OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [gnu/] [gcj/] [io/] [shs.cc] - Blame information for rev 830

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 756 jeremybenn
 
2
/* --------------------------------- SHS.CC ------------------------------- */
3
 
4
/*
5
 * NIST proposed Secure Hash Standard.
6
 *
7
 * Written 2 September 1992, Peter C. Gutmann.
8
 * This implementation placed in the public domain.
9
 *
10
 * Comments to pgut1@cs.aukuni.ac.nz
11
 */
12
 
13
// Force C++ compiler to use Java-style EH, so we don't have to link with
14
// libstdc++.
15
#pragma GCC java_exceptions
16
 
17
#include <string.h>
18
#include "shs.h"
19
 
20
/* The SHS f()-functions */
21
 
22
#define f1(x,y,z)   ( ( x & y ) | ( ~x & z ) )            /* Rounds  0-19 */
23
#define f2(x,y,z)   ( x ^ y ^ z )                         /* Rounds 20-39 */
24
#define f3(x,y,z)   ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
25
#define f4(x,y,z)   ( x ^ y ^ z )                         /* Rounds 60-79 */
26
 
27
/* The SHS Mysterious Constants */
28
 
29
#define K1  0x5A827999L         /* Rounds  0-19 */
30
#define K2  0x6ED9EBA1L         /* Rounds 20-39 */
31
#define K3  0x8F1BBCDCL         /* Rounds 40-59 */
32
#define K4  0xCA62C1D6L         /* Rounds 60-79 */
33
 
34
/* SHS initial values */
35
 
36
#define h0init  0x67452301L
37
#define h1init  0xEFCDAB89L
38
#define h2init  0x98BADCFEL
39
#define h3init  0x10325476L
40
#define h4init  0xC3D2E1F0L
41
 
42
/* 32-bit rotate - kludged with shifts */
43
 
44
#define S(n,X)  ((X << n) | (X >> (32 - n)))
45
 
46
/* The initial expanding function */
47
 
48
#define expand(count)   W [count] = W [count - 3] ^ W [count - 8] ^ W [count - 14] ^ W [count - 16]
49
 
50
/* The four SHS sub-rounds */
51
 
52
#define subRound1(count)    \
53
        { \
54
                temp = S (5, A) + f1 (B, C, D) + E + W [count] + K1; \
55
                E = D; \
56
                D = C; \
57
                C = S (30, B); \
58
                B = A; \
59
                A = temp; \
60
        }
61
 
62
#define subRound2(count)    \
63
        { \
64
                temp = S (5, A) + f2 (B, C, D) + E + W [count] + K2; \
65
                E = D; \
66
                D = C; \
67
                C = S (30, B); \
68
                B = A; \
69
                A = temp; \
70
        }
71
 
72
#define subRound3(count)    \
73
        { \
74
                temp = S (5, A) + f3 (B, C, D) + E + W [count] + K3; \
75
                E = D; \
76
                D = C; \
77
                C = S (30, B); \
78
                B = A; \
79
                A = temp; \
80
        }
81
 
82
#define subRound4(count)    \
83
        { \
84
                temp = S (5, A) + f4 (B, C, D) + E + W [count] + K4; \
85
                E = D; \
86
                D = C; \
87
                C = S (30, B); \
88
                B = A; \
89
                A = temp; \
90
        }
91
 
92
/* The two buffers of 5 32-bit words */
93
 
94
uint32_t h0, h1, h2, h3, h4;
95
uint32_t A, B, C, D, E;
96
 
97
local void byteReverse OF((uint32_t *buffer, int byteCount));
98
void shsTransform OF((SHS_INFO *shsInfo));
99
 
100
/* Initialize the SHS values */
101
 
102
void shsInit (SHS_INFO *shsInfo)
103
{
104
        /* Set the h-vars to their initial values */
105
        shsInfo->digest [0] = h0init;
106
        shsInfo->digest [1] = h1init;
107
        shsInfo->digest [2] = h2init;
108
        shsInfo->digest [3] = h3init;
109
        shsInfo->digest [4] = h4init;
110
 
111
        /* Initialise bit count */
112
        shsInfo->countLo = shsInfo->countHi = 0L;
113
}
114
 
115
/*
116
 * Perform the SHS transformation.  Note that this code, like MD5, seems to
117
 * break some optimizing compilers - it may be necessary to split it into
118
 * sections, eg based on the four subrounds
119
 */
120
 
121
void shsTransform (SHS_INFO *shsInfo)
122
{
123
       uint32_t W [80], temp;
124
        int i;
125
 
126
        /* Step A.      Copy the data buffer into the local work buffer */
127
        for (i = 0; i < 16; i++)
128
                W [i] = shsInfo->data [i];
129
 
130
        /* Step B.      Expand the 16 words into 64 temporary data words */
131
        expand (16); expand (17); expand (18); expand (19); expand (20);
132
        expand (21); expand (22); expand (23); expand (24); expand (25);
133
        expand (26); expand (27); expand (28); expand (29); expand (30);
134
        expand (31); expand (32); expand (33); expand (34); expand (35);
135
        expand (36); expand (37); expand (38); expand (39); expand (40);
136
        expand (41); expand (42); expand (43); expand (44); expand (45);
137
        expand (46); expand (47); expand (48); expand (49); expand (50);
138
        expand (51); expand (52); expand (53); expand (54); expand (55);
139
        expand (56); expand (57); expand (58); expand (59); expand (60);
140
        expand (61); expand (62); expand (63); expand (64); expand (65);
141
        expand (66); expand (67); expand (68); expand (69); expand (70);
142
        expand (71); expand (72); expand (73); expand (74); expand (75);
143
        expand (76); expand (77); expand (78); expand (79);
144
 
145
        /* Step C.      Set up first buffer */
146
        A = shsInfo->digest [0];
147
        B = shsInfo->digest [1];
148
        C = shsInfo->digest [2];
149
        D = shsInfo->digest [3];
150
        E = shsInfo->digest [4];
151
 
152
        /* Step D.      Serious mangling, divided into four sub-rounds */
153
        subRound1  (0); subRound1  (1); subRound1  (2); subRound1  (3);
154
        subRound1  (4); subRound1  (5); subRound1  (6); subRound1  (7);
155
        subRound1  (8); subRound1  (9); subRound1 (10); subRound1 (11);
156
        subRound1 (12); subRound1 (13); subRound1 (14); subRound1 (15);
157
        subRound1 (16); subRound1 (17); subRound1 (18); subRound1 (19);
158
 
159
        subRound2 (20); subRound2 (21); subRound2 (22); subRound2 (23);
160
        subRound2 (24); subRound2 (25); subRound2 (26); subRound2 (27);
161
        subRound2 (28); subRound2 (29); subRound2 (30); subRound2 (31);
162
        subRound2 (32); subRound2 (33); subRound2 (34); subRound2 (35);
163
        subRound2 (36); subRound2 (37); subRound2 (38); subRound2 (39);
164
 
165
        subRound3 (40); subRound3 (41); subRound3 (42); subRound3 (43);
166
        subRound3 (44); subRound3 (45); subRound3 (46); subRound3 (47);
167
        subRound3 (48); subRound3 (49); subRound3 (50); subRound3 (51);
168
        subRound3 (52); subRound3 (53); subRound3 (54); subRound3 (55);
169
        subRound3 (56); subRound3 (57); subRound3 (58); subRound3 (59);
170
 
171
        subRound4 (60); subRound4 (61); subRound4 (62); subRound4 (63);
172
        subRound4 (64); subRound4 (65); subRound4 (66); subRound4 (67);
173
        subRound4 (68); subRound4 (69); subRound4 (70); subRound4 (71);
174
        subRound4 (72); subRound4 (73); subRound4 (74); subRound4 (75);
175
        subRound4 (76); subRound4 (77); subRound4 (78); subRound4 (79);
176
 
177
        /* Step E.      Build message digest */
178
        shsInfo->digest [0] += A;
179
        shsInfo->digest [1] += B;
180
        shsInfo->digest [2] += C;
181
        shsInfo->digest [3] += D;
182
        shsInfo->digest [4] += E;
183
}
184
 
185
local void byteReverse (uint32_t *buffer, int byteCount)
186
{
187
       uint32_t value;
188
        int count;
189
 
190
        /*
191
         * Find out what the byte order is on this machine.
192
         * Big endian is for machines that place the most significant byte
193
         * first (eg. Sun SPARC). Little endian is for machines that place
194
         * the least significant byte first (eg. VAX).
195
         *
196
         * We figure out the byte order by stuffing a 2 byte string into a
197
         * short and examining the left byte. '@' = 0x40  and  'P' = 0x50
198
         * If the left byte is the 'high' byte, then it is 'big endian'.
199
         * If the left byte is the 'low' byte, then the machine is 'little
200
         * endian'.
201
         *
202
         *                          -- Shawn A. Clifford (sac@eng.ufl.edu)
203
         */
204
 
205
        /*
206
         * Several bugs fixed       -- Pat Myrto (pat@rwing.uucp)
207
         */
208
 
209
        if ((*(unsigned short *) ("@P") >> 8) == '@')
210
                return;
211
 
212
       byteCount /= sizeof (uint32_t);
213
        for (count = 0; count < byteCount; count++) {
214
                value = (buffer [count] << 16) | (buffer [count] >> 16);
215
                buffer [count] = ((value & 0xFF00FF00L) >> 8) | ((value & 0x00FF00FFL) << 8);
216
        }
217
}
218
 
219
/*
220
 * Update SHS for a block of data.  This code assumes that the buffer size is
221
 * a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot more
222
 * efficient since it does away with the need to handle partial blocks
223
 * between calls to shsUpdate()
224
 */
225
 
226
void shsUpdate (SHS_INFO *shsInfo, uint8_t *buffer, int count)
227
{
228
        /* Update bitcount */
229
       if ((shsInfo->countLo + ((uint32_t) count << 3)) < shsInfo->countLo)
230
                 shsInfo->countHi++;    /* Carry from low to high bitCount */
231
       shsInfo->countLo += ((uint32_t) count << 3);
232
       shsInfo->countHi += ((uint32_t) count >> 29);
233
 
234
        /* Process data in SHS_BLOCKSIZE chunks */
235
        while (count >= SHS_BLOCKSIZE) {
236
                memcpy (shsInfo->data, buffer, SHS_BLOCKSIZE);
237
                byteReverse (shsInfo->data, SHS_BLOCKSIZE);
238
                shsTransform (shsInfo);
239
                buffer += SHS_BLOCKSIZE;
240
                count -= SHS_BLOCKSIZE;
241
        }
242
 
243
        /*
244
         * Handle any remaining bytes of data.
245
         * This should only happen once on the final lot of data
246
         */
247
        memcpy (shsInfo->data, buffer, count);
248
}
249
 
250
void shsFinal (SHS_INFO *shsInfo)
251
{
252
        int count;
253
       uint32_t lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
254
 
255
        /* Compute number of bytes mod 64 */
256
        count = (int) ((shsInfo->countLo >> 3) & 0x3F);
257
 
258
        /*
259
         * Set the first char of padding to 0x80.
260
         * This is safe since there is always at least one byte free
261
         */
262
       ((uint8_t *) shsInfo->data) [count++] = 0x80;
263
 
264
        /* Pad out to 56 mod 64 */
265
        if (count > 56) {
266
                /* Two lots of padding:  Pad the first block to 64 bytes */
267
               memset ((uint8_t *) shsInfo->data + count, 0, 64 - count);
268
                byteReverse (shsInfo->data, SHS_BLOCKSIZE);
269
                shsTransform (shsInfo);
270
 
271
                /* Now fill the next block with 56 bytes */
272
                memset (shsInfo->data, 0, 56);
273
        } else
274
                /* Pad block to 56 bytes */
275
               memset ((uint8_t *) shsInfo->data + count, 0, 56 - count);
276
        byteReverse (shsInfo->data, SHS_BLOCKSIZE);
277
 
278
        /* Append length in bits and transform */
279
        shsInfo->data [14] = highBitcount;
280
        shsInfo->data [15] = lowBitcount;
281
 
282
        shsTransform (shsInfo);
283
        byteReverse (shsInfo->data, SHS_DIGESTSIZE);
284
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.