| 1 |
756 |
jeremybenn |
|
| 2 |
|
|
/* --------------------------------- SHS.CC ------------------------------- */
|
| 3 |
|
|
|
| 4 |
|
|
/*
|
| 5 |
|
|
* NIST proposed Secure Hash Standard.
|
| 6 |
|
|
*
|
| 7 |
|
|
* Written 2 September 1992, Peter C. Gutmann.
|
| 8 |
|
|
* This implementation placed in the public domain.
|
| 9 |
|
|
*
|
| 10 |
|
|
* Comments to pgut1@cs.aukuni.ac.nz
|
| 11 |
|
|
*/
|
| 12 |
|
|
|
| 13 |
|
|
// Force C++ compiler to use Java-style EH, so we don't have to link with
|
| 14 |
|
|
// libstdc++.
|
| 15 |
|
|
#pragma GCC java_exceptions
|
| 16 |
|
|
|
| 17 |
|
|
#include <string.h>
|
| 18 |
|
|
#include "shs.h"
|
| 19 |
|
|
|
| 20 |
|
|
/* The SHS f()-functions */
|
| 21 |
|
|
|
| 22 |
|
|
#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
|
| 23 |
|
|
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
|
| 24 |
|
|
#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
|
| 25 |
|
|
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
|
| 26 |
|
|
|
| 27 |
|
|
/* The SHS Mysterious Constants */
|
| 28 |
|
|
|
| 29 |
|
|
#define K1 0x5A827999L /* Rounds 0-19 */
|
| 30 |
|
|
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
| 31 |
|
|
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
| 32 |
|
|
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
| 33 |
|
|
|
| 34 |
|
|
/* SHS initial values */
|
| 35 |
|
|
|
| 36 |
|
|
#define h0init 0x67452301L
|
| 37 |
|
|
#define h1init 0xEFCDAB89L
|
| 38 |
|
|
#define h2init 0x98BADCFEL
|
| 39 |
|
|
#define h3init 0x10325476L
|
| 40 |
|
|
#define h4init 0xC3D2E1F0L
|
| 41 |
|
|
|
| 42 |
|
|
/* 32-bit rotate - kludged with shifts */
|
| 43 |
|
|
|
| 44 |
|
|
#define S(n,X) ((X << n) | (X >> (32 - n)))
|
| 45 |
|
|
|
| 46 |
|
|
/* The initial expanding function */
|
| 47 |
|
|
|
| 48 |
|
|
#define expand(count) W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]
|
| 49 |
|
|
|
| 50 |
|
|
/* The four SHS sub-rounds */
|
| 51 |
|
|
|
| 52 |
|
|
#define subRound1(count) \
|
| 53 |
|
|
{ \
|
| 54 |
|
|
temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
|
| 55 |
|
|
E = D; \
|
| 56 |
|
|
D = C; \
|
| 57 |
|
|
C = S (30, B); \
|
| 58 |
|
|
B = A; \
|
| 59 |
|
|
A = temp; \
|
| 60 |
|
|
}
|
| 61 |
|
|
|
| 62 |
|
|
#define subRound2(count) \
|
| 63 |
|
|
{ \
|
| 64 |
|
|
temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
|
| 65 |
|
|
E = D; \
|
| 66 |
|
|
D = C; \
|
| 67 |
|
|
C = S (30, B); \
|
| 68 |
|
|
B = A; \
|
| 69 |
|
|
A = temp; \
|
| 70 |
|
|
}
|
| 71 |
|
|
|
| 72 |
|
|
#define subRound3(count) \
|
| 73 |
|
|
{ \
|
| 74 |
|
|
temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
|
| 75 |
|
|
E = D; \
|
| 76 |
|
|
D = C; \
|
| 77 |
|
|
C = S (30, B); \
|
| 78 |
|
|
B = A; \
|
| 79 |
|
|
A = temp; \
|
| 80 |
|
|
}
|
| 81 |
|
|
|
| 82 |
|
|
#define subRound4(count) \
|
| 83 |
|
|
{ \
|
| 84 |
|
|
temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
|
| 85 |
|
|
E = D; \
|
| 86 |
|
|
D = C; \
|
| 87 |
|
|
C = S (30, B); \
|
| 88 |
|
|
B = A; \
|
| 89 |
|
|
A = temp; \
|
| 90 |
|
|
}
|
| 91 |
|
|
|
| 92 |
|
|
/* The two buffers of 5 32-bit words */
|
| 93 |
|
|
|
| 94 |
|
|
uint32_t h0, h1, h2, h3, h4;
|
| 95 |
|
|
uint32_t A, B, C, D, E;
|
| 96 |
|
|
|
| 97 |
|
|
local void byteReverse OF((uint32_t *buffer, int byteCount));
|
| 98 |
|
|
void shsTransform OF((SHS_INFO *shsInfo));
|
| 99 |
|
|
|
| 100 |
|
|
/* Initialize the SHS values */
|
| 101 |
|
|
|
| 102 |
|
|
void shsInit (SHS_INFO *shsInfo)
|
| 103 |
|
|
{
|
| 104 |
|
|
/* Set the h-vars to their initial values */
|
| 105 |
|
|
shsInfo->digest [0] = h0init;
|
| 106 |
|
|
shsInfo->digest [1] = h1init;
|
| 107 |
|
|
shsInfo->digest [2] = h2init;
|
| 108 |
|
|
shsInfo->digest [3] = h3init;
|
| 109 |
|
|
shsInfo->digest [4] = h4init;
|
| 110 |
|
|
|
| 111 |
|
|
/* Initialise bit count */
|
| 112 |
|
|
shsInfo->countLo = shsInfo->countHi = 0L;
|
| 113 |
|
|
}
|
| 114 |
|
|
|
| 115 |
|
|
/*
|
| 116 |
|
|
* Perform the SHS transformation. Note that this code, like MD5, seems to
|
| 117 |
|
|
* break some optimizing compilers - it may be necessary to split it into
|
| 118 |
|
|
* sections, eg based on the four subrounds
|
| 119 |
|
|
*/
|
| 120 |
|
|
|
| 121 |
|
|
void shsTransform (SHS_INFO *shsInfo)
|
| 122 |
|
|
{
|
| 123 |
|
|
uint32_t W [80], temp;
|
| 124 |
|
|
int i;
|
| 125 |
|
|
|
| 126 |
|
|
/* Step A. Copy the data buffer into the local work buffer */
|
| 127 |
|
|
for (i = 0; i < 16; i++)
|
| 128 |
|
|
W [i] = shsInfo->data [i];
|
| 129 |
|
|
|
| 130 |
|
|
/* Step B. Expand the 16 words into 64 temporary data words */
|
| 131 |
|
|
expand (16); expand (17); expand (18); expand (19); expand (20);
|
| 132 |
|
|
expand (21); expand (22); expand (23); expand (24); expand (25);
|
| 133 |
|
|
expand (26); expand (27); expand (28); expand (29); expand (30);
|
| 134 |
|
|
expand (31); expand (32); expand (33); expand (34); expand (35);
|
| 135 |
|
|
expand (36); expand (37); expand (38); expand (39); expand (40);
|
| 136 |
|
|
expand (41); expand (42); expand (43); expand (44); expand (45);
|
| 137 |
|
|
expand (46); expand (47); expand (48); expand (49); expand (50);
|
| 138 |
|
|
expand (51); expand (52); expand (53); expand (54); expand (55);
|
| 139 |
|
|
expand (56); expand (57); expand (58); expand (59); expand (60);
|
| 140 |
|
|
expand (61); expand (62); expand (63); expand (64); expand (65);
|
| 141 |
|
|
expand (66); expand (67); expand (68); expand (69); expand (70);
|
| 142 |
|
|
expand (71); expand (72); expand (73); expand (74); expand (75);
|
| 143 |
|
|
expand (76); expand (77); expand (78); expand (79);
|
| 144 |
|
|
|
| 145 |
|
|
/* Step C. Set up first buffer */
|
| 146 |
|
|
A = shsInfo->digest [0];
|
| 147 |
|
|
B = shsInfo->digest [1];
|
| 148 |
|
|
C = shsInfo->digest [2];
|
| 149 |
|
|
D = shsInfo->digest [3];
|
| 150 |
|
|
E = shsInfo->digest [4];
|
| 151 |
|
|
|
| 152 |
|
|
/* Step D. Serious mangling, divided into four sub-rounds */
|
| 153 |
|
|
subRound1 (0); subRound1 (1); subRound1 (2); subRound1 (3);
|
| 154 |
|
|
subRound1 (4); subRound1 (5); subRound1 (6); subRound1 (7);
|
| 155 |
|
|
subRound1 (8); subRound1 (9); subRound1 (10); subRound1 (11);
|
| 156 |
|
|
subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
|
| 157 |
|
|
subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);
|
| 158 |
|
|
|
| 159 |
|
|
subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
|
| 160 |
|
|
subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
|
| 161 |
|
|
subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
|
| 162 |
|
|
subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
|
| 163 |
|
|
subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);
|
| 164 |
|
|
|
| 165 |
|
|
subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
|
| 166 |
|
|
subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
|
| 167 |
|
|
subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
|
| 168 |
|
|
subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
|
| 169 |
|
|
subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);
|
| 170 |
|
|
|
| 171 |
|
|
subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
|
| 172 |
|
|
subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
|
| 173 |
|
|
subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
|
| 174 |
|
|
subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
|
| 175 |
|
|
subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);
|
| 176 |
|
|
|
| 177 |
|
|
/* Step E. Build message digest */
|
| 178 |
|
|
shsInfo->digest [0] += A;
|
| 179 |
|
|
shsInfo->digest [1] += B;
|
| 180 |
|
|
shsInfo->digest [2] += C;
|
| 181 |
|
|
shsInfo->digest [3] += D;
|
| 182 |
|
|
shsInfo->digest [4] += E;
|
| 183 |
|
|
}
|
| 184 |
|
|
|
| 185 |
|
|
local void byteReverse (uint32_t *buffer, int byteCount)
|
| 186 |
|
|
{
|
| 187 |
|
|
uint32_t value;
|
| 188 |
|
|
int count;
|
| 189 |
|
|
|
| 190 |
|
|
/*
|
| 191 |
|
|
* Find out what the byte order is on this machine.
|
| 192 |
|
|
* Big endian is for machines that place the most significant byte
|
| 193 |
|
|
* first (eg. Sun SPARC). Little endian is for machines that place
|
| 194 |
|
|
* the least significant byte first (eg. VAX).
|
| 195 |
|
|
*
|
| 196 |
|
|
* We figure out the byte order by stuffing a 2 byte string into a
|
| 197 |
|
|
* short and examining the left byte. '@' = 0x40 and 'P' = 0x50
|
| 198 |
|
|
* If the left byte is the 'high' byte, then it is 'big endian'.
|
| 199 |
|
|
* If the left byte is the 'low' byte, then the machine is 'little
|
| 200 |
|
|
* endian'.
|
| 201 |
|
|
*
|
| 202 |
|
|
* -- Shawn A. Clifford (sac@eng.ufl.edu)
|
| 203 |
|
|
*/
|
| 204 |
|
|
|
| 205 |
|
|
/*
|
| 206 |
|
|
* Several bugs fixed -- Pat Myrto (pat@rwing.uucp)
|
| 207 |
|
|
*/
|
| 208 |
|
|
|
| 209 |
|
|
if ((*(unsigned short *) ("@P") >> 8) == '@')
|
| 210 |
|
|
return;
|
| 211 |
|
|
|
| 212 |
|
|
byteCount /= sizeof (uint32_t);
|
| 213 |
|
|
for (count = 0; count < byteCount; count++) {
|
| 214 |
|
|
value = (buffer [count] << 16) | (buffer [count] >> 16);
|
| 215 |
|
|
buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
|
| 216 |
|
|
}
|
| 217 |
|
|
}
|
| 218 |
|
|
|
| 219 |
|
|
/*
|
| 220 |
|
|
* Update SHS for a block of data. This code assumes that the buffer size is
|
| 221 |
|
|
* a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
|
| 222 |
|
|
* efficient since it does away with the need to handle partial blocks
|
| 223 |
|
|
* between calls to shsUpdate()
|
| 224 |
|
|
*/
|
| 225 |
|
|
|
| 226 |
|
|
void shsUpdate (SHS_INFO *shsInfo, uint8_t *buffer, int count)
|
| 227 |
|
|
{
|
| 228 |
|
|
/* Update bitcount */
|
| 229 |
|
|
if ((shsInfo->countLo + ((uint32_t) count << 3)) < shsInfo->countLo)
|
| 230 |
|
|
shsInfo->countHi++; /* Carry from low to high bitCount */
|
| 231 |
|
|
shsInfo->countLo += ((uint32_t) count << 3);
|
| 232 |
|
|
shsInfo->countHi += ((uint32_t) count >> 29);
|
| 233 |
|
|
|
| 234 |
|
|
/* Process data in SHS_BLOCKSIZE chunks */
|
| 235 |
|
|
while (count >= SHS_BLOCKSIZE) {
|
| 236 |
|
|
memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
|
| 237 |
|
|
byteReverse (shsInfo->data, SHS_BLOCKSIZE);
|
| 238 |
|
|
shsTransform (shsInfo);
|
| 239 |
|
|
buffer += SHS_BLOCKSIZE;
|
| 240 |
|
|
count -= SHS_BLOCKSIZE;
|
| 241 |
|
|
}
|
| 242 |
|
|
|
| 243 |
|
|
/*
|
| 244 |
|
|
* Handle any remaining bytes of data.
|
| 245 |
|
|
* This should only happen once on the final lot of data
|
| 246 |
|
|
*/
|
| 247 |
|
|
memcpy (shsInfo->data, buffer, count);
|
| 248 |
|
|
}
|
| 249 |
|
|
|
| 250 |
|
|
void shsFinal (SHS_INFO *shsInfo)
|
| 251 |
|
|
{
|
| 252 |
|
|
int count;
|
| 253 |
|
|
uint32_t lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
|
| 254 |
|
|
|
| 255 |
|
|
/* Compute number of bytes mod 64 */
|
| 256 |
|
|
count = (int) ((shsInfo->countLo >> 3) & 0x3F);
|
| 257 |
|
|
|
| 258 |
|
|
/*
|
| 259 |
|
|
* Set the first char of padding to 0x80.
|
| 260 |
|
|
* This is safe since there is always at least one byte free
|
| 261 |
|
|
*/
|
| 262 |
|
|
((uint8_t *) shsInfo->data) [count++] = 0x80;
|
| 263 |
|
|
|
| 264 |
|
|
/* Pad out to 56 mod 64 */
|
| 265 |
|
|
if (count > 56) {
|
| 266 |
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
| 267 |
|
|
memset ((uint8_t *) shsInfo->data + count, 0, 64 - count);
|
| 268 |
|
|
byteReverse (shsInfo->data, SHS_BLOCKSIZE);
|
| 269 |
|
|
shsTransform (shsInfo);
|
| 270 |
|
|
|
| 271 |
|
|
/* Now fill the next block with 56 bytes */
|
| 272 |
|
|
memset (shsInfo->data, 0, 56);
|
| 273 |
|
|
} else
|
| 274 |
|
|
/* Pad block to 56 bytes */
|
| 275 |
|
|
memset ((uint8_t *) shsInfo->data + count, 0, 56 - count);
|
| 276 |
|
|
byteReverse (shsInfo->data, SHS_BLOCKSIZE);
|
| 277 |
|
|
|
| 278 |
|
|
/* Append length in bits and transform */
|
| 279 |
|
|
shsInfo->data [14] = highBitcount;
|
| 280 |
|
|
shsInfo->data [15] = lowBitcount;
|
| 281 |
|
|
|
| 282 |
|
|
shsTransform (shsInfo);
|
| 283 |
|
|
byteReverse (shsInfo->data, SHS_DIGESTSIZE);
|
| 284 |
|
|
}
|