| 1 |
758 |
jeremybenn |
// natObject.cc - Implementation of the Object class.
|
| 2 |
|
|
|
| 3 |
|
|
/* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2005 Free Software Foundation
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of libgcj.
|
| 6 |
|
|
|
| 7 |
|
|
This software is copyrighted work licensed under the terms of the
|
| 8 |
|
|
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
| 9 |
|
|
details. */
|
| 10 |
|
|
|
| 11 |
|
|
#include <config.h>
|
| 12 |
|
|
#include <platform.h>
|
| 13 |
|
|
|
| 14 |
|
|
#include <string.h>
|
| 15 |
|
|
|
| 16 |
|
|
#pragma implementation "Object.h"
|
| 17 |
|
|
|
| 18 |
|
|
#include <gcj/cni.h>
|
| 19 |
|
|
#include <jvm.h>
|
| 20 |
|
|
#include <java/lang/Object.h>
|
| 21 |
|
|
#include <java-threads.h>
|
| 22 |
|
|
#include <java-signal.h>
|
| 23 |
|
|
#include <java/lang/CloneNotSupportedException.h>
|
| 24 |
|
|
#include <java/lang/IllegalArgumentException.h>
|
| 25 |
|
|
#include <java/lang/IllegalMonitorStateException.h>
|
| 26 |
|
|
#include <java/lang/InterruptedException.h>
|
| 27 |
|
|
#include <java/lang/NullPointerException.h>
|
| 28 |
|
|
#include <java/lang/Class.h>
|
| 29 |
|
|
#include <java/lang/Cloneable.h>
|
| 30 |
|
|
#include <java/lang/Thread.h>
|
| 31 |
|
|
|
| 32 |
|
|
#ifdef LOCK_DEBUG
|
| 33 |
|
|
# include <stdio.h>
|
| 34 |
|
|
#endif
|
| 35 |
|
|
|
| 36 |
|
|
|
| 37 |
|
|
|
| 38 |
|
|
using namespace java::lang;
|
| 39 |
|
|
|
| 40 |
|
|
// This is used to represent synchronization information.
|
| 41 |
|
|
struct _Jv_SyncInfo
|
| 42 |
|
|
{
|
| 43 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 44 |
|
|
// We only need to keep track of initialization state if we can
|
| 45 |
|
|
// possibly finalize this object.
|
| 46 |
|
|
bool init;
|
| 47 |
|
|
#endif
|
| 48 |
|
|
_Jv_ConditionVariable_t condition;
|
| 49 |
|
|
_Jv_Mutex_t mutex;
|
| 50 |
|
|
};
|
| 51 |
|
|
|
| 52 |
|
|
|
| 53 |
|
|
|
| 54 |
|
|
jclass
|
| 55 |
|
|
java::lang::Object::getClass (void)
|
| 56 |
|
|
{
|
| 57 |
|
|
_Jv_VTable **dt = (_Jv_VTable **) this;
|
| 58 |
|
|
return (*dt)->clas;
|
| 59 |
|
|
}
|
| 60 |
|
|
|
| 61 |
|
|
jint
|
| 62 |
|
|
java::lang::Object::hashCode (void)
|
| 63 |
|
|
{
|
| 64 |
|
|
return _Jv_HashCode (this);
|
| 65 |
|
|
}
|
| 66 |
|
|
|
| 67 |
|
|
jobject
|
| 68 |
|
|
java::lang::Object::clone (void)
|
| 69 |
|
|
{
|
| 70 |
|
|
jclass klass = getClass ();
|
| 71 |
|
|
jobject r;
|
| 72 |
|
|
jint size;
|
| 73 |
|
|
|
| 74 |
|
|
// We also clone arrays here. If we put the array code into
|
| 75 |
|
|
// __JArray, then we'd have to figure out a way to find the array
|
| 76 |
|
|
// vtbl when creating a new array class. This is easier, if uglier.
|
| 77 |
|
|
if (klass->isArray())
|
| 78 |
|
|
{
|
| 79 |
|
|
__JArray *array = (__JArray *) this;
|
| 80 |
|
|
jclass comp = getClass()->getComponentType();
|
| 81 |
|
|
jint eltsize;
|
| 82 |
|
|
if (comp->isPrimitive())
|
| 83 |
|
|
{
|
| 84 |
|
|
r = _Jv_NewPrimArray (comp, array->length);
|
| 85 |
|
|
eltsize = comp->size();
|
| 86 |
|
|
}
|
| 87 |
|
|
else
|
| 88 |
|
|
{
|
| 89 |
|
|
r = _Jv_NewObjectArray (array->length, comp, NULL);
|
| 90 |
|
|
eltsize = sizeof (jobject);
|
| 91 |
|
|
}
|
| 92 |
|
|
// We can't use sizeof on __JArray because we must account for
|
| 93 |
|
|
// alignment of the element type.
|
| 94 |
|
|
size = (_Jv_GetArrayElementFromElementType (array, comp) - (char *) array
|
| 95 |
|
|
+ array->length * eltsize);
|
| 96 |
|
|
}
|
| 97 |
|
|
else
|
| 98 |
|
|
{
|
| 99 |
|
|
if (! java::lang::Cloneable::class$.isAssignableFrom(klass))
|
| 100 |
|
|
throw new CloneNotSupportedException;
|
| 101 |
|
|
|
| 102 |
|
|
size = klass->size();
|
| 103 |
|
|
r = _Jv_AllocObject (klass);
|
| 104 |
|
|
}
|
| 105 |
|
|
|
| 106 |
|
|
memcpy ((void *) r, (void *) this, size);
|
| 107 |
|
|
#ifndef JV_HASH_SYNCHRONIZATION
|
| 108 |
|
|
// Guarantee that the locks associated to the two objects are
|
| 109 |
|
|
// distinct.
|
| 110 |
|
|
r->sync_info = NULL;
|
| 111 |
|
|
#endif
|
| 112 |
|
|
return r;
|
| 113 |
|
|
}
|
| 114 |
|
|
|
| 115 |
|
|
void
|
| 116 |
|
|
_Jv_FinalizeObject (jobject obj)
|
| 117 |
|
|
{
|
| 118 |
|
|
// Ignore exceptions. From section 12.6 of the Java Language Spec.
|
| 119 |
|
|
try
|
| 120 |
|
|
{
|
| 121 |
|
|
obj->finalize ();
|
| 122 |
|
|
}
|
| 123 |
|
|
catch (java::lang::Throwable *t)
|
| 124 |
|
|
{
|
| 125 |
|
|
// Ignore.
|
| 126 |
|
|
}
|
| 127 |
|
|
}
|
| 128 |
|
|
|
| 129 |
|
|
|
| 130 |
|
|
//
|
| 131 |
|
|
// Synchronization code.
|
| 132 |
|
|
//
|
| 133 |
|
|
|
| 134 |
|
|
#ifndef JV_HASH_SYNCHRONIZATION
|
| 135 |
|
|
// This global is used to make sure that only one thread sets an
|
| 136 |
|
|
// object's `sync_info' field.
|
| 137 |
|
|
static _Jv_Mutex_t sync_mutex;
|
| 138 |
|
|
|
| 139 |
|
|
// This macro is used to see if synchronization initialization is
|
| 140 |
|
|
// needed.
|
| 141 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 142 |
|
|
# define INIT_NEEDED(Obj) (! (Obj)->sync_info \
|
| 143 |
|
|
|| ! ((_Jv_SyncInfo *) ((Obj)->sync_info))->init)
|
| 144 |
|
|
#else
|
| 145 |
|
|
# define INIT_NEEDED(Obj) (! (Obj)->sync_info)
|
| 146 |
|
|
#endif
|
| 147 |
|
|
|
| 148 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 149 |
|
|
// If we have to run a destructor for a sync_info member, then this
|
| 150 |
|
|
// function is registered as a finalizer for the sync_info.
|
| 151 |
|
|
static void
|
| 152 |
|
|
finalize_sync_info (jobject obj)
|
| 153 |
|
|
{
|
| 154 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj;
|
| 155 |
|
|
#if defined (_Jv_HaveCondDestroy)
|
| 156 |
|
|
_Jv_CondDestroy (&si->condition);
|
| 157 |
|
|
#endif
|
| 158 |
|
|
#if defined (_Jv_HaveMutexDestroy)
|
| 159 |
|
|
_Jv_MutexDestroy (&si->mutex);
|
| 160 |
|
|
#endif
|
| 161 |
|
|
si->init = false;
|
| 162 |
|
|
}
|
| 163 |
|
|
#endif
|
| 164 |
|
|
|
| 165 |
|
|
// This is called to initialize the sync_info element of an object.
|
| 166 |
|
|
void
|
| 167 |
|
|
java::lang::Object::sync_init (void)
|
| 168 |
|
|
{
|
| 169 |
|
|
_Jv_MutexLock (&sync_mutex);
|
| 170 |
|
|
// Check again to see if initialization is needed now that we have
|
| 171 |
|
|
// the lock.
|
| 172 |
|
|
if (INIT_NEEDED (this))
|
| 173 |
|
|
{
|
| 174 |
|
|
// We assume there are no pointers in the sync_info
|
| 175 |
|
|
// representation.
|
| 176 |
|
|
_Jv_SyncInfo *si;
|
| 177 |
|
|
// We always create a new sync_info, even if there is already
|
| 178 |
|
|
// one available. Any given object can only be finalized once.
|
| 179 |
|
|
// If we get here and sync_info is not null, then it has already
|
| 180 |
|
|
// been finalized. So if we just reinitialize the old one,
|
| 181 |
|
|
// we'll never be able to (re-)destroy the mutex and/or
|
| 182 |
|
|
// condition variable.
|
| 183 |
|
|
si = (_Jv_SyncInfo *) _Jv_AllocBytes (sizeof (_Jv_SyncInfo));
|
| 184 |
|
|
_Jv_MutexInit (&si->mutex);
|
| 185 |
|
|
_Jv_CondInit (&si->condition);
|
| 186 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 187 |
|
|
// Register a finalizer.
|
| 188 |
|
|
si->init = true;
|
| 189 |
|
|
_Jv_RegisterFinalizer (si, finalize_sync_info);
|
| 190 |
|
|
#endif
|
| 191 |
|
|
sync_info = (jobject) si;
|
| 192 |
|
|
}
|
| 193 |
|
|
_Jv_MutexUnlock (&sync_mutex);
|
| 194 |
|
|
}
|
| 195 |
|
|
|
| 196 |
|
|
void
|
| 197 |
|
|
java::lang::Object::notify (void)
|
| 198 |
|
|
{
|
| 199 |
|
|
if (__builtin_expect (INIT_NEEDED (this), false))
|
| 200 |
|
|
sync_init ();
|
| 201 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
|
| 202 |
|
|
if (__builtin_expect (_Jv_CondNotify (&si->condition, &si->mutex), false))
|
| 203 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 204 |
|
|
("current thread not owner"));
|
| 205 |
|
|
}
|
| 206 |
|
|
|
| 207 |
|
|
void
|
| 208 |
|
|
java::lang::Object::notifyAll (void)
|
| 209 |
|
|
{
|
| 210 |
|
|
if (__builtin_expect (INIT_NEEDED (this), false))
|
| 211 |
|
|
sync_init ();
|
| 212 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
|
| 213 |
|
|
if (__builtin_expect (_Jv_CondNotifyAll (&si->condition, &si->mutex), false))
|
| 214 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 215 |
|
|
("current thread not owner"));
|
| 216 |
|
|
}
|
| 217 |
|
|
|
| 218 |
|
|
void
|
| 219 |
|
|
java::lang::Object::wait (jlong timeout, jint nanos)
|
| 220 |
|
|
{
|
| 221 |
|
|
if (__builtin_expect (INIT_NEEDED (this), false))
|
| 222 |
|
|
sync_init ();
|
| 223 |
|
|
if (__builtin_expect (timeout < 0 || nanos < 0 || nanos > 999999, false))
|
| 224 |
|
|
throw new IllegalArgumentException;
|
| 225 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
|
| 226 |
|
|
switch (_Jv_CondWait (&si->condition, &si->mutex, timeout, nanos))
|
| 227 |
|
|
{
|
| 228 |
|
|
case _JV_NOT_OWNER:
|
| 229 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
| 230 |
|
|
("current thread not owner"));
|
| 231 |
|
|
case _JV_INTERRUPTED:
|
| 232 |
|
|
if (Thread::interrupted ())
|
| 233 |
|
|
throw new InterruptedException;
|
| 234 |
|
|
}
|
| 235 |
|
|
}
|
| 236 |
|
|
|
| 237 |
|
|
//
|
| 238 |
|
|
// Some runtime code.
|
| 239 |
|
|
//
|
| 240 |
|
|
|
| 241 |
|
|
// This function is called at system startup to initialize the
|
| 242 |
|
|
// `sync_mutex'.
|
| 243 |
|
|
void
|
| 244 |
|
|
_Jv_InitializeSyncMutex (void)
|
| 245 |
|
|
{
|
| 246 |
|
|
_Jv_MutexInit (&sync_mutex);
|
| 247 |
|
|
}
|
| 248 |
|
|
|
| 249 |
|
|
void
|
| 250 |
|
|
_Jv_MonitorEnter (jobject obj)
|
| 251 |
|
|
{
|
| 252 |
|
|
#ifndef HANDLE_SEGV
|
| 253 |
|
|
if (__builtin_expect (! obj, false))
|
| 254 |
|
|
throw new java::lang::NullPointerException;
|
| 255 |
|
|
#endif
|
| 256 |
|
|
if (__builtin_expect (INIT_NEEDED (obj), false))
|
| 257 |
|
|
obj->sync_init ();
|
| 258 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
|
| 259 |
|
|
_Jv_MutexLock (&si->mutex);
|
| 260 |
|
|
// FIXME: In the Windows case, this can return a nonzero error code.
|
| 261 |
|
|
// We should turn that into some exception ...
|
| 262 |
|
|
}
|
| 263 |
|
|
|
| 264 |
|
|
void
|
| 265 |
|
|
_Jv_MonitorExit (jobject obj)
|
| 266 |
|
|
{
|
| 267 |
|
|
JvAssert (obj);
|
| 268 |
|
|
JvAssert (! INIT_NEEDED (obj));
|
| 269 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
|
| 270 |
|
|
if (__builtin_expect (_Jv_MutexUnlock (&si->mutex), false))
|
| 271 |
|
|
throw new java::lang::IllegalMonitorStateException;
|
| 272 |
|
|
}
|
| 273 |
|
|
|
| 274 |
|
|
bool
|
| 275 |
|
|
_Jv_ObjectCheckMonitor (jobject obj)
|
| 276 |
|
|
{
|
| 277 |
|
|
if (__builtin_expect (INIT_NEEDED (obj), false))
|
| 278 |
|
|
obj->sync_init ();
|
| 279 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
|
| 280 |
|
|
return _Jv_MutexCheckMonitor (&si->mutex);
|
| 281 |
|
|
}
|
| 282 |
|
|
|
| 283 |
|
|
#else /* JV_HASH_SYNCHRONIZATION */
|
| 284 |
|
|
|
| 285 |
|
|
// FIXME: We shouldn't be calling GC_register_finalizer directly.
|
| 286 |
|
|
#ifndef HAVE_BOEHM_GC
|
| 287 |
|
|
# error Hash synchronization currently requires boehm-gc
|
| 288 |
|
|
// That's actually a bit of a lie: It should also work with the null GC,
|
| 289 |
|
|
// probably even better than the alternative.
|
| 290 |
|
|
// To really support alternate GCs here, we would need to widen the
|
| 291 |
|
|
// interface to finalization, since we sometimes have to register a
|
| 292 |
|
|
// second finalizer for an object that already has one.
|
| 293 |
|
|
// We might also want to move the GC interface to a .h file, since
|
| 294 |
|
|
// the number of procedure call levels involved in some of these
|
| 295 |
|
|
// operations is already ridiculous, and would become worse if we
|
| 296 |
|
|
// went through the proper intermediaries.
|
| 297 |
|
|
#else
|
| 298 |
|
|
# ifdef LIBGCJ_GC_DEBUG
|
| 299 |
|
|
# define GC_DEBUG
|
| 300 |
|
|
# endif
|
| 301 |
|
|
# include "gc.h"
|
| 302 |
|
|
#endif
|
| 303 |
|
|
|
| 304 |
|
|
// What follows currenly assumes a Linux-like platform.
|
| 305 |
|
|
// Some of it specifically assumes X86 or IA64 Linux, though that
|
| 306 |
|
|
// should be easily fixable.
|
| 307 |
|
|
|
| 308 |
|
|
// A Java monitor implemention based on a table of locks.
|
| 309 |
|
|
// Each entry in the table describes
|
| 310 |
|
|
// locks held for objects that hash to that location.
|
| 311 |
|
|
// This started out as a reimplementation of the technique used in SGIs JVM,
|
| 312 |
|
|
// for which we obtained permission from SGI.
|
| 313 |
|
|
// But in fact, this ended up quite different, though some ideas are
|
| 314 |
|
|
// still shared with the original.
|
| 315 |
|
|
// It was also influenced by some of the published IBM work,
|
| 316 |
|
|
// though it also differs in many ways from that.
|
| 317 |
|
|
// We could speed this up if we had a way to atomically update
|
| 318 |
|
|
// an entire cache entry, i.e. 2 contiguous words of memory.
|
| 319 |
|
|
// That would usually be the case with a 32 bit ABI on a 64 bit processor.
|
| 320 |
|
|
// But we don't currently go out of our way to target those.
|
| 321 |
|
|
// I don't know how to do much better with a N bit ABI on a processor
|
| 322 |
|
|
// that can atomically update only N bits at a time.
|
| 323 |
|
|
// Author: Hans-J. Boehm (Hans_Boehm@hp.com, boehm@acm.org)
|
| 324 |
|
|
|
| 325 |
|
|
#include <limits.h>
|
| 326 |
|
|
#include <unistd.h> // for usleep, sysconf.
|
| 327 |
|
|
#include <gcj/javaprims.h>
|
| 328 |
|
|
#include <sysdep/locks.h>
|
| 329 |
|
|
#include <java/lang/Thread.h>
|
| 330 |
|
|
|
| 331 |
|
|
// Try to determine whether we are on a multiprocessor, i.e. whether
|
| 332 |
|
|
// spinning may be profitable.
|
| 333 |
|
|
// This should really use a suitable autoconf macro.
|
| 334 |
|
|
// False is the conservative answer, though the right one is much better.
|
| 335 |
|
|
static bool
|
| 336 |
|
|
is_mp()
|
| 337 |
|
|
{
|
| 338 |
|
|
#ifdef _SC_NPROCESSORS_ONLN
|
| 339 |
|
|
long nprocs = sysconf(_SC_NPROCESSORS_ONLN);
|
| 340 |
|
|
return (nprocs > 1);
|
| 341 |
|
|
#else
|
| 342 |
|
|
return false;
|
| 343 |
|
|
#endif
|
| 344 |
|
|
}
|
| 345 |
|
|
|
| 346 |
|
|
// A call to keep_live(p) forces p to be accessible to the GC
|
| 347 |
|
|
// at this point.
|
| 348 |
|
|
inline static void
|
| 349 |
|
|
keep_live(obj_addr_t p)
|
| 350 |
|
|
{
|
| 351 |
|
|
__asm__ __volatile__("" : : "rm"(p) : "memory");
|
| 352 |
|
|
}
|
| 353 |
|
|
|
| 354 |
|
|
// Each hash table entry holds a single preallocated "lightweight" lock.
|
| 355 |
|
|
// In addition, it holds a chain of "heavyweight" locks. Lightweight
|
| 356 |
|
|
// locks do not support Object.wait(), and are converted to heavyweight
|
| 357 |
|
|
// status in response to contention. Unlike the SGI scheme, both
|
| 358 |
|
|
// ligtweight and heavyweight locks in one hash entry can be simultaneously
|
| 359 |
|
|
// in use. (The SGI scheme requires that we be able to acquire a heavyweight
|
| 360 |
|
|
// lock on behalf of another thread, and can thus convert a lock we don't
|
| 361 |
|
|
// hold to heavyweight status. Here we don't insist on that, and thus
|
| 362 |
|
|
// let the original holder of the lighweight lock keep it.)
|
| 363 |
|
|
|
| 364 |
|
|
struct heavy_lock {
|
| 365 |
|
|
void * reserved_for_gc;
|
| 366 |
|
|
struct heavy_lock *next; // Hash chain link.
|
| 367 |
|
|
// Traced by GC.
|
| 368 |
|
|
void * old_client_data; // The only other field traced by GC.
|
| 369 |
|
|
GC_finalization_proc old_finalization_proc;
|
| 370 |
|
|
obj_addr_t address; // Object to which this lock corresponds.
|
| 371 |
|
|
// Should not be traced by GC.
|
| 372 |
|
|
// Cleared as heavy_lock is destroyed.
|
| 373 |
|
|
// Together with the rest of the heavy lock
|
| 374 |
|
|
// chain, this is protected by the lock
|
| 375 |
|
|
// bit in the hash table entry to which
|
| 376 |
|
|
// the chain is attached.
|
| 377 |
|
|
_Jv_SyncInfo si;
|
| 378 |
|
|
// The remaining fields save prior finalization info for
|
| 379 |
|
|
// the object, which we needed to replace in order to arrange
|
| 380 |
|
|
// for cleanup of the lock structure.
|
| 381 |
|
|
};
|
| 382 |
|
|
|
| 383 |
|
|
#ifdef LOCK_DEBUG
|
| 384 |
|
|
void
|
| 385 |
|
|
print_hl_list(heavy_lock *hl)
|
| 386 |
|
|
{
|
| 387 |
|
|
heavy_lock *p = hl;
|
| 388 |
|
|
for (; 0 != p; p = p->next)
|
| 389 |
|
|
fprintf (stderr, "(hl = %p, addr = %p)", p, (void *)(p -> address));
|
| 390 |
|
|
}
|
| 391 |
|
|
#endif /* LOCK_DEBUG */
|
| 392 |
|
|
|
| 393 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 394 |
|
|
// If we have to run a destructor for a sync_info member, then this
|
| 395 |
|
|
// function could be registered as a finalizer for the sync_info.
|
| 396 |
|
|
// In fact, we now only invoke it explicitly.
|
| 397 |
|
|
static inline void
|
| 398 |
|
|
heavy_lock_finalization_proc (heavy_lock *hl)
|
| 399 |
|
|
{
|
| 400 |
|
|
#if defined (_Jv_HaveCondDestroy)
|
| 401 |
|
|
_Jv_CondDestroy (&hl->si.condition);
|
| 402 |
|
|
#endif
|
| 403 |
|
|
#if defined (_Jv_HaveMutexDestroy)
|
| 404 |
|
|
_Jv_MutexDestroy (&hl->si.mutex);
|
| 405 |
|
|
#endif
|
| 406 |
|
|
hl->si.init = false;
|
| 407 |
|
|
}
|
| 408 |
|
|
#endif /* defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy) */
|
| 409 |
|
|
|
| 410 |
|
|
// We convert the lock back to lightweight status when
|
| 411 |
|
|
// we exit, so that a single contention episode doesn't doom the lock
|
| 412 |
|
|
// forever. But we also need to make sure that lock structures for dead
|
| 413 |
|
|
// objects are eventually reclaimed. We do that in a an additional
|
| 414 |
|
|
// finalizer on the underlying object.
|
| 415 |
|
|
// Note that if the corresponding object is dead, it is safe to drop
|
| 416 |
|
|
// the heavy_lock structure from its list. It is not necessarily
|
| 417 |
|
|
// safe to deallocate it, since the unlock code could still be running.
|
| 418 |
|
|
|
| 419 |
|
|
struct hash_entry {
|
| 420 |
|
|
volatile obj_addr_t address; // Address of object for which lightweight
|
| 421 |
|
|
// k is held.
|
| 422 |
|
|
// We assume the 3 low order bits are zero.
|
| 423 |
|
|
// With the Boehm collector and bitmap
|
| 424 |
|
|
// allocation, objects of size 4 bytes are
|
| 425 |
|
|
// broken anyway. Thus this is primarily
|
| 426 |
|
|
// a constraint on statically allocated
|
| 427 |
|
|
// objects used for synchronization.
|
| 428 |
|
|
// This allows us to use the low order
|
| 429 |
|
|
// bits as follows:
|
| 430 |
|
|
# define LOCKED 1 // This hash entry is locked, and its
|
| 431 |
|
|
// state may be invalid.
|
| 432 |
|
|
// The lock protects both the hash_entry
|
| 433 |
|
|
// itself (except for the light_count
|
| 434 |
|
|
// and light_thr_id fields, which
|
| 435 |
|
|
// are protected by the lightweight
|
| 436 |
|
|
// lock itself), and any heavy_monitor
|
| 437 |
|
|
// structures attached to it.
|
| 438 |
|
|
# define HEAVY 2 // Heavyweight locks associated with this
|
| 439 |
|
|
// hash entry may be held.
|
| 440 |
|
|
// The lightweight entry is still valid,
|
| 441 |
|
|
// if the leading bits of the address
|
| 442 |
|
|
// field are nonzero.
|
| 443 |
|
|
// If the LOCKED bit is clear, then this is
|
| 444 |
|
|
// set exactly when heavy_count is > 0 .
|
| 445 |
|
|
// Stored redundantly so a single
|
| 446 |
|
|
// compare-and-swap works in the easy case.
|
| 447 |
|
|
// If HEAVY is not set, it is safe to use
|
| 448 |
|
|
// an available lightweight lock entry
|
| 449 |
|
|
// without checking if there is an existing
|
| 450 |
|
|
// heavyweight lock for the same object.
|
| 451 |
|
|
// (There may be one, but it won't be held
|
| 452 |
|
|
// or waited for.)
|
| 453 |
|
|
# define REQUEST_CONVERSION 4 // The lightweight lock is held. But
|
| 454 |
|
|
// one or more other threads have tried
|
| 455 |
|
|
// to acquire the lock, and hence request
|
| 456 |
|
|
// conversion to heavyweight status.
|
| 457 |
|
|
// The heavyweight lock is already allocated.
|
| 458 |
|
|
// Threads requesting conversion are
|
| 459 |
|
|
// waiting on the condition variable associated
|
| 460 |
|
|
// with the heavyweight lock.
|
| 461 |
|
|
// Not used for conversion due to
|
| 462 |
|
|
// Object.wait() calls.
|
| 463 |
|
|
# define FLAGS (LOCKED | HEAVY | REQUEST_CONVERSION)
|
| 464 |
|
|
volatile _Jv_ThreadId_t light_thr_id;
|
| 465 |
|
|
// Thr_id of holder of lightweight lock.
|
| 466 |
|
|
// Only updated by lightweight lock holder.
|
| 467 |
|
|
// Must be recognizably invalid if the
|
| 468 |
|
|
// lightweight lock is not held.
|
| 469 |
|
|
# define INVALID_THREAD_ID 0 // Works for Linux?
|
| 470 |
|
|
// If zero doesn't work, we have to
|
| 471 |
|
|
// initialize lock table.
|
| 472 |
|
|
volatile unsigned short light_count;
|
| 473 |
|
|
// Number of times the lightweight lock
|
| 474 |
|
|
// is held minus one. Zero if lightweight
|
| 475 |
|
|
// lock is not held. Only updated by
|
| 476 |
|
|
// lightweight lock holder or, in one
|
| 477 |
|
|
// case, while holding the LOCKED bit in
|
| 478 |
|
|
// a state in which there can be no
|
| 479 |
|
|
// lightweight lock holder.
|
| 480 |
|
|
unsigned short heavy_count; // Total number of times heavyweight locks
|
| 481 |
|
|
// associated with this hash entry are held
|
| 482 |
|
|
// or waiting to be acquired.
|
| 483 |
|
|
// Threads in wait() are included eventhough
|
| 484 |
|
|
// they have temporarily released the lock.
|
| 485 |
|
|
// Protected by LOCKED bit.
|
| 486 |
|
|
// Threads requesting conversion to heavyweight
|
| 487 |
|
|
// status are also included.
|
| 488 |
|
|
struct heavy_lock * heavy_locks;
|
| 489 |
|
|
// Chain of heavy locks. Protected
|
| 490 |
|
|
// by lockbit for he. Locks may
|
| 491 |
|
|
// remain allocated here even if HEAVY
|
| 492 |
|
|
// is not set and heavy_count is 0.
|
| 493 |
|
|
// If a lightweight and heavyweight lock
|
| 494 |
|
|
// correspond to the same address, the
|
| 495 |
|
|
// lightweight lock is the right one.
|
| 496 |
|
|
};
|
| 497 |
|
|
|
| 498 |
|
|
#ifndef JV_SYNC_TABLE_SZ
|
| 499 |
|
|
# define JV_SYNC_TABLE_SZ 2048 // Must be power of 2.
|
| 500 |
|
|
#endif
|
| 501 |
|
|
|
| 502 |
|
|
hash_entry light_locks[JV_SYNC_TABLE_SZ];
|
| 503 |
|
|
|
| 504 |
|
|
#define JV_SYNC_HASH(p) (((long)p ^ ((long)p >> 10)) & (JV_SYNC_TABLE_SZ-1))
|
| 505 |
|
|
|
| 506 |
|
|
// Note that the light_locks table is scanned conservatively by the
|
| 507 |
|
|
// collector. It is essential the the heavy_locks field is scanned.
|
| 508 |
|
|
// Currently the address field may or may not cause the associated object
|
| 509 |
|
|
// to be retained, depending on whether flag bits are set.
|
| 510 |
|
|
// This means that we can conceivable get an unexpected deadlock if
|
| 511 |
|
|
// 1) Object at address A is locked.
|
| 512 |
|
|
// 2) The client drops A without unlocking it.
|
| 513 |
|
|
// 3) Flag bits in the address entry are set, so the collector reclaims
|
| 514 |
|
|
// the object at A.
|
| 515 |
|
|
// 4) A is reallocated, and an attempt is made to lock the result.
|
| 516 |
|
|
// This could be fixed by scanning light_locks in a more customized
|
| 517 |
|
|
// manner that ignores the flag bits. But it can only happen with hand
|
| 518 |
|
|
// generated semi-illegal .class files, and then it doesn't present a
|
| 519 |
|
|
// security hole.
|
| 520 |
|
|
|
| 521 |
|
|
#ifdef LOCK_DEBUG
|
| 522 |
|
|
void print_he(hash_entry *he)
|
| 523 |
|
|
{
|
| 524 |
|
|
fprintf(stderr, "lock hash entry = %p, index = %d, address = 0x%lx\n"
|
| 525 |
|
|
"\tlight_thr_id = 0x%lx, light_count = %d, "
|
| 526 |
|
|
"heavy_count = %d\n\theavy_locks:", he,
|
| 527 |
|
|
he - light_locks, (unsigned long)(he -> address),
|
| 528 |
|
|
(unsigned long)(he -> light_thr_id),
|
| 529 |
|
|
he -> light_count, he -> heavy_count);
|
| 530 |
|
|
print_hl_list(he -> heavy_locks);
|
| 531 |
|
|
fprintf(stderr, "\n");
|
| 532 |
|
|
}
|
| 533 |
|
|
#endif /* LOCK_DEBUG */
|
| 534 |
|
|
|
| 535 |
|
|
#ifdef LOCK_LOG
|
| 536 |
|
|
// Log locking operations. For debugging only.
|
| 537 |
|
|
// Logging is intended to be as unintrusive as possible.
|
| 538 |
|
|
// Log calls are made after an operation completes, and hence
|
| 539 |
|
|
// may not completely reflect actual synchronization ordering.
|
| 540 |
|
|
// The choice of events to log is currently a bit haphazard.
|
| 541 |
|
|
// The intent is that if we have to track down any other bugs
|
| 542 |
|
|
// inthis code, we extend the logging as appropriate.
|
| 543 |
|
|
typedef enum
|
| 544 |
|
|
{
|
| 545 |
|
|
ACQ_LIGHT, ACQ_LIGHT2, ACQ_HEAVY, ACQ_HEAVY2, PROMOTE, REL_LIGHT,
|
| 546 |
|
|
REL_HEAVY, REQ_CONV, PROMOTE2, WAIT_START, WAIT_END, NOTIFY, NOTIFY_ALL
|
| 547 |
|
|
} event_type;
|
| 548 |
|
|
|
| 549 |
|
|
struct lock_history
|
| 550 |
|
|
{
|
| 551 |
|
|
event_type tp;
|
| 552 |
|
|
obj_addr_t addr; // Often includes flags.
|
| 553 |
|
|
_Jv_ThreadId_t thr;
|
| 554 |
|
|
};
|
| 555 |
|
|
|
| 556 |
|
|
const int LOG_SIZE = 128; // Power of 2.
|
| 557 |
|
|
|
| 558 |
|
|
lock_history lock_log[LOG_SIZE];
|
| 559 |
|
|
|
| 560 |
|
|
volatile obj_addr_t log_next = 0;
|
| 561 |
|
|
// Next location in lock_log.
|
| 562 |
|
|
// Really an int, but we need compare_and_swap.
|
| 563 |
|
|
|
| 564 |
|
|
static void add_log_entry(event_type t, obj_addr_t a, _Jv_ThreadId_t th)
|
| 565 |
|
|
{
|
| 566 |
|
|
obj_addr_t my_entry;
|
| 567 |
|
|
obj_addr_t next_entry;
|
| 568 |
|
|
do
|
| 569 |
|
|
{
|
| 570 |
|
|
my_entry = log_next;
|
| 571 |
|
|
next_entry = ((my_entry + 1) & (LOG_SIZE - 1));
|
| 572 |
|
|
}
|
| 573 |
|
|
while (!compare_and_swap(&log_next, my_entry, next_entry));
|
| 574 |
|
|
lock_log[my_entry].tp = t;
|
| 575 |
|
|
lock_log[my_entry].addr = a;
|
| 576 |
|
|
lock_log[my_entry].thr = th;
|
| 577 |
|
|
}
|
| 578 |
|
|
|
| 579 |
|
|
# define LOG(t, a, th) add_log_entry(t, a, th)
|
| 580 |
|
|
#else /* !LOCK_LOG */
|
| 581 |
|
|
# define LOG(t, a, th)
|
| 582 |
|
|
#endif
|
| 583 |
|
|
|
| 584 |
|
|
static bool mp = false; // Known multiprocesssor.
|
| 585 |
|
|
|
| 586 |
|
|
// Wait for roughly 2^n units, touching as little memory as possible.
|
| 587 |
|
|
static void
|
| 588 |
|
|
spin(unsigned n)
|
| 589 |
|
|
{
|
| 590 |
|
|
const unsigned MP_SPINS = 10;
|
| 591 |
|
|
const unsigned YIELDS = 4;
|
| 592 |
|
|
const unsigned SPINS_PER_UNIT = 30;
|
| 593 |
|
|
const unsigned MIN_SLEEP_USECS = 2001; // Shorter times spin under Linux.
|
| 594 |
|
|
const unsigned MAX_SLEEP_USECS = 200000;
|
| 595 |
|
|
static unsigned spin_limit = 0;
|
| 596 |
|
|
static unsigned yield_limit = YIELDS;
|
| 597 |
|
|
static bool spin_initialized = false;
|
| 598 |
|
|
|
| 599 |
|
|
if (!spin_initialized)
|
| 600 |
|
|
{
|
| 601 |
|
|
mp = is_mp();
|
| 602 |
|
|
if (mp)
|
| 603 |
|
|
{
|
| 604 |
|
|
spin_limit = MP_SPINS;
|
| 605 |
|
|
yield_limit = MP_SPINS + YIELDS;
|
| 606 |
|
|
}
|
| 607 |
|
|
spin_initialized = true;
|
| 608 |
|
|
}
|
| 609 |
|
|
if (n < spin_limit)
|
| 610 |
|
|
{
|
| 611 |
|
|
unsigned i = SPINS_PER_UNIT << n;
|
| 612 |
|
|
for (; i > 0; --i)
|
| 613 |
|
|
__asm__ __volatile__("");
|
| 614 |
|
|
}
|
| 615 |
|
|
else if (n < yield_limit)
|
| 616 |
|
|
{
|
| 617 |
|
|
_Jv_ThreadYield();
|
| 618 |
|
|
}
|
| 619 |
|
|
else
|
| 620 |
|
|
{
|
| 621 |
|
|
unsigned duration = MIN_SLEEP_USECS << (n - yield_limit);
|
| 622 |
|
|
if (n >= 15 + yield_limit || duration > MAX_SLEEP_USECS)
|
| 623 |
|
|
duration = MAX_SLEEP_USECS;
|
| 624 |
|
|
_Jv_platform_usleep(duration);
|
| 625 |
|
|
}
|
| 626 |
|
|
}
|
| 627 |
|
|
|
| 628 |
|
|
// Wait for a hash entry to become unlocked.
|
| 629 |
|
|
static void
|
| 630 |
|
|
wait_unlocked (hash_entry *he)
|
| 631 |
|
|
{
|
| 632 |
|
|
unsigned i = 0;
|
| 633 |
|
|
while (he -> address & LOCKED)
|
| 634 |
|
|
spin (i++);
|
| 635 |
|
|
}
|
| 636 |
|
|
|
| 637 |
|
|
// Return the heavy lock for addr if it was already allocated.
|
| 638 |
|
|
// The client passes in the appropriate hash_entry.
|
| 639 |
|
|
// We hold the lock for he.
|
| 640 |
|
|
static inline heavy_lock *
|
| 641 |
|
|
find_heavy (obj_addr_t addr, hash_entry *he)
|
| 642 |
|
|
{
|
| 643 |
|
|
heavy_lock *hl = he -> heavy_locks;
|
| 644 |
|
|
while (hl != 0 && hl -> address != addr) hl = hl -> next;
|
| 645 |
|
|
return hl;
|
| 646 |
|
|
}
|
| 647 |
|
|
|
| 648 |
|
|
// Unlink the heavy lock for the given address from its hash table chain.
|
| 649 |
|
|
// Dies miserably and conspicuously if it's not there, since that should
|
| 650 |
|
|
// be impossible.
|
| 651 |
|
|
static inline void
|
| 652 |
|
|
unlink_heavy (obj_addr_t addr, hash_entry *he)
|
| 653 |
|
|
{
|
| 654 |
|
|
heavy_lock **currentp = &(he -> heavy_locks);
|
| 655 |
|
|
while ((*currentp) -> address != addr)
|
| 656 |
|
|
currentp = &((*currentp) -> next);
|
| 657 |
|
|
*currentp = (*currentp) -> next;
|
| 658 |
|
|
}
|
| 659 |
|
|
|
| 660 |
|
|
// Finalization procedure for objects that have associated heavy-weight
|
| 661 |
|
|
// locks. This may replace the real finalization procedure.
|
| 662 |
|
|
static void
|
| 663 |
|
|
heavy_lock_obj_finalization_proc (void *obj, void *cd)
|
| 664 |
|
|
{
|
| 665 |
|
|
heavy_lock *hl = (heavy_lock *)cd;
|
| 666 |
|
|
|
| 667 |
|
|
// This only addresses misalignment of statics, not heap objects. It
|
| 668 |
|
|
// works only because registering statics for finalization is a noop,
|
| 669 |
|
|
// no matter what the least significant bits are.
|
| 670 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 671 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)0x7);
|
| 672 |
|
|
#else
|
| 673 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
| 674 |
|
|
#endif
|
| 675 |
|
|
hash_entry *he = light_locks + JV_SYNC_HASH(addr);
|
| 676 |
|
|
obj_addr_t he_address = (he -> address & ~LOCKED);
|
| 677 |
|
|
|
| 678 |
|
|
// Acquire lock bit immediately. It's possible that the hl was already
|
| 679 |
|
|
// destroyed while we were waiting for the finalizer to run. If it
|
| 680 |
|
|
// was, the address field was set to zero. The address filed access is
|
| 681 |
|
|
// protected by the lock bit to ensure that we do this exactly once.
|
| 682 |
|
|
// The lock bit also protects updates to the objects finalizer.
|
| 683 |
|
|
while (!compare_and_swap(&(he -> address), he_address, he_address|LOCKED ))
|
| 684 |
|
|
{
|
| 685 |
|
|
// Hash table entry is currently locked. We can't safely
|
| 686 |
|
|
// touch the list of heavy locks.
|
| 687 |
|
|
wait_unlocked(he);
|
| 688 |
|
|
he_address = (he -> address & ~LOCKED);
|
| 689 |
|
|
}
|
| 690 |
|
|
if (0 == hl -> address)
|
| 691 |
|
|
{
|
| 692 |
|
|
// remove_all_heavy destroyed hl, and took care of the real finalizer.
|
| 693 |
|
|
release_set(&(he -> address), he_address);
|
| 694 |
|
|
return;
|
| 695 |
|
|
}
|
| 696 |
|
|
JvAssert(hl -> address == addr);
|
| 697 |
|
|
GC_finalization_proc old_finalization_proc = hl -> old_finalization_proc;
|
| 698 |
|
|
if (old_finalization_proc != 0)
|
| 699 |
|
|
{
|
| 700 |
|
|
// We still need to run a real finalizer. In an idealized
|
| 701 |
|
|
// world, in which people write thread-safe finalizers, that is
|
| 702 |
|
|
// likely to require synchronization. Thus we reregister
|
| 703 |
|
|
// ourselves as the only finalizer, and simply run the real one.
|
| 704 |
|
|
// Thus we don't clean up the lock yet, but we're likely to do so
|
| 705 |
|
|
// on the next GC cycle.
|
| 706 |
|
|
// It's OK if remove_all_heavy actually destroys the heavy lock,
|
| 707 |
|
|
// since we've updated old_finalization_proc, and thus the user's
|
| 708 |
|
|
// finalizer won't be rerun.
|
| 709 |
|
|
void * old_client_data = hl -> old_client_data;
|
| 710 |
|
|
hl -> old_finalization_proc = 0;
|
| 711 |
|
|
hl -> old_client_data = 0;
|
| 712 |
|
|
# ifdef HAVE_BOEHM_GC
|
| 713 |
|
|
GC_REGISTER_FINALIZER_NO_ORDER(obj, heavy_lock_obj_finalization_proc, cd, 0, 0);
|
| 714 |
|
|
# endif
|
| 715 |
|
|
release_set(&(he -> address), he_address);
|
| 716 |
|
|
old_finalization_proc(obj, old_client_data);
|
| 717 |
|
|
}
|
| 718 |
|
|
else
|
| 719 |
|
|
{
|
| 720 |
|
|
// The object is really dead, although it's conceivable that
|
| 721 |
|
|
// some thread may still be in the process of releasing the
|
| 722 |
|
|
// heavy lock. Unlink it and, if necessary, register a finalizer
|
| 723 |
|
|
// to destroy sync_info.
|
| 724 |
|
|
unlink_heavy(addr, he);
|
| 725 |
|
|
hl -> address = 0; // Don't destroy it again.
|
| 726 |
|
|
release_set(&(he -> address), he_address);
|
| 727 |
|
|
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 728 |
|
|
// Make sure lock is not held and then destroy condvar and mutex.
|
| 729 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 730 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
| 731 |
|
|
heavy_lock_finalization_proc (hl);
|
| 732 |
|
|
# endif
|
| 733 |
|
|
}
|
| 734 |
|
|
}
|
| 735 |
|
|
|
| 736 |
|
|
// We hold the lock on he, and heavy_count is 0.
|
| 737 |
|
|
// Release the lock by replacing the address with new_address_val.
|
| 738 |
|
|
// Remove all heavy locks on the list. Note that the only possible way
|
| 739 |
|
|
// in which a lock may still be in use is if it's in the process of
|
| 740 |
|
|
// being unlocked.
|
| 741 |
|
|
// FIXME: Why does this unlock the hash entry? I think that
|
| 742 |
|
|
// could now be done more cleanly in MonitorExit.
|
| 743 |
|
|
static void
|
| 744 |
|
|
remove_all_heavy (hash_entry *he, obj_addr_t new_address_val)
|
| 745 |
|
|
{
|
| 746 |
|
|
JvAssert(he -> heavy_count == 0);
|
| 747 |
|
|
JvAssert(he -> address & LOCKED);
|
| 748 |
|
|
heavy_lock *hl = he -> heavy_locks;
|
| 749 |
|
|
he -> heavy_locks = 0;
|
| 750 |
|
|
// We would really like to release the lock bit here. Unfortunately, that
|
| 751 |
|
|
// Creates a race between or finalizer removal, and the potential
|
| 752 |
|
|
// reinstallation of a new finalizer as a new heavy lock is created.
|
| 753 |
|
|
// This may need to be revisited.
|
| 754 |
|
|
for(; 0 != hl; hl = hl->next)
|
| 755 |
|
|
{
|
| 756 |
|
|
obj_addr_t obj = hl -> address;
|
| 757 |
|
|
JvAssert(0 != obj); // If this was previously finalized, it should no
|
| 758 |
|
|
// longer appear on our list.
|
| 759 |
|
|
hl -> address = 0; // Finalization proc might still see it after we
|
| 760 |
|
|
// finish.
|
| 761 |
|
|
GC_finalization_proc old_finalization_proc = hl -> old_finalization_proc;
|
| 762 |
|
|
void * old_client_data = hl -> old_client_data;
|
| 763 |
|
|
# ifdef HAVE_BOEHM_GC
|
| 764 |
|
|
// Remove our finalization procedure.
|
| 765 |
|
|
// Reregister the clients if applicable.
|
| 766 |
|
|
GC_REGISTER_FINALIZER_NO_ORDER((GC_PTR)obj, old_finalization_proc,
|
| 767 |
|
|
old_client_data, 0, 0);
|
| 768 |
|
|
// Note that our old finalization procedure may have been
|
| 769 |
|
|
// previously determined to be runnable, and may still run.
|
| 770 |
|
|
// FIXME - direct dependency on boehm GC.
|
| 771 |
|
|
# endif
|
| 772 |
|
|
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 773 |
|
|
// Wait for a possible lock holder to finish unlocking it.
|
| 774 |
|
|
// This is only an issue if we have to explicitly destroy the mutex
|
| 775 |
|
|
// or possibly if we have to destroy a condition variable that is
|
| 776 |
|
|
// still being notified.
|
| 777 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 778 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
| 779 |
|
|
heavy_lock_finalization_proc (hl);
|
| 780 |
|
|
# endif
|
| 781 |
|
|
}
|
| 782 |
|
|
release_set(&(he -> address), new_address_val);
|
| 783 |
|
|
}
|
| 784 |
|
|
|
| 785 |
|
|
// We hold the lock on he and heavy_count is 0.
|
| 786 |
|
|
// We release it by replacing the address field with new_address_val.
|
| 787 |
|
|
// Remove all heavy locks on the list if the list is sufficiently long.
|
| 788 |
|
|
// This is called periodically to avoid very long lists of heavy locks.
|
| 789 |
|
|
// This seems to otherwise become an issue with SPECjbb, for example.
|
| 790 |
|
|
static inline void
|
| 791 |
|
|
maybe_remove_all_heavy (hash_entry *he, obj_addr_t new_address_val)
|
| 792 |
|
|
{
|
| 793 |
|
|
static const int max_len = 5;
|
| 794 |
|
|
heavy_lock *hl = he -> heavy_locks;
|
| 795 |
|
|
|
| 796 |
|
|
for (int i = 0; i < max_len; ++i)
|
| 797 |
|
|
{
|
| 798 |
|
|
if (0 == hl)
|
| 799 |
|
|
{
|
| 800 |
|
|
release_set(&(he -> address), new_address_val);
|
| 801 |
|
|
return;
|
| 802 |
|
|
}
|
| 803 |
|
|
hl = hl -> next;
|
| 804 |
|
|
}
|
| 805 |
|
|
remove_all_heavy(he, new_address_val);
|
| 806 |
|
|
}
|
| 807 |
|
|
|
| 808 |
|
|
// Allocate a new heavy lock for addr, returning its address.
|
| 809 |
|
|
// Assumes we already have the hash_entry locked, and there
|
| 810 |
|
|
// is currently no lightweight or allocated lock for addr.
|
| 811 |
|
|
// We register a finalizer for addr, which is responsible for
|
| 812 |
|
|
// removing the heavy lock when addr goes away, in addition
|
| 813 |
|
|
// to the responsibilities of any prior finalizer.
|
| 814 |
|
|
// This unfortunately holds the lock bit for the hash entry while it
|
| 815 |
|
|
// allocates two objects (on for the finalizer).
|
| 816 |
|
|
// It would be nice to avoid that somehow ...
|
| 817 |
|
|
static heavy_lock *
|
| 818 |
|
|
alloc_heavy(obj_addr_t addr, hash_entry *he)
|
| 819 |
|
|
{
|
| 820 |
|
|
heavy_lock * hl = (heavy_lock *) _Jv_AllocTraceTwo(sizeof (heavy_lock));
|
| 821 |
|
|
|
| 822 |
|
|
hl -> address = addr;
|
| 823 |
|
|
_Jv_MutexInit (&(hl -> si.mutex));
|
| 824 |
|
|
_Jv_CondInit (&(hl -> si.condition));
|
| 825 |
|
|
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
| 826 |
|
|
hl->si.init = true; // needed ?
|
| 827 |
|
|
# endif
|
| 828 |
|
|
hl -> next = he -> heavy_locks;
|
| 829 |
|
|
he -> heavy_locks = hl;
|
| 830 |
|
|
// FIXME: The only call that cheats and goes directly to the GC interface.
|
| 831 |
|
|
# ifdef HAVE_BOEHM_GC
|
| 832 |
|
|
GC_REGISTER_FINALIZER_NO_ORDER(
|
| 833 |
|
|
(void *)addr, heavy_lock_obj_finalization_proc,
|
| 834 |
|
|
hl, &hl->old_finalization_proc,
|
| 835 |
|
|
&hl->old_client_data);
|
| 836 |
|
|
# endif /* HAVE_BOEHM_GC */
|
| 837 |
|
|
return hl;
|
| 838 |
|
|
}
|
| 839 |
|
|
|
| 840 |
|
|
// Return the heavy lock for addr, allocating if necessary.
|
| 841 |
|
|
// Assumes we have the cache entry locked, and there is no lightweight
|
| 842 |
|
|
// lock for addr.
|
| 843 |
|
|
static heavy_lock *
|
| 844 |
|
|
get_heavy(obj_addr_t addr, hash_entry *he)
|
| 845 |
|
|
{
|
| 846 |
|
|
heavy_lock *hl = find_heavy(addr, he);
|
| 847 |
|
|
if (0 == hl)
|
| 848 |
|
|
hl = alloc_heavy(addr, he);
|
| 849 |
|
|
return hl;
|
| 850 |
|
|
}
|
| 851 |
|
|
|
| 852 |
|
|
void
|
| 853 |
|
|
_Jv_MonitorEnter (jobject obj)
|
| 854 |
|
|
{
|
| 855 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 856 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)FLAGS);
|
| 857 |
|
|
#else
|
| 858 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
| 859 |
|
|
#endif
|
| 860 |
|
|
obj_addr_t address;
|
| 861 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
| 862 |
|
|
hash_entry * he = light_locks + hash;
|
| 863 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
| 864 |
|
|
unsigned count;
|
| 865 |
|
|
const unsigned N_SPINS = 18;
|
| 866 |
|
|
|
| 867 |
|
|
// We need to somehow check that addr is not NULL on the fast path.
|
| 868 |
|
|
// A very predictable
|
| 869 |
|
|
// branch on a register value is probably cheaper than dereferencing addr.
|
| 870 |
|
|
// We could also permanently lock the NULL entry in the hash table.
|
| 871 |
|
|
// But it's not clear that's cheaper either.
|
| 872 |
|
|
if (__builtin_expect(!addr, false))
|
| 873 |
|
|
throw new java::lang::NullPointerException;
|
| 874 |
|
|
|
| 875 |
|
|
JvAssert(!(addr & FLAGS));
|
| 876 |
|
|
retry:
|
| 877 |
|
|
if (__builtin_expect(compare_and_swap(&(he -> address),
|
| 878 |
|
|
0, addr),true))
|
| 879 |
|
|
{
|
| 880 |
|
|
JvAssert(he -> light_thr_id == INVALID_THREAD_ID);
|
| 881 |
|
|
JvAssert(he -> light_count == 0);
|
| 882 |
|
|
he -> light_thr_id = self;
|
| 883 |
|
|
// Count fields are set correctly. Heavy_count was also zero,
|
| 884 |
|
|
// but can change asynchronously.
|
| 885 |
|
|
// This path is hopefully both fast and the most common.
|
| 886 |
|
|
LOG(ACQ_LIGHT, addr, self);
|
| 887 |
|
|
return;
|
| 888 |
|
|
}
|
| 889 |
|
|
address = he -> address;
|
| 890 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
|
| 891 |
|
|
{
|
| 892 |
|
|
if (he -> light_thr_id == self)
|
| 893 |
|
|
{
|
| 894 |
|
|
// We hold the lightweight lock, and it's for the right
|
| 895 |
|
|
// address.
|
| 896 |
|
|
count = he -> light_count;
|
| 897 |
|
|
if (count == USHRT_MAX)
|
| 898 |
|
|
{
|
| 899 |
|
|
// I think most JVMs don't check for this.
|
| 900 |
|
|
// But I'm not convinced I couldn't turn this into a security
|
| 901 |
|
|
// hole, even with a 32 bit counter.
|
| 902 |
|
|
throw new java::lang::IllegalMonitorStateException(
|
| 903 |
|
|
JvNewStringLatin1("maximum monitor nesting level exceeded"));
|
| 904 |
|
|
}
|
| 905 |
|
|
he -> light_count = count + 1;
|
| 906 |
|
|
return;
|
| 907 |
|
|
}
|
| 908 |
|
|
else
|
| 909 |
|
|
{
|
| 910 |
|
|
JvAssert(!(address & LOCKED));
|
| 911 |
|
|
// Lightweight lock is held, but by somone else.
|
| 912 |
|
|
// Spin a few times. This avoids turning this into a heavyweight
|
| 913 |
|
|
// lock if the current holder is about to release it.
|
| 914 |
|
|
// FIXME: Does this make sense on a uniprocessor, where
|
| 915 |
|
|
// it actually yields? It's probably cheaper to convert.
|
| 916 |
|
|
for (unsigned int i = 0; i < N_SPINS; ++i)
|
| 917 |
|
|
{
|
| 918 |
|
|
if ((he -> address & ~LOCKED) != address) goto retry;
|
| 919 |
|
|
spin(i);
|
| 920 |
|
|
}
|
| 921 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED ))
|
| 922 |
|
|
{
|
| 923 |
|
|
wait_unlocked(he);
|
| 924 |
|
|
goto retry;
|
| 925 |
|
|
}
|
| 926 |
|
|
heavy_lock *hl = get_heavy(addr, he);
|
| 927 |
|
|
++ (he -> heavy_count);
|
| 928 |
|
|
// The hl lock acquisition can't block for long, since it can
|
| 929 |
|
|
// only be held by other threads waiting for conversion, and
|
| 930 |
|
|
// they, like us, drop it quickly without blocking.
|
| 931 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 932 |
|
|
JvAssert(he -> address == address | LOCKED );
|
| 933 |
|
|
release_set(&(he -> address), (address | REQUEST_CONVERSION | HEAVY));
|
| 934 |
|
|
// release lock on he
|
| 935 |
|
|
LOG(REQ_CONV, (address | REQUEST_CONVERSION | HEAVY), self);
|
| 936 |
|
|
// If _Jv_CondWait is interrupted, we ignore the interrupt, but
|
| 937 |
|
|
// restore the thread's interrupt status flag when done.
|
| 938 |
|
|
jboolean interrupt_flag = false;
|
| 939 |
|
|
while ((he -> address & ~FLAGS) == (address & ~FLAGS))
|
| 940 |
|
|
{
|
| 941 |
|
|
// Once converted, the lock has to retain heavyweight
|
| 942 |
|
|
// status, since heavy_count > 0.
|
| 943 |
|
|
int r = _Jv_CondWait (&(hl->si.condition), &(hl->si.mutex), 0, 0);
|
| 944 |
|
|
if (r == _JV_INTERRUPTED)
|
| 945 |
|
|
{
|
| 946 |
|
|
interrupt_flag = true;
|
| 947 |
|
|
Thread::currentThread()->interrupt_flag = false;
|
| 948 |
|
|
}
|
| 949 |
|
|
}
|
| 950 |
|
|
if (interrupt_flag)
|
| 951 |
|
|
Thread::currentThread()->interrupt_flag = interrupt_flag;
|
| 952 |
|
|
keep_live(addr);
|
| 953 |
|
|
// Guarantee that hl doesn't get unlinked by finalizer.
|
| 954 |
|
|
// This is only an issue if the client fails to release
|
| 955 |
|
|
// the lock, which is unlikely.
|
| 956 |
|
|
JvAssert(he -> address & HEAVY);
|
| 957 |
|
|
// Lock has been converted, we hold the heavyweight lock,
|
| 958 |
|
|
// heavy_count has been incremented.
|
| 959 |
|
|
return;
|
| 960 |
|
|
}
|
| 961 |
|
|
}
|
| 962 |
|
|
obj_addr_t was_heavy = (address & HEAVY);
|
| 963 |
|
|
if ((address & LOCKED) ||
|
| 964 |
|
|
!compare_and_swap(&(he -> address), address, (address | LOCKED )))
|
| 965 |
|
|
{
|
| 966 |
|
|
wait_unlocked(he);
|
| 967 |
|
|
goto retry;
|
| 968 |
|
|
}
|
| 969 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == 0)
|
| 970 |
|
|
{
|
| 971 |
|
|
// Either was_heavy is true, or something changed out from under us,
|
| 972 |
|
|
// since the initial test for 0 failed.
|
| 973 |
|
|
JvAssert(!(address & REQUEST_CONVERSION));
|
| 974 |
|
|
// Can't convert a nonexistent lightweight lock.
|
| 975 |
|
|
heavy_lock *hl;
|
| 976 |
|
|
hl = (was_heavy? find_heavy(addr, he) : 0);
|
| 977 |
|
|
// The CAS succeeded, so was_heavy is still accurate.
|
| 978 |
|
|
if (0 == hl)
|
| 979 |
|
|
{
|
| 980 |
|
|
// It is OK to use the lighweight lock, since either the
|
| 981 |
|
|
// heavyweight lock does not exist, or none of the
|
| 982 |
|
|
// heavyweight locks are currently in use. Future threads
|
| 983 |
|
|
// trying to acquire the lock will see the lightweight
|
| 984 |
|
|
// one first and use that.
|
| 985 |
|
|
he -> light_thr_id = self; // OK, since nobody else can hold
|
| 986 |
|
|
// light lock or do this at the same time.
|
| 987 |
|
|
JvAssert(he -> light_count == 0);
|
| 988 |
|
|
JvAssert(was_heavy == (he -> address & HEAVY));
|
| 989 |
|
|
release_set(&(he -> address), (addr | was_heavy));
|
| 990 |
|
|
LOG(ACQ_LIGHT2, addr | was_heavy, self);
|
| 991 |
|
|
}
|
| 992 |
|
|
else
|
| 993 |
|
|
{
|
| 994 |
|
|
// Must use heavy lock.
|
| 995 |
|
|
++ (he -> heavy_count);
|
| 996 |
|
|
JvAssert(0 == (address & ~HEAVY));
|
| 997 |
|
|
release_set(&(he -> address), HEAVY);
|
| 998 |
|
|
LOG(ACQ_HEAVY, addr | was_heavy, self);
|
| 999 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 1000 |
|
|
keep_live(addr);
|
| 1001 |
|
|
}
|
| 1002 |
|
|
return;
|
| 1003 |
|
|
}
|
| 1004 |
|
|
// Lightweight lock is held, but does not correspond to this object.
|
| 1005 |
|
|
// We hold the lock on the hash entry, and he -> address can't
|
| 1006 |
|
|
// change from under us. Neither can the chain of heavy locks.
|
| 1007 |
|
|
{
|
| 1008 |
|
|
JvAssert(0 == he -> heavy_count || (address & HEAVY));
|
| 1009 |
|
|
heavy_lock *hl = get_heavy(addr, he);
|
| 1010 |
|
|
++ (he -> heavy_count);
|
| 1011 |
|
|
release_set(&(he -> address), address | HEAVY);
|
| 1012 |
|
|
LOG(ACQ_HEAVY2, address | HEAVY, self);
|
| 1013 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 1014 |
|
|
keep_live(addr);
|
| 1015 |
|
|
}
|
| 1016 |
|
|
}
|
| 1017 |
|
|
|
| 1018 |
|
|
|
| 1019 |
|
|
void
|
| 1020 |
|
|
_Jv_MonitorExit (jobject obj)
|
| 1021 |
|
|
{
|
| 1022 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 1023 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)FLAGS);
|
| 1024 |
|
|
#else
|
| 1025 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
| 1026 |
|
|
#endif
|
| 1027 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
| 1028 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
| 1029 |
|
|
hash_entry * he = light_locks + hash;
|
| 1030 |
|
|
_Jv_ThreadId_t light_thr_id;
|
| 1031 |
|
|
unsigned count;
|
| 1032 |
|
|
obj_addr_t address;
|
| 1033 |
|
|
|
| 1034 |
|
|
retry:
|
| 1035 |
|
|
light_thr_id = he -> light_thr_id;
|
| 1036 |
|
|
// Unfortunately, it turns out we always need to read the address
|
| 1037 |
|
|
// first. Even if we are going to update it with compare_and_swap,
|
| 1038 |
|
|
// we need to reset light_thr_id, and that's not safe unless we know
|
| 1039 |
|
|
// that we hold the lock.
|
| 1040 |
|
|
address = he -> address;
|
| 1041 |
|
|
// First the (relatively) fast cases:
|
| 1042 |
|
|
if (__builtin_expect(light_thr_id == self, true))
|
| 1043 |
|
|
// Above must fail if addr == 0 .
|
| 1044 |
|
|
{
|
| 1045 |
|
|
count = he -> light_count;
|
| 1046 |
|
|
if (__builtin_expect((address & ~HEAVY) == addr, true))
|
| 1047 |
|
|
{
|
| 1048 |
|
|
if (count != 0)
|
| 1049 |
|
|
{
|
| 1050 |
|
|
// We held the lightweight lock all along. Thus the values
|
| 1051 |
|
|
// we saw for light_thr_id and light_count must have been valid.
|
| 1052 |
|
|
he -> light_count = count - 1;
|
| 1053 |
|
|
return;
|
| 1054 |
|
|
}
|
| 1055 |
|
|
else
|
| 1056 |
|
|
{
|
| 1057 |
|
|
// We hold the lightweight lock once.
|
| 1058 |
|
|
he -> light_thr_id = INVALID_THREAD_ID;
|
| 1059 |
|
|
if (compare_and_swap_release(&(he -> address), address,
|
| 1060 |
|
|
address & HEAVY))
|
| 1061 |
|
|
{
|
| 1062 |
|
|
LOG(REL_LIGHT, address & HEAVY, self);
|
| 1063 |
|
|
return;
|
| 1064 |
|
|
}
|
| 1065 |
|
|
else
|
| 1066 |
|
|
{
|
| 1067 |
|
|
he -> light_thr_id = light_thr_id; // Undo prior damage.
|
| 1068 |
|
|
goto retry;
|
| 1069 |
|
|
}
|
| 1070 |
|
|
}
|
| 1071 |
|
|
}
|
| 1072 |
|
|
// else lock is not for this address, conversion is requested,
|
| 1073 |
|
|
// or the lock bit in the address field is set.
|
| 1074 |
|
|
}
|
| 1075 |
|
|
else
|
| 1076 |
|
|
{
|
| 1077 |
|
|
if (__builtin_expect(!addr, false))
|
| 1078 |
|
|
throw new java::lang::NullPointerException;
|
| 1079 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
|
| 1080 |
|
|
{
|
| 1081 |
|
|
# ifdef LOCK_DEBUG
|
| 1082 |
|
|
fprintf(stderr, "Lightweight lock held by other thread\n\t"
|
| 1083 |
|
|
"light_thr_id = 0x%lx, self = 0x%lx, "
|
| 1084 |
|
|
"address = 0x%lx, heavy_count = %d, pid = %d\n",
|
| 1085 |
|
|
light_thr_id, self, (unsigned long)address,
|
| 1086 |
|
|
he -> heavy_count, getpid());
|
| 1087 |
|
|
print_he(he);
|
| 1088 |
|
|
for(;;) {}
|
| 1089 |
|
|
# endif
|
| 1090 |
|
|
// Someone holds the lightweight lock for this object, and
|
| 1091 |
|
|
// it can't be us.
|
| 1092 |
|
|
throw new java::lang::IllegalMonitorStateException(
|
| 1093 |
|
|
JvNewStringLatin1("current thread not owner"));
|
| 1094 |
|
|
}
|
| 1095 |
|
|
else
|
| 1096 |
|
|
count = he -> light_count;
|
| 1097 |
|
|
}
|
| 1098 |
|
|
if (address & LOCKED)
|
| 1099 |
|
|
{
|
| 1100 |
|
|
wait_unlocked(he);
|
| 1101 |
|
|
goto retry;
|
| 1102 |
|
|
}
|
| 1103 |
|
|
// Now the unlikely cases.
|
| 1104 |
|
|
// We do know that:
|
| 1105 |
|
|
// - Address is set, and doesn't contain the LOCKED bit.
|
| 1106 |
|
|
// - If address refers to the same object as addr, then he -> light_thr_id
|
| 1107 |
|
|
// refers to this thread, and count is valid.
|
| 1108 |
|
|
// - The case in which we held the lightweight lock has been
|
| 1109 |
|
|
// completely handled, except for the REQUEST_CONVERSION case.
|
| 1110 |
|
|
//
|
| 1111 |
|
|
if ((address & ~FLAGS) == addr)
|
| 1112 |
|
|
{
|
| 1113 |
|
|
// The lightweight lock is assigned to this object.
|
| 1114 |
|
|
// Thus we must be in the REQUEST_CONVERSION case.
|
| 1115 |
|
|
if (0 != count)
|
| 1116 |
|
|
{
|
| 1117 |
|
|
// Defer conversion until we exit completely.
|
| 1118 |
|
|
he -> light_count = count - 1;
|
| 1119 |
|
|
return;
|
| 1120 |
|
|
}
|
| 1121 |
|
|
JvAssert(he -> light_thr_id == self);
|
| 1122 |
|
|
JvAssert(address & REQUEST_CONVERSION);
|
| 1123 |
|
|
// Conversion requested
|
| 1124 |
|
|
// Convert now.
|
| 1125 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
| 1126 |
|
|
goto retry;
|
| 1127 |
|
|
heavy_lock *hl = find_heavy(addr, he);
|
| 1128 |
|
|
JvAssert (0 != hl);
|
| 1129 |
|
|
// Requestor created it.
|
| 1130 |
|
|
he -> light_count = 0;
|
| 1131 |
|
|
JvAssert(he -> heavy_count > 0);
|
| 1132 |
|
|
// was incremented by requestor.
|
| 1133 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 1134 |
|
|
// Release the he lock after acquiring the mutex.
|
| 1135 |
|
|
// Otherwise we can accidentally
|
| 1136 |
|
|
// notify a thread that has already seen a heavyweight
|
| 1137 |
|
|
// lock.
|
| 1138 |
|
|
he -> light_thr_id = INVALID_THREAD_ID;
|
| 1139 |
|
|
release_set(&(he -> address), HEAVY);
|
| 1140 |
|
|
LOG(PROMOTE, address, self);
|
| 1141 |
|
|
// lightweight lock now unused.
|
| 1142 |
|
|
_Jv_CondNotifyAll(&(hl->si.condition), &(hl->si.mutex));
|
| 1143 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
| 1144 |
|
|
// heavy_count was already incremented by original requestor.
|
| 1145 |
|
|
keep_live(addr);
|
| 1146 |
|
|
return;
|
| 1147 |
|
|
}
|
| 1148 |
|
|
// lightweight lock not for this object.
|
| 1149 |
|
|
JvAssert(!(address & LOCKED));
|
| 1150 |
|
|
JvAssert((address & ~FLAGS) != addr);
|
| 1151 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
| 1152 |
|
|
goto retry;
|
| 1153 |
|
|
heavy_lock *hl = find_heavy(addr, he);
|
| 1154 |
|
|
if (NULL == hl)
|
| 1155 |
|
|
{
|
| 1156 |
|
|
# ifdef LOCK_DEBUG
|
| 1157 |
|
|
fprintf(stderr, "Failed to find heavyweight lock for addr 0x%lx"
|
| 1158 |
|
|
" pid = %d\n", addr, getpid());
|
| 1159 |
|
|
print_he(he);
|
| 1160 |
|
|
for(;;) {}
|
| 1161 |
|
|
# endif
|
| 1162 |
|
|
release_set(&(he -> address), address);
|
| 1163 |
|
|
throw new java::lang::IllegalMonitorStateException(
|
| 1164 |
|
|
JvNewStringLatin1("current thread not owner"));
|
| 1165 |
|
|
}
|
| 1166 |
|
|
JvAssert(address & HEAVY);
|
| 1167 |
|
|
count = he -> heavy_count;
|
| 1168 |
|
|
JvAssert(count > 0);
|
| 1169 |
|
|
--count;
|
| 1170 |
|
|
he -> heavy_count = count;
|
| 1171 |
|
|
if (0 == count)
|
| 1172 |
|
|
{
|
| 1173 |
|
|
const unsigned test_freq = 16; // Power of 2
|
| 1174 |
|
|
static volatile unsigned counter = 0;
|
| 1175 |
|
|
unsigned my_counter = counter;
|
| 1176 |
|
|
|
| 1177 |
|
|
counter = my_counter + 1;
|
| 1178 |
|
|
if (my_counter%test_freq == 0)
|
| 1179 |
|
|
{
|
| 1180 |
|
|
// Randomize the interval length a bit.
|
| 1181 |
|
|
counter = my_counter + (my_counter >> 4) % (test_freq/2);
|
| 1182 |
|
|
// Unlock mutex first, to avoid self-deadlock, or worse.
|
| 1183 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
| 1184 |
|
|
maybe_remove_all_heavy(he, address &~HEAVY);
|
| 1185 |
|
|
// release lock bit, preserving
|
| 1186 |
|
|
// REQUEST_CONVERSION
|
| 1187 |
|
|
// and object address.
|
| 1188 |
|
|
}
|
| 1189 |
|
|
else
|
| 1190 |
|
|
{
|
| 1191 |
|
|
release_set(&(he -> address), address &~HEAVY);
|
| 1192 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
| 1193 |
|
|
// Unlock after releasing the lock bit, so that
|
| 1194 |
|
|
// we don't switch to another thread prematurely.
|
| 1195 |
|
|
}
|
| 1196 |
|
|
}
|
| 1197 |
|
|
else
|
| 1198 |
|
|
{
|
| 1199 |
|
|
release_set(&(he -> address), address);
|
| 1200 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
| 1201 |
|
|
}
|
| 1202 |
|
|
LOG(REL_HEAVY, addr, self);
|
| 1203 |
|
|
keep_live(addr);
|
| 1204 |
|
|
}
|
| 1205 |
|
|
|
| 1206 |
|
|
// Return false if obj's monitor is held by the current thread
|
| 1207 |
|
|
bool
|
| 1208 |
|
|
_Jv_ObjectCheckMonitor (jobject obj)
|
| 1209 |
|
|
{
|
| 1210 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 1211 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)FLAGS);
|
| 1212 |
|
|
#else
|
| 1213 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
| 1214 |
|
|
#endif
|
| 1215 |
|
|
obj_addr_t address;
|
| 1216 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
| 1217 |
|
|
hash_entry * he = light_locks + hash;
|
| 1218 |
|
|
|
| 1219 |
|
|
JvAssert(!(addr & FLAGS));
|
| 1220 |
|
|
address = he -> address;
|
| 1221 |
|
|
// Try it the easy way first:
|
| 1222 |
|
|
if (address == 0) return true;
|
| 1223 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
| 1224 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
|
| 1225 |
|
|
// Fails if entry is LOCKED.
|
| 1226 |
|
|
// I can't asynchronously become or stop being the holder.
|
| 1227 |
|
|
return he -> light_thr_id != self;
|
| 1228 |
|
|
retry:
|
| 1229 |
|
|
// Acquire the hash table entry lock
|
| 1230 |
|
|
address &= ~LOCKED;
|
| 1231 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
| 1232 |
|
|
{
|
| 1233 |
|
|
wait_unlocked(he);
|
| 1234 |
|
|
goto retry;
|
| 1235 |
|
|
}
|
| 1236 |
|
|
|
| 1237 |
|
|
bool not_mine;
|
| 1238 |
|
|
|
| 1239 |
|
|
if ((address & ~FLAGS) == addr)
|
| 1240 |
|
|
not_mine = (he -> light_thr_id != self);
|
| 1241 |
|
|
else
|
| 1242 |
|
|
{
|
| 1243 |
|
|
heavy_lock* hl = find_heavy(addr, he);
|
| 1244 |
|
|
not_mine = hl ? _Jv_MutexCheckMonitor(&hl->si.mutex) : true;
|
| 1245 |
|
|
}
|
| 1246 |
|
|
|
| 1247 |
|
|
release_set(&(he -> address), address); // unlock hash entry
|
| 1248 |
|
|
return not_mine;
|
| 1249 |
|
|
}
|
| 1250 |
|
|
|
| 1251 |
|
|
// The rest of these are moderately thin veneers on _Jv_Cond ops.
|
| 1252 |
|
|
// The current version of Notify might be able to make the pthread
|
| 1253 |
|
|
// call AFTER releasing the lock, thus saving some context switches??
|
| 1254 |
|
|
|
| 1255 |
|
|
void
|
| 1256 |
|
|
java::lang::Object::wait (jlong timeout, jint nanos)
|
| 1257 |
|
|
{
|
| 1258 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 1259 |
|
|
obj_addr_t addr = (obj_addr_t)this & ~((obj_addr_t)FLAGS);
|
| 1260 |
|
|
#else
|
| 1261 |
|
|
obj_addr_t addr = (obj_addr_t)this;
|
| 1262 |
|
|
#endif
|
| 1263 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
| 1264 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
| 1265 |
|
|
hash_entry * he = light_locks + hash;
|
| 1266 |
|
|
unsigned count;
|
| 1267 |
|
|
obj_addr_t address;
|
| 1268 |
|
|
heavy_lock *hl;
|
| 1269 |
|
|
|
| 1270 |
|
|
if (__builtin_expect (timeout < 0 || nanos < 0 || nanos > 999999, false))
|
| 1271 |
|
|
throw new IllegalArgumentException;
|
| 1272 |
|
|
retry:
|
| 1273 |
|
|
address = he -> address;
|
| 1274 |
|
|
address &= ~LOCKED;
|
| 1275 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
| 1276 |
|
|
{
|
| 1277 |
|
|
wait_unlocked(he);
|
| 1278 |
|
|
goto retry;
|
| 1279 |
|
|
}
|
| 1280 |
|
|
// address did not have the lock bit set. We now hold the lock on he.
|
| 1281 |
|
|
if ((address & ~FLAGS) == addr)
|
| 1282 |
|
|
{
|
| 1283 |
|
|
// Convert to heavyweight.
|
| 1284 |
|
|
if (he -> light_thr_id != self)
|
| 1285 |
|
|
{
|
| 1286 |
|
|
# ifdef LOCK_DEBUG
|
| 1287 |
|
|
fprintf(stderr, "Found wrong lightweight lock owner in wait "
|
| 1288 |
|
|
"address = 0x%lx pid = %d\n", address, getpid());
|
| 1289 |
|
|
print_he(he);
|
| 1290 |
|
|
for(;;) {}
|
| 1291 |
|
|
# endif
|
| 1292 |
|
|
release_set(&(he -> address), address);
|
| 1293 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
| 1294 |
|
|
("current thread not owner"));
|
| 1295 |
|
|
}
|
| 1296 |
|
|
count = he -> light_count;
|
| 1297 |
|
|
hl = get_heavy(addr, he);
|
| 1298 |
|
|
he -> light_count = 0;
|
| 1299 |
|
|
he -> heavy_count += count + 1;
|
| 1300 |
|
|
for (unsigned i = 0; i <= count; ++i)
|
| 1301 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
| 1302 |
|
|
// Again release the he lock after acquiring the mutex.
|
| 1303 |
|
|
he -> light_thr_id = INVALID_THREAD_ID;
|
| 1304 |
|
|
release_set(&(he -> address), HEAVY); // lightweight lock now unused.
|
| 1305 |
|
|
LOG(PROMOTE2, addr, self);
|
| 1306 |
|
|
if (address & REQUEST_CONVERSION)
|
| 1307 |
|
|
_Jv_CondNotifyAll (&(hl->si.condition), &(hl->si.mutex));
|
| 1308 |
|
|
// Since we do this before we do a CondWait, we guarantee that
|
| 1309 |
|
|
// threads waiting on requested conversion are awoken before
|
| 1310 |
|
|
// a real wait on the same condition variable.
|
| 1311 |
|
|
// No other notification can occur in the interim, since
|
| 1312 |
|
|
// we hold the heavy lock, and notifications are made
|
| 1313 |
|
|
// without acquiring it.
|
| 1314 |
|
|
}
|
| 1315 |
|
|
else /* We should hold the heavyweight lock. */
|
| 1316 |
|
|
{
|
| 1317 |
|
|
hl = find_heavy(addr, he);
|
| 1318 |
|
|
release_set(&(he -> address), address);
|
| 1319 |
|
|
if (0 == hl)
|
| 1320 |
|
|
{
|
| 1321 |
|
|
# ifdef LOCK_DEBUG
|
| 1322 |
|
|
fprintf(stderr, "Couldn't find heavy lock in wait "
|
| 1323 |
|
|
"addr = 0x%lx pid = %d\n", addr, getpid());
|
| 1324 |
|
|
print_he(he);
|
| 1325 |
|
|
for(;;) {}
|
| 1326 |
|
|
# endif
|
| 1327 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
| 1328 |
|
|
("current thread not owner"));
|
| 1329 |
|
|
}
|
| 1330 |
|
|
JvAssert(address & HEAVY);
|
| 1331 |
|
|
}
|
| 1332 |
|
|
LOG(WAIT_START, addr, self);
|
| 1333 |
|
|
switch (_Jv_CondWait (&(hl->si.condition), &(hl->si.mutex), timeout, nanos))
|
| 1334 |
|
|
{
|
| 1335 |
|
|
case _JV_NOT_OWNER:
|
| 1336 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
| 1337 |
|
|
("current thread not owner"));
|
| 1338 |
|
|
case _JV_INTERRUPTED:
|
| 1339 |
|
|
if (Thread::interrupted ())
|
| 1340 |
|
|
throw new InterruptedException;
|
| 1341 |
|
|
}
|
| 1342 |
|
|
LOG(WAIT_END, addr, self);
|
| 1343 |
|
|
}
|
| 1344 |
|
|
|
| 1345 |
|
|
void
|
| 1346 |
|
|
java::lang::Object::notify (void)
|
| 1347 |
|
|
{
|
| 1348 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 1349 |
|
|
obj_addr_t addr = (obj_addr_t)this & ~((obj_addr_t)FLAGS);
|
| 1350 |
|
|
#else
|
| 1351 |
|
|
obj_addr_t addr = (obj_addr_t)this;
|
| 1352 |
|
|
#endif
|
| 1353 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
| 1354 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
| 1355 |
|
|
hash_entry * he = light_locks + hash;
|
| 1356 |
|
|
heavy_lock *hl;
|
| 1357 |
|
|
obj_addr_t address;
|
| 1358 |
|
|
int result;
|
| 1359 |
|
|
|
| 1360 |
|
|
retry:
|
| 1361 |
|
|
address = ((he -> address) & ~LOCKED);
|
| 1362 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
| 1363 |
|
|
{
|
| 1364 |
|
|
wait_unlocked(he);
|
| 1365 |
|
|
goto retry;
|
| 1366 |
|
|
}
|
| 1367 |
|
|
if ((address & ~FLAGS) == addr && he -> light_thr_id == self)
|
| 1368 |
|
|
{
|
| 1369 |
|
|
// We hold lightweight lock. Since it has not
|
| 1370 |
|
|
// been inflated, there are no waiters.
|
| 1371 |
|
|
release_set(&(he -> address), address); // unlock
|
| 1372 |
|
|
return;
|
| 1373 |
|
|
}
|
| 1374 |
|
|
hl = find_heavy(addr, he);
|
| 1375 |
|
|
// Hl can't disappear since we point to the underlying object.
|
| 1376 |
|
|
// It's important that we release the lock bit before the notify, since
|
| 1377 |
|
|
// otherwise we will try to wake up the target while we still hold the
|
| 1378 |
|
|
// bit. This results in lock bit contention, which we don't handle
|
| 1379 |
|
|
// terribly well.
|
| 1380 |
|
|
release_set(&(he -> address), address); // unlock
|
| 1381 |
|
|
if (0 == hl)
|
| 1382 |
|
|
{
|
| 1383 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 1384 |
|
|
("current thread not owner"));
|
| 1385 |
|
|
return;
|
| 1386 |
|
|
}
|
| 1387 |
|
|
// We know that we hold the heavyweight lock at this point,
|
| 1388 |
|
|
// and the lightweight lock is not in use.
|
| 1389 |
|
|
result = _Jv_CondNotify(&(hl->si.condition), &(hl->si.mutex));
|
| 1390 |
|
|
LOG(NOTIFY, addr, self);
|
| 1391 |
|
|
keep_live(addr);
|
| 1392 |
|
|
if (__builtin_expect (result, 0))
|
| 1393 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 1394 |
|
|
("current thread not owner"));
|
| 1395 |
|
|
}
|
| 1396 |
|
|
|
| 1397 |
|
|
void
|
| 1398 |
|
|
java::lang::Object::notifyAll (void)
|
| 1399 |
|
|
{
|
| 1400 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
| 1401 |
|
|
obj_addr_t addr = (obj_addr_t)this & ~((obj_addr_t)FLAGS);
|
| 1402 |
|
|
#else
|
| 1403 |
|
|
obj_addr_t addr = (obj_addr_t)this;
|
| 1404 |
|
|
#endif
|
| 1405 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
| 1406 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
| 1407 |
|
|
hash_entry * he = light_locks + hash;
|
| 1408 |
|
|
heavy_lock *hl;
|
| 1409 |
|
|
obj_addr_t address;
|
| 1410 |
|
|
int result;
|
| 1411 |
|
|
|
| 1412 |
|
|
retry:
|
| 1413 |
|
|
address = (he -> address) & ~LOCKED;
|
| 1414 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
| 1415 |
|
|
{
|
| 1416 |
|
|
wait_unlocked(he);
|
| 1417 |
|
|
goto retry;
|
| 1418 |
|
|
}
|
| 1419 |
|
|
hl = find_heavy(addr, he);
|
| 1420 |
|
|
if ((address & ~FLAGS) == addr && he -> light_thr_id == self)
|
| 1421 |
|
|
{
|
| 1422 |
|
|
// We hold lightweight lock. Since it has not
|
| 1423 |
|
|
// been inflated, there are no waiters.
|
| 1424 |
|
|
release_set(&(he -> address), address); // unlock
|
| 1425 |
|
|
return;
|
| 1426 |
|
|
}
|
| 1427 |
|
|
release_set(&(he -> address), address); // unlock
|
| 1428 |
|
|
if (0 == hl)
|
| 1429 |
|
|
{
|
| 1430 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 1431 |
|
|
("current thread not owner"));
|
| 1432 |
|
|
}
|
| 1433 |
|
|
result = _Jv_CondNotifyAll(&(hl->si.condition), &(hl->si.mutex));
|
| 1434 |
|
|
LOG(NOTIFY_ALL, addr, self);
|
| 1435 |
|
|
if (__builtin_expect (result, 0))
|
| 1436 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 1437 |
|
|
("current thread not owner"));
|
| 1438 |
|
|
}
|
| 1439 |
|
|
|
| 1440 |
|
|
// This is declared in Java code and in Object.h.
|
| 1441 |
|
|
// It should never be called with JV_HASH_SYNCHRONIZATION
|
| 1442 |
|
|
void
|
| 1443 |
|
|
java::lang::Object::sync_init (void)
|
| 1444 |
|
|
{
|
| 1445 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
| 1446 |
|
|
("internal error: sync_init"));
|
| 1447 |
|
|
}
|
| 1448 |
|
|
|
| 1449 |
|
|
// This is called on startup and declared in Object.h.
|
| 1450 |
|
|
// For now we just make it a no-op.
|
| 1451 |
|
|
void
|
| 1452 |
|
|
_Jv_InitializeSyncMutex (void)
|
| 1453 |
|
|
{
|
| 1454 |
|
|
}
|
| 1455 |
|
|
|
| 1456 |
|
|
#endif /* JV_HASH_SYNCHRONIZATION */
|
| 1457 |
|
|
|