OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [native/] [fdlibm/] [k_tan.c] - Blame information for rev 791

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 774 jeremybenn
#pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
2
 
3
/*
4
 * ====================================================
5
 * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
6
 *
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
/* INDENT OFF */
14
/* __kernel_tan( x, y, k )
15
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
17
 * Input y is the tail of x.
18
 * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
19
 *
20
 * Algorithm
21
 *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
22
 *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23
 *      3. tan(x) is approximated by a odd polynomial of degree 27 on
24
 *         [0,0.67434]
25
 *                               3             27
26
 *              tan(x) ~ x + T1*x + ... + T13*x
27
 *         where
28
 *
29
 *              |tan(x)         2     4            26   |     -59.2
30
 *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
31
 *              |  x                                    |
32
 *
33
 *         Note: tan(x+y) = tan(x) + tan'(x)*y
34
 *                        ~ tan(x) + (1+x*x)*y
35
 *         Therefore, for better accuracy in computing tan(x+y), let
36
 *                   3      2      2       2       2
37
 *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38
 *         then
39
 *                                  3    2
40
 *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
41
 *
42
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
43
 *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
44
 *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
45
 */
46
 
47
#include "fdlibm.h"
48
 
49
#ifndef _DOUBLE_IS_32BITS
50
 
51
static const double xxx[] = {
52
                 3.33333333333334091986e-01,    /* 3FD55555, 55555563 */
53
                 1.33333333333201242699e-01,    /* 3FC11111, 1110FE7A */
54
                 5.39682539762260521377e-02,    /* 3FABA1BA, 1BB341FE */
55
                 2.18694882948595424599e-02,    /* 3F9664F4, 8406D637 */
56
                 8.86323982359930005737e-03,    /* 3F8226E3, E96E8493 */
57
                 3.59207910759131235356e-03,    /* 3F6D6D22, C9560328 */
58
                 1.45620945432529025516e-03,    /* 3F57DBC8, FEE08315 */
59
                 5.88041240820264096874e-04,    /* 3F4344D8, F2F26501 */
60
                 2.46463134818469906812e-04,    /* 3F3026F7, 1A8D1068 */
61
                 7.81794442939557092300e-05,    /* 3F147E88, A03792A6 */
62
                 7.14072491382608190305e-05,    /* 3F12B80F, 32F0A7E9 */
63
                -1.85586374855275456654e-05,    /* BEF375CB, DB605373 */
64
                 2.59073051863633712884e-05,    /* 3EFB2A70, 74BF7AD4 */
65
/* one */        1.00000000000000000000e+00,    /* 3FF00000, 00000000 */
66
/* pio4 */       7.85398163397448278999e-01,    /* 3FE921FB, 54442D18 */
67
/* pio4lo */     3.06161699786838301793e-17     /* 3C81A626, 33145C07 */
68
};
69
#define one     xxx[13]
70
#define pio4    xxx[14]
71
#define pio4lo  xxx[15]
72
#define T       xxx
73
/* INDENT ON */
74
 
75
double
76
__kernel_tan(double x, double y, int iy) {
77
        double z, r, v, w, s;
78
        int32_t ix, hx;
79
 
80
        GET_HIGH_WORD(hx,x); /* high word of x */
81
        ix = hx & 0x7fffffff;                   /* high word of |x| */
82
        if (ix < 0x3e300000) {                  /* x < 2**-28 */
83
                if ((int) x == 0) {              /* generate inexact */
84
                        uint32_t low;
85
                        GET_LOW_WORD(low,x);
86
                        if (((ix | low) | (iy + 1)) == 0)
87
                                return one / fabs(x);
88
                        else {
89
                                if (iy == 1)
90
                                        return x;
91
                                else {  /* compute -1 / (x+y) carefully */
92
                                        double a, t;
93
 
94
                                        z = w = x + y;
95
                                        SET_LOW_WORD(z,0);
96
                                        v = y - (z - x);
97
                                        t = a = -one / w;
98
                                        SET_LOW_WORD(t,0);
99
                                        s = one + t * z;
100
                                        return t + a * (s + t * v);
101
                                }
102
                        }
103
                }
104
        }
105
        if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
106
                if (hx < 0) {
107
                        x = -x;
108
                        y = -y;
109
                }
110
                z = pio4 - x;
111
                w = pio4lo - y;
112
                x = z + w;
113
                y = 0.0;
114
        }
115
        z = x * x;
116
        w = z * z;
117
        /*
118
         * Break x^5*(T[1]+x^2*T[2]+...) into
119
         * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
120
         * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
121
         */
122
        r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
123
                w * T[11]))));
124
        v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
125
                w * T[12])))));
126
        s = z * x;
127
        r = y + z * (s * (r + v) + y);
128
        r += T[0] * s;
129
        w = x + r;
130
        if (ix >= 0x3FE59428) {
131
                v = (double) iy;
132
                return (double) (1 - ((hx >> 30) & 2)) *
133
                        (v - 2.0 * (x - (w * w / (w + v) - r)));
134
        }
135
        if (iy == 1)
136
                return w;
137
        else {
138
                /*
139
                 * if allow error up to 2 ulp, simply return
140
                 * -1.0 / (x+r) here
141
                 */
142
                /* compute -1.0 / (x+r) accurately */
143
                double a, t;
144
                z = w;
145
                SET_LOW_WORD(z,0);
146
                v = r - (z - x);        /* z+v = r+x */
147
                t = a = -1.0 / w;       /* a = -1.0/w */
148
                SET_LOW_WORD(t,0);
149
                s = 1.0 + t * z;
150
                return t + a * (s + t * v);
151
        }
152
}
153
#endif /* defined(_DOUBLE_IS_32BITS) */

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.