1 |
758 |
jeremybenn |
// natObject.cc - Implementation of the Object class.
|
2 |
|
|
|
3 |
|
|
/* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2005 Free Software Foundation
|
4 |
|
|
|
5 |
|
|
This file is part of libgcj.
|
6 |
|
|
|
7 |
|
|
This software is copyrighted work licensed under the terms of the
|
8 |
|
|
Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
|
9 |
|
|
details. */
|
10 |
|
|
|
11 |
|
|
#include <config.h>
|
12 |
|
|
#include <platform.h>
|
13 |
|
|
|
14 |
|
|
#include <string.h>
|
15 |
|
|
|
16 |
|
|
#pragma implementation "Object.h"
|
17 |
|
|
|
18 |
|
|
#include <gcj/cni.h>
|
19 |
|
|
#include <jvm.h>
|
20 |
|
|
#include <java/lang/Object.h>
|
21 |
|
|
#include <java-threads.h>
|
22 |
|
|
#include <java-signal.h>
|
23 |
|
|
#include <java/lang/CloneNotSupportedException.h>
|
24 |
|
|
#include <java/lang/IllegalArgumentException.h>
|
25 |
|
|
#include <java/lang/IllegalMonitorStateException.h>
|
26 |
|
|
#include <java/lang/InterruptedException.h>
|
27 |
|
|
#include <java/lang/NullPointerException.h>
|
28 |
|
|
#include <java/lang/Class.h>
|
29 |
|
|
#include <java/lang/Cloneable.h>
|
30 |
|
|
#include <java/lang/Thread.h>
|
31 |
|
|
|
32 |
|
|
#ifdef LOCK_DEBUG
|
33 |
|
|
# include <stdio.h>
|
34 |
|
|
#endif
|
35 |
|
|
|
36 |
|
|
|
37 |
|
|
|
38 |
|
|
using namespace java::lang;
|
39 |
|
|
|
40 |
|
|
// This is used to represent synchronization information.
|
41 |
|
|
struct _Jv_SyncInfo
|
42 |
|
|
{
|
43 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
44 |
|
|
// We only need to keep track of initialization state if we can
|
45 |
|
|
// possibly finalize this object.
|
46 |
|
|
bool init;
|
47 |
|
|
#endif
|
48 |
|
|
_Jv_ConditionVariable_t condition;
|
49 |
|
|
_Jv_Mutex_t mutex;
|
50 |
|
|
};
|
51 |
|
|
|
52 |
|
|
|
53 |
|
|
|
54 |
|
|
jclass
|
55 |
|
|
java::lang::Object::getClass (void)
|
56 |
|
|
{
|
57 |
|
|
_Jv_VTable **dt = (_Jv_VTable **) this;
|
58 |
|
|
return (*dt)->clas;
|
59 |
|
|
}
|
60 |
|
|
|
61 |
|
|
jint
|
62 |
|
|
java::lang::Object::hashCode (void)
|
63 |
|
|
{
|
64 |
|
|
return _Jv_HashCode (this);
|
65 |
|
|
}
|
66 |
|
|
|
67 |
|
|
jobject
|
68 |
|
|
java::lang::Object::clone (void)
|
69 |
|
|
{
|
70 |
|
|
jclass klass = getClass ();
|
71 |
|
|
jobject r;
|
72 |
|
|
jint size;
|
73 |
|
|
|
74 |
|
|
// We also clone arrays here. If we put the array code into
|
75 |
|
|
// __JArray, then we'd have to figure out a way to find the array
|
76 |
|
|
// vtbl when creating a new array class. This is easier, if uglier.
|
77 |
|
|
if (klass->isArray())
|
78 |
|
|
{
|
79 |
|
|
__JArray *array = (__JArray *) this;
|
80 |
|
|
jclass comp = getClass()->getComponentType();
|
81 |
|
|
jint eltsize;
|
82 |
|
|
if (comp->isPrimitive())
|
83 |
|
|
{
|
84 |
|
|
r = _Jv_NewPrimArray (comp, array->length);
|
85 |
|
|
eltsize = comp->size();
|
86 |
|
|
}
|
87 |
|
|
else
|
88 |
|
|
{
|
89 |
|
|
r = _Jv_NewObjectArray (array->length, comp, NULL);
|
90 |
|
|
eltsize = sizeof (jobject);
|
91 |
|
|
}
|
92 |
|
|
// We can't use sizeof on __JArray because we must account for
|
93 |
|
|
// alignment of the element type.
|
94 |
|
|
size = (_Jv_GetArrayElementFromElementType (array, comp) - (char *) array
|
95 |
|
|
+ array->length * eltsize);
|
96 |
|
|
}
|
97 |
|
|
else
|
98 |
|
|
{
|
99 |
|
|
if (! java::lang::Cloneable::class$.isAssignableFrom(klass))
|
100 |
|
|
throw new CloneNotSupportedException;
|
101 |
|
|
|
102 |
|
|
size = klass->size();
|
103 |
|
|
r = _Jv_AllocObject (klass);
|
104 |
|
|
}
|
105 |
|
|
|
106 |
|
|
memcpy ((void *) r, (void *) this, size);
|
107 |
|
|
#ifndef JV_HASH_SYNCHRONIZATION
|
108 |
|
|
// Guarantee that the locks associated to the two objects are
|
109 |
|
|
// distinct.
|
110 |
|
|
r->sync_info = NULL;
|
111 |
|
|
#endif
|
112 |
|
|
return r;
|
113 |
|
|
}
|
114 |
|
|
|
115 |
|
|
void
|
116 |
|
|
_Jv_FinalizeObject (jobject obj)
|
117 |
|
|
{
|
118 |
|
|
// Ignore exceptions. From section 12.6 of the Java Language Spec.
|
119 |
|
|
try
|
120 |
|
|
{
|
121 |
|
|
obj->finalize ();
|
122 |
|
|
}
|
123 |
|
|
catch (java::lang::Throwable *t)
|
124 |
|
|
{
|
125 |
|
|
// Ignore.
|
126 |
|
|
}
|
127 |
|
|
}
|
128 |
|
|
|
129 |
|
|
|
130 |
|
|
//
|
131 |
|
|
// Synchronization code.
|
132 |
|
|
//
|
133 |
|
|
|
134 |
|
|
#ifndef JV_HASH_SYNCHRONIZATION
|
135 |
|
|
// This global is used to make sure that only one thread sets an
|
136 |
|
|
// object's `sync_info' field.
|
137 |
|
|
static _Jv_Mutex_t sync_mutex;
|
138 |
|
|
|
139 |
|
|
// This macro is used to see if synchronization initialization is
|
140 |
|
|
// needed.
|
141 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
142 |
|
|
# define INIT_NEEDED(Obj) (! (Obj)->sync_info \
|
143 |
|
|
|| ! ((_Jv_SyncInfo *) ((Obj)->sync_info))->init)
|
144 |
|
|
#else
|
145 |
|
|
# define INIT_NEEDED(Obj) (! (Obj)->sync_info)
|
146 |
|
|
#endif
|
147 |
|
|
|
148 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
149 |
|
|
// If we have to run a destructor for a sync_info member, then this
|
150 |
|
|
// function is registered as a finalizer for the sync_info.
|
151 |
|
|
static void
|
152 |
|
|
finalize_sync_info (jobject obj)
|
153 |
|
|
{
|
154 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj;
|
155 |
|
|
#if defined (_Jv_HaveCondDestroy)
|
156 |
|
|
_Jv_CondDestroy (&si->condition);
|
157 |
|
|
#endif
|
158 |
|
|
#if defined (_Jv_HaveMutexDestroy)
|
159 |
|
|
_Jv_MutexDestroy (&si->mutex);
|
160 |
|
|
#endif
|
161 |
|
|
si->init = false;
|
162 |
|
|
}
|
163 |
|
|
#endif
|
164 |
|
|
|
165 |
|
|
// This is called to initialize the sync_info element of an object.
|
166 |
|
|
void
|
167 |
|
|
java::lang::Object::sync_init (void)
|
168 |
|
|
{
|
169 |
|
|
_Jv_MutexLock (&sync_mutex);
|
170 |
|
|
// Check again to see if initialization is needed now that we have
|
171 |
|
|
// the lock.
|
172 |
|
|
if (INIT_NEEDED (this))
|
173 |
|
|
{
|
174 |
|
|
// We assume there are no pointers in the sync_info
|
175 |
|
|
// representation.
|
176 |
|
|
_Jv_SyncInfo *si;
|
177 |
|
|
// We always create a new sync_info, even if there is already
|
178 |
|
|
// one available. Any given object can only be finalized once.
|
179 |
|
|
// If we get here and sync_info is not null, then it has already
|
180 |
|
|
// been finalized. So if we just reinitialize the old one,
|
181 |
|
|
// we'll never be able to (re-)destroy the mutex and/or
|
182 |
|
|
// condition variable.
|
183 |
|
|
si = (_Jv_SyncInfo *) _Jv_AllocBytes (sizeof (_Jv_SyncInfo));
|
184 |
|
|
_Jv_MutexInit (&si->mutex);
|
185 |
|
|
_Jv_CondInit (&si->condition);
|
186 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
187 |
|
|
// Register a finalizer.
|
188 |
|
|
si->init = true;
|
189 |
|
|
_Jv_RegisterFinalizer (si, finalize_sync_info);
|
190 |
|
|
#endif
|
191 |
|
|
sync_info = (jobject) si;
|
192 |
|
|
}
|
193 |
|
|
_Jv_MutexUnlock (&sync_mutex);
|
194 |
|
|
}
|
195 |
|
|
|
196 |
|
|
void
|
197 |
|
|
java::lang::Object::notify (void)
|
198 |
|
|
{
|
199 |
|
|
if (__builtin_expect (INIT_NEEDED (this), false))
|
200 |
|
|
sync_init ();
|
201 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
|
202 |
|
|
if (__builtin_expect (_Jv_CondNotify (&si->condition, &si->mutex), false))
|
203 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
204 |
|
|
("current thread not owner"));
|
205 |
|
|
}
|
206 |
|
|
|
207 |
|
|
void
|
208 |
|
|
java::lang::Object::notifyAll (void)
|
209 |
|
|
{
|
210 |
|
|
if (__builtin_expect (INIT_NEEDED (this), false))
|
211 |
|
|
sync_init ();
|
212 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
|
213 |
|
|
if (__builtin_expect (_Jv_CondNotifyAll (&si->condition, &si->mutex), false))
|
214 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
215 |
|
|
("current thread not owner"));
|
216 |
|
|
}
|
217 |
|
|
|
218 |
|
|
void
|
219 |
|
|
java::lang::Object::wait (jlong timeout, jint nanos)
|
220 |
|
|
{
|
221 |
|
|
if (__builtin_expect (INIT_NEEDED (this), false))
|
222 |
|
|
sync_init ();
|
223 |
|
|
if (__builtin_expect (timeout < 0 || nanos < 0 || nanos > 999999, false))
|
224 |
|
|
throw new IllegalArgumentException;
|
225 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) sync_info;
|
226 |
|
|
switch (_Jv_CondWait (&si->condition, &si->mutex, timeout, nanos))
|
227 |
|
|
{
|
228 |
|
|
case _JV_NOT_OWNER:
|
229 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
230 |
|
|
("current thread not owner"));
|
231 |
|
|
case _JV_INTERRUPTED:
|
232 |
|
|
if (Thread::interrupted ())
|
233 |
|
|
throw new InterruptedException;
|
234 |
|
|
}
|
235 |
|
|
}
|
236 |
|
|
|
237 |
|
|
//
|
238 |
|
|
// Some runtime code.
|
239 |
|
|
//
|
240 |
|
|
|
241 |
|
|
// This function is called at system startup to initialize the
|
242 |
|
|
// `sync_mutex'.
|
243 |
|
|
void
|
244 |
|
|
_Jv_InitializeSyncMutex (void)
|
245 |
|
|
{
|
246 |
|
|
_Jv_MutexInit (&sync_mutex);
|
247 |
|
|
}
|
248 |
|
|
|
249 |
|
|
void
|
250 |
|
|
_Jv_MonitorEnter (jobject obj)
|
251 |
|
|
{
|
252 |
|
|
#ifndef HANDLE_SEGV
|
253 |
|
|
if (__builtin_expect (! obj, false))
|
254 |
|
|
throw new java::lang::NullPointerException;
|
255 |
|
|
#endif
|
256 |
|
|
if (__builtin_expect (INIT_NEEDED (obj), false))
|
257 |
|
|
obj->sync_init ();
|
258 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
|
259 |
|
|
_Jv_MutexLock (&si->mutex);
|
260 |
|
|
// FIXME: In the Windows case, this can return a nonzero error code.
|
261 |
|
|
// We should turn that into some exception ...
|
262 |
|
|
}
|
263 |
|
|
|
264 |
|
|
void
|
265 |
|
|
_Jv_MonitorExit (jobject obj)
|
266 |
|
|
{
|
267 |
|
|
JvAssert (obj);
|
268 |
|
|
JvAssert (! INIT_NEEDED (obj));
|
269 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
|
270 |
|
|
if (__builtin_expect (_Jv_MutexUnlock (&si->mutex), false))
|
271 |
|
|
throw new java::lang::IllegalMonitorStateException;
|
272 |
|
|
}
|
273 |
|
|
|
274 |
|
|
bool
|
275 |
|
|
_Jv_ObjectCheckMonitor (jobject obj)
|
276 |
|
|
{
|
277 |
|
|
if (__builtin_expect (INIT_NEEDED (obj), false))
|
278 |
|
|
obj->sync_init ();
|
279 |
|
|
_Jv_SyncInfo *si = (_Jv_SyncInfo *) obj->sync_info;
|
280 |
|
|
return _Jv_MutexCheckMonitor (&si->mutex);
|
281 |
|
|
}
|
282 |
|
|
|
283 |
|
|
#else /* JV_HASH_SYNCHRONIZATION */
|
284 |
|
|
|
285 |
|
|
// FIXME: We shouldn't be calling GC_register_finalizer directly.
|
286 |
|
|
#ifndef HAVE_BOEHM_GC
|
287 |
|
|
# error Hash synchronization currently requires boehm-gc
|
288 |
|
|
// That's actually a bit of a lie: It should also work with the null GC,
|
289 |
|
|
// probably even better than the alternative.
|
290 |
|
|
// To really support alternate GCs here, we would need to widen the
|
291 |
|
|
// interface to finalization, since we sometimes have to register a
|
292 |
|
|
// second finalizer for an object that already has one.
|
293 |
|
|
// We might also want to move the GC interface to a .h file, since
|
294 |
|
|
// the number of procedure call levels involved in some of these
|
295 |
|
|
// operations is already ridiculous, and would become worse if we
|
296 |
|
|
// went through the proper intermediaries.
|
297 |
|
|
#else
|
298 |
|
|
# ifdef LIBGCJ_GC_DEBUG
|
299 |
|
|
# define GC_DEBUG
|
300 |
|
|
# endif
|
301 |
|
|
# include "gc.h"
|
302 |
|
|
#endif
|
303 |
|
|
|
304 |
|
|
// What follows currenly assumes a Linux-like platform.
|
305 |
|
|
// Some of it specifically assumes X86 or IA64 Linux, though that
|
306 |
|
|
// should be easily fixable.
|
307 |
|
|
|
308 |
|
|
// A Java monitor implemention based on a table of locks.
|
309 |
|
|
// Each entry in the table describes
|
310 |
|
|
// locks held for objects that hash to that location.
|
311 |
|
|
// This started out as a reimplementation of the technique used in SGIs JVM,
|
312 |
|
|
// for which we obtained permission from SGI.
|
313 |
|
|
// But in fact, this ended up quite different, though some ideas are
|
314 |
|
|
// still shared with the original.
|
315 |
|
|
// It was also influenced by some of the published IBM work,
|
316 |
|
|
// though it also differs in many ways from that.
|
317 |
|
|
// We could speed this up if we had a way to atomically update
|
318 |
|
|
// an entire cache entry, i.e. 2 contiguous words of memory.
|
319 |
|
|
// That would usually be the case with a 32 bit ABI on a 64 bit processor.
|
320 |
|
|
// But we don't currently go out of our way to target those.
|
321 |
|
|
// I don't know how to do much better with a N bit ABI on a processor
|
322 |
|
|
// that can atomically update only N bits at a time.
|
323 |
|
|
// Author: Hans-J. Boehm (Hans_Boehm@hp.com, boehm@acm.org)
|
324 |
|
|
|
325 |
|
|
#include <limits.h>
|
326 |
|
|
#include <unistd.h> // for usleep, sysconf.
|
327 |
|
|
#include <gcj/javaprims.h>
|
328 |
|
|
#include <sysdep/locks.h>
|
329 |
|
|
#include <java/lang/Thread.h>
|
330 |
|
|
|
331 |
|
|
// Try to determine whether we are on a multiprocessor, i.e. whether
|
332 |
|
|
// spinning may be profitable.
|
333 |
|
|
// This should really use a suitable autoconf macro.
|
334 |
|
|
// False is the conservative answer, though the right one is much better.
|
335 |
|
|
static bool
|
336 |
|
|
is_mp()
|
337 |
|
|
{
|
338 |
|
|
#ifdef _SC_NPROCESSORS_ONLN
|
339 |
|
|
long nprocs = sysconf(_SC_NPROCESSORS_ONLN);
|
340 |
|
|
return (nprocs > 1);
|
341 |
|
|
#else
|
342 |
|
|
return false;
|
343 |
|
|
#endif
|
344 |
|
|
}
|
345 |
|
|
|
346 |
|
|
// A call to keep_live(p) forces p to be accessible to the GC
|
347 |
|
|
// at this point.
|
348 |
|
|
inline static void
|
349 |
|
|
keep_live(obj_addr_t p)
|
350 |
|
|
{
|
351 |
|
|
__asm__ __volatile__("" : : "rm"(p) : "memory");
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
// Each hash table entry holds a single preallocated "lightweight" lock.
|
355 |
|
|
// In addition, it holds a chain of "heavyweight" locks. Lightweight
|
356 |
|
|
// locks do not support Object.wait(), and are converted to heavyweight
|
357 |
|
|
// status in response to contention. Unlike the SGI scheme, both
|
358 |
|
|
// ligtweight and heavyweight locks in one hash entry can be simultaneously
|
359 |
|
|
// in use. (The SGI scheme requires that we be able to acquire a heavyweight
|
360 |
|
|
// lock on behalf of another thread, and can thus convert a lock we don't
|
361 |
|
|
// hold to heavyweight status. Here we don't insist on that, and thus
|
362 |
|
|
// let the original holder of the lighweight lock keep it.)
|
363 |
|
|
|
364 |
|
|
struct heavy_lock {
|
365 |
|
|
void * reserved_for_gc;
|
366 |
|
|
struct heavy_lock *next; // Hash chain link.
|
367 |
|
|
// Traced by GC.
|
368 |
|
|
void * old_client_data; // The only other field traced by GC.
|
369 |
|
|
GC_finalization_proc old_finalization_proc;
|
370 |
|
|
obj_addr_t address; // Object to which this lock corresponds.
|
371 |
|
|
// Should not be traced by GC.
|
372 |
|
|
// Cleared as heavy_lock is destroyed.
|
373 |
|
|
// Together with the rest of the heavy lock
|
374 |
|
|
// chain, this is protected by the lock
|
375 |
|
|
// bit in the hash table entry to which
|
376 |
|
|
// the chain is attached.
|
377 |
|
|
_Jv_SyncInfo si;
|
378 |
|
|
// The remaining fields save prior finalization info for
|
379 |
|
|
// the object, which we needed to replace in order to arrange
|
380 |
|
|
// for cleanup of the lock structure.
|
381 |
|
|
};
|
382 |
|
|
|
383 |
|
|
#ifdef LOCK_DEBUG
|
384 |
|
|
void
|
385 |
|
|
print_hl_list(heavy_lock *hl)
|
386 |
|
|
{
|
387 |
|
|
heavy_lock *p = hl;
|
388 |
|
|
for (; 0 != p; p = p->next)
|
389 |
|
|
fprintf (stderr, "(hl = %p, addr = %p)", p, (void *)(p -> address));
|
390 |
|
|
}
|
391 |
|
|
#endif /* LOCK_DEBUG */
|
392 |
|
|
|
393 |
|
|
#if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
394 |
|
|
// If we have to run a destructor for a sync_info member, then this
|
395 |
|
|
// function could be registered as a finalizer for the sync_info.
|
396 |
|
|
// In fact, we now only invoke it explicitly.
|
397 |
|
|
static inline void
|
398 |
|
|
heavy_lock_finalization_proc (heavy_lock *hl)
|
399 |
|
|
{
|
400 |
|
|
#if defined (_Jv_HaveCondDestroy)
|
401 |
|
|
_Jv_CondDestroy (&hl->si.condition);
|
402 |
|
|
#endif
|
403 |
|
|
#if defined (_Jv_HaveMutexDestroy)
|
404 |
|
|
_Jv_MutexDestroy (&hl->si.mutex);
|
405 |
|
|
#endif
|
406 |
|
|
hl->si.init = false;
|
407 |
|
|
}
|
408 |
|
|
#endif /* defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy) */
|
409 |
|
|
|
410 |
|
|
// We convert the lock back to lightweight status when
|
411 |
|
|
// we exit, so that a single contention episode doesn't doom the lock
|
412 |
|
|
// forever. But we also need to make sure that lock structures for dead
|
413 |
|
|
// objects are eventually reclaimed. We do that in a an additional
|
414 |
|
|
// finalizer on the underlying object.
|
415 |
|
|
// Note that if the corresponding object is dead, it is safe to drop
|
416 |
|
|
// the heavy_lock structure from its list. It is not necessarily
|
417 |
|
|
// safe to deallocate it, since the unlock code could still be running.
|
418 |
|
|
|
419 |
|
|
struct hash_entry {
|
420 |
|
|
volatile obj_addr_t address; // Address of object for which lightweight
|
421 |
|
|
// k is held.
|
422 |
|
|
// We assume the 3 low order bits are zero.
|
423 |
|
|
// With the Boehm collector and bitmap
|
424 |
|
|
// allocation, objects of size 4 bytes are
|
425 |
|
|
// broken anyway. Thus this is primarily
|
426 |
|
|
// a constraint on statically allocated
|
427 |
|
|
// objects used for synchronization.
|
428 |
|
|
// This allows us to use the low order
|
429 |
|
|
// bits as follows:
|
430 |
|
|
# define LOCKED 1 // This hash entry is locked, and its
|
431 |
|
|
// state may be invalid.
|
432 |
|
|
// The lock protects both the hash_entry
|
433 |
|
|
// itself (except for the light_count
|
434 |
|
|
// and light_thr_id fields, which
|
435 |
|
|
// are protected by the lightweight
|
436 |
|
|
// lock itself), and any heavy_monitor
|
437 |
|
|
// structures attached to it.
|
438 |
|
|
# define HEAVY 2 // Heavyweight locks associated with this
|
439 |
|
|
// hash entry may be held.
|
440 |
|
|
// The lightweight entry is still valid,
|
441 |
|
|
// if the leading bits of the address
|
442 |
|
|
// field are nonzero.
|
443 |
|
|
// If the LOCKED bit is clear, then this is
|
444 |
|
|
// set exactly when heavy_count is > 0 .
|
445 |
|
|
// Stored redundantly so a single
|
446 |
|
|
// compare-and-swap works in the easy case.
|
447 |
|
|
// If HEAVY is not set, it is safe to use
|
448 |
|
|
// an available lightweight lock entry
|
449 |
|
|
// without checking if there is an existing
|
450 |
|
|
// heavyweight lock for the same object.
|
451 |
|
|
// (There may be one, but it won't be held
|
452 |
|
|
// or waited for.)
|
453 |
|
|
# define REQUEST_CONVERSION 4 // The lightweight lock is held. But
|
454 |
|
|
// one or more other threads have tried
|
455 |
|
|
// to acquire the lock, and hence request
|
456 |
|
|
// conversion to heavyweight status.
|
457 |
|
|
// The heavyweight lock is already allocated.
|
458 |
|
|
// Threads requesting conversion are
|
459 |
|
|
// waiting on the condition variable associated
|
460 |
|
|
// with the heavyweight lock.
|
461 |
|
|
// Not used for conversion due to
|
462 |
|
|
// Object.wait() calls.
|
463 |
|
|
# define FLAGS (LOCKED | HEAVY | REQUEST_CONVERSION)
|
464 |
|
|
volatile _Jv_ThreadId_t light_thr_id;
|
465 |
|
|
// Thr_id of holder of lightweight lock.
|
466 |
|
|
// Only updated by lightweight lock holder.
|
467 |
|
|
// Must be recognizably invalid if the
|
468 |
|
|
// lightweight lock is not held.
|
469 |
|
|
# define INVALID_THREAD_ID 0 // Works for Linux?
|
470 |
|
|
// If zero doesn't work, we have to
|
471 |
|
|
// initialize lock table.
|
472 |
|
|
volatile unsigned short light_count;
|
473 |
|
|
// Number of times the lightweight lock
|
474 |
|
|
// is held minus one. Zero if lightweight
|
475 |
|
|
// lock is not held. Only updated by
|
476 |
|
|
// lightweight lock holder or, in one
|
477 |
|
|
// case, while holding the LOCKED bit in
|
478 |
|
|
// a state in which there can be no
|
479 |
|
|
// lightweight lock holder.
|
480 |
|
|
unsigned short heavy_count; // Total number of times heavyweight locks
|
481 |
|
|
// associated with this hash entry are held
|
482 |
|
|
// or waiting to be acquired.
|
483 |
|
|
// Threads in wait() are included eventhough
|
484 |
|
|
// they have temporarily released the lock.
|
485 |
|
|
// Protected by LOCKED bit.
|
486 |
|
|
// Threads requesting conversion to heavyweight
|
487 |
|
|
// status are also included.
|
488 |
|
|
struct heavy_lock * heavy_locks;
|
489 |
|
|
// Chain of heavy locks. Protected
|
490 |
|
|
// by lockbit for he. Locks may
|
491 |
|
|
// remain allocated here even if HEAVY
|
492 |
|
|
// is not set and heavy_count is 0.
|
493 |
|
|
// If a lightweight and heavyweight lock
|
494 |
|
|
// correspond to the same address, the
|
495 |
|
|
// lightweight lock is the right one.
|
496 |
|
|
};
|
497 |
|
|
|
498 |
|
|
#ifndef JV_SYNC_TABLE_SZ
|
499 |
|
|
# define JV_SYNC_TABLE_SZ 2048 // Must be power of 2.
|
500 |
|
|
#endif
|
501 |
|
|
|
502 |
|
|
hash_entry light_locks[JV_SYNC_TABLE_SZ];
|
503 |
|
|
|
504 |
|
|
#define JV_SYNC_HASH(p) (((long)p ^ ((long)p >> 10)) & (JV_SYNC_TABLE_SZ-1))
|
505 |
|
|
|
506 |
|
|
// Note that the light_locks table is scanned conservatively by the
|
507 |
|
|
// collector. It is essential the the heavy_locks field is scanned.
|
508 |
|
|
// Currently the address field may or may not cause the associated object
|
509 |
|
|
// to be retained, depending on whether flag bits are set.
|
510 |
|
|
// This means that we can conceivable get an unexpected deadlock if
|
511 |
|
|
// 1) Object at address A is locked.
|
512 |
|
|
// 2) The client drops A without unlocking it.
|
513 |
|
|
// 3) Flag bits in the address entry are set, so the collector reclaims
|
514 |
|
|
// the object at A.
|
515 |
|
|
// 4) A is reallocated, and an attempt is made to lock the result.
|
516 |
|
|
// This could be fixed by scanning light_locks in a more customized
|
517 |
|
|
// manner that ignores the flag bits. But it can only happen with hand
|
518 |
|
|
// generated semi-illegal .class files, and then it doesn't present a
|
519 |
|
|
// security hole.
|
520 |
|
|
|
521 |
|
|
#ifdef LOCK_DEBUG
|
522 |
|
|
void print_he(hash_entry *he)
|
523 |
|
|
{
|
524 |
|
|
fprintf(stderr, "lock hash entry = %p, index = %d, address = 0x%lx\n"
|
525 |
|
|
"\tlight_thr_id = 0x%lx, light_count = %d, "
|
526 |
|
|
"heavy_count = %d\n\theavy_locks:", he,
|
527 |
|
|
he - light_locks, (unsigned long)(he -> address),
|
528 |
|
|
(unsigned long)(he -> light_thr_id),
|
529 |
|
|
he -> light_count, he -> heavy_count);
|
530 |
|
|
print_hl_list(he -> heavy_locks);
|
531 |
|
|
fprintf(stderr, "\n");
|
532 |
|
|
}
|
533 |
|
|
#endif /* LOCK_DEBUG */
|
534 |
|
|
|
535 |
|
|
#ifdef LOCK_LOG
|
536 |
|
|
// Log locking operations. For debugging only.
|
537 |
|
|
// Logging is intended to be as unintrusive as possible.
|
538 |
|
|
// Log calls are made after an operation completes, and hence
|
539 |
|
|
// may not completely reflect actual synchronization ordering.
|
540 |
|
|
// The choice of events to log is currently a bit haphazard.
|
541 |
|
|
// The intent is that if we have to track down any other bugs
|
542 |
|
|
// inthis code, we extend the logging as appropriate.
|
543 |
|
|
typedef enum
|
544 |
|
|
{
|
545 |
|
|
ACQ_LIGHT, ACQ_LIGHT2, ACQ_HEAVY, ACQ_HEAVY2, PROMOTE, REL_LIGHT,
|
546 |
|
|
REL_HEAVY, REQ_CONV, PROMOTE2, WAIT_START, WAIT_END, NOTIFY, NOTIFY_ALL
|
547 |
|
|
} event_type;
|
548 |
|
|
|
549 |
|
|
struct lock_history
|
550 |
|
|
{
|
551 |
|
|
event_type tp;
|
552 |
|
|
obj_addr_t addr; // Often includes flags.
|
553 |
|
|
_Jv_ThreadId_t thr;
|
554 |
|
|
};
|
555 |
|
|
|
556 |
|
|
const int LOG_SIZE = 128; // Power of 2.
|
557 |
|
|
|
558 |
|
|
lock_history lock_log[LOG_SIZE];
|
559 |
|
|
|
560 |
|
|
volatile obj_addr_t log_next = 0;
|
561 |
|
|
// Next location in lock_log.
|
562 |
|
|
// Really an int, but we need compare_and_swap.
|
563 |
|
|
|
564 |
|
|
static void add_log_entry(event_type t, obj_addr_t a, _Jv_ThreadId_t th)
|
565 |
|
|
{
|
566 |
|
|
obj_addr_t my_entry;
|
567 |
|
|
obj_addr_t next_entry;
|
568 |
|
|
do
|
569 |
|
|
{
|
570 |
|
|
my_entry = log_next;
|
571 |
|
|
next_entry = ((my_entry + 1) & (LOG_SIZE - 1));
|
572 |
|
|
}
|
573 |
|
|
while (!compare_and_swap(&log_next, my_entry, next_entry));
|
574 |
|
|
lock_log[my_entry].tp = t;
|
575 |
|
|
lock_log[my_entry].addr = a;
|
576 |
|
|
lock_log[my_entry].thr = th;
|
577 |
|
|
}
|
578 |
|
|
|
579 |
|
|
# define LOG(t, a, th) add_log_entry(t, a, th)
|
580 |
|
|
#else /* !LOCK_LOG */
|
581 |
|
|
# define LOG(t, a, th)
|
582 |
|
|
#endif
|
583 |
|
|
|
584 |
|
|
static bool mp = false; // Known multiprocesssor.
|
585 |
|
|
|
586 |
|
|
// Wait for roughly 2^n units, touching as little memory as possible.
|
587 |
|
|
static void
|
588 |
|
|
spin(unsigned n)
|
589 |
|
|
{
|
590 |
|
|
const unsigned MP_SPINS = 10;
|
591 |
|
|
const unsigned YIELDS = 4;
|
592 |
|
|
const unsigned SPINS_PER_UNIT = 30;
|
593 |
|
|
const unsigned MIN_SLEEP_USECS = 2001; // Shorter times spin under Linux.
|
594 |
|
|
const unsigned MAX_SLEEP_USECS = 200000;
|
595 |
|
|
static unsigned spin_limit = 0;
|
596 |
|
|
static unsigned yield_limit = YIELDS;
|
597 |
|
|
static bool spin_initialized = false;
|
598 |
|
|
|
599 |
|
|
if (!spin_initialized)
|
600 |
|
|
{
|
601 |
|
|
mp = is_mp();
|
602 |
|
|
if (mp)
|
603 |
|
|
{
|
604 |
|
|
spin_limit = MP_SPINS;
|
605 |
|
|
yield_limit = MP_SPINS + YIELDS;
|
606 |
|
|
}
|
607 |
|
|
spin_initialized = true;
|
608 |
|
|
}
|
609 |
|
|
if (n < spin_limit)
|
610 |
|
|
{
|
611 |
|
|
unsigned i = SPINS_PER_UNIT << n;
|
612 |
|
|
for (; i > 0; --i)
|
613 |
|
|
__asm__ __volatile__("");
|
614 |
|
|
}
|
615 |
|
|
else if (n < yield_limit)
|
616 |
|
|
{
|
617 |
|
|
_Jv_ThreadYield();
|
618 |
|
|
}
|
619 |
|
|
else
|
620 |
|
|
{
|
621 |
|
|
unsigned duration = MIN_SLEEP_USECS << (n - yield_limit);
|
622 |
|
|
if (n >= 15 + yield_limit || duration > MAX_SLEEP_USECS)
|
623 |
|
|
duration = MAX_SLEEP_USECS;
|
624 |
|
|
_Jv_platform_usleep(duration);
|
625 |
|
|
}
|
626 |
|
|
}
|
627 |
|
|
|
628 |
|
|
// Wait for a hash entry to become unlocked.
|
629 |
|
|
static void
|
630 |
|
|
wait_unlocked (hash_entry *he)
|
631 |
|
|
{
|
632 |
|
|
unsigned i = 0;
|
633 |
|
|
while (he -> address & LOCKED)
|
634 |
|
|
spin (i++);
|
635 |
|
|
}
|
636 |
|
|
|
637 |
|
|
// Return the heavy lock for addr if it was already allocated.
|
638 |
|
|
// The client passes in the appropriate hash_entry.
|
639 |
|
|
// We hold the lock for he.
|
640 |
|
|
static inline heavy_lock *
|
641 |
|
|
find_heavy (obj_addr_t addr, hash_entry *he)
|
642 |
|
|
{
|
643 |
|
|
heavy_lock *hl = he -> heavy_locks;
|
644 |
|
|
while (hl != 0 && hl -> address != addr) hl = hl -> next;
|
645 |
|
|
return hl;
|
646 |
|
|
}
|
647 |
|
|
|
648 |
|
|
// Unlink the heavy lock for the given address from its hash table chain.
|
649 |
|
|
// Dies miserably and conspicuously if it's not there, since that should
|
650 |
|
|
// be impossible.
|
651 |
|
|
static inline void
|
652 |
|
|
unlink_heavy (obj_addr_t addr, hash_entry *he)
|
653 |
|
|
{
|
654 |
|
|
heavy_lock **currentp = &(he -> heavy_locks);
|
655 |
|
|
while ((*currentp) -> address != addr)
|
656 |
|
|
currentp = &((*currentp) -> next);
|
657 |
|
|
*currentp = (*currentp) -> next;
|
658 |
|
|
}
|
659 |
|
|
|
660 |
|
|
// Finalization procedure for objects that have associated heavy-weight
|
661 |
|
|
// locks. This may replace the real finalization procedure.
|
662 |
|
|
static void
|
663 |
|
|
heavy_lock_obj_finalization_proc (void *obj, void *cd)
|
664 |
|
|
{
|
665 |
|
|
heavy_lock *hl = (heavy_lock *)cd;
|
666 |
|
|
|
667 |
|
|
// This only addresses misalignment of statics, not heap objects. It
|
668 |
|
|
// works only because registering statics for finalization is a noop,
|
669 |
|
|
// no matter what the least significant bits are.
|
670 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
671 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)0x7);
|
672 |
|
|
#else
|
673 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
674 |
|
|
#endif
|
675 |
|
|
hash_entry *he = light_locks + JV_SYNC_HASH(addr);
|
676 |
|
|
obj_addr_t he_address = (he -> address & ~LOCKED);
|
677 |
|
|
|
678 |
|
|
// Acquire lock bit immediately. It's possible that the hl was already
|
679 |
|
|
// destroyed while we were waiting for the finalizer to run. If it
|
680 |
|
|
// was, the address field was set to zero. The address filed access is
|
681 |
|
|
// protected by the lock bit to ensure that we do this exactly once.
|
682 |
|
|
// The lock bit also protects updates to the objects finalizer.
|
683 |
|
|
while (!compare_and_swap(&(he -> address), he_address, he_address|LOCKED ))
|
684 |
|
|
{
|
685 |
|
|
// Hash table entry is currently locked. We can't safely
|
686 |
|
|
// touch the list of heavy locks.
|
687 |
|
|
wait_unlocked(he);
|
688 |
|
|
he_address = (he -> address & ~LOCKED);
|
689 |
|
|
}
|
690 |
|
|
if (0 == hl -> address)
|
691 |
|
|
{
|
692 |
|
|
// remove_all_heavy destroyed hl, and took care of the real finalizer.
|
693 |
|
|
release_set(&(he -> address), he_address);
|
694 |
|
|
return;
|
695 |
|
|
}
|
696 |
|
|
JvAssert(hl -> address == addr);
|
697 |
|
|
GC_finalization_proc old_finalization_proc = hl -> old_finalization_proc;
|
698 |
|
|
if (old_finalization_proc != 0)
|
699 |
|
|
{
|
700 |
|
|
// We still need to run a real finalizer. In an idealized
|
701 |
|
|
// world, in which people write thread-safe finalizers, that is
|
702 |
|
|
// likely to require synchronization. Thus we reregister
|
703 |
|
|
// ourselves as the only finalizer, and simply run the real one.
|
704 |
|
|
// Thus we don't clean up the lock yet, but we're likely to do so
|
705 |
|
|
// on the next GC cycle.
|
706 |
|
|
// It's OK if remove_all_heavy actually destroys the heavy lock,
|
707 |
|
|
// since we've updated old_finalization_proc, and thus the user's
|
708 |
|
|
// finalizer won't be rerun.
|
709 |
|
|
void * old_client_data = hl -> old_client_data;
|
710 |
|
|
hl -> old_finalization_proc = 0;
|
711 |
|
|
hl -> old_client_data = 0;
|
712 |
|
|
# ifdef HAVE_BOEHM_GC
|
713 |
|
|
GC_REGISTER_FINALIZER_NO_ORDER(obj, heavy_lock_obj_finalization_proc, cd, 0, 0);
|
714 |
|
|
# endif
|
715 |
|
|
release_set(&(he -> address), he_address);
|
716 |
|
|
old_finalization_proc(obj, old_client_data);
|
717 |
|
|
}
|
718 |
|
|
else
|
719 |
|
|
{
|
720 |
|
|
// The object is really dead, although it's conceivable that
|
721 |
|
|
// some thread may still be in the process of releasing the
|
722 |
|
|
// heavy lock. Unlink it and, if necessary, register a finalizer
|
723 |
|
|
// to destroy sync_info.
|
724 |
|
|
unlink_heavy(addr, he);
|
725 |
|
|
hl -> address = 0; // Don't destroy it again.
|
726 |
|
|
release_set(&(he -> address), he_address);
|
727 |
|
|
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
728 |
|
|
// Make sure lock is not held and then destroy condvar and mutex.
|
729 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
730 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
731 |
|
|
heavy_lock_finalization_proc (hl);
|
732 |
|
|
# endif
|
733 |
|
|
}
|
734 |
|
|
}
|
735 |
|
|
|
736 |
|
|
// We hold the lock on he, and heavy_count is 0.
|
737 |
|
|
// Release the lock by replacing the address with new_address_val.
|
738 |
|
|
// Remove all heavy locks on the list. Note that the only possible way
|
739 |
|
|
// in which a lock may still be in use is if it's in the process of
|
740 |
|
|
// being unlocked.
|
741 |
|
|
// FIXME: Why does this unlock the hash entry? I think that
|
742 |
|
|
// could now be done more cleanly in MonitorExit.
|
743 |
|
|
static void
|
744 |
|
|
remove_all_heavy (hash_entry *he, obj_addr_t new_address_val)
|
745 |
|
|
{
|
746 |
|
|
JvAssert(he -> heavy_count == 0);
|
747 |
|
|
JvAssert(he -> address & LOCKED);
|
748 |
|
|
heavy_lock *hl = he -> heavy_locks;
|
749 |
|
|
he -> heavy_locks = 0;
|
750 |
|
|
// We would really like to release the lock bit here. Unfortunately, that
|
751 |
|
|
// Creates a race between or finalizer removal, and the potential
|
752 |
|
|
// reinstallation of a new finalizer as a new heavy lock is created.
|
753 |
|
|
// This may need to be revisited.
|
754 |
|
|
for(; 0 != hl; hl = hl->next)
|
755 |
|
|
{
|
756 |
|
|
obj_addr_t obj = hl -> address;
|
757 |
|
|
JvAssert(0 != obj); // If this was previously finalized, it should no
|
758 |
|
|
// longer appear on our list.
|
759 |
|
|
hl -> address = 0; // Finalization proc might still see it after we
|
760 |
|
|
// finish.
|
761 |
|
|
GC_finalization_proc old_finalization_proc = hl -> old_finalization_proc;
|
762 |
|
|
void * old_client_data = hl -> old_client_data;
|
763 |
|
|
# ifdef HAVE_BOEHM_GC
|
764 |
|
|
// Remove our finalization procedure.
|
765 |
|
|
// Reregister the clients if applicable.
|
766 |
|
|
GC_REGISTER_FINALIZER_NO_ORDER((GC_PTR)obj, old_finalization_proc,
|
767 |
|
|
old_client_data, 0, 0);
|
768 |
|
|
// Note that our old finalization procedure may have been
|
769 |
|
|
// previously determined to be runnable, and may still run.
|
770 |
|
|
// FIXME - direct dependency on boehm GC.
|
771 |
|
|
# endif
|
772 |
|
|
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
773 |
|
|
// Wait for a possible lock holder to finish unlocking it.
|
774 |
|
|
// This is only an issue if we have to explicitly destroy the mutex
|
775 |
|
|
// or possibly if we have to destroy a condition variable that is
|
776 |
|
|
// still being notified.
|
777 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
778 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
779 |
|
|
heavy_lock_finalization_proc (hl);
|
780 |
|
|
# endif
|
781 |
|
|
}
|
782 |
|
|
release_set(&(he -> address), new_address_val);
|
783 |
|
|
}
|
784 |
|
|
|
785 |
|
|
// We hold the lock on he and heavy_count is 0.
|
786 |
|
|
// We release it by replacing the address field with new_address_val.
|
787 |
|
|
// Remove all heavy locks on the list if the list is sufficiently long.
|
788 |
|
|
// This is called periodically to avoid very long lists of heavy locks.
|
789 |
|
|
// This seems to otherwise become an issue with SPECjbb, for example.
|
790 |
|
|
static inline void
|
791 |
|
|
maybe_remove_all_heavy (hash_entry *he, obj_addr_t new_address_val)
|
792 |
|
|
{
|
793 |
|
|
static const int max_len = 5;
|
794 |
|
|
heavy_lock *hl = he -> heavy_locks;
|
795 |
|
|
|
796 |
|
|
for (int i = 0; i < max_len; ++i)
|
797 |
|
|
{
|
798 |
|
|
if (0 == hl)
|
799 |
|
|
{
|
800 |
|
|
release_set(&(he -> address), new_address_val);
|
801 |
|
|
return;
|
802 |
|
|
}
|
803 |
|
|
hl = hl -> next;
|
804 |
|
|
}
|
805 |
|
|
remove_all_heavy(he, new_address_val);
|
806 |
|
|
}
|
807 |
|
|
|
808 |
|
|
// Allocate a new heavy lock for addr, returning its address.
|
809 |
|
|
// Assumes we already have the hash_entry locked, and there
|
810 |
|
|
// is currently no lightweight or allocated lock for addr.
|
811 |
|
|
// We register a finalizer for addr, which is responsible for
|
812 |
|
|
// removing the heavy lock when addr goes away, in addition
|
813 |
|
|
// to the responsibilities of any prior finalizer.
|
814 |
|
|
// This unfortunately holds the lock bit for the hash entry while it
|
815 |
|
|
// allocates two objects (on for the finalizer).
|
816 |
|
|
// It would be nice to avoid that somehow ...
|
817 |
|
|
static heavy_lock *
|
818 |
|
|
alloc_heavy(obj_addr_t addr, hash_entry *he)
|
819 |
|
|
{
|
820 |
|
|
heavy_lock * hl = (heavy_lock *) _Jv_AllocTraceTwo(sizeof (heavy_lock));
|
821 |
|
|
|
822 |
|
|
hl -> address = addr;
|
823 |
|
|
_Jv_MutexInit (&(hl -> si.mutex));
|
824 |
|
|
_Jv_CondInit (&(hl -> si.condition));
|
825 |
|
|
# if defined (_Jv_HaveCondDestroy) || defined (_Jv_HaveMutexDestroy)
|
826 |
|
|
hl->si.init = true; // needed ?
|
827 |
|
|
# endif
|
828 |
|
|
hl -> next = he -> heavy_locks;
|
829 |
|
|
he -> heavy_locks = hl;
|
830 |
|
|
// FIXME: The only call that cheats and goes directly to the GC interface.
|
831 |
|
|
# ifdef HAVE_BOEHM_GC
|
832 |
|
|
GC_REGISTER_FINALIZER_NO_ORDER(
|
833 |
|
|
(void *)addr, heavy_lock_obj_finalization_proc,
|
834 |
|
|
hl, &hl->old_finalization_proc,
|
835 |
|
|
&hl->old_client_data);
|
836 |
|
|
# endif /* HAVE_BOEHM_GC */
|
837 |
|
|
return hl;
|
838 |
|
|
}
|
839 |
|
|
|
840 |
|
|
// Return the heavy lock for addr, allocating if necessary.
|
841 |
|
|
// Assumes we have the cache entry locked, and there is no lightweight
|
842 |
|
|
// lock for addr.
|
843 |
|
|
static heavy_lock *
|
844 |
|
|
get_heavy(obj_addr_t addr, hash_entry *he)
|
845 |
|
|
{
|
846 |
|
|
heavy_lock *hl = find_heavy(addr, he);
|
847 |
|
|
if (0 == hl)
|
848 |
|
|
hl = alloc_heavy(addr, he);
|
849 |
|
|
return hl;
|
850 |
|
|
}
|
851 |
|
|
|
852 |
|
|
void
|
853 |
|
|
_Jv_MonitorEnter (jobject obj)
|
854 |
|
|
{
|
855 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
856 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)FLAGS);
|
857 |
|
|
#else
|
858 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
859 |
|
|
#endif
|
860 |
|
|
obj_addr_t address;
|
861 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
862 |
|
|
hash_entry * he = light_locks + hash;
|
863 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
864 |
|
|
unsigned count;
|
865 |
|
|
const unsigned N_SPINS = 18;
|
866 |
|
|
|
867 |
|
|
// We need to somehow check that addr is not NULL on the fast path.
|
868 |
|
|
// A very predictable
|
869 |
|
|
// branch on a register value is probably cheaper than dereferencing addr.
|
870 |
|
|
// We could also permanently lock the NULL entry in the hash table.
|
871 |
|
|
// But it's not clear that's cheaper either.
|
872 |
|
|
if (__builtin_expect(!addr, false))
|
873 |
|
|
throw new java::lang::NullPointerException;
|
874 |
|
|
|
875 |
|
|
JvAssert(!(addr & FLAGS));
|
876 |
|
|
retry:
|
877 |
|
|
if (__builtin_expect(compare_and_swap(&(he -> address),
|
878 |
|
|
0, addr),true))
|
879 |
|
|
{
|
880 |
|
|
JvAssert(he -> light_thr_id == INVALID_THREAD_ID);
|
881 |
|
|
JvAssert(he -> light_count == 0);
|
882 |
|
|
he -> light_thr_id = self;
|
883 |
|
|
// Count fields are set correctly. Heavy_count was also zero,
|
884 |
|
|
// but can change asynchronously.
|
885 |
|
|
// This path is hopefully both fast and the most common.
|
886 |
|
|
LOG(ACQ_LIGHT, addr, self);
|
887 |
|
|
return;
|
888 |
|
|
}
|
889 |
|
|
address = he -> address;
|
890 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
|
891 |
|
|
{
|
892 |
|
|
if (he -> light_thr_id == self)
|
893 |
|
|
{
|
894 |
|
|
// We hold the lightweight lock, and it's for the right
|
895 |
|
|
// address.
|
896 |
|
|
count = he -> light_count;
|
897 |
|
|
if (count == USHRT_MAX)
|
898 |
|
|
{
|
899 |
|
|
// I think most JVMs don't check for this.
|
900 |
|
|
// But I'm not convinced I couldn't turn this into a security
|
901 |
|
|
// hole, even with a 32 bit counter.
|
902 |
|
|
throw new java::lang::IllegalMonitorStateException(
|
903 |
|
|
JvNewStringLatin1("maximum monitor nesting level exceeded"));
|
904 |
|
|
}
|
905 |
|
|
he -> light_count = count + 1;
|
906 |
|
|
return;
|
907 |
|
|
}
|
908 |
|
|
else
|
909 |
|
|
{
|
910 |
|
|
JvAssert(!(address & LOCKED));
|
911 |
|
|
// Lightweight lock is held, but by somone else.
|
912 |
|
|
// Spin a few times. This avoids turning this into a heavyweight
|
913 |
|
|
// lock if the current holder is about to release it.
|
914 |
|
|
// FIXME: Does this make sense on a uniprocessor, where
|
915 |
|
|
// it actually yields? It's probably cheaper to convert.
|
916 |
|
|
for (unsigned int i = 0; i < N_SPINS; ++i)
|
917 |
|
|
{
|
918 |
|
|
if ((he -> address & ~LOCKED) != address) goto retry;
|
919 |
|
|
spin(i);
|
920 |
|
|
}
|
921 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED ))
|
922 |
|
|
{
|
923 |
|
|
wait_unlocked(he);
|
924 |
|
|
goto retry;
|
925 |
|
|
}
|
926 |
|
|
heavy_lock *hl = get_heavy(addr, he);
|
927 |
|
|
++ (he -> heavy_count);
|
928 |
|
|
// The hl lock acquisition can't block for long, since it can
|
929 |
|
|
// only be held by other threads waiting for conversion, and
|
930 |
|
|
// they, like us, drop it quickly without blocking.
|
931 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
932 |
|
|
JvAssert(he -> address == address | LOCKED );
|
933 |
|
|
release_set(&(he -> address), (address | REQUEST_CONVERSION | HEAVY));
|
934 |
|
|
// release lock on he
|
935 |
|
|
LOG(REQ_CONV, (address | REQUEST_CONVERSION | HEAVY), self);
|
936 |
|
|
// If _Jv_CondWait is interrupted, we ignore the interrupt, but
|
937 |
|
|
// restore the thread's interrupt status flag when done.
|
938 |
|
|
jboolean interrupt_flag = false;
|
939 |
|
|
while ((he -> address & ~FLAGS) == (address & ~FLAGS))
|
940 |
|
|
{
|
941 |
|
|
// Once converted, the lock has to retain heavyweight
|
942 |
|
|
// status, since heavy_count > 0.
|
943 |
|
|
int r = _Jv_CondWait (&(hl->si.condition), &(hl->si.mutex), 0, 0);
|
944 |
|
|
if (r == _JV_INTERRUPTED)
|
945 |
|
|
{
|
946 |
|
|
interrupt_flag = true;
|
947 |
|
|
Thread::currentThread()->interrupt_flag = false;
|
948 |
|
|
}
|
949 |
|
|
}
|
950 |
|
|
if (interrupt_flag)
|
951 |
|
|
Thread::currentThread()->interrupt_flag = interrupt_flag;
|
952 |
|
|
keep_live(addr);
|
953 |
|
|
// Guarantee that hl doesn't get unlinked by finalizer.
|
954 |
|
|
// This is only an issue if the client fails to release
|
955 |
|
|
// the lock, which is unlikely.
|
956 |
|
|
JvAssert(he -> address & HEAVY);
|
957 |
|
|
// Lock has been converted, we hold the heavyweight lock,
|
958 |
|
|
// heavy_count has been incremented.
|
959 |
|
|
return;
|
960 |
|
|
}
|
961 |
|
|
}
|
962 |
|
|
obj_addr_t was_heavy = (address & HEAVY);
|
963 |
|
|
if ((address & LOCKED) ||
|
964 |
|
|
!compare_and_swap(&(he -> address), address, (address | LOCKED )))
|
965 |
|
|
{
|
966 |
|
|
wait_unlocked(he);
|
967 |
|
|
goto retry;
|
968 |
|
|
}
|
969 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == 0)
|
970 |
|
|
{
|
971 |
|
|
// Either was_heavy is true, or something changed out from under us,
|
972 |
|
|
// since the initial test for 0 failed.
|
973 |
|
|
JvAssert(!(address & REQUEST_CONVERSION));
|
974 |
|
|
// Can't convert a nonexistent lightweight lock.
|
975 |
|
|
heavy_lock *hl;
|
976 |
|
|
hl = (was_heavy? find_heavy(addr, he) : 0);
|
977 |
|
|
// The CAS succeeded, so was_heavy is still accurate.
|
978 |
|
|
if (0 == hl)
|
979 |
|
|
{
|
980 |
|
|
// It is OK to use the lighweight lock, since either the
|
981 |
|
|
// heavyweight lock does not exist, or none of the
|
982 |
|
|
// heavyweight locks are currently in use. Future threads
|
983 |
|
|
// trying to acquire the lock will see the lightweight
|
984 |
|
|
// one first and use that.
|
985 |
|
|
he -> light_thr_id = self; // OK, since nobody else can hold
|
986 |
|
|
// light lock or do this at the same time.
|
987 |
|
|
JvAssert(he -> light_count == 0);
|
988 |
|
|
JvAssert(was_heavy == (he -> address & HEAVY));
|
989 |
|
|
release_set(&(he -> address), (addr | was_heavy));
|
990 |
|
|
LOG(ACQ_LIGHT2, addr | was_heavy, self);
|
991 |
|
|
}
|
992 |
|
|
else
|
993 |
|
|
{
|
994 |
|
|
// Must use heavy lock.
|
995 |
|
|
++ (he -> heavy_count);
|
996 |
|
|
JvAssert(0 == (address & ~HEAVY));
|
997 |
|
|
release_set(&(he -> address), HEAVY);
|
998 |
|
|
LOG(ACQ_HEAVY, addr | was_heavy, self);
|
999 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
1000 |
|
|
keep_live(addr);
|
1001 |
|
|
}
|
1002 |
|
|
return;
|
1003 |
|
|
}
|
1004 |
|
|
// Lightweight lock is held, but does not correspond to this object.
|
1005 |
|
|
// We hold the lock on the hash entry, and he -> address can't
|
1006 |
|
|
// change from under us. Neither can the chain of heavy locks.
|
1007 |
|
|
{
|
1008 |
|
|
JvAssert(0 == he -> heavy_count || (address & HEAVY));
|
1009 |
|
|
heavy_lock *hl = get_heavy(addr, he);
|
1010 |
|
|
++ (he -> heavy_count);
|
1011 |
|
|
release_set(&(he -> address), address | HEAVY);
|
1012 |
|
|
LOG(ACQ_HEAVY2, address | HEAVY, self);
|
1013 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
1014 |
|
|
keep_live(addr);
|
1015 |
|
|
}
|
1016 |
|
|
}
|
1017 |
|
|
|
1018 |
|
|
|
1019 |
|
|
void
|
1020 |
|
|
_Jv_MonitorExit (jobject obj)
|
1021 |
|
|
{
|
1022 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
1023 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)FLAGS);
|
1024 |
|
|
#else
|
1025 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
1026 |
|
|
#endif
|
1027 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
1028 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
1029 |
|
|
hash_entry * he = light_locks + hash;
|
1030 |
|
|
_Jv_ThreadId_t light_thr_id;
|
1031 |
|
|
unsigned count;
|
1032 |
|
|
obj_addr_t address;
|
1033 |
|
|
|
1034 |
|
|
retry:
|
1035 |
|
|
light_thr_id = he -> light_thr_id;
|
1036 |
|
|
// Unfortunately, it turns out we always need to read the address
|
1037 |
|
|
// first. Even if we are going to update it with compare_and_swap,
|
1038 |
|
|
// we need to reset light_thr_id, and that's not safe unless we know
|
1039 |
|
|
// that we hold the lock.
|
1040 |
|
|
address = he -> address;
|
1041 |
|
|
// First the (relatively) fast cases:
|
1042 |
|
|
if (__builtin_expect(light_thr_id == self, true))
|
1043 |
|
|
// Above must fail if addr == 0 .
|
1044 |
|
|
{
|
1045 |
|
|
count = he -> light_count;
|
1046 |
|
|
if (__builtin_expect((address & ~HEAVY) == addr, true))
|
1047 |
|
|
{
|
1048 |
|
|
if (count != 0)
|
1049 |
|
|
{
|
1050 |
|
|
// We held the lightweight lock all along. Thus the values
|
1051 |
|
|
// we saw for light_thr_id and light_count must have been valid.
|
1052 |
|
|
he -> light_count = count - 1;
|
1053 |
|
|
return;
|
1054 |
|
|
}
|
1055 |
|
|
else
|
1056 |
|
|
{
|
1057 |
|
|
// We hold the lightweight lock once.
|
1058 |
|
|
he -> light_thr_id = INVALID_THREAD_ID;
|
1059 |
|
|
if (compare_and_swap_release(&(he -> address), address,
|
1060 |
|
|
address & HEAVY))
|
1061 |
|
|
{
|
1062 |
|
|
LOG(REL_LIGHT, address & HEAVY, self);
|
1063 |
|
|
return;
|
1064 |
|
|
}
|
1065 |
|
|
else
|
1066 |
|
|
{
|
1067 |
|
|
he -> light_thr_id = light_thr_id; // Undo prior damage.
|
1068 |
|
|
goto retry;
|
1069 |
|
|
}
|
1070 |
|
|
}
|
1071 |
|
|
}
|
1072 |
|
|
// else lock is not for this address, conversion is requested,
|
1073 |
|
|
// or the lock bit in the address field is set.
|
1074 |
|
|
}
|
1075 |
|
|
else
|
1076 |
|
|
{
|
1077 |
|
|
if (__builtin_expect(!addr, false))
|
1078 |
|
|
throw new java::lang::NullPointerException;
|
1079 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
|
1080 |
|
|
{
|
1081 |
|
|
# ifdef LOCK_DEBUG
|
1082 |
|
|
fprintf(stderr, "Lightweight lock held by other thread\n\t"
|
1083 |
|
|
"light_thr_id = 0x%lx, self = 0x%lx, "
|
1084 |
|
|
"address = 0x%lx, heavy_count = %d, pid = %d\n",
|
1085 |
|
|
light_thr_id, self, (unsigned long)address,
|
1086 |
|
|
he -> heavy_count, getpid());
|
1087 |
|
|
print_he(he);
|
1088 |
|
|
for(;;) {}
|
1089 |
|
|
# endif
|
1090 |
|
|
// Someone holds the lightweight lock for this object, and
|
1091 |
|
|
// it can't be us.
|
1092 |
|
|
throw new java::lang::IllegalMonitorStateException(
|
1093 |
|
|
JvNewStringLatin1("current thread not owner"));
|
1094 |
|
|
}
|
1095 |
|
|
else
|
1096 |
|
|
count = he -> light_count;
|
1097 |
|
|
}
|
1098 |
|
|
if (address & LOCKED)
|
1099 |
|
|
{
|
1100 |
|
|
wait_unlocked(he);
|
1101 |
|
|
goto retry;
|
1102 |
|
|
}
|
1103 |
|
|
// Now the unlikely cases.
|
1104 |
|
|
// We do know that:
|
1105 |
|
|
// - Address is set, and doesn't contain the LOCKED bit.
|
1106 |
|
|
// - If address refers to the same object as addr, then he -> light_thr_id
|
1107 |
|
|
// refers to this thread, and count is valid.
|
1108 |
|
|
// - The case in which we held the lightweight lock has been
|
1109 |
|
|
// completely handled, except for the REQUEST_CONVERSION case.
|
1110 |
|
|
//
|
1111 |
|
|
if ((address & ~FLAGS) == addr)
|
1112 |
|
|
{
|
1113 |
|
|
// The lightweight lock is assigned to this object.
|
1114 |
|
|
// Thus we must be in the REQUEST_CONVERSION case.
|
1115 |
|
|
if (0 != count)
|
1116 |
|
|
{
|
1117 |
|
|
// Defer conversion until we exit completely.
|
1118 |
|
|
he -> light_count = count - 1;
|
1119 |
|
|
return;
|
1120 |
|
|
}
|
1121 |
|
|
JvAssert(he -> light_thr_id == self);
|
1122 |
|
|
JvAssert(address & REQUEST_CONVERSION);
|
1123 |
|
|
// Conversion requested
|
1124 |
|
|
// Convert now.
|
1125 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
1126 |
|
|
goto retry;
|
1127 |
|
|
heavy_lock *hl = find_heavy(addr, he);
|
1128 |
|
|
JvAssert (0 != hl);
|
1129 |
|
|
// Requestor created it.
|
1130 |
|
|
he -> light_count = 0;
|
1131 |
|
|
JvAssert(he -> heavy_count > 0);
|
1132 |
|
|
// was incremented by requestor.
|
1133 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
1134 |
|
|
// Release the he lock after acquiring the mutex.
|
1135 |
|
|
// Otherwise we can accidentally
|
1136 |
|
|
// notify a thread that has already seen a heavyweight
|
1137 |
|
|
// lock.
|
1138 |
|
|
he -> light_thr_id = INVALID_THREAD_ID;
|
1139 |
|
|
release_set(&(he -> address), HEAVY);
|
1140 |
|
|
LOG(PROMOTE, address, self);
|
1141 |
|
|
// lightweight lock now unused.
|
1142 |
|
|
_Jv_CondNotifyAll(&(hl->si.condition), &(hl->si.mutex));
|
1143 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
1144 |
|
|
// heavy_count was already incremented by original requestor.
|
1145 |
|
|
keep_live(addr);
|
1146 |
|
|
return;
|
1147 |
|
|
}
|
1148 |
|
|
// lightweight lock not for this object.
|
1149 |
|
|
JvAssert(!(address & LOCKED));
|
1150 |
|
|
JvAssert((address & ~FLAGS) != addr);
|
1151 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
1152 |
|
|
goto retry;
|
1153 |
|
|
heavy_lock *hl = find_heavy(addr, he);
|
1154 |
|
|
if (NULL == hl)
|
1155 |
|
|
{
|
1156 |
|
|
# ifdef LOCK_DEBUG
|
1157 |
|
|
fprintf(stderr, "Failed to find heavyweight lock for addr 0x%lx"
|
1158 |
|
|
" pid = %d\n", addr, getpid());
|
1159 |
|
|
print_he(he);
|
1160 |
|
|
for(;;) {}
|
1161 |
|
|
# endif
|
1162 |
|
|
release_set(&(he -> address), address);
|
1163 |
|
|
throw new java::lang::IllegalMonitorStateException(
|
1164 |
|
|
JvNewStringLatin1("current thread not owner"));
|
1165 |
|
|
}
|
1166 |
|
|
JvAssert(address & HEAVY);
|
1167 |
|
|
count = he -> heavy_count;
|
1168 |
|
|
JvAssert(count > 0);
|
1169 |
|
|
--count;
|
1170 |
|
|
he -> heavy_count = count;
|
1171 |
|
|
if (0 == count)
|
1172 |
|
|
{
|
1173 |
|
|
const unsigned test_freq = 16; // Power of 2
|
1174 |
|
|
static volatile unsigned counter = 0;
|
1175 |
|
|
unsigned my_counter = counter;
|
1176 |
|
|
|
1177 |
|
|
counter = my_counter + 1;
|
1178 |
|
|
if (my_counter%test_freq == 0)
|
1179 |
|
|
{
|
1180 |
|
|
// Randomize the interval length a bit.
|
1181 |
|
|
counter = my_counter + (my_counter >> 4) % (test_freq/2);
|
1182 |
|
|
// Unlock mutex first, to avoid self-deadlock, or worse.
|
1183 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
1184 |
|
|
maybe_remove_all_heavy(he, address &~HEAVY);
|
1185 |
|
|
// release lock bit, preserving
|
1186 |
|
|
// REQUEST_CONVERSION
|
1187 |
|
|
// and object address.
|
1188 |
|
|
}
|
1189 |
|
|
else
|
1190 |
|
|
{
|
1191 |
|
|
release_set(&(he -> address), address &~HEAVY);
|
1192 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
1193 |
|
|
// Unlock after releasing the lock bit, so that
|
1194 |
|
|
// we don't switch to another thread prematurely.
|
1195 |
|
|
}
|
1196 |
|
|
}
|
1197 |
|
|
else
|
1198 |
|
|
{
|
1199 |
|
|
release_set(&(he -> address), address);
|
1200 |
|
|
_Jv_MutexUnlock(&(hl->si.mutex));
|
1201 |
|
|
}
|
1202 |
|
|
LOG(REL_HEAVY, addr, self);
|
1203 |
|
|
keep_live(addr);
|
1204 |
|
|
}
|
1205 |
|
|
|
1206 |
|
|
// Return false if obj's monitor is held by the current thread
|
1207 |
|
|
bool
|
1208 |
|
|
_Jv_ObjectCheckMonitor (jobject obj)
|
1209 |
|
|
{
|
1210 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
1211 |
|
|
obj_addr_t addr = (obj_addr_t)obj & ~((obj_addr_t)FLAGS);
|
1212 |
|
|
#else
|
1213 |
|
|
obj_addr_t addr = (obj_addr_t)obj;
|
1214 |
|
|
#endif
|
1215 |
|
|
obj_addr_t address;
|
1216 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
1217 |
|
|
hash_entry * he = light_locks + hash;
|
1218 |
|
|
|
1219 |
|
|
JvAssert(!(addr & FLAGS));
|
1220 |
|
|
address = he -> address;
|
1221 |
|
|
// Try it the easy way first:
|
1222 |
|
|
if (address == 0) return true;
|
1223 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
1224 |
|
|
if ((address & ~(HEAVY | REQUEST_CONVERSION)) == addr)
|
1225 |
|
|
// Fails if entry is LOCKED.
|
1226 |
|
|
// I can't asynchronously become or stop being the holder.
|
1227 |
|
|
return he -> light_thr_id != self;
|
1228 |
|
|
retry:
|
1229 |
|
|
// Acquire the hash table entry lock
|
1230 |
|
|
address &= ~LOCKED;
|
1231 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
1232 |
|
|
{
|
1233 |
|
|
wait_unlocked(he);
|
1234 |
|
|
goto retry;
|
1235 |
|
|
}
|
1236 |
|
|
|
1237 |
|
|
bool not_mine;
|
1238 |
|
|
|
1239 |
|
|
if ((address & ~FLAGS) == addr)
|
1240 |
|
|
not_mine = (he -> light_thr_id != self);
|
1241 |
|
|
else
|
1242 |
|
|
{
|
1243 |
|
|
heavy_lock* hl = find_heavy(addr, he);
|
1244 |
|
|
not_mine = hl ? _Jv_MutexCheckMonitor(&hl->si.mutex) : true;
|
1245 |
|
|
}
|
1246 |
|
|
|
1247 |
|
|
release_set(&(he -> address), address); // unlock hash entry
|
1248 |
|
|
return not_mine;
|
1249 |
|
|
}
|
1250 |
|
|
|
1251 |
|
|
// The rest of these are moderately thin veneers on _Jv_Cond ops.
|
1252 |
|
|
// The current version of Notify might be able to make the pthread
|
1253 |
|
|
// call AFTER releasing the lock, thus saving some context switches??
|
1254 |
|
|
|
1255 |
|
|
void
|
1256 |
|
|
java::lang::Object::wait (jlong timeout, jint nanos)
|
1257 |
|
|
{
|
1258 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
1259 |
|
|
obj_addr_t addr = (obj_addr_t)this & ~((obj_addr_t)FLAGS);
|
1260 |
|
|
#else
|
1261 |
|
|
obj_addr_t addr = (obj_addr_t)this;
|
1262 |
|
|
#endif
|
1263 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
1264 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
1265 |
|
|
hash_entry * he = light_locks + hash;
|
1266 |
|
|
unsigned count;
|
1267 |
|
|
obj_addr_t address;
|
1268 |
|
|
heavy_lock *hl;
|
1269 |
|
|
|
1270 |
|
|
if (__builtin_expect (timeout < 0 || nanos < 0 || nanos > 999999, false))
|
1271 |
|
|
throw new IllegalArgumentException;
|
1272 |
|
|
retry:
|
1273 |
|
|
address = he -> address;
|
1274 |
|
|
address &= ~LOCKED;
|
1275 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
1276 |
|
|
{
|
1277 |
|
|
wait_unlocked(he);
|
1278 |
|
|
goto retry;
|
1279 |
|
|
}
|
1280 |
|
|
// address did not have the lock bit set. We now hold the lock on he.
|
1281 |
|
|
if ((address & ~FLAGS) == addr)
|
1282 |
|
|
{
|
1283 |
|
|
// Convert to heavyweight.
|
1284 |
|
|
if (he -> light_thr_id != self)
|
1285 |
|
|
{
|
1286 |
|
|
# ifdef LOCK_DEBUG
|
1287 |
|
|
fprintf(stderr, "Found wrong lightweight lock owner in wait "
|
1288 |
|
|
"address = 0x%lx pid = %d\n", address, getpid());
|
1289 |
|
|
print_he(he);
|
1290 |
|
|
for(;;) {}
|
1291 |
|
|
# endif
|
1292 |
|
|
release_set(&(he -> address), address);
|
1293 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
1294 |
|
|
("current thread not owner"));
|
1295 |
|
|
}
|
1296 |
|
|
count = he -> light_count;
|
1297 |
|
|
hl = get_heavy(addr, he);
|
1298 |
|
|
he -> light_count = 0;
|
1299 |
|
|
he -> heavy_count += count + 1;
|
1300 |
|
|
for (unsigned i = 0; i <= count; ++i)
|
1301 |
|
|
_Jv_MutexLock(&(hl->si.mutex));
|
1302 |
|
|
// Again release the he lock after acquiring the mutex.
|
1303 |
|
|
he -> light_thr_id = INVALID_THREAD_ID;
|
1304 |
|
|
release_set(&(he -> address), HEAVY); // lightweight lock now unused.
|
1305 |
|
|
LOG(PROMOTE2, addr, self);
|
1306 |
|
|
if (address & REQUEST_CONVERSION)
|
1307 |
|
|
_Jv_CondNotifyAll (&(hl->si.condition), &(hl->si.mutex));
|
1308 |
|
|
// Since we do this before we do a CondWait, we guarantee that
|
1309 |
|
|
// threads waiting on requested conversion are awoken before
|
1310 |
|
|
// a real wait on the same condition variable.
|
1311 |
|
|
// No other notification can occur in the interim, since
|
1312 |
|
|
// we hold the heavy lock, and notifications are made
|
1313 |
|
|
// without acquiring it.
|
1314 |
|
|
}
|
1315 |
|
|
else /* We should hold the heavyweight lock. */
|
1316 |
|
|
{
|
1317 |
|
|
hl = find_heavy(addr, he);
|
1318 |
|
|
release_set(&(he -> address), address);
|
1319 |
|
|
if (0 == hl)
|
1320 |
|
|
{
|
1321 |
|
|
# ifdef LOCK_DEBUG
|
1322 |
|
|
fprintf(stderr, "Couldn't find heavy lock in wait "
|
1323 |
|
|
"addr = 0x%lx pid = %d\n", addr, getpid());
|
1324 |
|
|
print_he(he);
|
1325 |
|
|
for(;;) {}
|
1326 |
|
|
# endif
|
1327 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
1328 |
|
|
("current thread not owner"));
|
1329 |
|
|
}
|
1330 |
|
|
JvAssert(address & HEAVY);
|
1331 |
|
|
}
|
1332 |
|
|
LOG(WAIT_START, addr, self);
|
1333 |
|
|
switch (_Jv_CondWait (&(hl->si.condition), &(hl->si.mutex), timeout, nanos))
|
1334 |
|
|
{
|
1335 |
|
|
case _JV_NOT_OWNER:
|
1336 |
|
|
throw new IllegalMonitorStateException (JvNewStringLatin1
|
1337 |
|
|
("current thread not owner"));
|
1338 |
|
|
case _JV_INTERRUPTED:
|
1339 |
|
|
if (Thread::interrupted ())
|
1340 |
|
|
throw new InterruptedException;
|
1341 |
|
|
}
|
1342 |
|
|
LOG(WAIT_END, addr, self);
|
1343 |
|
|
}
|
1344 |
|
|
|
1345 |
|
|
void
|
1346 |
|
|
java::lang::Object::notify (void)
|
1347 |
|
|
{
|
1348 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
1349 |
|
|
obj_addr_t addr = (obj_addr_t)this & ~((obj_addr_t)FLAGS);
|
1350 |
|
|
#else
|
1351 |
|
|
obj_addr_t addr = (obj_addr_t)this;
|
1352 |
|
|
#endif
|
1353 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
1354 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
1355 |
|
|
hash_entry * he = light_locks + hash;
|
1356 |
|
|
heavy_lock *hl;
|
1357 |
|
|
obj_addr_t address;
|
1358 |
|
|
int result;
|
1359 |
|
|
|
1360 |
|
|
retry:
|
1361 |
|
|
address = ((he -> address) & ~LOCKED);
|
1362 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
1363 |
|
|
{
|
1364 |
|
|
wait_unlocked(he);
|
1365 |
|
|
goto retry;
|
1366 |
|
|
}
|
1367 |
|
|
if ((address & ~FLAGS) == addr && he -> light_thr_id == self)
|
1368 |
|
|
{
|
1369 |
|
|
// We hold lightweight lock. Since it has not
|
1370 |
|
|
// been inflated, there are no waiters.
|
1371 |
|
|
release_set(&(he -> address), address); // unlock
|
1372 |
|
|
return;
|
1373 |
|
|
}
|
1374 |
|
|
hl = find_heavy(addr, he);
|
1375 |
|
|
// Hl can't disappear since we point to the underlying object.
|
1376 |
|
|
// It's important that we release the lock bit before the notify, since
|
1377 |
|
|
// otherwise we will try to wake up the target while we still hold the
|
1378 |
|
|
// bit. This results in lock bit contention, which we don't handle
|
1379 |
|
|
// terribly well.
|
1380 |
|
|
release_set(&(he -> address), address); // unlock
|
1381 |
|
|
if (0 == hl)
|
1382 |
|
|
{
|
1383 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
1384 |
|
|
("current thread not owner"));
|
1385 |
|
|
return;
|
1386 |
|
|
}
|
1387 |
|
|
// We know that we hold the heavyweight lock at this point,
|
1388 |
|
|
// and the lightweight lock is not in use.
|
1389 |
|
|
result = _Jv_CondNotify(&(hl->si.condition), &(hl->si.mutex));
|
1390 |
|
|
LOG(NOTIFY, addr, self);
|
1391 |
|
|
keep_live(addr);
|
1392 |
|
|
if (__builtin_expect (result, 0))
|
1393 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
1394 |
|
|
("current thread not owner"));
|
1395 |
|
|
}
|
1396 |
|
|
|
1397 |
|
|
void
|
1398 |
|
|
java::lang::Object::notifyAll (void)
|
1399 |
|
|
{
|
1400 |
|
|
#ifdef JV_LINKER_CANNOT_8BYTE_ALIGN_STATICS
|
1401 |
|
|
obj_addr_t addr = (obj_addr_t)this & ~((obj_addr_t)FLAGS);
|
1402 |
|
|
#else
|
1403 |
|
|
obj_addr_t addr = (obj_addr_t)this;
|
1404 |
|
|
#endif
|
1405 |
|
|
_Jv_ThreadId_t self = _Jv_ThreadSelf();
|
1406 |
|
|
unsigned hash = JV_SYNC_HASH(addr);
|
1407 |
|
|
hash_entry * he = light_locks + hash;
|
1408 |
|
|
heavy_lock *hl;
|
1409 |
|
|
obj_addr_t address;
|
1410 |
|
|
int result;
|
1411 |
|
|
|
1412 |
|
|
retry:
|
1413 |
|
|
address = (he -> address) & ~LOCKED;
|
1414 |
|
|
if (!compare_and_swap(&(he -> address), address, address | LOCKED))
|
1415 |
|
|
{
|
1416 |
|
|
wait_unlocked(he);
|
1417 |
|
|
goto retry;
|
1418 |
|
|
}
|
1419 |
|
|
hl = find_heavy(addr, he);
|
1420 |
|
|
if ((address & ~FLAGS) == addr && he -> light_thr_id == self)
|
1421 |
|
|
{
|
1422 |
|
|
// We hold lightweight lock. Since it has not
|
1423 |
|
|
// been inflated, there are no waiters.
|
1424 |
|
|
release_set(&(he -> address), address); // unlock
|
1425 |
|
|
return;
|
1426 |
|
|
}
|
1427 |
|
|
release_set(&(he -> address), address); // unlock
|
1428 |
|
|
if (0 == hl)
|
1429 |
|
|
{
|
1430 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
1431 |
|
|
("current thread not owner"));
|
1432 |
|
|
}
|
1433 |
|
|
result = _Jv_CondNotifyAll(&(hl->si.condition), &(hl->si.mutex));
|
1434 |
|
|
LOG(NOTIFY_ALL, addr, self);
|
1435 |
|
|
if (__builtin_expect (result, 0))
|
1436 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
1437 |
|
|
("current thread not owner"));
|
1438 |
|
|
}
|
1439 |
|
|
|
1440 |
|
|
// This is declared in Java code and in Object.h.
|
1441 |
|
|
// It should never be called with JV_HASH_SYNCHRONIZATION
|
1442 |
|
|
void
|
1443 |
|
|
java::lang::Object::sync_init (void)
|
1444 |
|
|
{
|
1445 |
|
|
throw new IllegalMonitorStateException(JvNewStringLatin1
|
1446 |
|
|
("internal error: sync_init"));
|
1447 |
|
|
}
|
1448 |
|
|
|
1449 |
|
|
// This is called on startup and declared in Object.h.
|
1450 |
|
|
// For now we just make it a no-op.
|
1451 |
|
|
void
|
1452 |
|
|
_Jv_InitializeSyncMutex (void)
|
1453 |
|
|
{
|
1454 |
|
|
}
|
1455 |
|
|
|
1456 |
|
|
#endif /* JV_HASH_SYNCHRONIZATION */
|
1457 |
|
|
|