  |  |  *      PIo2[]  double precision array, obtained by cutting pi/2
 | 
      
         | 108 |  |  |  *              into 24 bits chunks.
 | 
      
         | 109 |  |  |  *
 | 
      
         | 110 |  |  |  *      f[]     ipio2[] in floating point
 | 
      
         | 111 |  |  |  *
 | 
      
         | 112 |  |  |  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
 | 
      
         | 113 |  |  |  *
 | 
      
         | 114 |  |  |  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
 | 
      
         | 115 |  |  |  *
 | 
      
         | 116 |  |  |  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
 | 
      
         | 117 |  |  |  *              it also indicates the *sign* of the result.
 | 
      
         | 118 |  |  |  *
 | 
      
         | 119 |  |  |  */
 | 
      
         | 120 |  |  |  
 | 
      
         | 121 |  |  |  
 | 
      
         | 122 |  |  | /*
 | 
      
         | 123 |  |  |  * Constants:
 | 
      
         | 124 |  |  |  * The hexadecimal values are the intended ones for the following
 | 
      
         | 125 |  |  |  * constants. The decimal values may be used, provided that the
 | 
      
         | 126 |  |  |  * compiler will convert from decimal to binary accurately enough
 | 
      
         | 127 |  |  |  * to produce the hexadecimal values shown.
 | 
      
         | 128 |  |  |  */
 | 
      
         | 129 |  |  |  
 | 
      
         | 130 |  |  | #include "fdlibm.h"
 | 
      
         | 131 |  |  |  
 | 
      
         | 132 |  |  | #ifdef __STDC__
 | 
      
         | 133 |  |  | static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
 | 
      
         | 134 |  |  | #else
 | 
      
         | 135 |  |  | static int init_jk[] = {2,3,4,6};
 | 
      
         | 136 |  |  | #endif
 | 
      
         | 137 |  |  |  
 | 
      
         | 138 |  |  | #ifdef __STDC__
 | 
      
         | 139 |  |  | static const double PIo2[] = {
 | 
      
         | 140 |  |  | #else
 | 
      
         | 141 |  |  | static double PIo2[] = {
 | 
      
         | 142 |  |  | #endif
 | 
      
         | 143 |  |  |   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
 | 
      
         | 144 |  |  |   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
 | 
      
         | 145 |  |  |   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
 | 
      
         | 146 |  |  |   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
 | 
      
         | 147 |  |  |   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
 | 
      
         | 148 |  |  |   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
 | 
      
         | 149 |  |  |   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
 | 
      
         | 150 |  |  |   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
 | 
      
         | 151 |  |  | };
 | 
      
         | 152 |  |  |  
 | 
      
         | 153 |  |  | #ifdef __STDC__
 | 
      
         | 154 |  |  | static const double
 | 
      
         | 155 |  |  | #else
 | 
      
         | 156 |  |  | static double
 | 
      
         | 157 |  |  | #endif
 | 
      
         | 158 |  |  | zero   = 0.0,
 | 
      
         | 159 |  |  | one    = 1.0,
 | 
      
         | 160 |  |  | two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
 | 
      
         | 161 |  |  | twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
 | 
      
         | 162 |  |  |  
 | 
      
         | 163 |  |  | #ifdef __STDC__
 | 
      
         | 164 |  |  |         int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
 | 
      
         | 165 |  |  | #else
 | 
      
         | 166 |  |  |         int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 | 
      
         | 167 |  |  |         double x[], y[]; int e0,nx,prec; int ipio2[];
 | 
      
         | 168 |  |  | #endif
 | 
      
         | 169 |  |  | {
 | 
      
         | 170 |  |  |         int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
 | 
      
         | 171 |  |  |         double z,fw,f[20],fq[20],q[20];
 | 
      
         | 172 |  |  |  
 | 
      
         | 173 |  |  |     /* initialize jk*/
 | 
      
         | 174 |  |  |         jk = init_jk[prec];
 | 
      
         | 175 |  |  |         jp = jk;
 | 
      
         | 176 |  |  |  
 | 
      
         | 177 |  |  |     /* determine jx,jv,q0, note that 3>q0 */
 | 
      
         | 178 |  |  |         jx =  nx-1;
 | 
      
         | 179 |  |  |         jv = (e0-3)/24; if(jv<0) jv=0;
 | 
      
         | 180 |  |  |         q0 =  e0-24*(jv+1);
 | 
      
         | 181 |  |  |  
 | 
      
         | 182 |  |  |     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
 | 
      
         | 183 |  |  |         j = jv-jx; m = jx+jk;
 | 
      
         | 184 |  |  |         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
 | 
      
         | 185 |  |  |  
 | 
      
         | 186 |  |  |     /* compute q[0],q[1],...q[jk] */
 | 
      
         | 187 |  |  |         for (i=0;i<=jk;i++) {
 | 
      
         | 188 |  |  |             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
 | 
      
         | 189 |  |  |         }
 | 
      
         | 190 |  |  |  
 | 
      
         | 191 |  |  |         jz = jk;
 | 
      
         | 192 |  |  | recompute:
 | 
      
         | 193 |  |  |     /* distill q[] into iq[] reversingly */
 | 
      
         | 194 |  |  |         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
 | 
      
         | 195 |  |  |             fw    =  (double)((int)(twon24* z));
 | 
      
         | 196 |  |  |             iq[i] =  (int)(z-two24*fw);
 | 
      
         | 197 |  |  |             z     =  q[j-1]+fw;
 | 
      
         | 198 |  |  |         }
 | 
      
         | 199 |  |  |  
 | 
      
         | 200 |  |  |     /* compute n */
 | 
      
         | 201 |  |  |         z  = scalbn(z,q0);              /* actual value of z */
 | 
      
         | 202 |  |  |         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
 | 
      
         | 203 |  |  |         n  = (int) z;
 | 
      
         | 204 |  |  |         z -= (double)n;
 | 
      
         | 205 |  |  |         ih = 0;
 | 
      
         | 206 |  |  |         if(q0>0) {       /* need iq[jz-1] to determine n */
 | 
      
         | 207 |  |  |             i  = (iq[jz-1]>>(24-q0)); n += i;
 | 
      
         | 208 |  |  |             iq[jz-1] -= i<<(24-q0);
 | 
      
         | 209 |  |  |             ih = iq[jz-1]>>(23-q0);
 | 
      
         | 210 |  |  |         }
 | 
      
         | 211 |  |  |         else if(q0==0) ih = iq[jz-1]>>23;
 | 
      
         | 212 |  |  |         else if(z>=0.5) ih=2;
 | 
      
         | 213 |  |  |  
 | 
      
         | 214 |  |  |         if(ih>0) {       /* q > 0.5 */
 | 
      
         | 215 |  |  |             n += 1; carry = 0;
 | 
      
         | 216 |  |  |             for(i=0;i<jz ;i++) { /* compute 1-q */
 | 
      
         | 217 |  |  |                 j = iq[i];
 | 
      
         | 218 |  |  |                 if(carry==0) {
 | 
      
         | 219 |  |  |                     if(j!=0) {
 | 
      
         | 220 |  |  |                         carry = 1; iq[i] = 0x1000000- j;
 | 
      
         | 221 |  |  |                     }
 | 
      
         | 222 |  |  |                 } else  iq[i] = 0xffffff - j;
 | 
      
         | 223 |  |  |             }
 | 
      
         | 224 |  |  |             if(q0>0) {           /* rare case: chance is 1 in 12 */
 | 
      
         | 225 |  |  |                 switch(q0) {
 | 
      
         | 226 |  |  |                 case 1:
 | 
      
         | 227 |  |  |                    iq[jz-1] &= 0x7fffff; break;
 | 
      
         | 228 |  |  |                 case 2:
 | 
      
         | 229 |  |  |                    iq[jz-1] &= 0x3fffff; break;
 | 
      
         | 230 |  |  |                 }
 | 
      
         | 231 |  |  |             }
 | 
      
         | 232 |  |  |             if(ih==2) {
 | 
      
         | 233 |  |  |                 z = one - z;
 | 
      
         | 234 |  |  |                 if(carry!=0) z -= scalbn(one,q0);
 | 
      
         | 235 |  |  |             }
 | 
      
         | 236 |  |  |         }
 | 
      
         | 237 |  |  |  
 | 
      
         | 238 |  |  |     /* check if recomputation is needed */
 | 
      
         | 239 |  |  |         if(z==zero) {
 | 
      
         | 240 |  |  |             j = 0;
 | 
      
         | 241 |  |  |             for (i=jz-1;i>=jk;i--) j |= iq[i];
 | 
      
         | 242 |  |  |             if(j==0) { /* need recomputation */
 | 
      
         | 243 |  |  |                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
 | 
      
         | 244 |  |  |  
 | 
      
         | 245 |  |  |                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
 | 
      
         | 246 |  |  |                     f[jx+i] = (double) ipio2[jv+i];
 | 
      
         | 247 |  |  |                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
 | 
      
         | 248 |  |  |                     q[i] = fw;
 | 
      
         | 249 |  |  |                 }
 | 
      
         | 250 |  |  |                 jz += k;
 | 
      
         | 251 |  |  |                 goto recompute;
 | 
      
         | 252 |  |  |             }
 | 
      
         | 253 |  |  |         }
 | 
      
         | 254 |  |  |  
 | 
      
         | 255 |  |  |     /* chop off zero terms */
 | 
      
         | 256 |  |  |         if(z==0.0) {
 | 
      
         | 257 |  |  |             jz -= 1; q0 -= 24;
 | 
      
         | 258 |  |  |             while(iq[jz]==0) { jz--; q0-=24;}
 | 
      
         | 259 |  |  |         } else { /* break z into 24-bit if necessary */
 | 
      
         | 260 |  |  |             z = scalbn(z,-q0);
 | 
      
         | 261 |  |  |             if(z>=two24) {
 | 
      
         | 262 |  |  |                 fw = (double)((int)(twon24*z));
 | 
      
         | 263 |  |  |                 iq[jz] = (int)(z-two24*fw);
 | 
      
         | 264 |  |  |                 jz += 1; q0 += 24;
 | 
      
         | 265 |  |  |                 iq[jz] = (int) fw;
 | 
      
         | 266 |  |  |             } else iq[jz] = (int) z ;
 | 
      
         | 267 |  |  |         }
 | 
      
         | 268 |  |  |  
 | 
      
         | 269 |  |  |     /* convert integer "bit" chunk to floating-point value */
 | 
      
         | 270 |  |  |         fw = scalbn(one,q0);
 | 
      
         | 271 |  |  |         for(i=jz;i>=0;i--) {
 | 
      
         | 272 |  |  |             q[i] = fw*(double)iq[i]; fw*=twon24;
 | 
      
         | 273 |  |  |         }
 | 
      
         | 274 |  |  |  
 | 
      
         | 275 |  |  |     /* compute PIo2[0,...,jp]*q[jz,...,0] */
 | 
      
         | 276 |  |  |         for(i=jz;i>=0;i--) {
 | 
      
         | 277 |  |  |             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
 | 
      
         | 278 |  |  |             fq[jz-i] = fw;
 | 
      
         | 279 |  |  |         }
 | 
      
         | 280 |  |  |  
 | 
      
         | 281 |  |  |     /* compress fq[] into y[] */
 | 
      
         | 282 |  |  |         switch(prec) {
 | 
      
         | 283 |  |  |             case 0:
 | 
      
         | 284 |  |  |                 fw = 0.0;
 | 
      
         | 285 |  |  |                 for (i=jz;i>=0;i--) fw += fq[i];
 | 
      
         | 286 |  |  |                 y[0] = (ih==0)? fw: -fw;
 | 
      
         | 287 |  |  |                 break;
 | 
      
         | 288 |  |  |             case 1:
 | 
      
         | 289 |  |  |             case 2:
 | 
      
         | 290 |  |  |                 fw = 0.0;
 | 
      
         | 291 |  |  |                 for (i=jz;i>=0;i--) fw += fq[i];
 | 
      
         | 292 |  |  |                 y[0] = (ih==0)? fw: -fw;
 | 
      
         | 293 |  |  |                 fw = fq[0]-fw;
 | 
      
         | 294 |  |  |                 for (i=1;i<=jz;i++) fw += fq[i];
 | 
      
         | 295 |  |  |                 y[1] = (ih==0)? fw: -fw;
 | 
      
         | 296 |  |  |                 break;
 | 
      
         | 297 |  |  |             case 3:     /* painful */
 | 
      
         | 298 |  |  |                 for (i=jz;i>0;i--) {
 | 
      
         | 299 |  |  |                     fw      = fq[i-1]+fq[i];
 | 
      
         | 300 |  |  |                     fq[i]  += fq[i-1]-fw;
 | 
      
         | 301 |  |  |                     fq[i-1] = fw;
 | 
      
         | 302 |  |  |                 }
 | 
      
         | 303 |  |  |                 for (i=jz;i>1;i--) {
 | 
      
         | 304 |  |  |                     fw      = fq[i-1]+fq[i];
 | 
      
         | 305 |  |  |                     fq[i]  += fq[i-1]-fw;
 | 
      
         | 306 |  |  |                     fq[i-1] = fw;
 | 
      
         | 307 |  |  |                 }
 | 
      
         | 308 |  |  |                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
 | 
      
         | 309 |  |  |                 if(ih==0) {
 | 
      
         | 310 |  |  |                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
 | 
      
         | 311 |  |  |                 } else {
 | 
      
         | 312 |  |  |                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
 | 
      
         | 313 |  |  |                 }
 | 
      
         | 314 |  |  |         }
 | 
      
         | 315 |  |  |         return n&7;
 | 
      
         | 316 |  |  | }
 |