OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libjava/] [verify.cc] - Blame information for rev 800

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 753 jeremybenn
// verify.cc - verify bytecode
2
 
3
/* Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006  Free Software Foundation
4
 
5
   This file is part of libgcj.
6
 
7
This software is copyrighted work licensed under the terms of the
8
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
9
details.  */
10
 
11
// Written by Tom Tromey <tromey@redhat.com>
12
 
13
// Define VERIFY_DEBUG to enable debugging output.
14
 
15
#include <config.h>
16
 
17
#include <string.h>
18
 
19
#include <jvm.h>
20
#include <gcj/cni.h>
21
#include <java-insns.h>
22
#include <java-interp.h>
23
 
24
// On Solaris 10/x86, <signal.h> indirectly includes <ia32/sys/reg.h>, which 
25
// defines PC since g++ predefines __EXTENSIONS__.  Undef here to avoid clash
26
// with PC member of class _Jv_BytecodeVerifier below.
27
#undef PC
28
 
29
#ifdef INTERPRETER
30
 
31
#include <java/lang/Class.h>
32
#include <java/lang/VerifyError.h>
33
#include <java/lang/Throwable.h>
34
#include <java/lang/reflect/Modifier.h>
35
#include <java/lang/StringBuffer.h>
36
#include <java/lang/NoClassDefFoundError.h>
37
 
38
#ifdef VERIFY_DEBUG
39
#include <stdio.h>
40
#endif /* VERIFY_DEBUG */
41
 
42
 
43
// This is used to mark states which are not scheduled for
44
// verification.
45
#define INVALID_STATE ((state *) -1)
46
 
47
static void debug_print (const char *fmt, ...)
48
  __attribute__ ((format (printf, 1, 2)));
49
 
50
static inline void
51
debug_print (MAYBE_UNUSED const char *fmt, ...)
52
{
53
#ifdef VERIFY_DEBUG
54
  va_list ap;
55
  va_start (ap, fmt);
56
  vfprintf (stderr, fmt, ap);
57
  va_end (ap);
58
#endif /* VERIFY_DEBUG */
59
}
60
 
61
// This started as a fairly ordinary verifier, and for the most part
62
// it remains so.  It works in the obvious way, by modeling the effect
63
// of each opcode as it is encountered.  For most opcodes, this is a
64
// straightforward operation.
65
//
66
// This verifier does not do type merging.  It used to, but this
67
// results in difficulty verifying some relatively simple code
68
// involving interfaces, and it pushed some verification work into the
69
// interpreter.
70
//
71
// Instead of merging reference types, when we reach a point where two
72
// flows of control merge, we simply keep the union of reference types
73
// from each branch.  Then, when we need to verify a fact about a
74
// reference on the stack (e.g., that it is compatible with the
75
// argument type of a method), we check to ensure that all possible
76
// types satisfy the requirement.
77
//
78
// Another area this verifier differs from the norm is in its handling
79
// of subroutines.  The JVM specification has some confusing things to
80
// say about subroutines.  For instance, it makes claims about not
81
// allowing subroutines to merge and it rejects recursive subroutines.
82
// For the most part these are red herrings; we used to try to follow
83
// these things but they lead to problems.  For example, the notion of
84
// "being in a subroutine" is not well-defined: is an exception
85
// handler in a subroutine?  If you never execute the `ret' but
86
// instead `goto 1' do you remain in the subroutine?
87
//
88
// For clarity on what is really required for type safety, read
89
// "Simple Verification Technique for Complex Java Bytecode
90
// Subroutines" by Alessandro Coglio.  Among other things this paper
91
// shows that recursive subroutines are not harmful to type safety.
92
// We implement something similar to what he proposes.  Note that this
93
// means that this verifier will accept code that is rejected by some
94
// other verifiers.
95
//
96
// For those not wanting to read the paper, the basic observation is
97
// that we can maintain split states in subroutines.  We maintain one
98
// state for each calling `jsr'.  In other words, we re-verify a
99
// subroutine once for each caller, using the exact types held by the
100
// callers (as opposed to the old approach of merging types and
101
// keeping a bitmap registering what did or did not change).  This
102
// approach lets us continue to verify correctly even when a
103
// subroutine is exited via `goto' or `athrow' and not `ret'.
104
//
105
// In some other areas the JVM specification is (mildly) incorrect,
106
// so we diverge.  For instance, you cannot
107
// violate type safety by allocating an object with `new' and then
108
// failing to initialize it, no matter how one branches or where one
109
// stores the uninitialized reference.  See "Improving the official
110
// specification of Java bytecode verification" by Alessandro Coglio.
111
//
112
// Note that there's no real point in enforcing that padding bytes or
113
// the mystery byte of invokeinterface must be 0, but we do that
114
// regardless.
115
//
116
// The verifier is currently neither completely lazy nor eager when it
117
// comes to loading classes.  It tries to represent types by name when
118
// possible, and then loads them when it needs to verify a fact about
119
// the type.  Checking types by name is valid because we only use
120
// names which come from the current class' constant pool.  Since all
121
// such names are looked up using the same class loader, there is no
122
// danger that we might be fooled into comparing different types with
123
// the same name.
124
//
125
// In the future we plan to allow for a completely lazy mode of
126
// operation, where the verifier will construct a list of type
127
// assertions to be checked later.
128
//
129
// Some test cases for the verifier live in the "verify" module of the
130
// Mauve test suite.  However, some of these are presently
131
// (2004-01-20) believed to be incorrect.  (More precisely the notion
132
// of "correct" is not well-defined, and this verifier differs from
133
// others while remaining type-safe.)  Some other tests live in the
134
// libgcj test suite.
135
class _Jv_BytecodeVerifier
136
{
137
private:
138
 
139
  static const int FLAG_INSN_START = 1;
140
  static const int FLAG_BRANCH_TARGET = 2;
141
 
142
  struct state;
143
  struct type;
144
  struct linked_utf8;
145
  struct ref_intersection;
146
 
147
  template<typename T>
148
  struct linked
149
  {
150
    T *val;
151
    linked<T> *next;
152
  };
153
 
154
  // The current PC.
155
  int PC;
156
  // The PC corresponding to the start of the current instruction.
157
  int start_PC;
158
 
159
  // The current state of the stack, locals, etc.
160
  state *current_state;
161
 
162
  // At each branch target we keep a linked list of all the states we
163
  // can process at that point.  We'll only have multiple states at a
164
  // given PC if they both have different return-address types in the
165
  // same stack or local slot.  This array is indexed by PC and holds
166
  // the list of all such states.
167
  linked<state> **states;
168
 
169
  // We keep a linked list of all the states which we must reverify.
170
  // This is the head of the list.
171
  state *next_verify_state;
172
 
173
  // We keep some flags for each instruction.  The values are the
174
  // FLAG_* constants defined above.  This is an array indexed by PC.
175
  char *flags;
176
 
177
  // The bytecode itself.
178
  unsigned char *bytecode;
179
  // The exceptions.
180
  _Jv_InterpException *exception;
181
 
182
  // Defining class.
183
  jclass current_class;
184
  // This method.
185
  _Jv_InterpMethod *current_method;
186
 
187
  // A linked list of utf8 objects we allocate.
188
  linked<_Jv_Utf8Const> *utf8_list;
189
 
190
  // A linked list of all ref_intersection objects we allocate.
191
  ref_intersection *isect_list;
192
 
193
  // Create a new Utf-8 constant and return it.  We do this to avoid
194
  // having our Utf-8 constants prematurely collected.
195
  _Jv_Utf8Const *make_utf8_const (char *s, int len)
196
  {
197
    linked<_Jv_Utf8Const> *lu = (linked<_Jv_Utf8Const> *)
198
      _Jv_Malloc (sizeof (linked<_Jv_Utf8Const>)
199
                  + _Jv_Utf8Const::space_needed(s, len));
200
    _Jv_Utf8Const *r = (_Jv_Utf8Const *) (lu + 1);
201
    r->init(s, len);
202
    lu->val = r;
203
    lu->next = utf8_list;
204
    utf8_list = lu;
205
 
206
    return r;
207
  }
208
 
209
  __attribute__ ((__noreturn__)) void verify_fail (const char *s, jint pc = -1)
210
  {
211
    using namespace java::lang;
212
    StringBuffer *buf = new StringBuffer ();
213
 
214
    buf->append (JvNewStringLatin1 ("verification failed"));
215
    if (pc == -1)
216
      pc = start_PC;
217
    if (pc != -1)
218
      {
219
        buf->append (JvNewStringLatin1 (" at PC "));
220
        buf->append (pc);
221
      }
222
 
223
    _Jv_InterpMethod *method = current_method;
224
    buf->append (JvNewStringLatin1 (" in "));
225
    buf->append (current_class->getName());
226
    buf->append ((jchar) ':');
227
    buf->append (method->get_method()->name->toString());
228
    buf->append ((jchar) '(');
229
    buf->append (method->get_method()->signature->toString());
230
    buf->append ((jchar) ')');
231
 
232
    buf->append (JvNewStringLatin1 (": "));
233
    buf->append (JvNewStringLatin1 (s));
234
    throw new java::lang::VerifyError (buf->toString ());
235
  }
236
 
237
  // This enum holds a list of tags for all the different types we
238
  // need to handle.  Reference types are treated specially by the
239
  // type class.
240
  enum type_val
241
  {
242
    void_type,
243
 
244
    // The values for primitive types are chosen to correspond to values
245
    // specified to newarray.
246
    boolean_type = 4,
247
    char_type = 5,
248
    float_type = 6,
249
    double_type = 7,
250
    byte_type = 8,
251
    short_type = 9,
252
    int_type = 10,
253
    long_type = 11,
254
 
255
    // Used when overwriting second word of a double or long in the
256
    // local variables.  Also used after merging local variable states
257
    // to indicate an unusable value.
258
    unsuitable_type,
259
    return_address_type,
260
    // This is the second word of a two-word value, i.e., a double or
261
    // a long.
262
    continuation_type,
263
 
264
    // Everything after `reference_type' must be a reference type.
265
    reference_type,
266
    null_type,
267
    uninitialized_reference_type
268
  };
269
 
270
  // This represents a merged class type.  Some verifiers (including
271
  // earlier versions of this one) will compute the intersection of
272
  // two class types when merging states.  However, this loses
273
  // critical information about interfaces implemented by the various
274
  // classes.  So instead we keep track of all the actual classes that
275
  // have been merged.
276
  struct ref_intersection
277
  {
278
    // Whether or not this type has been resolved.
279
    bool is_resolved;
280
 
281
    // Actual type data.
282
    union
283
    {
284
      // For a resolved reference type, this is a pointer to the class.
285
      jclass klass;
286
      // For other reference types, this it the name of the class.
287
      _Jv_Utf8Const *name;
288
    } data;
289
 
290
    // Link to the next reference in the intersection.
291
    ref_intersection *ref_next;
292
 
293
    // This is used to keep track of all the allocated
294
    // ref_intersection objects, so we can free them.
295
    // FIXME: we should allocate these in chunks.
296
    ref_intersection *alloc_next;
297
 
298
    ref_intersection (jclass klass, _Jv_BytecodeVerifier *verifier)
299
      : ref_next (NULL)
300
    {
301
      is_resolved = true;
302
      data.klass = klass;
303
      alloc_next = verifier->isect_list;
304
      verifier->isect_list = this;
305
    }
306
 
307
    ref_intersection (_Jv_Utf8Const *name, _Jv_BytecodeVerifier *verifier)
308
      : ref_next (NULL)
309
    {
310
      is_resolved = false;
311
      data.name = name;
312
      alloc_next = verifier->isect_list;
313
      verifier->isect_list = this;
314
    }
315
 
316
    ref_intersection (ref_intersection *dup, ref_intersection *tail,
317
                      _Jv_BytecodeVerifier *verifier)
318
      : ref_next (tail)
319
    {
320
      is_resolved = dup->is_resolved;
321
      data = dup->data;
322
      alloc_next = verifier->isect_list;
323
      verifier->isect_list = this;
324
    }
325
 
326
    bool equals (ref_intersection *other, _Jv_BytecodeVerifier *verifier)
327
    {
328
      if (! is_resolved && ! other->is_resolved
329
          && _Jv_equalUtf8Classnames (data.name, other->data.name))
330
        return true;
331
      if (! is_resolved)
332
        resolve (verifier);
333
      if (! other->is_resolved)
334
        other->resolve (verifier);
335
      return data.klass == other->data.klass;
336
    }
337
 
338
    // Merge THIS type into OTHER, returning the result.  This will
339
    // return OTHER if all the classes in THIS already appear in
340
    // OTHER.
341
    ref_intersection *merge (ref_intersection *other,
342
                             _Jv_BytecodeVerifier *verifier)
343
    {
344
      ref_intersection *tail = other;
345
      for (ref_intersection *self = this; self != NULL; self = self->ref_next)
346
        {
347
          bool add = true;
348
          for (ref_intersection *iter = other; iter != NULL;
349
               iter = iter->ref_next)
350
            {
351
              if (iter->equals (self, verifier))
352
                {
353
                  add = false;
354
                  break;
355
                }
356
            }
357
 
358
          if (add)
359
            tail = new ref_intersection (self, tail, verifier);
360
        }
361
      return tail;
362
    }
363
 
364
    void resolve (_Jv_BytecodeVerifier *verifier)
365
    {
366
      if (is_resolved)
367
        return;
368
 
369
      // This is useful if you want to see which classes have to be resolved
370
      // while doing the class verification.
371
      debug_print("resolving class: %s\n", data.name->chars());
372
 
373
      using namespace java::lang;
374
      java::lang::ClassLoader *loader
375
        = verifier->current_class->getClassLoaderInternal();
376
 
377
      // Due to special handling in to_array() array classes will always
378
      // be of the "L ... ;" kind. The separator char ('.' or '/' may vary
379
      // however.
380
      if (data.name->limit()[-1] == ';')
381
        {
382
          data.klass = _Jv_FindClassFromSignature (data.name->chars(), loader);
383
          if (data.klass == NULL)
384
            throw new java::lang::NoClassDefFoundError(data.name->toString());
385
        }
386
      else
387
        data.klass = Class::forName (_Jv_NewStringUtf8Const (data.name),
388
                                     false, loader);
389
      is_resolved = true;
390
    }
391
 
392
    // See if an object of type OTHER can be assigned to an object of
393
    // type *THIS.  This might resolve classes in one chain or the
394
    // other.
395
    bool compatible (ref_intersection *other,
396
                     _Jv_BytecodeVerifier *verifier)
397
    {
398
      ref_intersection *self = this;
399
 
400
      for (; self != NULL; self = self->ref_next)
401
        {
402
          ref_intersection *other_iter = other;
403
 
404
          for (; other_iter != NULL; other_iter = other_iter->ref_next)
405
            {
406
              // Avoid resolving if possible.
407
              if (! self->is_resolved
408
                  && ! other_iter->is_resolved
409
                  && _Jv_equalUtf8Classnames (self->data.name,
410
                                              other_iter->data.name))
411
                continue;
412
 
413
              if (! self->is_resolved)
414
                self->resolve(verifier);
415
 
416
              // If the LHS of the expression is of type
417
              // java.lang.Object, assignment will succeed, no matter
418
              // what the type of the RHS is. Using this short-cut we
419
              // don't need to resolve the class of the RHS at
420
              // verification time.
421
              if (self->data.klass == &java::lang::Object::class$)
422
                continue;
423
 
424
              if (! other_iter->is_resolved)
425
                other_iter->resolve(verifier);
426
 
427
              if (! is_assignable_from_slow (self->data.klass,
428
                                             other_iter->data.klass))
429
                return false;
430
            }
431
        }
432
 
433
      return true;
434
    }
435
 
436
    bool isarray ()
437
    {
438
      // assert (ref_next == NULL);
439
      if (is_resolved)
440
        return data.klass->isArray ();
441
      else
442
        return data.name->first() == '[';
443
    }
444
 
445
    bool isinterface (_Jv_BytecodeVerifier *verifier)
446
    {
447
      // assert (ref_next == NULL);
448
      if (! is_resolved)
449
        resolve (verifier);
450
      return data.klass->isInterface ();
451
    }
452
 
453
    bool isabstract (_Jv_BytecodeVerifier *verifier)
454
    {
455
      // assert (ref_next == NULL);
456
      if (! is_resolved)
457
        resolve (verifier);
458
      using namespace java::lang::reflect;
459
      return Modifier::isAbstract (data.klass->getModifiers ());
460
    }
461
 
462
    jclass getclass (_Jv_BytecodeVerifier *verifier)
463
    {
464
      if (! is_resolved)
465
        resolve (verifier);
466
      return data.klass;
467
    }
468
 
469
    int count_dimensions ()
470
    {
471
      int ndims = 0;
472
      if (is_resolved)
473
        {
474
          jclass k = data.klass;
475
          while (k->isArray ())
476
            {
477
              k = k->getComponentType ();
478
              ++ndims;
479
            }
480
        }
481
      else
482
        {
483
          char *p = data.name->chars();
484
          while (*p++ == '[')
485
            ++ndims;
486
        }
487
      return ndims;
488
    }
489
 
490
    void *operator new (size_t bytes)
491
    {
492
      return _Jv_Malloc (bytes);
493
    }
494
 
495
    void operator delete (void *mem)
496
    {
497
      _Jv_Free (mem);
498
    }
499
  };
500
 
501
  // Return the type_val corresponding to a primitive signature
502
  // character.  For instance `I' returns `int.class'.
503
  type_val get_type_val_for_signature (jchar sig)
504
  {
505
    type_val rt;
506
    switch (sig)
507
      {
508
      case 'Z':
509
        rt = boolean_type;
510
        break;
511
      case 'B':
512
        rt = byte_type;
513
        break;
514
      case 'C':
515
        rt = char_type;
516
        break;
517
      case 'S':
518
        rt = short_type;
519
        break;
520
      case 'I':
521
        rt = int_type;
522
        break;
523
      case 'J':
524
        rt = long_type;
525
        break;
526
      case 'F':
527
        rt = float_type;
528
        break;
529
      case 'D':
530
        rt = double_type;
531
        break;
532
      case 'V':
533
        rt = void_type;
534
        break;
535
      default:
536
        verify_fail ("invalid signature");
537
      }
538
    return rt;
539
  }
540
 
541
  // Return the type_val corresponding to a primitive class.
542
  type_val get_type_val_for_signature (jclass k)
543
  {
544
    return get_type_val_for_signature ((jchar) k->method_count);
545
  }
546
 
547
  // This is like _Jv_IsAssignableFrom, but it works even if SOURCE or
548
  // TARGET haven't been prepared.
549
  static bool is_assignable_from_slow (jclass target, jclass source)
550
  {
551
    // First, strip arrays.
552
    while (target->isArray ())
553
      {
554
        // If target is array, source must be as well.
555
        if (! source->isArray ())
556
          return false;
557
        target = target->getComponentType ();
558
        source = source->getComponentType ();
559
      }
560
 
561
    // Quick success.
562
    if (target == &java::lang::Object::class$)
563
      return true;
564
 
565
    do
566
      {
567
        if (source == target)
568
          return true;
569
 
570
        if (target->isPrimitive () || source->isPrimitive ())
571
          return false;
572
 
573
        if (target->isInterface ())
574
          {
575
            for (int i = 0; i < source->interface_count; ++i)
576
              {
577
                // We use a recursive call because we also need to
578
                // check superinterfaces.
579
                if (is_assignable_from_slow (target, source->getInterface (i)))
580
                  return true;
581
              }
582
          }
583
        source = source->getSuperclass ();
584
      }
585
    while (source != NULL);
586
 
587
    return false;
588
  }
589
 
590
  // The `type' class is used to represent a single type in the
591
  // verifier.
592
  struct type
593
  {
594
    // The type key.
595
    type_val key;
596
 
597
    // For reference types, the representation of the type.
598
    ref_intersection *klass;
599
 
600
    // This is used in two situations.
601
    //
602
    // First, when constructing a new object, it is the PC of the
603
    // `new' instruction which created the object.  We use the special
604
    // value UNINIT to mean that this is uninitialized.  The special
605
    // value SELF is used for the case where the current method is
606
    // itself the <init> method.  the special value EITHER is used
607
    // when we may optionally allow either an uninitialized or
608
    // initialized reference to match.
609
    //
610
    // Second, when the key is return_address_type, this holds the PC
611
    // of the instruction following the `jsr'.
612
    int pc;
613
 
614
    static const int UNINIT = -2;
615
    static const int SELF = -1;
616
    static const int EITHER = -3;
617
 
618
    // Basic constructor.
619
    type ()
620
    {
621
      key = unsuitable_type;
622
      klass = NULL;
623
      pc = UNINIT;
624
    }
625
 
626
    // Make a new instance given the type tag.  We assume a generic
627
    // `reference_type' means Object.
628
    type (type_val k)
629
    {
630
      key = k;
631
      // For reference_type, if KLASS==NULL then that means we are
632
      // looking for a generic object of any kind, including an
633
      // uninitialized reference.
634
      klass = NULL;
635
      pc = UNINIT;
636
    }
637
 
638
    // Make a new instance given a class.
639
    type (jclass k, _Jv_BytecodeVerifier *verifier)
640
    {
641
      key = reference_type;
642
      klass = new ref_intersection (k, verifier);
643
      pc = UNINIT;
644
    }
645
 
646
    // Make a new instance given the name of a class.
647
    type (_Jv_Utf8Const *n, _Jv_BytecodeVerifier *verifier)
648
    {
649
      key = reference_type;
650
      klass = new ref_intersection (n, verifier);
651
      pc = UNINIT;
652
    }
653
 
654
    // Copy constructor.
655
    type (const type &t)
656
    {
657
      key = t.key;
658
      klass = t.klass;
659
      pc = t.pc;
660
    }
661
 
662
    // These operators are required because libgcj can't link in
663
    // -lstdc++.
664
    void *operator new[] (size_t bytes)
665
    {
666
      return _Jv_Malloc (bytes);
667
    }
668
 
669
    void operator delete[] (void *mem)
670
    {
671
      _Jv_Free (mem);
672
    }
673
 
674
    type& operator= (type_val k)
675
    {
676
      key = k;
677
      klass = NULL;
678
      pc = UNINIT;
679
      return *this;
680
    }
681
 
682
    type& operator= (const type& t)
683
    {
684
      key = t.key;
685
      klass = t.klass;
686
      pc = t.pc;
687
      return *this;
688
    }
689
 
690
    // Promote a numeric type.
691
    type &promote ()
692
    {
693
      if (key == boolean_type || key == char_type
694
          || key == byte_type || key == short_type)
695
        key = int_type;
696
      return *this;
697
    }
698
 
699
    // Mark this type as the uninitialized result of `new'.
700
    void set_uninitialized (int npc, _Jv_BytecodeVerifier *verifier)
701
    {
702
      if (key == reference_type)
703
        key = uninitialized_reference_type;
704
      else
705
        verifier->verify_fail ("internal error in type::uninitialized");
706
      pc = npc;
707
    }
708
 
709
    // Mark this type as now initialized.
710
    void set_initialized (int npc)
711
    {
712
      if (npc != UNINIT && pc == npc && key == uninitialized_reference_type)
713
        {
714
          key = reference_type;
715
          pc = UNINIT;
716
        }
717
    }
718
 
719
    // Mark this type as a particular return address.
720
    void set_return_address (int npc)
721
    {
722
      pc = npc;
723
    }
724
 
725
    // Return true if this type and type OTHER are considered
726
    // mergeable for the purposes of state merging.  This is related
727
    // to subroutine handling.  For this purpose two types are
728
    // considered unmergeable if they are both return-addresses but
729
    // have different PCs.
730
    bool state_mergeable_p (const type &other) const
731
    {
732
      return (key != return_address_type
733
              || other.key != return_address_type
734
              || pc == other.pc);
735
    }
736
 
737
    // Return true if an object of type K can be assigned to a variable
738
    // of type *THIS.  Handle various special cases too.  Might modify
739
    // *THIS or K.  Note however that this does not perform numeric
740
    // promotion.
741
    bool compatible (type &k, _Jv_BytecodeVerifier *verifier)
742
    {
743
      // Any type is compatible with the unsuitable type.
744
      if (key == unsuitable_type)
745
        return true;
746
 
747
      if (key < reference_type || k.key < reference_type)
748
        return key == k.key;
749
 
750
      // The `null' type is convertible to any initialized reference
751
      // type.
752
      if (key == null_type)
753
        return k.key != uninitialized_reference_type;
754
      if (k.key == null_type)
755
        return key != uninitialized_reference_type;
756
 
757
      // A special case for a generic reference.
758
      if (klass == NULL)
759
        return true;
760
      if (k.klass == NULL)
761
        verifier->verify_fail ("programmer error in type::compatible");
762
 
763
      // Handle the special 'EITHER' case, which is only used in a
764
      // special case of 'putfield'.  Note that we only need to handle
765
      // this on the LHS of a check.
766
      if (! isinitialized () && pc == EITHER)
767
        {
768
          // If the RHS is uninitialized, it must be an uninitialized
769
          // 'this'.
770
          if (! k.isinitialized () && k.pc != SELF)
771
            return false;
772
        }
773
      else if (isinitialized () != k.isinitialized ())
774
        {
775
          // An initialized type and an uninitialized type are not
776
          // otherwise compatible.
777
          return false;
778
        }
779
      else
780
        {
781
          // Two uninitialized objects are compatible if either:
782
          // * The PCs are identical, or
783
          // * One PC is UNINIT.
784
          if (! isinitialized ())
785
            {
786
              if (pc != k.pc && pc != UNINIT && k.pc != UNINIT)
787
                return false;
788
            }
789
        }
790
 
791
      return klass->compatible(k.klass, verifier);
792
    }
793
 
794
    bool equals (const type &other, _Jv_BytecodeVerifier *vfy)
795
    {
796
      // Only works for reference types.
797
      if ((key != reference_type
798
           && key != uninitialized_reference_type)
799
          || (other.key != reference_type
800
              && other.key != uninitialized_reference_type))
801
        return false;
802
      // Only for single-valued types.
803
      if (klass->ref_next || other.klass->ref_next)
804
        return false;
805
      return klass->equals (other.klass, vfy);
806
    }
807
 
808
    bool isvoid () const
809
    {
810
      return key == void_type;
811
    }
812
 
813
    bool iswide () const
814
    {
815
      return key == long_type || key == double_type;
816
    }
817
 
818
    // Return number of stack or local variable slots taken by this
819
    // type.
820
    int depth () const
821
    {
822
      return iswide () ? 2 : 1;
823
    }
824
 
825
    bool isarray () const
826
    {
827
      // We treat null_type as not an array.  This is ok based on the
828
      // current uses of this method.
829
      if (key == reference_type)
830
        return klass->isarray ();
831
      return false;
832
    }
833
 
834
    bool isnull () const
835
    {
836
      return key == null_type;
837
    }
838
 
839
    bool isinterface (_Jv_BytecodeVerifier *verifier)
840
    {
841
      if (key != reference_type)
842
        return false;
843
      return klass->isinterface (verifier);
844
    }
845
 
846
    bool isabstract (_Jv_BytecodeVerifier *verifier)
847
    {
848
      if (key != reference_type)
849
        return false;
850
      return klass->isabstract (verifier);
851
    }
852
 
853
    // Return the element type of an array.
854
    type element_type (_Jv_BytecodeVerifier *verifier)
855
    {
856
      if (key != reference_type)
857
        verifier->verify_fail ("programmer error in type::element_type()", -1);
858
 
859
      jclass k = klass->getclass (verifier)->getComponentType ();
860
      if (k->isPrimitive ())
861
        return type (verifier->get_type_val_for_signature (k));
862
      return type (k, verifier);
863
    }
864
 
865
    // Return the array type corresponding to an initialized
866
    // reference.  We could expand this to work for other kinds of
867
    // types, but currently we don't need to.
868
    type to_array (_Jv_BytecodeVerifier *verifier)
869
    {
870
      if (key != reference_type)
871
        verifier->verify_fail ("internal error in type::to_array()");
872
 
873
      // In case the class is already resolved we can simply ask the runtime
874
      // to give us the array version.
875
      // If it is not resolved we prepend "[" to the classname to make the
876
      // array usage verification more lazy. In other words: makes new Foo[300]
877
      // pass the verifier if Foo.class is missing.
878
      if (klass->is_resolved)
879
        {
880
          jclass k = klass->getclass (verifier);
881
 
882
          return type (_Jv_GetArrayClass (k, k->getClassLoaderInternal()),
883
                       verifier);
884
        }
885
      else
886
        {
887
          int len = klass->data.name->len();
888
 
889
          // If the classname is given in the Lp1/p2/cn; format we only need
890
          // to add a leading '['. The same procedure has to be done for
891
          // primitive arrays (ie. provided "[I", the result should be "[[I".
892
          // If the classname is given as p1.p2.cn we have to embed it into
893
          // "[L" and ';'.
894
          if (klass->data.name->limit()[-1] == ';' ||
895
               _Jv_isPrimitiveOrDerived(klass->data.name))
896
            {
897
              // Reserves space for leading '[' and trailing '\0' .
898
              char arrayName[len + 2];
899
 
900
              arrayName[0] = '[';
901
              strcpy(&arrayName[1], klass->data.name->chars());
902
 
903
#ifdef VERIFY_DEBUG
904
              // This is only needed when we want to print the string to the
905
              // screen while debugging.
906
              arrayName[len + 1] = '\0';
907
 
908
              debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
909
#endif
910
 
911
              return type (verifier->make_utf8_const( arrayName, len + 1 ),
912
                           verifier);
913
            }
914
           else
915
            {
916
              // Reserves space for leading "[L" and trailing ';' and '\0' .
917
              char arrayName[len + 4];
918
 
919
              arrayName[0] = '[';
920
              arrayName[1] = 'L';
921
              strcpy(&arrayName[2], klass->data.name->chars());
922
              arrayName[len + 2] = ';';
923
 
924
#ifdef VERIFY_DEBUG
925
              // This is only needed when we want to print the string to the
926
              // screen while debugging.
927
              arrayName[len + 3] = '\0';
928
 
929
              debug_print("len: %d - old: '%s' - new: '%s'\n", len, klass->data.name->chars(), arrayName);
930
#endif
931
 
932
              return type (verifier->make_utf8_const( arrayName, len + 3 ),
933
                           verifier);
934
            }
935
        }
936
 
937
    }
938
 
939
    bool isreference () const
940
    {
941
      return key >= reference_type;
942
    }
943
 
944
    int get_pc () const
945
    {
946
      return pc;
947
    }
948
 
949
    bool isinitialized () const
950
    {
951
      return key == reference_type || key == null_type;
952
    }
953
 
954
    bool isresolved () const
955
    {
956
      return (key == reference_type
957
              || key == null_type
958
              || key == uninitialized_reference_type);
959
    }
960
 
961
    void verify_dimensions (int ndims, _Jv_BytecodeVerifier *verifier)
962
    {
963
      // The way this is written, we don't need to check isarray().
964
      if (key != reference_type)
965
        verifier->verify_fail ("internal error in verify_dimensions:"
966
                               " not a reference type");
967
 
968
      if (klass->count_dimensions () < ndims)
969
        verifier->verify_fail ("array type has fewer dimensions"
970
                               " than required");
971
    }
972
 
973
    // Merge OLD_TYPE into this.  On error throw exception.  Return
974
    // true if the merge caused a type change.
975
    bool merge (type& old_type, bool local_semantics,
976
                _Jv_BytecodeVerifier *verifier)
977
    {
978
      bool changed = false;
979
      bool refo = old_type.isreference ();
980
      bool refn = isreference ();
981
      if (refo && refn)
982
        {
983
          if (old_type.key == null_type)
984
            ;
985
          else if (key == null_type)
986
            {
987
              *this = old_type;
988
              changed = true;
989
            }
990
          else if (isinitialized () != old_type.isinitialized ())
991
            verifier->verify_fail ("merging initialized and uninitialized types");
992
          else
993
            {
994
              if (! isinitialized ())
995
                {
996
                  if (pc == UNINIT)
997
                    pc = old_type.pc;
998
                  else if (old_type.pc == UNINIT)
999
                    ;
1000
                  else if (pc != old_type.pc)
1001
                    verifier->verify_fail ("merging different uninitialized types");
1002
                }
1003
 
1004
              ref_intersection *merged = old_type.klass->merge (klass,
1005
                                                                verifier);
1006
              if (merged != klass)
1007
                {
1008
                  klass = merged;
1009
                  changed = true;
1010
                }
1011
            }
1012
        }
1013
      else if (refo || refn || key != old_type.key)
1014
        {
1015
          if (local_semantics)
1016
            {
1017
              // If we already have an `unsuitable' type, then we
1018
              // don't need to change again.
1019
              if (key != unsuitable_type)
1020
                {
1021
                  key = unsuitable_type;
1022
                  changed = true;
1023
                }
1024
            }
1025
          else
1026
            verifier->verify_fail ("unmergeable type");
1027
        }
1028
      return changed;
1029
    }
1030
 
1031
#ifdef VERIFY_DEBUG
1032
    void print (void) const
1033
    {
1034
      char c = '?';
1035
      switch (key)
1036
        {
1037
        case boolean_type: c = 'Z'; break;
1038
        case byte_type: c = 'B'; break;
1039
        case char_type: c = 'C'; break;
1040
        case short_type: c = 'S'; break;
1041
        case int_type: c = 'I'; break;
1042
        case long_type: c = 'J'; break;
1043
        case float_type: c = 'F'; break;
1044
        case double_type: c = 'D'; break;
1045
        case void_type: c = 'V'; break;
1046
        case unsuitable_type: c = '-'; break;
1047
        case return_address_type: c = 'r'; break;
1048
        case continuation_type: c = '+'; break;
1049
        case reference_type: c = 'L'; break;
1050
        case null_type: c = '@'; break;
1051
        case uninitialized_reference_type: c = 'U'; break;
1052
        }
1053
      debug_print ("%c", c);
1054
    }
1055
#endif /* VERIFY_DEBUG */
1056
  };
1057
 
1058
  // This class holds all the state information we need for a given
1059
  // location.
1060
  struct state
1061
  {
1062
    // The current top of the stack, in terms of slots.
1063
    int stacktop;
1064
    // The current depth of the stack.  This will be larger than
1065
    // STACKTOP when wide types are on the stack.
1066
    int stackdepth;
1067
    // The stack.
1068
    type *stack;
1069
    // The local variables.
1070
    type *locals;
1071
    // We keep track of the type of `this' specially.  This is used to
1072
    // ensure that an instance initializer invokes another initializer
1073
    // on `this' before returning.  We must keep track of this
1074
    // specially because otherwise we might be confused by code which
1075
    // assigns to locals[0] (overwriting `this') and then returns
1076
    // without really initializing.
1077
    type this_type;
1078
 
1079
    // The PC for this state.  This is only valid on states which are
1080
    // permanently attached to a given PC.  For an object like
1081
    // `current_state', which is used transiently, this has no
1082
    // meaning.
1083
    int pc;
1084
    // We keep a linked list of all states requiring reverification.
1085
    // If this is the special value INVALID_STATE then this state is
1086
    // not on the list.  NULL marks the end of the linked list.
1087
    state *next;
1088
 
1089
    // NO_NEXT is the PC value meaning that a new state must be
1090
    // acquired from the verification list.
1091
    static const int NO_NEXT = -1;
1092
 
1093
    state ()
1094
      : this_type ()
1095
    {
1096
      stack = NULL;
1097
      locals = NULL;
1098
      next = INVALID_STATE;
1099
    }
1100
 
1101
    state (int max_stack, int max_locals)
1102
      : this_type ()
1103
    {
1104
      stacktop = 0;
1105
      stackdepth = 0;
1106
      stack = new type[max_stack];
1107
      for (int i = 0; i < max_stack; ++i)
1108
        stack[i] = unsuitable_type;
1109
      locals = new type[max_locals];
1110
      for (int i = 0; i < max_locals; ++i)
1111
        locals[i] = unsuitable_type;
1112
      pc = NO_NEXT;
1113
      next = INVALID_STATE;
1114
    }
1115
 
1116
    state (const state *orig, int max_stack, int max_locals)
1117
    {
1118
      stack = new type[max_stack];
1119
      locals = new type[max_locals];
1120
      copy (orig, max_stack, max_locals);
1121
      pc = NO_NEXT;
1122
      next = INVALID_STATE;
1123
    }
1124
 
1125
    ~state ()
1126
    {
1127
      if (stack)
1128
        delete[] stack;
1129
      if (locals)
1130
        delete[] locals;
1131
    }
1132
 
1133
    void *operator new[] (size_t bytes)
1134
    {
1135
      return _Jv_Malloc (bytes);
1136
    }
1137
 
1138
    void operator delete[] (void *mem)
1139
    {
1140
      _Jv_Free (mem);
1141
    }
1142
 
1143
    void *operator new (size_t bytes)
1144
    {
1145
      return _Jv_Malloc (bytes);
1146
    }
1147
 
1148
    void operator delete (void *mem)
1149
    {
1150
      _Jv_Free (mem);
1151
    }
1152
 
1153
    void copy (const state *copy, int max_stack, int max_locals)
1154
    {
1155
      stacktop = copy->stacktop;
1156
      stackdepth = copy->stackdepth;
1157
      for (int i = 0; i < max_stack; ++i)
1158
        stack[i] = copy->stack[i];
1159
      for (int i = 0; i < max_locals; ++i)
1160
        locals[i] = copy->locals[i];
1161
 
1162
      this_type = copy->this_type;
1163
      // Don't modify `next' or `pc'.
1164
    }
1165
 
1166
    // Modify this state to reflect entry to an exception handler.
1167
    void set_exception (type t, int max_stack)
1168
    {
1169
      stackdepth = 1;
1170
      stacktop = 1;
1171
      stack[0] = t;
1172
      for (int i = stacktop; i < max_stack; ++i)
1173
        stack[i] = unsuitable_type;
1174
    }
1175
 
1176
    inline int get_pc () const
1177
    {
1178
      return pc;
1179
    }
1180
 
1181
    void set_pc (int npc)
1182
    {
1183
      pc = npc;
1184
    }
1185
 
1186
    // Merge STATE_OLD into this state.  Destructively modifies this
1187
    // state.  Returns true if the new state was in fact changed.
1188
    // Will throw an exception if the states are not mergeable.
1189
    bool merge (state *state_old, int max_locals,
1190
                _Jv_BytecodeVerifier *verifier)
1191
    {
1192
      bool changed = false;
1193
 
1194
      // Special handling for `this'.  If one or the other is
1195
      // uninitialized, then the merge is uninitialized.
1196
      if (this_type.isinitialized ())
1197
        this_type = state_old->this_type;
1198
 
1199
      // Merge stacks.
1200
      if (state_old->stacktop != stacktop)  // FIXME stackdepth instead?
1201
        verifier->verify_fail ("stack sizes differ");
1202
      for (int i = 0; i < state_old->stacktop; ++i)
1203
        {
1204
          if (stack[i].merge (state_old->stack[i], false, verifier))
1205
            changed = true;
1206
        }
1207
 
1208
      // Merge local variables.
1209
      for (int i = 0; i < max_locals; ++i)
1210
        {
1211
          if (locals[i].merge (state_old->locals[i], true, verifier))
1212
            changed = true;
1213
        }
1214
 
1215
      return changed;
1216
    }
1217
 
1218
    // Ensure that `this' has been initialized.
1219
    void check_this_initialized (_Jv_BytecodeVerifier *verifier)
1220
    {
1221
      if (this_type.isreference () && ! this_type.isinitialized ())
1222
        verifier->verify_fail ("`this' is uninitialized");
1223
    }
1224
 
1225
    // Set type of `this'.
1226
    void set_this_type (const type &k)
1227
    {
1228
      this_type = k;
1229
    }
1230
 
1231
    // Mark each `new'd object we know of that was allocated at PC as
1232
    // initialized.
1233
    void set_initialized (int pc, int max_locals)
1234
    {
1235
      for (int i = 0; i < stacktop; ++i)
1236
        stack[i].set_initialized (pc);
1237
      for (int i = 0; i < max_locals; ++i)
1238
        locals[i].set_initialized (pc);
1239
      this_type.set_initialized (pc);
1240
    }
1241
 
1242
    // This tests to see whether two states can be considered "merge
1243
    // compatible".  If both states have a return-address in the same
1244
    // slot, and the return addresses are different, then they are not
1245
    // compatible and we must not try to merge them.
1246
    bool state_mergeable_p (state *other, int max_locals,
1247
                            _Jv_BytecodeVerifier *verifier)
1248
    {
1249
      // This is tricky: if the stack sizes differ, then not only are
1250
      // these not mergeable, but in fact we should give an error, as
1251
      // we've found two execution paths that reach a branch target
1252
      // with different stack depths.  FIXME stackdepth instead?
1253
      if (stacktop != other->stacktop)
1254
        verifier->verify_fail ("stack sizes differ");
1255
 
1256
      for (int i = 0; i < stacktop; ++i)
1257
        if (! stack[i].state_mergeable_p (other->stack[i]))
1258
          return false;
1259
      for (int i = 0; i < max_locals; ++i)
1260
        if (! locals[i].state_mergeable_p (other->locals[i]))
1261
          return false;
1262
      return true;
1263
    }
1264
 
1265
    void reverify (_Jv_BytecodeVerifier *verifier)
1266
    {
1267
      if (next == INVALID_STATE)
1268
        {
1269
          next = verifier->next_verify_state;
1270
          verifier->next_verify_state = this;
1271
        }
1272
    }
1273
 
1274
#ifdef VERIFY_DEBUG
1275
    void print (const char *leader, int pc,
1276
                int max_stack, int max_locals) const
1277
    {
1278
      debug_print ("%s [%4d]:   [stack] ", leader, pc);
1279
      int i;
1280
      for (i = 0; i < stacktop; ++i)
1281
        stack[i].print ();
1282
      for (; i < max_stack; ++i)
1283
        debug_print (".");
1284
      debug_print ("    [local] ");
1285
      for (i = 0; i < max_locals; ++i)
1286
        locals[i].print ();
1287
      debug_print (" | %p\n", this);
1288
    }
1289
#else
1290
    inline void print (const char *, int, int, int) const
1291
    {
1292
    }
1293
#endif /* VERIFY_DEBUG */
1294
  };
1295
 
1296
  type pop_raw ()
1297
  {
1298
    if (current_state->stacktop <= 0)
1299
      verify_fail ("stack empty");
1300
    type r = current_state->stack[--current_state->stacktop];
1301
    current_state->stackdepth -= r.depth ();
1302
    if (current_state->stackdepth < 0)
1303
      verify_fail ("stack empty", start_PC);
1304
    return r;
1305
  }
1306
 
1307
  type pop32 ()
1308
  {
1309
    type r = pop_raw ();
1310
    if (r.iswide ())
1311
      verify_fail ("narrow pop of wide type");
1312
    return r;
1313
  }
1314
 
1315
  type pop_type (type match)
1316
  {
1317
    match.promote ();
1318
    type t = pop_raw ();
1319
    if (! match.compatible (t, this))
1320
      verify_fail ("incompatible type on stack");
1321
    return t;
1322
  }
1323
 
1324
  // Pop a reference which is guaranteed to be initialized.  MATCH
1325
  // doesn't have to be a reference type; in this case this acts like
1326
  // pop_type.
1327
  type pop_init_ref (type match)
1328
  {
1329
    type t = pop_raw ();
1330
    if (t.isreference () && ! t.isinitialized ())
1331
      verify_fail ("initialized reference required");
1332
    else if (! match.compatible (t, this))
1333
      verify_fail ("incompatible type on stack");
1334
    return t;
1335
  }
1336
 
1337
  // Pop a reference type or a return address.
1338
  type pop_ref_or_return ()
1339
  {
1340
    type t = pop_raw ();
1341
    if (! t.isreference () && t.key != return_address_type)
1342
      verify_fail ("expected reference or return address on stack");
1343
    return t;
1344
  }
1345
 
1346
  void push_type (type t)
1347
  {
1348
    // If T is a numeric type like short, promote it to int.
1349
    t.promote ();
1350
 
1351
    int depth = t.depth ();
1352
    if (current_state->stackdepth + depth > current_method->max_stack)
1353
      verify_fail ("stack overflow");
1354
    current_state->stack[current_state->stacktop++] = t;
1355
    current_state->stackdepth += depth;
1356
  }
1357
 
1358
  void set_variable (int index, type t)
1359
  {
1360
    // If T is a numeric type like short, promote it to int.
1361
    t.promote ();
1362
 
1363
    int depth = t.depth ();
1364
    if (index > current_method->max_locals - depth)
1365
      verify_fail ("invalid local variable");
1366
    current_state->locals[index] = t;
1367
 
1368
    if (depth == 2)
1369
      current_state->locals[index + 1] = continuation_type;
1370
    if (index > 0 && current_state->locals[index - 1].iswide ())
1371
      current_state->locals[index - 1] = unsuitable_type;
1372
  }
1373
 
1374
  type get_variable (int index, type t)
1375
  {
1376
    int depth = t.depth ();
1377
    if (index > current_method->max_locals - depth)
1378
      verify_fail ("invalid local variable");
1379
    if (! t.compatible (current_state->locals[index], this))
1380
      verify_fail ("incompatible type in local variable");
1381
    if (depth == 2)
1382
      {
1383
        type t (continuation_type);
1384
        if (! current_state->locals[index + 1].compatible (t, this))
1385
          verify_fail ("invalid local variable");
1386
      }
1387
    return current_state->locals[index];
1388
  }
1389
 
1390
  // Make sure ARRAY is an array type and that its elements are
1391
  // compatible with type ELEMENT.  Returns the actual element type.
1392
  type require_array_type (type array, type element)
1393
  {
1394
    // An odd case.  Here we just pretend that everything went ok.  If
1395
    // the requested element type is some kind of reference, return
1396
    // the null type instead.
1397
    if (array.isnull ())
1398
      return element.isreference () ? type (null_type) : element;
1399
 
1400
    if (! array.isarray ())
1401
      verify_fail ("array required");
1402
 
1403
    type t = array.element_type (this);
1404
    if (! element.compatible (t, this))
1405
      {
1406
        // Special case for byte arrays, which must also be boolean
1407
        // arrays.
1408
        bool ok = true;
1409
        if (element.key == byte_type)
1410
          {
1411
            type e2 (boolean_type);
1412
            ok = e2.compatible (t, this);
1413
          }
1414
        if (! ok)
1415
          verify_fail ("incompatible array element type");
1416
      }
1417
 
1418
    // Return T and not ELEMENT, because T might be specialized.
1419
    return t;
1420
  }
1421
 
1422
  jint get_byte ()
1423
  {
1424
    if (PC >= current_method->code_length)
1425
      verify_fail ("premature end of bytecode");
1426
    return (jint) bytecode[PC++] & 0xff;
1427
  }
1428
 
1429
  jint get_ushort ()
1430
  {
1431
    jint b1 = get_byte ();
1432
    jint b2 = get_byte ();
1433
    return (jint) ((b1 << 8) | b2) & 0xffff;
1434
  }
1435
 
1436
  jint get_short ()
1437
  {
1438
    jint b1 = get_byte ();
1439
    jint b2 = get_byte ();
1440
    jshort s = (b1 << 8) | b2;
1441
    return (jint) s;
1442
  }
1443
 
1444
  jint get_int ()
1445
  {
1446
    jint b1 = get_byte ();
1447
    jint b2 = get_byte ();
1448
    jint b3 = get_byte ();
1449
    jint b4 = get_byte ();
1450
    return (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
1451
  }
1452
 
1453
  int compute_jump (int offset)
1454
  {
1455
    int npc = start_PC + offset;
1456
    if (npc < 0 || npc >= current_method->code_length)
1457
      verify_fail ("branch out of range", start_PC);
1458
    return npc;
1459
  }
1460
 
1461
  // Add a new state to the state list at NPC.
1462
  state *add_new_state (int npc, state *old_state)
1463
  {
1464
    state *new_state = new state (old_state, current_method->max_stack,
1465
                                  current_method->max_locals);
1466
    debug_print ("== New state in add_new_state\n");
1467
    new_state->print ("New", npc, current_method->max_stack,
1468
                      current_method->max_locals);
1469
    linked<state> *nlink
1470
      = (linked<state> *) _Jv_Malloc (sizeof (linked<state>));
1471
    nlink->val = new_state;
1472
    nlink->next = states[npc];
1473
    states[npc] = nlink;
1474
    new_state->set_pc (npc);
1475
    return new_state;
1476
  }
1477
 
1478
  // Merge the indicated state into the state at the branch target and
1479
  // schedule a new PC if there is a change.  NPC is the PC of the
1480
  // branch target, and FROM_STATE is the state at the source of the
1481
  // branch.  This method returns true if the destination state
1482
  // changed and requires reverification, false otherwise.
1483
  void merge_into (int npc, state *from_state)
1484
  {
1485
    // Iterate over all target states and merge our state into each,
1486
    // if applicable.  FIXME one improvement we could make here is
1487
    // "state destruction".  Merging a new state into an existing one
1488
    // might cause a return_address_type to be merged to
1489
    // unsuitable_type.  In this case the resulting state may now be
1490
    // mergeable with other states currently held in parallel at this
1491
    // location.  So in this situation we could pairwise compare and
1492
    // reduce the number of parallel states.
1493
    bool applicable = false;
1494
    for (linked<state> *iter = states[npc]; iter != NULL; iter = iter->next)
1495
      {
1496
        state *new_state = iter->val;
1497
        if (new_state->state_mergeable_p (from_state,
1498
                                          current_method->max_locals, this))
1499
          {
1500
            applicable = true;
1501
 
1502
            debug_print ("== Merge states in merge_into\n");
1503
            from_state->print ("Frm", start_PC, current_method->max_stack,
1504
                               current_method->max_locals);
1505
            new_state->print (" To", npc, current_method->max_stack,
1506
                              current_method->max_locals);
1507
            bool changed = new_state->merge (from_state,
1508
                                             current_method->max_locals,
1509
                                             this);
1510
            new_state->print ("New", npc, current_method->max_stack,
1511
                              current_method->max_locals);
1512
 
1513
            if (changed)
1514
              new_state->reverify (this);
1515
          }
1516
      }
1517
 
1518
    if (! applicable)
1519
      {
1520
        // Either we don't yet have a state at NPC, or we have a
1521
        // return-address type that is in conflict with all existing
1522
        // state.  So, we need to create a new entry.
1523
        state *new_state = add_new_state (npc, from_state);
1524
        // A new state added in this way must always be reverified.
1525
        new_state->reverify (this);
1526
      }
1527
  }
1528
 
1529
  void push_jump (int offset)
1530
  {
1531
    int npc = compute_jump (offset);
1532
    // According to the JVM Spec, we need to check for uninitialized
1533
    // objects here.  However, this does not actually affect type
1534
    // safety, and the Eclipse java compiler generates code that
1535
    // violates this constraint.
1536
    merge_into (npc, current_state);
1537
  }
1538
 
1539
  void push_exception_jump (type t, int pc)
1540
  {
1541
    // According to the JVM Spec, we need to check for uninitialized
1542
    // objects here.  However, this does not actually affect type
1543
    // safety, and the Eclipse java compiler generates code that
1544
    // violates this constraint.
1545
    state s (current_state, current_method->max_stack,
1546
             current_method->max_locals);
1547
    if (current_method->max_stack < 1)
1548
      verify_fail ("stack overflow at exception handler");
1549
    s.set_exception (t, current_method->max_stack);
1550
    merge_into (pc, &s);
1551
  }
1552
 
1553
  state *pop_jump ()
1554
  {
1555
    state *new_state = next_verify_state;
1556
    if (new_state == INVALID_STATE)
1557
      verify_fail ("programmer error in pop_jump");
1558
    if (new_state != NULL)
1559
      {
1560
        next_verify_state = new_state->next;
1561
        new_state->next = INVALID_STATE;
1562
      }
1563
    return new_state;
1564
  }
1565
 
1566
  void invalidate_pc ()
1567
  {
1568
    PC = state::NO_NEXT;
1569
  }
1570
 
1571
  void note_branch_target (int pc)
1572
  {
1573
    // Don't check `pc <= PC', because we've advanced PC after
1574
    // fetching the target and we haven't yet checked the next
1575
    // instruction.
1576
    if (pc < PC && ! (flags[pc] & FLAG_INSN_START))
1577
      verify_fail ("branch not to instruction start", start_PC);
1578
    flags[pc] |= FLAG_BRANCH_TARGET;
1579
  }
1580
 
1581
  void skip_padding ()
1582
  {
1583
    while ((PC % 4) > 0)
1584
      if (get_byte () != 0)
1585
        verify_fail ("found nonzero padding byte");
1586
  }
1587
 
1588
  // Do the work for a `ret' instruction.  INDEX is the index into the
1589
  // local variables.
1590
  void handle_ret_insn (int index)
1591
  {
1592
    type ret_addr = get_variable (index, return_address_type);
1593
    // It would be nice if we could do this.  However, the JVM Spec
1594
    // doesn't say that this is what happens.  It is implied that
1595
    // reusing a return address is invalid, but there's no actual
1596
    // prohibition against it.
1597
    // set_variable (index, unsuitable_type);
1598
 
1599
    int npc = ret_addr.get_pc ();
1600
    // We might be returning to a `jsr' that is at the end of the
1601
    // bytecode.  This is ok if we never return from the called
1602
    // subroutine, but if we see this here it is an error.
1603
    if (npc >= current_method->code_length)
1604
      verify_fail ("fell off end");
1605
 
1606
    // According to the JVM Spec, we need to check for uninitialized
1607
    // objects here.  However, this does not actually affect type
1608
    // safety, and the Eclipse java compiler generates code that
1609
    // violates this constraint.
1610
    merge_into (npc, current_state);
1611
    invalidate_pc ();
1612
  }
1613
 
1614
  void handle_jsr_insn (int offset)
1615
  {
1616
    int npc = compute_jump (offset);
1617
 
1618
    // According to the JVM Spec, we need to check for uninitialized
1619
    // objects here.  However, this does not actually affect type
1620
    // safety, and the Eclipse java compiler generates code that
1621
    // violates this constraint.
1622
 
1623
    // Modify our state as appropriate for entry into a subroutine.
1624
    type ret_addr (return_address_type);
1625
    ret_addr.set_return_address (PC);
1626
    push_type (ret_addr);
1627
    merge_into (npc, current_state);
1628
    invalidate_pc ();
1629
  }
1630
 
1631
  jclass construct_primitive_array_type (type_val prim)
1632
  {
1633
    jclass k = NULL;
1634
    switch (prim)
1635
      {
1636
      case boolean_type:
1637
        k = JvPrimClass (boolean);
1638
        break;
1639
      case char_type:
1640
        k = JvPrimClass (char);
1641
        break;
1642
      case float_type:
1643
        k = JvPrimClass (float);
1644
        break;
1645
      case double_type:
1646
        k = JvPrimClass (double);
1647
        break;
1648
      case byte_type:
1649
        k = JvPrimClass (byte);
1650
        break;
1651
      case short_type:
1652
        k = JvPrimClass (short);
1653
        break;
1654
      case int_type:
1655
        k = JvPrimClass (int);
1656
        break;
1657
      case long_type:
1658
        k = JvPrimClass (long);
1659
        break;
1660
 
1661
      // These aren't used here but we call them out to avoid
1662
      // warnings.
1663
      case void_type:
1664
      case unsuitable_type:
1665
      case return_address_type:
1666
      case continuation_type:
1667
      case reference_type:
1668
      case null_type:
1669
      case uninitialized_reference_type:
1670
      default:
1671
        verify_fail ("unknown type in construct_primitive_array_type");
1672
      }
1673
    k = _Jv_GetArrayClass (k, NULL);
1674
    return k;
1675
  }
1676
 
1677
  // This pass computes the location of branch targets and also
1678
  // instruction starts.
1679
  void branch_prepass ()
1680
  {
1681
    flags = (char *) _Jv_Malloc (current_method->code_length);
1682
 
1683
    for (int i = 0; i < current_method->code_length; ++i)
1684
      flags[i] = 0;
1685
 
1686
    PC = 0;
1687
    while (PC < current_method->code_length)
1688
      {
1689
        // Set `start_PC' early so that error checking can have the
1690
        // correct value.
1691
        start_PC = PC;
1692
        flags[PC] |= FLAG_INSN_START;
1693
 
1694
        java_opcode opcode = (java_opcode) bytecode[PC++];
1695
        switch (opcode)
1696
          {
1697
          case op_nop:
1698
          case op_aconst_null:
1699
          case op_iconst_m1:
1700
          case op_iconst_0:
1701
          case op_iconst_1:
1702
          case op_iconst_2:
1703
          case op_iconst_3:
1704
          case op_iconst_4:
1705
          case op_iconst_5:
1706
          case op_lconst_0:
1707
          case op_lconst_1:
1708
          case op_fconst_0:
1709
          case op_fconst_1:
1710
          case op_fconst_2:
1711
          case op_dconst_0:
1712
          case op_dconst_1:
1713
          case op_iload_0:
1714
          case op_iload_1:
1715
          case op_iload_2:
1716
          case op_iload_3:
1717
          case op_lload_0:
1718
          case op_lload_1:
1719
          case op_lload_2:
1720
          case op_lload_3:
1721
          case op_fload_0:
1722
          case op_fload_1:
1723
          case op_fload_2:
1724
          case op_fload_3:
1725
          case op_dload_0:
1726
          case op_dload_1:
1727
          case op_dload_2:
1728
          case op_dload_3:
1729
          case op_aload_0:
1730
          case op_aload_1:
1731
          case op_aload_2:
1732
          case op_aload_3:
1733
          case op_iaload:
1734
          case op_laload:
1735
          case op_faload:
1736
          case op_daload:
1737
          case op_aaload:
1738
          case op_baload:
1739
          case op_caload:
1740
          case op_saload:
1741
          case op_istore_0:
1742
          case op_istore_1:
1743
          case op_istore_2:
1744
          case op_istore_3:
1745
          case op_lstore_0:
1746
          case op_lstore_1:
1747
          case op_lstore_2:
1748
          case op_lstore_3:
1749
          case op_fstore_0:
1750
          case op_fstore_1:
1751
          case op_fstore_2:
1752
          case op_fstore_3:
1753
          case op_dstore_0:
1754
          case op_dstore_1:
1755
          case op_dstore_2:
1756
          case op_dstore_3:
1757
          case op_astore_0:
1758
          case op_astore_1:
1759
          case op_astore_2:
1760
          case op_astore_3:
1761
          case op_iastore:
1762
          case op_lastore:
1763
          case op_fastore:
1764
          case op_dastore:
1765
          case op_aastore:
1766
          case op_bastore:
1767
          case op_castore:
1768
          case op_sastore:
1769
          case op_pop:
1770
          case op_pop2:
1771
          case op_dup:
1772
          case op_dup_x1:
1773
          case op_dup_x2:
1774
          case op_dup2:
1775
          case op_dup2_x1:
1776
          case op_dup2_x2:
1777
          case op_swap:
1778
          case op_iadd:
1779
          case op_isub:
1780
          case op_imul:
1781
          case op_idiv:
1782
          case op_irem:
1783
          case op_ishl:
1784
          case op_ishr:
1785
          case op_iushr:
1786
          case op_iand:
1787
          case op_ior:
1788
          case op_ixor:
1789
          case op_ladd:
1790
          case op_lsub:
1791
          case op_lmul:
1792
          case op_ldiv:
1793
          case op_lrem:
1794
          case op_lshl:
1795
          case op_lshr:
1796
          case op_lushr:
1797
          case op_land:
1798
          case op_lor:
1799
          case op_lxor:
1800
          case op_fadd:
1801
          case op_fsub:
1802
          case op_fmul:
1803
          case op_fdiv:
1804
          case op_frem:
1805
          case op_dadd:
1806
          case op_dsub:
1807
          case op_dmul:
1808
          case op_ddiv:
1809
          case op_drem:
1810
          case op_ineg:
1811
          case op_i2b:
1812
          case op_i2c:
1813
          case op_i2s:
1814
          case op_lneg:
1815
          case op_fneg:
1816
          case op_dneg:
1817
          case op_i2l:
1818
          case op_i2f:
1819
          case op_i2d:
1820
          case op_l2i:
1821
          case op_l2f:
1822
          case op_l2d:
1823
          case op_f2i:
1824
          case op_f2l:
1825
          case op_f2d:
1826
          case op_d2i:
1827
          case op_d2l:
1828
          case op_d2f:
1829
          case op_lcmp:
1830
          case op_fcmpl:
1831
          case op_fcmpg:
1832
          case op_dcmpl:
1833
          case op_dcmpg:
1834
          case op_monitorenter:
1835
          case op_monitorexit:
1836
          case op_ireturn:
1837
          case op_lreturn:
1838
          case op_freturn:
1839
          case op_dreturn:
1840
          case op_areturn:
1841
          case op_return:
1842
          case op_athrow:
1843
          case op_arraylength:
1844
            break;
1845
 
1846
          case op_bipush:
1847
          case op_ldc:
1848
          case op_iload:
1849
          case op_lload:
1850
          case op_fload:
1851
          case op_dload:
1852
          case op_aload:
1853
          case op_istore:
1854
          case op_lstore:
1855
          case op_fstore:
1856
          case op_dstore:
1857
          case op_astore:
1858
          case op_ret:
1859
          case op_newarray:
1860
            get_byte ();
1861
            break;
1862
 
1863
          case op_iinc:
1864
          case op_sipush:
1865
          case op_ldc_w:
1866
          case op_ldc2_w:
1867
          case op_getstatic:
1868
          case op_getfield:
1869
          case op_putfield:
1870
          case op_putstatic:
1871
          case op_new:
1872
          case op_anewarray:
1873
          case op_instanceof:
1874
          case op_checkcast:
1875
          case op_invokespecial:
1876
          case op_invokestatic:
1877
          case op_invokevirtual:
1878
            get_short ();
1879
            break;
1880
 
1881
          case op_multianewarray:
1882
            get_short ();
1883
            get_byte ();
1884
            break;
1885
 
1886
          case op_jsr:
1887
          case op_ifeq:
1888
          case op_ifne:
1889
          case op_iflt:
1890
          case op_ifge:
1891
          case op_ifgt:
1892
          case op_ifle:
1893
          case op_if_icmpeq:
1894
          case op_if_icmpne:
1895
          case op_if_icmplt:
1896
          case op_if_icmpge:
1897
          case op_if_icmpgt:
1898
          case op_if_icmple:
1899
          case op_if_acmpeq:
1900
          case op_if_acmpne:
1901
          case op_ifnull:
1902
          case op_ifnonnull:
1903
          case op_goto:
1904
            note_branch_target (compute_jump (get_short ()));
1905
            break;
1906
 
1907
          case op_tableswitch:
1908
            {
1909
              skip_padding ();
1910
              note_branch_target (compute_jump (get_int ()));
1911
              jint low = get_int ();
1912
              jint hi = get_int ();
1913
              if (low > hi)
1914
                verify_fail ("invalid tableswitch", start_PC);
1915
              for (int i = low; i <= hi; ++i)
1916
                note_branch_target (compute_jump (get_int ()));
1917
            }
1918
            break;
1919
 
1920
          case op_lookupswitch:
1921
            {
1922
              skip_padding ();
1923
              note_branch_target (compute_jump (get_int ()));
1924
              int npairs = get_int ();
1925
              if (npairs < 0)
1926
                verify_fail ("too few pairs in lookupswitch", start_PC);
1927
              while (npairs-- > 0)
1928
                {
1929
                  get_int ();
1930
                  note_branch_target (compute_jump (get_int ()));
1931
                }
1932
            }
1933
            break;
1934
 
1935
          case op_invokeinterface:
1936
            get_short ();
1937
            get_byte ();
1938
            get_byte ();
1939
            break;
1940
 
1941
          case op_wide:
1942
            {
1943
              opcode = (java_opcode) get_byte ();
1944
              get_short ();
1945
              if (opcode == op_iinc)
1946
                get_short ();
1947
            }
1948
            break;
1949
 
1950
          case op_jsr_w:
1951
          case op_goto_w:
1952
            note_branch_target (compute_jump (get_int ()));
1953
            break;
1954
 
1955
          // These are unused here, but we call them out explicitly
1956
          // so that -Wswitch-enum doesn't complain.
1957
          case op_putfield_1:
1958
          case op_putfield_2:
1959
          case op_putfield_4:
1960
          case op_putfield_8:
1961
          case op_putfield_a:
1962
          case op_putstatic_1:
1963
          case op_putstatic_2:
1964
          case op_putstatic_4:
1965
          case op_putstatic_8:
1966
          case op_putstatic_a:
1967
          case op_getfield_1:
1968
          case op_getfield_2s:
1969
          case op_getfield_2u:
1970
          case op_getfield_4:
1971
          case op_getfield_8:
1972
          case op_getfield_a:
1973
          case op_getstatic_1:
1974
          case op_getstatic_2s:
1975
          case op_getstatic_2u:
1976
          case op_getstatic_4:
1977
          case op_getstatic_8:
1978
          case op_getstatic_a:
1979
          case op_breakpoint:
1980
          default:
1981
            verify_fail ("unrecognized instruction in branch_prepass",
1982
                         start_PC);
1983
          }
1984
 
1985
        // See if any previous branch tried to branch to the middle of
1986
        // this instruction.
1987
        for (int pc = start_PC + 1; pc < PC; ++pc)
1988
          {
1989
            if ((flags[pc] & FLAG_BRANCH_TARGET))
1990
              verify_fail ("branch to middle of instruction", pc);
1991
          }
1992
      }
1993
 
1994
    // Verify exception handlers.
1995
    for (int i = 0; i < current_method->exc_count; ++i)
1996
      {
1997
        if (! (flags[exception[i].handler_pc.i] & FLAG_INSN_START))
1998
          verify_fail ("exception handler not at instruction start",
1999
                       exception[i].handler_pc.i);
2000
        if (! (flags[exception[i].start_pc.i] & FLAG_INSN_START))
2001
          verify_fail ("exception start not at instruction start",
2002
                       exception[i].start_pc.i);
2003
        if (exception[i].end_pc.i != current_method->code_length
2004
            && ! (flags[exception[i].end_pc.i] & FLAG_INSN_START))
2005
          verify_fail ("exception end not at instruction start",
2006
                       exception[i].end_pc.i);
2007
 
2008
        flags[exception[i].handler_pc.i] |= FLAG_BRANCH_TARGET;
2009
      }
2010
  }
2011
 
2012
  void check_pool_index (int index)
2013
  {
2014
    if (index < 0 || index >= current_class->constants.size)
2015
      verify_fail ("constant pool index out of range", start_PC);
2016
  }
2017
 
2018
  type check_class_constant (int index)
2019
  {
2020
    check_pool_index (index);
2021
    _Jv_Constants *pool = &current_class->constants;
2022
    if (pool->tags[index] == JV_CONSTANT_ResolvedClass)
2023
      return type (pool->data[index].clazz, this);
2024
    else if (pool->tags[index] == JV_CONSTANT_Class)
2025
      return type (pool->data[index].utf8, this);
2026
    verify_fail ("expected class constant", start_PC);
2027
  }
2028
 
2029
  type check_constant (int index)
2030
  {
2031
    check_pool_index (index);
2032
    _Jv_Constants *pool = &current_class->constants;
2033
    int tag = pool->tags[index];
2034
    if (tag == JV_CONSTANT_ResolvedString || tag == JV_CONSTANT_String)
2035
      return type (&java::lang::String::class$, this);
2036
    else if (tag == JV_CONSTANT_Integer)
2037
      return type (int_type);
2038
    else if (tag == JV_CONSTANT_Float)
2039
      return type (float_type);
2040
    else if (current_method->is_15
2041
             && (tag == JV_CONSTANT_ResolvedClass || tag == JV_CONSTANT_Class))
2042
      return type (&java::lang::Class::class$, this);
2043
    verify_fail ("String, int, or float constant expected", start_PC);
2044
  }
2045
 
2046
  type check_wide_constant (int index)
2047
  {
2048
    check_pool_index (index);
2049
    _Jv_Constants *pool = &current_class->constants;
2050
    if (pool->tags[index] == JV_CONSTANT_Long)
2051
      return type (long_type);
2052
    else if (pool->tags[index] == JV_CONSTANT_Double)
2053
      return type (double_type);
2054
    verify_fail ("long or double constant expected", start_PC);
2055
  }
2056
 
2057
  // Helper for both field and method.  These are laid out the same in
2058
  // the constant pool.
2059
  type handle_field_or_method (int index, int expected,
2060
                               _Jv_Utf8Const **name,
2061
                               _Jv_Utf8Const **fmtype)
2062
  {
2063
    check_pool_index (index);
2064
    _Jv_Constants *pool = &current_class->constants;
2065
    if (pool->tags[index] != expected)
2066
      verify_fail ("didn't see expected constant", start_PC);
2067
    // Once we know we have a Fieldref or Methodref we assume that it
2068
    // is correctly laid out in the constant pool.  I think the code
2069
    // in defineclass.cc guarantees this.
2070
    _Jv_ushort class_index, name_and_type_index;
2071
    _Jv_loadIndexes (&pool->data[index],
2072
                     class_index,
2073
                     name_and_type_index);
2074
    _Jv_ushort name_index, desc_index;
2075
    _Jv_loadIndexes (&pool->data[name_and_type_index],
2076
                     name_index, desc_index);
2077
 
2078
    *name = pool->data[name_index].utf8;
2079
    *fmtype = pool->data[desc_index].utf8;
2080
 
2081
    return check_class_constant (class_index);
2082
  }
2083
 
2084
  // Return field's type, compute class' type if requested.
2085
  // If PUTFIELD is true, use the special 'putfield' semantics.
2086
  type check_field_constant (int index, type *class_type = NULL,
2087
                             bool putfield = false)
2088
  {
2089
    _Jv_Utf8Const *name, *field_type;
2090
    type ct = handle_field_or_method (index,
2091
                                      JV_CONSTANT_Fieldref,
2092
                                      &name, &field_type);
2093
    if (class_type)
2094
      *class_type = ct;
2095
    type result;
2096
    if (field_type->first() == '[' || field_type->first() == 'L')
2097
      result = type (field_type, this);
2098
    else
2099
      result = get_type_val_for_signature (field_type->first());
2100
 
2101
    // We have an obscure special case here: we can use `putfield' on
2102
    // a field declared in this class, even if `this' has not yet been
2103
    // initialized.
2104
    if (putfield
2105
        && ! current_state->this_type.isinitialized ()
2106
        && current_state->this_type.pc == type::SELF
2107
        && current_state->this_type.equals (ct, this)
2108
        // We don't look at the signature, figuring that if it is
2109
        // wrong we will fail during linking.  FIXME?
2110
        && _Jv_Linker::has_field_p (current_class, name))
2111
      // Note that we don't actually know whether we're going to match
2112
      // against 'this' or some other object of the same type.  So,
2113
      // here we set things up so that it doesn't matter.  This relies
2114
      // on knowing what our caller is up to.
2115
      class_type->set_uninitialized (type::EITHER, this);
2116
 
2117
    return result;
2118
  }
2119
 
2120
  type check_method_constant (int index, bool is_interface,
2121
                              _Jv_Utf8Const **method_name,
2122
                              _Jv_Utf8Const **method_signature)
2123
  {
2124
    return handle_field_or_method (index,
2125
                                   (is_interface
2126
                                    ? JV_CONSTANT_InterfaceMethodref
2127
                                    : JV_CONSTANT_Methodref),
2128
                                   method_name, method_signature);
2129
  }
2130
 
2131
  type get_one_type (char *&p)
2132
  {
2133
    char *start = p;
2134
 
2135
    int arraycount = 0;
2136
    while (*p == '[')
2137
      {
2138
        ++arraycount;
2139
        ++p;
2140
      }
2141
 
2142
    char v = *p++;
2143
 
2144
    if (v == 'L')
2145
      {
2146
        while (*p != ';')
2147
          ++p;
2148
        ++p;
2149
        _Jv_Utf8Const *name = make_utf8_const (start, p - start);
2150
        return type (name, this);
2151
      }
2152
 
2153
    // Casting to jchar here is ok since we are looking at an ASCII
2154
    // character.
2155
    type_val rt = get_type_val_for_signature (jchar (v));
2156
 
2157
    if (arraycount == 0)
2158
      {
2159
        // Callers of this function eventually push their arguments on
2160
        // the stack.  So, promote them here.
2161
        return type (rt).promote ();
2162
      }
2163
 
2164
    jclass k = construct_primitive_array_type (rt);
2165
    while (--arraycount > 0)
2166
      k = _Jv_GetArrayClass (k, NULL);
2167
    return type (k, this);
2168
  }
2169
 
2170
  void compute_argument_types (_Jv_Utf8Const *signature,
2171
                               type *types)
2172
  {
2173
    char *p = signature->chars();
2174
 
2175
    // Skip `('.
2176
    ++p;
2177
 
2178
    int i = 0;
2179
    while (*p != ')')
2180
      types[i++] = get_one_type (p);
2181
  }
2182
 
2183
  type compute_return_type (_Jv_Utf8Const *signature)
2184
  {
2185
    char *p = signature->chars();
2186
    while (*p != ')')
2187
      ++p;
2188
    ++p;
2189
    return get_one_type (p);
2190
  }
2191
 
2192
  void check_return_type (type onstack)
2193
  {
2194
    type rt = compute_return_type (current_method->self->signature);
2195
    if (! rt.compatible (onstack, this))
2196
      verify_fail ("incompatible return type");
2197
  }
2198
 
2199
  // Initialize the stack for the new method.  Returns true if this
2200
  // method is an instance initializer.
2201
  bool initialize_stack ()
2202
  {
2203
    int var = 0;
2204
    bool is_init = _Jv_equalUtf8Consts (current_method->self->name,
2205
                                        gcj::init_name);
2206
    bool is_clinit = _Jv_equalUtf8Consts (current_method->self->name,
2207
                                          gcj::clinit_name);
2208
 
2209
    using namespace java::lang::reflect;
2210
    if (! Modifier::isStatic (current_method->self->accflags))
2211
      {
2212
        type kurr (current_class, this);
2213
        if (is_init)
2214
          {
2215
            kurr.set_uninitialized (type::SELF, this);
2216
            is_init = true;
2217
          }
2218
        else if (is_clinit)
2219
          verify_fail ("<clinit> method must be static");
2220
        set_variable (0, kurr);
2221
        current_state->set_this_type (kurr);
2222
        ++var;
2223
      }
2224
    else
2225
      {
2226
        if (is_init)
2227
          verify_fail ("<init> method must be non-static");
2228
      }
2229
 
2230
    // We have to handle wide arguments specially here.
2231
    int arg_count = _Jv_count_arguments (current_method->self->signature);
2232
    type arg_types[arg_count];
2233
    compute_argument_types (current_method->self->signature, arg_types);
2234
    for (int i = 0; i < arg_count; ++i)
2235
      {
2236
        set_variable (var, arg_types[i]);
2237
        ++var;
2238
        if (arg_types[i].iswide ())
2239
          ++var;
2240
      }
2241
 
2242
    return is_init;
2243
  }
2244
 
2245
  void verify_instructions_0 ()
2246
  {
2247
    current_state = new state (current_method->max_stack,
2248
                               current_method->max_locals);
2249
 
2250
    PC = 0;
2251
    start_PC = 0;
2252
 
2253
    // True if we are verifying an instance initializer.
2254
    bool this_is_init = initialize_stack ();
2255
 
2256
    states = (linked<state> **) _Jv_Malloc (sizeof (linked<state> *)
2257
                                            * current_method->code_length);
2258
    for (int i = 0; i < current_method->code_length; ++i)
2259
      states[i] = NULL;
2260
 
2261
    next_verify_state = NULL;
2262
 
2263
    while (true)
2264
      {
2265
        // If the PC was invalidated, get a new one from the work list.
2266
        if (PC == state::NO_NEXT)
2267
          {
2268
            state *new_state = pop_jump ();
2269
            // If it is null, we're done.
2270
            if (new_state == NULL)
2271
              break;
2272
 
2273
            PC = new_state->get_pc ();
2274
            debug_print ("== State pop from pending list\n");
2275
            // Set up the current state.
2276
            current_state->copy (new_state, current_method->max_stack,
2277
                                 current_method->max_locals);
2278
          }
2279
        else
2280
          {
2281
            // We only have to do this checking in the situation where
2282
            // control flow falls through from the previous
2283
            // instruction.  Otherwise merging is done at the time we
2284
            // push the branch.  Note that we'll catch the
2285
            // off-the-end problem just below.
2286
            if (PC < current_method->code_length && states[PC] != NULL)
2287
              {
2288
                // We've already visited this instruction.  So merge
2289
                // the states together.  It is simplest, but not most
2290
                // efficient, to just always invalidate the PC here.
2291
                merge_into (PC, current_state);
2292
                invalidate_pc ();
2293
                continue;
2294
              }
2295
          }
2296
 
2297
        // Control can't fall off the end of the bytecode.  We need to
2298
        // check this in both cases, not just the fall-through case,
2299
        // because we don't check to see whether a `jsr' appears at
2300
        // the end of the bytecode until we process a `ret'.
2301
        if (PC >= current_method->code_length)
2302
          verify_fail ("fell off end");
2303
 
2304
        // We only have to keep saved state at branch targets.  If
2305
        // we're at a branch target and the state here hasn't been set
2306
        // yet, we set it now.  You might notice that `ret' targets
2307
        // won't necessarily have FLAG_BRANCH_TARGET set.  This
2308
        // doesn't matter, since those states will be filled in by
2309
        // merge_into.
2310
        if (states[PC] == NULL && (flags[PC] & FLAG_BRANCH_TARGET))
2311
          add_new_state (PC, current_state);
2312
 
2313
        // Set this before handling exceptions so that debug output is
2314
        // sane.
2315
        start_PC = PC;
2316
 
2317
        // Update states for all active exception handlers.  Ordinarily
2318
        // there are not many exception handlers.  So we simply run
2319
        // through them all.
2320
        for (int i = 0; i < current_method->exc_count; ++i)
2321
          {
2322
            if (PC >= exception[i].start_pc.i && PC < exception[i].end_pc.i)
2323
              {
2324
                type handler (&java::lang::Throwable::class$, this);
2325
                if (exception[i].handler_type.i != 0)
2326
                  handler = check_class_constant (exception[i].handler_type.i);
2327
                push_exception_jump (handler, exception[i].handler_pc.i);
2328
              }
2329
          }
2330
 
2331
        current_state->print ("   ", PC, current_method->max_stack,
2332
                              current_method->max_locals);
2333
        java_opcode opcode = (java_opcode) bytecode[PC++];
2334
        switch (opcode)
2335
          {
2336
          case op_nop:
2337
            break;
2338
 
2339
          case op_aconst_null:
2340
            push_type (null_type);
2341
            break;
2342
 
2343
          case op_iconst_m1:
2344
          case op_iconst_0:
2345
          case op_iconst_1:
2346
          case op_iconst_2:
2347
          case op_iconst_3:
2348
          case op_iconst_4:
2349
          case op_iconst_5:
2350
            push_type (int_type);
2351
            break;
2352
 
2353
          case op_lconst_0:
2354
          case op_lconst_1:
2355
            push_type (long_type);
2356
            break;
2357
 
2358
          case op_fconst_0:
2359
          case op_fconst_1:
2360
          case op_fconst_2:
2361
            push_type (float_type);
2362
            break;
2363
 
2364
          case op_dconst_0:
2365
          case op_dconst_1:
2366
            push_type (double_type);
2367
            break;
2368
 
2369
          case op_bipush:
2370
            get_byte ();
2371
            push_type (int_type);
2372
            break;
2373
 
2374
          case op_sipush:
2375
            get_short ();
2376
            push_type (int_type);
2377
            break;
2378
 
2379
          case op_ldc:
2380
            push_type (check_constant (get_byte ()));
2381
            break;
2382
          case op_ldc_w:
2383
            push_type (check_constant (get_ushort ()));
2384
            break;
2385
          case op_ldc2_w:
2386
            push_type (check_wide_constant (get_ushort ()));
2387
            break;
2388
 
2389
          case op_iload:
2390
            push_type (get_variable (get_byte (), int_type));
2391
            break;
2392
          case op_lload:
2393
            push_type (get_variable (get_byte (), long_type));
2394
            break;
2395
          case op_fload:
2396
            push_type (get_variable (get_byte (), float_type));
2397
            break;
2398
          case op_dload:
2399
            push_type (get_variable (get_byte (), double_type));
2400
            break;
2401
          case op_aload:
2402
            push_type (get_variable (get_byte (), reference_type));
2403
            break;
2404
 
2405
          case op_iload_0:
2406
          case op_iload_1:
2407
          case op_iload_2:
2408
          case op_iload_3:
2409
            push_type (get_variable (opcode - op_iload_0, int_type));
2410
            break;
2411
          case op_lload_0:
2412
          case op_lload_1:
2413
          case op_lload_2:
2414
          case op_lload_3:
2415
            push_type (get_variable (opcode - op_lload_0, long_type));
2416
            break;
2417
          case op_fload_0:
2418
          case op_fload_1:
2419
          case op_fload_2:
2420
          case op_fload_3:
2421
            push_type (get_variable (opcode - op_fload_0, float_type));
2422
            break;
2423
          case op_dload_0:
2424
          case op_dload_1:
2425
          case op_dload_2:
2426
          case op_dload_3:
2427
            push_type (get_variable (opcode - op_dload_0, double_type));
2428
            break;
2429
          case op_aload_0:
2430
          case op_aload_1:
2431
          case op_aload_2:
2432
          case op_aload_3:
2433
            push_type (get_variable (opcode - op_aload_0, reference_type));
2434
            break;
2435
          case op_iaload:
2436
            pop_type (int_type);
2437
            push_type (require_array_type (pop_init_ref (reference_type),
2438
                                           int_type));
2439
            break;
2440
          case op_laload:
2441
            pop_type (int_type);
2442
            push_type (require_array_type (pop_init_ref (reference_type),
2443
                                           long_type));
2444
            break;
2445
          case op_faload:
2446
            pop_type (int_type);
2447
            push_type (require_array_type (pop_init_ref (reference_type),
2448
                                           float_type));
2449
            break;
2450
          case op_daload:
2451
            pop_type (int_type);
2452
            push_type (require_array_type (pop_init_ref (reference_type),
2453
                                           double_type));
2454
            break;
2455
          case op_aaload:
2456
            pop_type (int_type);
2457
            push_type (require_array_type (pop_init_ref (reference_type),
2458
                                           reference_type));
2459
            break;
2460
          case op_baload:
2461
            pop_type (int_type);
2462
            require_array_type (pop_init_ref (reference_type), byte_type);
2463
            push_type (int_type);
2464
            break;
2465
          case op_caload:
2466
            pop_type (int_type);
2467
            require_array_type (pop_init_ref (reference_type), char_type);
2468
            push_type (int_type);
2469
            break;
2470
          case op_saload:
2471
            pop_type (int_type);
2472
            require_array_type (pop_init_ref (reference_type), short_type);
2473
            push_type (int_type);
2474
            break;
2475
          case op_istore:
2476
            set_variable (get_byte (), pop_type (int_type));
2477
            break;
2478
          case op_lstore:
2479
            set_variable (get_byte (), pop_type (long_type));
2480
            break;
2481
          case op_fstore:
2482
            set_variable (get_byte (), pop_type (float_type));
2483
            break;
2484
          case op_dstore:
2485
            set_variable (get_byte (), pop_type (double_type));
2486
            break;
2487
          case op_astore:
2488
            set_variable (get_byte (), pop_ref_or_return ());
2489
            break;
2490
          case op_istore_0:
2491
          case op_istore_1:
2492
          case op_istore_2:
2493
          case op_istore_3:
2494
            set_variable (opcode - op_istore_0, pop_type (int_type));
2495
            break;
2496
          case op_lstore_0:
2497
          case op_lstore_1:
2498
          case op_lstore_2:
2499
          case op_lstore_3:
2500
            set_variable (opcode - op_lstore_0, pop_type (long_type));
2501
            break;
2502
          case op_fstore_0:
2503
          case op_fstore_1:
2504
          case op_fstore_2:
2505
          case op_fstore_3:
2506
            set_variable (opcode - op_fstore_0, pop_type (float_type));
2507
            break;
2508
          case op_dstore_0:
2509
          case op_dstore_1:
2510
          case op_dstore_2:
2511
          case op_dstore_3:
2512
            set_variable (opcode - op_dstore_0, pop_type (double_type));
2513
            break;
2514
          case op_astore_0:
2515
          case op_astore_1:
2516
          case op_astore_2:
2517
          case op_astore_3:
2518
            set_variable (opcode - op_astore_0, pop_ref_or_return ());
2519
            break;
2520
          case op_iastore:
2521
            pop_type (int_type);
2522
            pop_type (int_type);
2523
            require_array_type (pop_init_ref (reference_type), int_type);
2524
            break;
2525
          case op_lastore:
2526
            pop_type (long_type);
2527
            pop_type (int_type);
2528
            require_array_type (pop_init_ref (reference_type), long_type);
2529
            break;
2530
          case op_fastore:
2531
            pop_type (float_type);
2532
            pop_type (int_type);
2533
            require_array_type (pop_init_ref (reference_type), float_type);
2534
            break;
2535
          case op_dastore:
2536
            pop_type (double_type);
2537
            pop_type (int_type);
2538
            require_array_type (pop_init_ref (reference_type), double_type);
2539
            break;
2540
          case op_aastore:
2541
            pop_type (reference_type);
2542
            pop_type (int_type);
2543
            require_array_type (pop_init_ref (reference_type), reference_type);
2544
            break;
2545
          case op_bastore:
2546
            pop_type (int_type);
2547
            pop_type (int_type);
2548
            require_array_type (pop_init_ref (reference_type), byte_type);
2549
            break;
2550
          case op_castore:
2551
            pop_type (int_type);
2552
            pop_type (int_type);
2553
            require_array_type (pop_init_ref (reference_type), char_type);
2554
            break;
2555
          case op_sastore:
2556
            pop_type (int_type);
2557
            pop_type (int_type);
2558
            require_array_type (pop_init_ref (reference_type), short_type);
2559
            break;
2560
          case op_pop:
2561
            pop32 ();
2562
            break;
2563
          case op_pop2:
2564
            {
2565
              type t = pop_raw ();
2566
              if (! t.iswide ())
2567
                pop32 ();
2568
            }
2569
            break;
2570
          case op_dup:
2571
            {
2572
              type t = pop32 ();
2573
              push_type (t);
2574
              push_type (t);
2575
            }
2576
            break;
2577
          case op_dup_x1:
2578
            {
2579
              type t1 = pop32 ();
2580
              type t2 = pop32 ();
2581
              push_type (t1);
2582
              push_type (t2);
2583
              push_type (t1);
2584
            }
2585
            break;
2586
          case op_dup_x2:
2587
            {
2588
              type t1 = pop32 ();
2589
              type t2 = pop_raw ();
2590
              if (! t2.iswide ())
2591
                {
2592
                  type t3 = pop32 ();
2593
                  push_type (t1);
2594
                  push_type (t3);
2595
                }
2596
              else
2597
                push_type (t1);
2598
              push_type (t2);
2599
              push_type (t1);
2600
            }
2601
            break;
2602
          case op_dup2:
2603
            {
2604
              type t = pop_raw ();
2605
              if (! t.iswide ())
2606
                {
2607
                  type t2 = pop32 ();
2608
                  push_type (t2);
2609
                  push_type (t);
2610
                  push_type (t2);
2611
                }
2612
              else
2613
                push_type (t);
2614
              push_type (t);
2615
            }
2616
            break;
2617
          case op_dup2_x1:
2618
            {
2619
              type t1 = pop_raw ();
2620
              type t2 = pop32 ();
2621
              if (! t1.iswide ())
2622
                {
2623
                  type t3 = pop32 ();
2624
                  push_type (t2);
2625
                  push_type (t1);
2626
                  push_type (t3);
2627
                }
2628
              else
2629
                push_type (t1);
2630
              push_type (t2);
2631
              push_type (t1);
2632
            }
2633
            break;
2634
          case op_dup2_x2:
2635
            {
2636
              type t1 = pop_raw ();
2637
              if (t1.iswide ())
2638
                {
2639
                  type t2 = pop_raw ();
2640
                  if (t2.iswide ())
2641
                    {
2642
                      push_type (t1);
2643
                      push_type (t2);
2644
                    }
2645
                  else
2646
                    {
2647
                      type t3 = pop32 ();
2648
                      push_type (t1);
2649
                      push_type (t3);
2650
                      push_type (t2);
2651
                    }
2652
                  push_type (t1);
2653
                }
2654
              else
2655
                {
2656
                  type t2 = pop32 ();
2657
                  type t3 = pop_raw ();
2658
                  if (t3.iswide ())
2659
                    {
2660
                      push_type (t2);
2661
                      push_type (t1);
2662
                    }
2663
                  else
2664
                    {
2665
                      type t4 = pop32 ();
2666
                      push_type (t2);
2667
                      push_type (t1);
2668
                      push_type (t4);
2669
                    }
2670
                  push_type (t3);
2671
                  push_type (t2);
2672
                  push_type (t1);
2673
                }
2674
            }
2675
            break;
2676
          case op_swap:
2677
            {
2678
              type t1 = pop32 ();
2679
              type t2 = pop32 ();
2680
              push_type (t1);
2681
              push_type (t2);
2682
            }
2683
            break;
2684
          case op_iadd:
2685
          case op_isub:
2686
          case op_imul:
2687
          case op_idiv:
2688
          case op_irem:
2689
          case op_ishl:
2690
          case op_ishr:
2691
          case op_iushr:
2692
          case op_iand:
2693
          case op_ior:
2694
          case op_ixor:
2695
            pop_type (int_type);
2696
            push_type (pop_type (int_type));
2697
            break;
2698
          case op_ladd:
2699
          case op_lsub:
2700
          case op_lmul:
2701
          case op_ldiv:
2702
          case op_lrem:
2703
          case op_land:
2704
          case op_lor:
2705
          case op_lxor:
2706
            pop_type (long_type);
2707
            push_type (pop_type (long_type));
2708
            break;
2709
          case op_lshl:
2710
          case op_lshr:
2711
          case op_lushr:
2712
            pop_type (int_type);
2713
            push_type (pop_type (long_type));
2714
            break;
2715
          case op_fadd:
2716
          case op_fsub:
2717
          case op_fmul:
2718
          case op_fdiv:
2719
          case op_frem:
2720
            pop_type (float_type);
2721
            push_type (pop_type (float_type));
2722
            break;
2723
          case op_dadd:
2724
          case op_dsub:
2725
          case op_dmul:
2726
          case op_ddiv:
2727
          case op_drem:
2728
            pop_type (double_type);
2729
            push_type (pop_type (double_type));
2730
            break;
2731
          case op_ineg:
2732
          case op_i2b:
2733
          case op_i2c:
2734
          case op_i2s:
2735
            push_type (pop_type (int_type));
2736
            break;
2737
          case op_lneg:
2738
            push_type (pop_type (long_type));
2739
            break;
2740
          case op_fneg:
2741
            push_type (pop_type (float_type));
2742
            break;
2743
          case op_dneg:
2744
            push_type (pop_type (double_type));
2745
            break;
2746
          case op_iinc:
2747
            get_variable (get_byte (), int_type);
2748
            get_byte ();
2749
            break;
2750
          case op_i2l:
2751
            pop_type (int_type);
2752
            push_type (long_type);
2753
            break;
2754
          case op_i2f:
2755
            pop_type (int_type);
2756
            push_type (float_type);
2757
            break;
2758
          case op_i2d:
2759
            pop_type (int_type);
2760
            push_type (double_type);
2761
            break;
2762
          case op_l2i:
2763
            pop_type (long_type);
2764
            push_type (int_type);
2765
            break;
2766
          case op_l2f:
2767
            pop_type (long_type);
2768
            push_type (float_type);
2769
            break;
2770
          case op_l2d:
2771
            pop_type (long_type);
2772
            push_type (double_type);
2773
            break;
2774
          case op_f2i:
2775
            pop_type (float_type);
2776
            push_type (int_type);
2777
            break;
2778
          case op_f2l:
2779
            pop_type (float_type);
2780
            push_type (long_type);
2781
            break;
2782
          case op_f2d:
2783
            pop_type (float_type);
2784
            push_type (double_type);
2785
            break;
2786
          case op_d2i:
2787
            pop_type (double_type);
2788
            push_type (int_type);
2789
            break;
2790
          case op_d2l:
2791
            pop_type (double_type);
2792
            push_type (long_type);
2793
            break;
2794
          case op_d2f:
2795
            pop_type (double_type);
2796
            push_type (float_type);
2797
            break;
2798
          case op_lcmp:
2799
            pop_type (long_type);
2800
            pop_type (long_type);
2801
            push_type (int_type);
2802
            break;
2803
          case op_fcmpl:
2804
          case op_fcmpg:
2805
            pop_type (float_type);
2806
            pop_type (float_type);
2807
            push_type (int_type);
2808
            break;
2809
          case op_dcmpl:
2810
          case op_dcmpg:
2811
            pop_type (double_type);
2812
            pop_type (double_type);
2813
            push_type (int_type);
2814
            break;
2815
          case op_ifeq:
2816
          case op_ifne:
2817
          case op_iflt:
2818
          case op_ifge:
2819
          case op_ifgt:
2820
          case op_ifle:
2821
            pop_type (int_type);
2822
            push_jump (get_short ());
2823
            break;
2824
          case op_if_icmpeq:
2825
          case op_if_icmpne:
2826
          case op_if_icmplt:
2827
          case op_if_icmpge:
2828
          case op_if_icmpgt:
2829
          case op_if_icmple:
2830
            pop_type (int_type);
2831
            pop_type (int_type);
2832
            push_jump (get_short ());
2833
            break;
2834
          case op_if_acmpeq:
2835
          case op_if_acmpne:
2836
            pop_type (reference_type);
2837
            pop_type (reference_type);
2838
            push_jump (get_short ());
2839
            break;
2840
          case op_goto:
2841
            push_jump (get_short ());
2842
            invalidate_pc ();
2843
            break;
2844
          case op_jsr:
2845
            handle_jsr_insn (get_short ());
2846
            break;
2847
          case op_ret:
2848
            handle_ret_insn (get_byte ());
2849
            break;
2850
          case op_tableswitch:
2851
            {
2852
              pop_type (int_type);
2853
              skip_padding ();
2854
              push_jump (get_int ());
2855
              jint low = get_int ();
2856
              jint high = get_int ();
2857
              // Already checked LOW -vs- HIGH.
2858
              for (int i = low; i <= high; ++i)
2859
                push_jump (get_int ());
2860
              invalidate_pc ();
2861
            }
2862
            break;
2863
 
2864
          case op_lookupswitch:
2865
            {
2866
              pop_type (int_type);
2867
              skip_padding ();
2868
              push_jump (get_int ());
2869
              jint npairs = get_int ();
2870
              // Already checked NPAIRS >= 0.
2871
              jint lastkey = 0;
2872
              for (int i = 0; i < npairs; ++i)
2873
                {
2874
                  jint key = get_int ();
2875
                  if (i > 0 && key <= lastkey)
2876
                    verify_fail ("lookupswitch pairs unsorted", start_PC);
2877
                  lastkey = key;
2878
                  push_jump (get_int ());
2879
                }
2880
              invalidate_pc ();
2881
            }
2882
            break;
2883
          case op_ireturn:
2884
            check_return_type (pop_type (int_type));
2885
            invalidate_pc ();
2886
            break;
2887
          case op_lreturn:
2888
            check_return_type (pop_type (long_type));
2889
            invalidate_pc ();
2890
            break;
2891
          case op_freturn:
2892
            check_return_type (pop_type (float_type));
2893
            invalidate_pc ();
2894
            break;
2895
          case op_dreturn:
2896
            check_return_type (pop_type (double_type));
2897
            invalidate_pc ();
2898
            break;
2899
          case op_areturn:
2900
            check_return_type (pop_init_ref (reference_type));
2901
            invalidate_pc ();
2902
            break;
2903
          case op_return:
2904
            // We only need to check this when the return type is
2905
            // void, because all instance initializers return void.
2906
            if (this_is_init)
2907
              current_state->check_this_initialized (this);
2908
            check_return_type (void_type);
2909
            invalidate_pc ();
2910
            break;
2911
          case op_getstatic:
2912
            push_type (check_field_constant (get_ushort ()));
2913
            break;
2914
          case op_putstatic:
2915
            pop_type (check_field_constant (get_ushort ()));
2916
            break;
2917
          case op_getfield:
2918
            {
2919
              type klass;
2920
              type field = check_field_constant (get_ushort (), &klass);
2921
              pop_type (klass);
2922
              push_type (field);
2923
            }
2924
            break;
2925
          case op_putfield:
2926
            {
2927
              type klass;
2928
              type field = check_field_constant (get_ushort (), &klass, true);
2929
              pop_type (field);
2930
              pop_type (klass);
2931
            }
2932
            break;
2933
 
2934
          case op_invokevirtual:
2935
          case op_invokespecial:
2936
          case op_invokestatic:
2937
          case op_invokeinterface:
2938
            {
2939
              _Jv_Utf8Const *method_name, *method_signature;
2940
              type class_type
2941
                = check_method_constant (get_ushort (),
2942
                                         opcode == op_invokeinterface,
2943
                                         &method_name,
2944
                                         &method_signature);
2945
              // NARGS is only used when we're processing
2946
              // invokeinterface.  It is simplest for us to compute it
2947
              // here and then verify it later.
2948
              int nargs = 0;
2949
              if (opcode == op_invokeinterface)
2950
                {
2951
                  nargs = get_byte ();
2952
                  if (get_byte () != 0)
2953
                    verify_fail ("invokeinterface dummy byte is wrong");
2954
                }
2955
 
2956
              bool is_init = false;
2957
              if (_Jv_equalUtf8Consts (method_name, gcj::init_name))
2958
                {
2959
                  is_init = true;
2960
                  if (opcode != op_invokespecial)
2961
                    verify_fail ("can't invoke <init>");
2962
                }
2963
              else if (method_name->first() == '<')
2964
                verify_fail ("can't invoke method starting with `<'");
2965
 
2966
              // Pop arguments and check types.
2967
              int arg_count = _Jv_count_arguments (method_signature);
2968
              type arg_types[arg_count];
2969
              compute_argument_types (method_signature, arg_types);
2970
              for (int i = arg_count - 1; i >= 0; --i)
2971
                {
2972
                  // This is only used for verifying the byte for
2973
                  // invokeinterface.
2974
                  nargs -= arg_types[i].depth ();
2975
                  pop_init_ref (arg_types[i]);
2976
                }
2977
 
2978
              if (opcode == op_invokeinterface
2979
                  && nargs != 1)
2980
                verify_fail ("wrong argument count for invokeinterface");
2981
 
2982
              if (opcode != op_invokestatic)
2983
                {
2984
                  type t = class_type;
2985
                  if (is_init)
2986
                    {
2987
                      // In this case the PC doesn't matter.
2988
                      t.set_uninitialized (type::UNINIT, this);
2989
                      // FIXME: check to make sure that the <init>
2990
                      // call is to the right class.
2991
                      // It must either be super or an exact class
2992
                      // match.
2993
                    }
2994
                  type raw = pop_raw ();
2995
                  if (! t.compatible (raw, this))
2996
                    verify_fail ("incompatible type on stack");
2997
 
2998
                  if (is_init)
2999
                    current_state->set_initialized (raw.get_pc (),
3000
                                                    current_method->max_locals);
3001
                }
3002
 
3003
              type rt = compute_return_type (method_signature);
3004
              if (! rt.isvoid ())
3005
                push_type (rt);
3006
            }
3007
            break;
3008
 
3009
          case op_new:
3010
            {
3011
              type t = check_class_constant (get_ushort ());
3012
              if (t.isarray ())
3013
                verify_fail ("type is array");
3014
              t.set_uninitialized (start_PC, this);
3015
              push_type (t);
3016
            }
3017
            break;
3018
 
3019
          case op_newarray:
3020
            {
3021
              int atype = get_byte ();
3022
              // We intentionally have chosen constants to make this
3023
              // valid.
3024
              if (atype < boolean_type || atype > long_type)
3025
                verify_fail ("type not primitive", start_PC);
3026
              pop_type (int_type);
3027
              type t (construct_primitive_array_type (type_val (atype)), this);
3028
              push_type (t);
3029
            }
3030
            break;
3031
          case op_anewarray:
3032
            pop_type (int_type);
3033
            push_type (check_class_constant (get_ushort ()).to_array (this));
3034
            break;
3035
          case op_arraylength:
3036
            {
3037
              type t = pop_init_ref (reference_type);
3038
              if (! t.isarray () && ! t.isnull ())
3039
                verify_fail ("array type expected");
3040
              push_type (int_type);
3041
            }
3042
            break;
3043
          case op_athrow:
3044
            pop_type (type (&java::lang::Throwable::class$, this));
3045
            invalidate_pc ();
3046
            break;
3047
          case op_checkcast:
3048
            pop_init_ref (reference_type);
3049
            push_type (check_class_constant (get_ushort ()));
3050
            break;
3051
          case op_instanceof:
3052
            pop_init_ref (reference_type);
3053
            check_class_constant (get_ushort ());
3054
            push_type (int_type);
3055
            break;
3056
          case op_monitorenter:
3057
            pop_init_ref (reference_type);
3058
            break;
3059
          case op_monitorexit:
3060
            pop_init_ref (reference_type);
3061
            break;
3062
          case op_wide:
3063
            {
3064
              switch (get_byte ())
3065
                {
3066
                case op_iload:
3067
                  push_type (get_variable (get_ushort (), int_type));
3068
                  break;
3069
                case op_lload:
3070
                  push_type (get_variable (get_ushort (), long_type));
3071
                  break;
3072
                case op_fload:
3073
                  push_type (get_variable (get_ushort (), float_type));
3074
                  break;
3075
                case op_dload:
3076
                  push_type (get_variable (get_ushort (), double_type));
3077
                  break;
3078
                case op_aload:
3079
                  push_type (get_variable (get_ushort (), reference_type));
3080
                  break;
3081
                case op_istore:
3082
                  set_variable (get_ushort (), pop_type (int_type));
3083
                  break;
3084
                case op_lstore:
3085
                  set_variable (get_ushort (), pop_type (long_type));
3086
                  break;
3087
                case op_fstore:
3088
                  set_variable (get_ushort (), pop_type (float_type));
3089
                  break;
3090
                case op_dstore:
3091
                  set_variable (get_ushort (), pop_type (double_type));
3092
                  break;
3093
                case op_astore:
3094
                  set_variable (get_ushort (), pop_init_ref (reference_type));
3095
                  break;
3096
                case op_ret:
3097
                  handle_ret_insn (get_short ());
3098
                  break;
3099
                case op_iinc:
3100
                  get_variable (get_ushort (), int_type);
3101
                  get_short ();
3102
                  break;
3103
                default:
3104
                  verify_fail ("unrecognized wide instruction", start_PC);
3105
                }
3106
            }
3107
            break;
3108
          case op_multianewarray:
3109
            {
3110
              type atype = check_class_constant (get_ushort ());
3111
              int dim = get_byte ();
3112
              if (dim < 1)
3113
                verify_fail ("too few dimensions to multianewarray", start_PC);
3114
              atype.verify_dimensions (dim, this);
3115
              for (int i = 0; i < dim; ++i)
3116
                pop_type (int_type);
3117
              push_type (atype);
3118
            }
3119
            break;
3120
          case op_ifnull:
3121
          case op_ifnonnull:
3122
            pop_type (reference_type);
3123
            push_jump (get_short ());
3124
            break;
3125
          case op_goto_w:
3126
            push_jump (get_int ());
3127
            invalidate_pc ();
3128
            break;
3129
          case op_jsr_w:
3130
            handle_jsr_insn (get_int ());
3131
            break;
3132
 
3133
          // These are unused here, but we call them out explicitly
3134
          // so that -Wswitch-enum doesn't complain.
3135
          case op_putfield_1:
3136
          case op_putfield_2:
3137
          case op_putfield_4:
3138
          case op_putfield_8:
3139
          case op_putfield_a:
3140
          case op_putstatic_1:
3141
          case op_putstatic_2:
3142
          case op_putstatic_4:
3143
          case op_putstatic_8:
3144
          case op_putstatic_a:
3145
          case op_getfield_1:
3146
          case op_getfield_2s:
3147
          case op_getfield_2u:
3148
          case op_getfield_4:
3149
          case op_getfield_8:
3150
          case op_getfield_a:
3151
          case op_getstatic_1:
3152
          case op_getstatic_2s:
3153
          case op_getstatic_2u:
3154
          case op_getstatic_4:
3155
          case op_getstatic_8:
3156
          case op_getstatic_a:
3157
          case op_breakpoint:
3158
          default:
3159
            // Unrecognized opcode.
3160
            verify_fail ("unrecognized instruction in verify_instructions_0",
3161
                         start_PC);
3162
          }
3163
      }
3164
  }
3165
 
3166
public:
3167
 
3168
  void verify_instructions ()
3169
  {
3170
    branch_prepass ();
3171
    verify_instructions_0 ();
3172
  }
3173
 
3174
  _Jv_BytecodeVerifier (_Jv_InterpMethod *m)
3175
  {
3176
    // We just print the text as utf-8.  This is just for debugging
3177
    // anyway.
3178
    debug_print ("--------------------------------\n");
3179
    debug_print ("-- Verifying method `%s'\n", m->self->name->chars());
3180
 
3181
    current_method = m;
3182
    bytecode = m->bytecode ();
3183
    exception = m->exceptions ();
3184
    current_class = m->defining_class;
3185
 
3186
    states = NULL;
3187
    flags = NULL;
3188
    utf8_list = NULL;
3189
    isect_list = NULL;
3190
  }
3191
 
3192
  ~_Jv_BytecodeVerifier ()
3193
  {
3194
    if (flags)
3195
      _Jv_Free (flags);
3196
 
3197
    while (utf8_list != NULL)
3198
      {
3199
        linked<_Jv_Utf8Const> *n = utf8_list->next;
3200
        _Jv_Free (utf8_list);
3201
        utf8_list = n;
3202
      }
3203
 
3204
    while (isect_list != NULL)
3205
      {
3206
        ref_intersection *next = isect_list->alloc_next;
3207
        delete isect_list;
3208
        isect_list = next;
3209
      }
3210
 
3211
    if (states)
3212
      {
3213
        for (int i = 0; i < current_method->code_length; ++i)
3214
          {
3215
            linked<state> *iter = states[i];
3216
            while (iter != NULL)
3217
              {
3218
                linked<state> *next = iter->next;
3219
                delete iter->val;
3220
                _Jv_Free (iter);
3221
                iter = next;
3222
              }
3223
          }
3224
        _Jv_Free (states);
3225
      }
3226
  }
3227
};
3228
 
3229
void
3230
_Jv_VerifyMethod (_Jv_InterpMethod *meth)
3231
{
3232
  _Jv_BytecodeVerifier v (meth);
3233
  v.verify_instructions ();
3234
}
3235
 
3236
#endif  /* INTERPRETER */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.