| 1 |
774 |
jeremybenn |
#pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
|
| 2 |
|
|
|
| 3 |
|
|
/*
|
| 4 |
|
|
* ====================================================
|
| 5 |
|
|
* Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
|
| 6 |
|
|
*
|
| 7 |
|
|
* Permission to use, copy, modify, and distribute this
|
| 8 |
|
|
* software is freely granted, provided that this notice
|
| 9 |
|
|
* is preserved.
|
| 10 |
|
|
* ====================================================
|
| 11 |
|
|
*/
|
| 12 |
|
|
|
| 13 |
|
|
/* INDENT OFF */
|
| 14 |
|
|
/* __kernel_tan( x, y, k )
|
| 15 |
|
|
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
| 16 |
|
|
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
| 17 |
|
|
* Input y is the tail of x.
|
| 18 |
|
|
* Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
|
| 19 |
|
|
*
|
| 20 |
|
|
* Algorithm
|
| 21 |
|
|
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
| 22 |
|
|
* 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
|
| 23 |
|
|
* 3. tan(x) is approximated by a odd polynomial of degree 27 on
|
| 24 |
|
|
* [0,0.67434]
|
| 25 |
|
|
* 3 27
|
| 26 |
|
|
* tan(x) ~ x + T1*x + ... + T13*x
|
| 27 |
|
|
* where
|
| 28 |
|
|
*
|
| 29 |
|
|
* |tan(x) 2 4 26 | -59.2
|
| 30 |
|
|
* |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
|
| 31 |
|
|
* | x |
|
| 32 |
|
|
*
|
| 33 |
|
|
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
| 34 |
|
|
* ~ tan(x) + (1+x*x)*y
|
| 35 |
|
|
* Therefore, for better accuracy in computing tan(x+y), let
|
| 36 |
|
|
* 3 2 2 2 2
|
| 37 |
|
|
* r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
|
| 38 |
|
|
* then
|
| 39 |
|
|
* 3 2
|
| 40 |
|
|
* tan(x+y) = x + (T1*x + (x *(r+y)+y))
|
| 41 |
|
|
*
|
| 42 |
|
|
* 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
|
| 43 |
|
|
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
| 44 |
|
|
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
| 45 |
|
|
*/
|
| 46 |
|
|
|
| 47 |
|
|
#include "fdlibm.h"
|
| 48 |
|
|
|
| 49 |
|
|
#ifndef _DOUBLE_IS_32BITS
|
| 50 |
|
|
|
| 51 |
|
|
static const double xxx[] = {
|
| 52 |
|
|
3.33333333333334091986e-01, /* 3FD55555, 55555563 */
|
| 53 |
|
|
1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
|
| 54 |
|
|
5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
|
| 55 |
|
|
2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
|
| 56 |
|
|
8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
|
| 57 |
|
|
3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
|
| 58 |
|
|
1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
|
| 59 |
|
|
5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
|
| 60 |
|
|
2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
|
| 61 |
|
|
7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
|
| 62 |
|
|
7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
|
| 63 |
|
|
-1.85586374855275456654e-05, /* BEF375CB, DB605373 */
|
| 64 |
|
|
2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
|
| 65 |
|
|
/* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
|
| 66 |
|
|
/* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
|
| 67 |
|
|
/* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
|
| 68 |
|
|
};
|
| 69 |
|
|
#define one xxx[13]
|
| 70 |
|
|
#define pio4 xxx[14]
|
| 71 |
|
|
#define pio4lo xxx[15]
|
| 72 |
|
|
#define T xxx
|
| 73 |
|
|
/* INDENT ON */
|
| 74 |
|
|
|
| 75 |
|
|
double
|
| 76 |
|
|
__kernel_tan(double x, double y, int iy) {
|
| 77 |
|
|
double z, r, v, w, s;
|
| 78 |
|
|
int32_t ix, hx;
|
| 79 |
|
|
|
| 80 |
|
|
GET_HIGH_WORD(hx,x); /* high word of x */
|
| 81 |
|
|
ix = hx & 0x7fffffff; /* high word of |x| */
|
| 82 |
|
|
if (ix < 0x3e300000) { /* x < 2**-28 */
|
| 83 |
|
|
if ((int) x == 0) { /* generate inexact */
|
| 84 |
|
|
uint32_t low;
|
| 85 |
|
|
GET_LOW_WORD(low,x);
|
| 86 |
|
|
if (((ix | low) | (iy + 1)) == 0)
|
| 87 |
|
|
return one / fabs(x);
|
| 88 |
|
|
else {
|
| 89 |
|
|
if (iy == 1)
|
| 90 |
|
|
return x;
|
| 91 |
|
|
else { /* compute -1 / (x+y) carefully */
|
| 92 |
|
|
double a, t;
|
| 93 |
|
|
|
| 94 |
|
|
z = w = x + y;
|
| 95 |
|
|
SET_LOW_WORD(z,0);
|
| 96 |
|
|
v = y - (z - x);
|
| 97 |
|
|
t = a = -one / w;
|
| 98 |
|
|
SET_LOW_WORD(t,0);
|
| 99 |
|
|
s = one + t * z;
|
| 100 |
|
|
return t + a * (s + t * v);
|
| 101 |
|
|
}
|
| 102 |
|
|
}
|
| 103 |
|
|
}
|
| 104 |
|
|
}
|
| 105 |
|
|
if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
|
| 106 |
|
|
if (hx < 0) {
|
| 107 |
|
|
x = -x;
|
| 108 |
|
|
y = -y;
|
| 109 |
|
|
}
|
| 110 |
|
|
z = pio4 - x;
|
| 111 |
|
|
w = pio4lo - y;
|
| 112 |
|
|
x = z + w;
|
| 113 |
|
|
y = 0.0;
|
| 114 |
|
|
}
|
| 115 |
|
|
z = x * x;
|
| 116 |
|
|
w = z * z;
|
| 117 |
|
|
/*
|
| 118 |
|
|
* Break x^5*(T[1]+x^2*T[2]+...) into
|
| 119 |
|
|
* x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
|
| 120 |
|
|
* x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
|
| 121 |
|
|
*/
|
| 122 |
|
|
r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
|
| 123 |
|
|
w * T[11]))));
|
| 124 |
|
|
v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
|
| 125 |
|
|
w * T[12])))));
|
| 126 |
|
|
s = z * x;
|
| 127 |
|
|
r = y + z * (s * (r + v) + y);
|
| 128 |
|
|
r += T[0] * s;
|
| 129 |
|
|
w = x + r;
|
| 130 |
|
|
if (ix >= 0x3FE59428) {
|
| 131 |
|
|
v = (double) iy;
|
| 132 |
|
|
return (double) (1 - ((hx >> 30) & 2)) *
|
| 133 |
|
|
(v - 2.0 * (x - (w * w / (w + v) - r)));
|
| 134 |
|
|
}
|
| 135 |
|
|
if (iy == 1)
|
| 136 |
|
|
return w;
|
| 137 |
|
|
else {
|
| 138 |
|
|
/*
|
| 139 |
|
|
* if allow error up to 2 ulp, simply return
|
| 140 |
|
|
* -1.0 / (x+r) here
|
| 141 |
|
|
*/
|
| 142 |
|
|
/* compute -1.0 / (x+r) accurately */
|
| 143 |
|
|
double a, t;
|
| 144 |
|
|
z = w;
|
| 145 |
|
|
SET_LOW_WORD(z,0);
|
| 146 |
|
|
v = r - (z - x); /* z+v = r+x */
|
| 147 |
|
|
t = a = -1.0 / w; /* a = -1.0/w */
|
| 148 |
|
|
SET_LOW_WORD(t,0);
|
| 149 |
|
|
s = 1.0 + t * z;
|
| 150 |
|
|
return t + a * (s + t * v);
|
| 151 |
|
|
}
|
| 152 |
|
|
}
|
| 153 |
|
|
#endif /* defined(_DOUBLE_IS_32BITS) */
|