OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [classpath/] [native/] [fdlibm/] [s_expm1.c] - Blame information for rev 774

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 774 jeremybenn
 
2
/* @(#)s_expm1.c 1.5 04/04/22 */
3
/*
4
 * ====================================================
5
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6
 *
7
 * Permission to use, copy, modify, and distribute this
8
 * software is freely granted, provided that this notice
9
 * is preserved.
10
 * ====================================================
11
 */
12
 
13
/* expm1(x)
14
 * Returns exp(x)-1, the exponential of x minus 1.
15
 *
16
 * Method
17
 *   1. Argument reduction:
18
 *      Given x, find r and integer k such that
19
 *
20
 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
21
 *
22
 *      Here a correction term c will be computed to compensate
23
 *      the error in r when rounded to a floating-point number.
24
 *
25
 *   2. Approximating expm1(r) by a special rational function on
26
 *      the interval [0,0.34658]:
27
 *      Since
28
 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
29
 *      we define R1(r*r) by
30
 *          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
31
 *      That is,
32
 *          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
33
 *                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
34
 *                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
35
 *      We use a special Remes algorithm on [0,0.347] to generate
36
 *      a polynomial of degree 5 in r*r to approximate R1. The
37
 *      maximum error of this polynomial approximation is bounded
38
 *      by 2**-61. In other words,
39
 *          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
40
 *      where   Q1  =  -1.6666666666666567384E-2,
41
 *              Q2  =   3.9682539681370365873E-4,
42
 *              Q3  =  -9.9206344733435987357E-6,
43
 *              Q4  =   2.5051361420808517002E-7,
44
 *              Q5  =  -6.2843505682382617102E-9;
45
 *      (where z=r*r, and the values of Q1 to Q5 are listed below)
46
 *      with error bounded by
47
 *          |                  5           |     -61
48
 *          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
49
 *          |                              |
50
 *
51
 *      expm1(r) = exp(r)-1 is then computed by the following
52
 *      specific way which minimize the accumulation rounding error:
53
 *                             2     3
54
 *                            r     r    [ 3 - (R1 + R1*r/2)  ]
55
 *            expm1(r) = r + --- + --- * [--------------------]
56
 *                            2     2    [ 6 - r*(3 - R1*r/2) ]
57
 *
58
 *      To compensate the error in the argument reduction, we use
59
 *              expm1(r+c) = expm1(r) + c + expm1(r)*c
60
 *                         ~ expm1(r) + c + r*c
61
 *      Thus c+r*c will be added in as the correction terms for
62
 *      expm1(r+c). Now rearrange the term to avoid optimization
63
 *      screw up:
64
 *                      (      2                                    2 )
65
 *                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
66
 *       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
67
 *                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
68
 *                      (                                             )
69
 *
70
 *                 = r - E
71
 *   3. Scale back to obtain expm1(x):
72
 *      From step 1, we have
73
 *         expm1(x) = either 2^k*[expm1(r)+1] - 1
74
 *                  = or     2^k*[expm1(r) + (1-2^-k)]
75
 *   4. Implementation notes:
76
 *      (A). To save one multiplication, we scale the coefficient Qi
77
 *           to Qi*2^i, and replace z by (x^2)/2.
78
 *      (B). To achieve maximum accuracy, we compute expm1(x) by
79
 *        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
80
 *        (ii)  if k=0, return r-E
81
 *        (iii) if k=-1, return 0.5*(r-E)-0.5
82
 *        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
83
 *                     else          return  1.0+2.0*(r-E);
84
 *        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
85
 *        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
86
 *        (vii) return 2^k(1-((E+2^-k)-r))
87
 *
88
 * Special cases:
89
 *      expm1(INF) is INF, expm1(NaN) is NaN;
90
 *      expm1(-INF) is -1, and
91
 *      for finite argument, only expm1(0)=0 is exact.
92
 *
93
 * Accuracy:
94
 *      according to an error analysis, the error is always less than
95
 *      1 ulp (unit in the last place).
96
 *
97
 * Misc. info.
98
 *      For IEEE double
99
 *          if x >  7.09782712893383973096e+02 then expm1(x) overflow
100
 *
101
 * Constants:
102
 * The hexadecimal values are the intended ones for the following
103
 * constants. The decimal values may be used, provided that the
104
 * compiler will convert from decimal to binary accurately enough
105
 * to produce the hexadecimal values shown.
106
 */
107
 
108
#include "fdlibm.h"
109
 
110
#ifndef _DOUBLE_IS_32BITS
111
 
112
#ifdef __STDC__
113
static const double
114
#else
115
static double
116
#endif
117
one             = 1.0,
118
huge            = 1.0e+300,
119
tiny            = 1.0e-300,
120
o_threshold     = 7.09782712893383973096e+02,/* 0x40862E42, 0xFEFA39EF */
121
ln2_hi          = 6.93147180369123816490e-01,/* 0x3fe62e42, 0xfee00000 */
122
ln2_lo          = 1.90821492927058770002e-10,/* 0x3dea39ef, 0x35793c76 */
123
invln2          = 1.44269504088896338700e+00,/* 0x3ff71547, 0x652b82fe */
124
        /* scaled coefficients related to expm1 */
125
Q1  =  -3.33333333333331316428e-02, /* BFA11111 111110F4 */
126
Q2  =   1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
127
Q3  =  -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
128
Q4  =   4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
129
Q5  =  -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
130
 
131
#ifdef __STDC__
132
        double expm1(double x)
133
#else
134
        double expm1(x)
135
        double x;
136
#endif
137
{
138
        double y,hi,lo,c,t,e,hxs,hfx,r1;
139
        int32_t k,xsb;
140
        uint32_t hx;
141
 
142
        GET_HIGH_WORD(hx,x); /* high word of x */
143
        xsb = hx&0x80000000;            /* sign bit of x */
144
        if(xsb==0) y=x; else y= -x;      /* y = |x| */
145
        hx &= 0x7fffffff;               /* high word of |x| */
146
 
147
    /* filter out huge and non-finite argument */
148
        if(hx >= 0x4043687A) {                  /* if |x|>=56*ln2 */
149
            if(hx >= 0x40862E42) {              /* if |x|>=709.78... */
150
                if(hx>=0x7ff00000) {
151
                    uint32_t low;
152
                    GET_LOW_WORD(low,x);
153
                    if(((hx&0xfffff)|low)!=0)
154
                         return x+x;     /* NaN */
155
                    else return (xsb==0)? x:-1.0;/* exp(+-inf)={inf,-1} */
156
                }
157
                if(x > o_threshold) return huge*huge; /* overflow */
158
            }
159
            if(xsb!=0) { /* x < -56*ln2, return -1.0 with inexact */
160
                if(x+tiny<0.0)          /* raise inexact */
161
                return tiny-one;        /* return -1 */
162
            }
163
        }
164
 
165
    /* argument reduction */
166
        if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
167
            if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
168
                if(xsb==0)
169
                    {hi = x - ln2_hi; lo =  ln2_lo;  k =  1;}
170
                else
171
                    {hi = x + ln2_hi; lo = -ln2_lo;  k = -1;}
172
            } else {
173
                k  = invln2*x+((xsb==0)?0.5:-0.5);
174
                t  = k;
175
                hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
176
                lo = t*ln2_lo;
177
            }
178
            x  = hi - lo;
179
            c  = (hi-x)-lo;
180
        }
181
        else if(hx < 0x3c900000) {      /* when |x|<2**-54, return x */
182
            t = huge+x; /* return x with inexact flags when x!=0 */
183
            return x - (t-(huge+x));
184
        }
185
        else k = 0;
186
 
187
    /* x is now in primary range */
188
        hfx = 0.5*x;
189
        hxs = x*hfx;
190
        r1 = one+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
191
        t  = 3.0-r1*hfx;
192
        e  = hxs*((r1-t)/(6.0 - x*t));
193
        if(k==0) return x - (x*e-hxs);           /* c is 0 */
194
        else {
195
            e  = (x*(e-c)-c);
196
            e -= hxs;
197
            if(k== -1) return 0.5*(x-e)-0.5;
198
            if(k==1)
199
                if(x < -0.25) return -2.0*(e-(x+0.5));
200
                else          return  one+2.0*(x-e);
201
            if (k <= -2 || k>56) {   /* suffice to return exp(x)-1 */
202
                uint32_t hy;
203
 
204
                y = one-(e-x);
205
                GET_HIGH_WORD(hy,y);
206
                SET_HIGH_WORD(y, hy + (k<<20)); /* add k to y's exponent */
207
                return y-one;
208
            }
209
            t = one;
210
            if(k<20) {
211
                uint32_t hy;
212
 
213
                SET_HIGH_WORD(t, 0x3ff00000 - (0x200000>>k));  /* t=1-2^-k */
214
                y = t-(e-x);
215
                GET_HIGH_WORD(hy, y);
216
                SET_HIGH_WORD(y, hy + (k<<20)); /* add k to y's exponent */
217
           } else {
218
                uint32_t hy;
219
 
220
                SET_HIGH_WORD(t, (0x3ff-k)<<20);        /* 2^-k */
221
                y = x-(e+t);
222
                y += one;
223
                GET_HIGH_WORD(hy, y);
224
                SET_HIGH_WORD(y, hy + (k<<20)); /* add k to y's exponent */
225
            }
226
        }
227
        return y;
228
}
229
#endif /* _DOUBLE_IS_32BITS */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.