1 |
756 |
jeremybenn |
|
2 |
|
|
/* --------------------------------- SHS.CC ------------------------------- */
|
3 |
|
|
|
4 |
|
|
/*
|
5 |
|
|
* NIST proposed Secure Hash Standard.
|
6 |
|
|
*
|
7 |
|
|
* Written 2 September 1992, Peter C. Gutmann.
|
8 |
|
|
* This implementation placed in the public domain.
|
9 |
|
|
*
|
10 |
|
|
* Comments to pgut1@cs.aukuni.ac.nz
|
11 |
|
|
*/
|
12 |
|
|
|
13 |
|
|
// Force C++ compiler to use Java-style EH, so we don't have to link with
|
14 |
|
|
// libstdc++.
|
15 |
|
|
#pragma GCC java_exceptions
|
16 |
|
|
|
17 |
|
|
#include <string.h>
|
18 |
|
|
#include "shs.h"
|
19 |
|
|
|
20 |
|
|
/* The SHS f()-functions */
|
21 |
|
|
|
22 |
|
|
#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
|
23 |
|
|
#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
|
24 |
|
|
#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
|
25 |
|
|
#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
|
26 |
|
|
|
27 |
|
|
/* The SHS Mysterious Constants */
|
28 |
|
|
|
29 |
|
|
#define K1 0x5A827999L /* Rounds 0-19 */
|
30 |
|
|
#define K2 0x6ED9EBA1L /* Rounds 20-39 */
|
31 |
|
|
#define K3 0x8F1BBCDCL /* Rounds 40-59 */
|
32 |
|
|
#define K4 0xCA62C1D6L /* Rounds 60-79 */
|
33 |
|
|
|
34 |
|
|
/* SHS initial values */
|
35 |
|
|
|
36 |
|
|
#define h0init 0x67452301L
|
37 |
|
|
#define h1init 0xEFCDAB89L
|
38 |
|
|
#define h2init 0x98BADCFEL
|
39 |
|
|
#define h3init 0x10325476L
|
40 |
|
|
#define h4init 0xC3D2E1F0L
|
41 |
|
|
|
42 |
|
|
/* 32-bit rotate - kludged with shifts */
|
43 |
|
|
|
44 |
|
|
#define S(n,X) ((X << n) | (X >> (32 - n)))
|
45 |
|
|
|
46 |
|
|
/* The initial expanding function */
|
47 |
|
|
|
48 |
|
|
#define expand(count) W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]
|
49 |
|
|
|
50 |
|
|
/* The four SHS sub-rounds */
|
51 |
|
|
|
52 |
|
|
#define subRound1(count) \
|
53 |
|
|
{ \
|
54 |
|
|
temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
|
55 |
|
|
E = D; \
|
56 |
|
|
D = C; \
|
57 |
|
|
C = S (30, B); \
|
58 |
|
|
B = A; \
|
59 |
|
|
A = temp; \
|
60 |
|
|
}
|
61 |
|
|
|
62 |
|
|
#define subRound2(count) \
|
63 |
|
|
{ \
|
64 |
|
|
temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
|
65 |
|
|
E = D; \
|
66 |
|
|
D = C; \
|
67 |
|
|
C = S (30, B); \
|
68 |
|
|
B = A; \
|
69 |
|
|
A = temp; \
|
70 |
|
|
}
|
71 |
|
|
|
72 |
|
|
#define subRound3(count) \
|
73 |
|
|
{ \
|
74 |
|
|
temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
|
75 |
|
|
E = D; \
|
76 |
|
|
D = C; \
|
77 |
|
|
C = S (30, B); \
|
78 |
|
|
B = A; \
|
79 |
|
|
A = temp; \
|
80 |
|
|
}
|
81 |
|
|
|
82 |
|
|
#define subRound4(count) \
|
83 |
|
|
{ \
|
84 |
|
|
temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
|
85 |
|
|
E = D; \
|
86 |
|
|
D = C; \
|
87 |
|
|
C = S (30, B); \
|
88 |
|
|
B = A; \
|
89 |
|
|
A = temp; \
|
90 |
|
|
}
|
91 |
|
|
|
92 |
|
|
/* The two buffers of 5 32-bit words */
|
93 |
|
|
|
94 |
|
|
uint32_t h0, h1, h2, h3, h4;
|
95 |
|
|
uint32_t A, B, C, D, E;
|
96 |
|
|
|
97 |
|
|
local void byteReverse OF((uint32_t *buffer, int byteCount));
|
98 |
|
|
void shsTransform OF((SHS_INFO *shsInfo));
|
99 |
|
|
|
100 |
|
|
/* Initialize the SHS values */
|
101 |
|
|
|
102 |
|
|
void shsInit (SHS_INFO *shsInfo)
|
103 |
|
|
{
|
104 |
|
|
/* Set the h-vars to their initial values */
|
105 |
|
|
shsInfo->digest [0] = h0init;
|
106 |
|
|
shsInfo->digest [1] = h1init;
|
107 |
|
|
shsInfo->digest [2] = h2init;
|
108 |
|
|
shsInfo->digest [3] = h3init;
|
109 |
|
|
shsInfo->digest [4] = h4init;
|
110 |
|
|
|
111 |
|
|
/* Initialise bit count */
|
112 |
|
|
shsInfo->countLo = shsInfo->countHi = 0L;
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
/*
|
116 |
|
|
* Perform the SHS transformation. Note that this code, like MD5, seems to
|
117 |
|
|
* break some optimizing compilers - it may be necessary to split it into
|
118 |
|
|
* sections, eg based on the four subrounds
|
119 |
|
|
*/
|
120 |
|
|
|
121 |
|
|
void shsTransform (SHS_INFO *shsInfo)
|
122 |
|
|
{
|
123 |
|
|
uint32_t W [80], temp;
|
124 |
|
|
int i;
|
125 |
|
|
|
126 |
|
|
/* Step A. Copy the data buffer into the local work buffer */
|
127 |
|
|
for (i = 0; i < 16; i++)
|
128 |
|
|
W [i] = shsInfo->data [i];
|
129 |
|
|
|
130 |
|
|
/* Step B. Expand the 16 words into 64 temporary data words */
|
131 |
|
|
expand (16); expand (17); expand (18); expand (19); expand (20);
|
132 |
|
|
expand (21); expand (22); expand (23); expand (24); expand (25);
|
133 |
|
|
expand (26); expand (27); expand (28); expand (29); expand (30);
|
134 |
|
|
expand (31); expand (32); expand (33); expand (34); expand (35);
|
135 |
|
|
expand (36); expand (37); expand (38); expand (39); expand (40);
|
136 |
|
|
expand (41); expand (42); expand (43); expand (44); expand (45);
|
137 |
|
|
expand (46); expand (47); expand (48); expand (49); expand (50);
|
138 |
|
|
expand (51); expand (52); expand (53); expand (54); expand (55);
|
139 |
|
|
expand (56); expand (57); expand (58); expand (59); expand (60);
|
140 |
|
|
expand (61); expand (62); expand (63); expand (64); expand (65);
|
141 |
|
|
expand (66); expand (67); expand (68); expand (69); expand (70);
|
142 |
|
|
expand (71); expand (72); expand (73); expand (74); expand (75);
|
143 |
|
|
expand (76); expand (77); expand (78); expand (79);
|
144 |
|
|
|
145 |
|
|
/* Step C. Set up first buffer */
|
146 |
|
|
A = shsInfo->digest [0];
|
147 |
|
|
B = shsInfo->digest [1];
|
148 |
|
|
C = shsInfo->digest [2];
|
149 |
|
|
D = shsInfo->digest [3];
|
150 |
|
|
E = shsInfo->digest [4];
|
151 |
|
|
|
152 |
|
|
/* Step D. Serious mangling, divided into four sub-rounds */
|
153 |
|
|
subRound1 (0); subRound1 (1); subRound1 (2); subRound1 (3);
|
154 |
|
|
subRound1 (4); subRound1 (5); subRound1 (6); subRound1 (7);
|
155 |
|
|
subRound1 (8); subRound1 (9); subRound1 (10); subRound1 (11);
|
156 |
|
|
subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
|
157 |
|
|
subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);
|
158 |
|
|
|
159 |
|
|
subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
|
160 |
|
|
subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
|
161 |
|
|
subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
|
162 |
|
|
subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
|
163 |
|
|
subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);
|
164 |
|
|
|
165 |
|
|
subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
|
166 |
|
|
subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
|
167 |
|
|
subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
|
168 |
|
|
subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
|
169 |
|
|
subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);
|
170 |
|
|
|
171 |
|
|
subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
|
172 |
|
|
subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
|
173 |
|
|
subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
|
174 |
|
|
subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
|
175 |
|
|
subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);
|
176 |
|
|
|
177 |
|
|
/* Step E. Build message digest */
|
178 |
|
|
shsInfo->digest [0] += A;
|
179 |
|
|
shsInfo->digest [1] += B;
|
180 |
|
|
shsInfo->digest [2] += C;
|
181 |
|
|
shsInfo->digest [3] += D;
|
182 |
|
|
shsInfo->digest [4] += E;
|
183 |
|
|
}
|
184 |
|
|
|
185 |
|
|
local void byteReverse (uint32_t *buffer, int byteCount)
|
186 |
|
|
{
|
187 |
|
|
uint32_t value;
|
188 |
|
|
int count;
|
189 |
|
|
|
190 |
|
|
/*
|
191 |
|
|
* Find out what the byte order is on this machine.
|
192 |
|
|
* Big endian is for machines that place the most significant byte
|
193 |
|
|
* first (eg. Sun SPARC). Little endian is for machines that place
|
194 |
|
|
* the least significant byte first (eg. VAX).
|
195 |
|
|
*
|
196 |
|
|
* We figure out the byte order by stuffing a 2 byte string into a
|
197 |
|
|
* short and examining the left byte. '@' = 0x40 and 'P' = 0x50
|
198 |
|
|
* If the left byte is the 'high' byte, then it is 'big endian'.
|
199 |
|
|
* If the left byte is the 'low' byte, then the machine is 'little
|
200 |
|
|
* endian'.
|
201 |
|
|
*
|
202 |
|
|
* -- Shawn A. Clifford (sac@eng.ufl.edu)
|
203 |
|
|
*/
|
204 |
|
|
|
205 |
|
|
/*
|
206 |
|
|
* Several bugs fixed -- Pat Myrto (pat@rwing.uucp)
|
207 |
|
|
*/
|
208 |
|
|
|
209 |
|
|
if ((*(unsigned short *) ("@P") >> 8) == '@')
|
210 |
|
|
return;
|
211 |
|
|
|
212 |
|
|
byteCount /= sizeof (uint32_t);
|
213 |
|
|
for (count = 0; count < byteCount; count++) {
|
214 |
|
|
value = (buffer [count] << 16) | (buffer [count] >> 16);
|
215 |
|
|
buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
|
216 |
|
|
}
|
217 |
|
|
}
|
218 |
|
|
|
219 |
|
|
/*
|
220 |
|
|
* Update SHS for a block of data. This code assumes that the buffer size is
|
221 |
|
|
* a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
|
222 |
|
|
* efficient since it does away with the need to handle partial blocks
|
223 |
|
|
* between calls to shsUpdate()
|
224 |
|
|
*/
|
225 |
|
|
|
226 |
|
|
void shsUpdate (SHS_INFO *shsInfo, uint8_t *buffer, int count)
|
227 |
|
|
{
|
228 |
|
|
/* Update bitcount */
|
229 |
|
|
if ((shsInfo->countLo + ((uint32_t) count << 3)) < shsInfo->countLo)
|
230 |
|
|
shsInfo->countHi++; /* Carry from low to high bitCount */
|
231 |
|
|
shsInfo->countLo += ((uint32_t) count << 3);
|
232 |
|
|
shsInfo->countHi += ((uint32_t) count >> 29);
|
233 |
|
|
|
234 |
|
|
/* Process data in SHS_BLOCKSIZE chunks */
|
235 |
|
|
while (count >= SHS_BLOCKSIZE) {
|
236 |
|
|
memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
|
237 |
|
|
byteReverse (shsInfo->data, SHS_BLOCKSIZE);
|
238 |
|
|
shsTransform (shsInfo);
|
239 |
|
|
buffer += SHS_BLOCKSIZE;
|
240 |
|
|
count -= SHS_BLOCKSIZE;
|
241 |
|
|
}
|
242 |
|
|
|
243 |
|
|
/*
|
244 |
|
|
* Handle any remaining bytes of data.
|
245 |
|
|
* This should only happen once on the final lot of data
|
246 |
|
|
*/
|
247 |
|
|
memcpy (shsInfo->data, buffer, count);
|
248 |
|
|
}
|
249 |
|
|
|
250 |
|
|
void shsFinal (SHS_INFO *shsInfo)
|
251 |
|
|
{
|
252 |
|
|
int count;
|
253 |
|
|
uint32_t lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
|
254 |
|
|
|
255 |
|
|
/* Compute number of bytes mod 64 */
|
256 |
|
|
count = (int) ((shsInfo->countLo >> 3) & 0x3F);
|
257 |
|
|
|
258 |
|
|
/*
|
259 |
|
|
* Set the first char of padding to 0x80.
|
260 |
|
|
* This is safe since there is always at least one byte free
|
261 |
|
|
*/
|
262 |
|
|
((uint8_t *) shsInfo->data) [count++] = 0x80;
|
263 |
|
|
|
264 |
|
|
/* Pad out to 56 mod 64 */
|
265 |
|
|
if (count > 56) {
|
266 |
|
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
267 |
|
|
memset ((uint8_t *) shsInfo->data + count, 0, 64 - count);
|
268 |
|
|
byteReverse (shsInfo->data, SHS_BLOCKSIZE);
|
269 |
|
|
shsTransform (shsInfo);
|
270 |
|
|
|
271 |
|
|
/* Now fill the next block with 56 bytes */
|
272 |
|
|
memset (shsInfo->data, 0, 56);
|
273 |
|
|
} else
|
274 |
|
|
/* Pad block to 56 bytes */
|
275 |
|
|
memset ((uint8_t *) shsInfo->data + count, 0, 56 - count);
|
276 |
|
|
byteReverse (shsInfo->data, SHS_BLOCKSIZE);
|
277 |
|
|
|
278 |
|
|
/* Append length in bits and transform */
|
279 |
|
|
shsInfo->data [14] = highBitcount;
|
280 |
|
|
shsInfo->data [15] = lowBitcount;
|
281 |
|
|
|
282 |
|
|
shsTransform (shsInfo);
|
283 |
|
|
byteReverse (shsInfo->data, SHS_DIGESTSIZE);
|
284 |
|
|
}
|