1 |
740 |
jeremybenn |
/* j0l.c
|
2 |
|
|
*
|
3 |
|
|
* Bessel function of order zero
|
4 |
|
|
*
|
5 |
|
|
*
|
6 |
|
|
*
|
7 |
|
|
* SYNOPSIS:
|
8 |
|
|
*
|
9 |
|
|
* long double x, y, j0l();
|
10 |
|
|
*
|
11 |
|
|
* y = j0l( x );
|
12 |
|
|
*
|
13 |
|
|
*
|
14 |
|
|
*
|
15 |
|
|
* DESCRIPTION:
|
16 |
|
|
*
|
17 |
|
|
* Returns Bessel function of first kind, order zero of the argument.
|
18 |
|
|
*
|
19 |
|
|
* The domain is divided into two major intervals [0, 2] and
|
20 |
|
|
* (2, infinity). In the first interval the rational approximation
|
21 |
|
|
* is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
|
22 |
|
|
* The second interval is further partitioned into eight equal segments
|
23 |
|
|
* of 1/x.
|
24 |
|
|
*
|
25 |
|
|
* J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
|
26 |
|
|
* X = x - pi/4,
|
27 |
|
|
*
|
28 |
|
|
* and the auxiliary functions are given by
|
29 |
|
|
*
|
30 |
|
|
* J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
|
31 |
|
|
* P0(x) = 1 + 1/x^2 R(1/x^2)
|
32 |
|
|
*
|
33 |
|
|
* Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
|
34 |
|
|
* Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
35 |
|
|
*
|
36 |
|
|
*
|
37 |
|
|
*
|
38 |
|
|
* ACCURACY:
|
39 |
|
|
*
|
40 |
|
|
* Absolute error:
|
41 |
|
|
* arithmetic domain # trials peak rms
|
42 |
|
|
* IEEE 0, 30 100000 1.7e-34 2.4e-35
|
43 |
|
|
*
|
44 |
|
|
*
|
45 |
|
|
*/
|
46 |
|
|
|
47 |
|
|
/* y0l.c
|
48 |
|
|
*
|
49 |
|
|
* Bessel function of the second kind, order zero
|
50 |
|
|
*
|
51 |
|
|
*
|
52 |
|
|
*
|
53 |
|
|
* SYNOPSIS:
|
54 |
|
|
*
|
55 |
|
|
* double x, y, y0l();
|
56 |
|
|
*
|
57 |
|
|
* y = y0l( x );
|
58 |
|
|
*
|
59 |
|
|
*
|
60 |
|
|
*
|
61 |
|
|
* DESCRIPTION:
|
62 |
|
|
*
|
63 |
|
|
* Returns Bessel function of the second kind, of order
|
64 |
|
|
* zero, of the argument.
|
65 |
|
|
*
|
66 |
|
|
* The approximation is the same as for J0(x), and
|
67 |
|
|
* Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
|
68 |
|
|
*
|
69 |
|
|
* ACCURACY:
|
70 |
|
|
*
|
71 |
|
|
* Absolute error, when y0(x) < 1; else relative error:
|
72 |
|
|
*
|
73 |
|
|
* arithmetic domain # trials peak rms
|
74 |
|
|
* IEEE 0, 30 100000 3.0e-34 2.7e-35
|
75 |
|
|
*
|
76 |
|
|
*/
|
77 |
|
|
|
78 |
|
|
/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov).
|
79 |
|
|
|
80 |
|
|
This library is free software; you can redistribute it and/or
|
81 |
|
|
modify it under the terms of the GNU Lesser General Public
|
82 |
|
|
License as published by the Free Software Foundation; either
|
83 |
|
|
version 2.1 of the License, or (at your option) any later version.
|
84 |
|
|
|
85 |
|
|
This library is distributed in the hope that it will be useful,
|
86 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
87 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
88 |
|
|
Lesser General Public License for more details.
|
89 |
|
|
|
90 |
|
|
You should have received a copy of the GNU Lesser General Public
|
91 |
|
|
License along with this library; if not, write to the Free Software
|
92 |
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
93 |
|
|
|
94 |
|
|
#include "quadmath-imp.h"
|
95 |
|
|
|
96 |
|
|
/* 1 / sqrt(pi) */
|
97 |
|
|
static const __float128 ONEOSQPI = 5.6418958354775628694807945156077258584405E-1Q;
|
98 |
|
|
/* 2 / pi */
|
99 |
|
|
static const __float128 TWOOPI = 6.3661977236758134307553505349005744813784E-1Q;
|
100 |
|
|
static const __float128 zero = 0.0Q;
|
101 |
|
|
|
102 |
|
|
/* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2)
|
103 |
|
|
Peak relative error 3.4e-37
|
104 |
|
|
|
105 |
|
|
#define NJ0_2N 6
|
106 |
|
|
static const __float128 J0_2N[NJ0_2N + 1] = {
|
107 |
|
|
3.133239376997663645548490085151484674892E16Q,
|
108 |
|
|
-5.479944965767990821079467311839107722107E14Q,
|
109 |
|
|
6.290828903904724265980249871997551894090E12Q,
|
110 |
|
|
-3.633750176832769659849028554429106299915E10Q,
|
111 |
|
|
1.207743757532429576399485415069244807022E8Q,
|
112 |
|
|
-2.107485999925074577174305650549367415465E5Q,
|
113 |
|
|
1.562826808020631846245296572935547005859E2Q,
|
114 |
|
|
};
|
115 |
|
|
#define NJ0_2D 6
|
116 |
|
|
static const __float128 J0_2D[NJ0_2D + 1] = {
|
117 |
|
|
2.005273201278504733151033654496928968261E18Q,
|
118 |
|
|
2.063038558793221244373123294054149790864E16Q,
|
119 |
|
|
1.053350447931127971406896594022010524994E14Q,
|
120 |
|
|
3.496556557558702583143527876385508882310E11Q,
|
121 |
|
|
8.249114511878616075860654484367133976306E8Q,
|
122 |
|
|
1.402965782449571800199759247964242790589E6Q,
|
123 |
|
|
1.619910762853439600957801751815074787351E3Q,
|
124 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
125 |
|
|
};
|
126 |
|
|
|
127 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2),
|
128 |
|
|
|
129 |
|
|
Peak relative error 3.3e-36 */
|
130 |
|
|
#define NP16_IN 9
|
131 |
|
|
static const __float128 P16_IN[NP16_IN + 1] = {
|
132 |
|
|
-1.901689868258117463979611259731176301065E-16Q,
|
133 |
|
|
-1.798743043824071514483008340803573980931E-13Q,
|
134 |
|
|
-6.481746687115262291873324132944647438959E-11Q,
|
135 |
|
|
-1.150651553745409037257197798528294248012E-8Q,
|
136 |
|
|
-1.088408467297401082271185599507222695995E-6Q,
|
137 |
|
|
-5.551996725183495852661022587879817546508E-5Q,
|
138 |
|
|
-1.477286941214245433866838787454880214736E-3Q,
|
139 |
|
|
-1.882877976157714592017345347609200402472E-2Q,
|
140 |
|
|
-9.620983176855405325086530374317855880515E-2Q,
|
141 |
|
|
-1.271468546258855781530458854476627766233E-1Q,
|
142 |
|
|
};
|
143 |
|
|
#define NP16_ID 9
|
144 |
|
|
static const __float128 P16_ID[NP16_ID + 1] = {
|
145 |
|
|
2.704625590411544837659891569420764475007E-15Q,
|
146 |
|
|
2.562526347676857624104306349421985403573E-12Q,
|
147 |
|
|
9.259137589952741054108665570122085036246E-10Q,
|
148 |
|
|
1.651044705794378365237454962653430805272E-7Q,
|
149 |
|
|
1.573561544138733044977714063100859136660E-5Q,
|
150 |
|
|
8.134482112334882274688298469629884804056E-4Q,
|
151 |
|
|
2.219259239404080863919375103673593571689E-2Q,
|
152 |
|
|
2.976990606226596289580242451096393862792E-1Q,
|
153 |
|
|
1.713895630454693931742734911930937246254E0Q,
|
154 |
|
|
3.231552290717904041465898249160757368855E0Q,
|
155 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
156 |
|
|
};
|
157 |
|
|
|
158 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
159 |
|
|
0.0625 <= 1/x <= 0.125
|
160 |
|
|
Peak relative error 2.4e-35 */
|
161 |
|
|
#define NP8_16N 10
|
162 |
|
|
static const __float128 P8_16N[NP8_16N + 1] = {
|
163 |
|
|
-2.335166846111159458466553806683579003632E-15Q,
|
164 |
|
|
-1.382763674252402720401020004169367089975E-12Q,
|
165 |
|
|
-3.192160804534716696058987967592784857907E-10Q,
|
166 |
|
|
-3.744199606283752333686144670572632116899E-8Q,
|
167 |
|
|
-2.439161236879511162078619292571922772224E-6Q,
|
168 |
|
|
-9.068436986859420951664151060267045346549E-5Q,
|
169 |
|
|
-1.905407090637058116299757292660002697359E-3Q,
|
170 |
|
|
-2.164456143936718388053842376884252978872E-2Q,
|
171 |
|
|
-1.212178415116411222341491717748696499966E-1Q,
|
172 |
|
|
-2.782433626588541494473277445959593334494E-1Q,
|
173 |
|
|
-1.670703190068873186016102289227646035035E-1Q,
|
174 |
|
|
};
|
175 |
|
|
#define NP8_16D 10
|
176 |
|
|
static const __float128 P8_16D[NP8_16D + 1] = {
|
177 |
|
|
3.321126181135871232648331450082662856743E-14Q,
|
178 |
|
|
1.971894594837650840586859228510007703641E-11Q,
|
179 |
|
|
4.571144364787008285981633719513897281690E-9Q,
|
180 |
|
|
5.396419143536287457142904742849052402103E-7Q,
|
181 |
|
|
3.551548222385845912370226756036899901549E-5Q,
|
182 |
|
|
1.342353874566932014705609788054598013516E-3Q,
|
183 |
|
|
2.899133293006771317589357444614157734385E-2Q,
|
184 |
|
|
3.455374978185770197704507681491574261545E-1Q,
|
185 |
|
|
2.116616964297512311314454834712634820514E0Q,
|
186 |
|
|
5.850768316827915470087758636881584174432E0Q,
|
187 |
|
|
5.655273858938766830855753983631132928968E0Q,
|
188 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
189 |
|
|
};
|
190 |
|
|
|
191 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
192 |
|
|
0.125 <= 1/x <= 0.1875
|
193 |
|
|
Peak relative error 2.7e-35 */
|
194 |
|
|
#define NP5_8N 10
|
195 |
|
|
static const __float128 P5_8N[NP5_8N + 1] = {
|
196 |
|
|
-1.270478335089770355749591358934012019596E-12Q,
|
197 |
|
|
-4.007588712145412921057254992155810347245E-10Q,
|
198 |
|
|
-4.815187822989597568124520080486652009281E-8Q,
|
199 |
|
|
-2.867070063972764880024598300408284868021E-6Q,
|
200 |
|
|
-9.218742195161302204046454768106063638006E-5Q,
|
201 |
|
|
-1.635746821447052827526320629828043529997E-3Q,
|
202 |
|
|
-1.570376886640308408247709616497261011707E-2Q,
|
203 |
|
|
-7.656484795303305596941813361786219477807E-2Q,
|
204 |
|
|
-1.659371030767513274944805479908858628053E-1Q,
|
205 |
|
|
-1.185340550030955660015841796219919804915E-1Q,
|
206 |
|
|
-8.920026499909994671248893388013790366712E-3Q,
|
207 |
|
|
};
|
208 |
|
|
#define NP5_8D 9
|
209 |
|
|
static const __float128 P5_8D[NP5_8D + 1] = {
|
210 |
|
|
1.806902521016705225778045904631543990314E-11Q,
|
211 |
|
|
5.728502760243502431663549179135868966031E-9Q,
|
212 |
|
|
6.938168504826004255287618819550667978450E-7Q,
|
213 |
|
|
4.183769964807453250763325026573037785902E-5Q,
|
214 |
|
|
1.372660678476925468014882230851637878587E-3Q,
|
215 |
|
|
2.516452105242920335873286419212708961771E-2Q,
|
216 |
|
|
2.550502712902647803796267951846557316182E-1Q,
|
217 |
|
|
1.365861559418983216913629123778747617072E0Q,
|
218 |
|
|
3.523825618308783966723472468855042541407E0Q,
|
219 |
|
|
3.656365803506136165615111349150536282434E0Q,
|
220 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
221 |
|
|
};
|
222 |
|
|
|
223 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
224 |
|
|
Peak relative error 3.5e-35
|
225 |
|
|
0.1875 <= 1/x <= 0.25 */
|
226 |
|
|
#define NP4_5N 9
|
227 |
|
|
static const __float128 P4_5N[NP4_5N + 1] = {
|
228 |
|
|
-9.791405771694098960254468859195175708252E-10Q,
|
229 |
|
|
-1.917193059944531970421626610188102836352E-7Q,
|
230 |
|
|
-1.393597539508855262243816152893982002084E-5Q,
|
231 |
|
|
-4.881863490846771259880606911667479860077E-4Q,
|
232 |
|
|
-8.946571245022470127331892085881699269853E-3Q,
|
233 |
|
|
-8.707474232568097513415336886103899434251E-2Q,
|
234 |
|
|
-4.362042697474650737898551272505525973766E-1Q,
|
235 |
|
|
-1.032712171267523975431451359962375617386E0Q,
|
236 |
|
|
-9.630502683169895107062182070514713702346E-1Q,
|
237 |
|
|
-2.251804386252969656586810309252357233320E-1Q,
|
238 |
|
|
};
|
239 |
|
|
#define NP4_5D 9
|
240 |
|
|
static const __float128 P4_5D[NP4_5D + 1] = {
|
241 |
|
|
1.392555487577717669739688337895791213139E-8Q,
|
242 |
|
|
2.748886559120659027172816051276451376854E-6Q,
|
243 |
|
|
2.024717710644378047477189849678576659290E-4Q,
|
244 |
|
|
7.244868609350416002930624752604670292469E-3Q,
|
245 |
|
|
1.373631762292244371102989739300382152416E-1Q,
|
246 |
|
|
1.412298581400224267910294815260613240668E0Q,
|
247 |
|
|
7.742495637843445079276397723849017617210E0Q,
|
248 |
|
|
2.138429269198406512028307045259503811861E1Q,
|
249 |
|
|
2.651547684548423476506826951831712762610E1Q,
|
250 |
|
|
1.167499382465291931571685222882909166935E1Q,
|
251 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
252 |
|
|
};
|
253 |
|
|
|
254 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
255 |
|
|
Peak relative error 2.3e-36
|
256 |
|
|
0.25 <= 1/x <= 0.3125 */
|
257 |
|
|
#define NP3r2_4N 9
|
258 |
|
|
static const __float128 P3r2_4N[NP3r2_4N + 1] = {
|
259 |
|
|
-2.589155123706348361249809342508270121788E-8Q,
|
260 |
|
|
-3.746254369796115441118148490849195516593E-6Q,
|
261 |
|
|
-1.985595497390808544622893738135529701062E-4Q,
|
262 |
|
|
-5.008253705202932091290132760394976551426E-3Q,
|
263 |
|
|
-6.529469780539591572179155511840853077232E-2Q,
|
264 |
|
|
-4.468736064761814602927408833818990271514E-1Q,
|
265 |
|
|
-1.556391252586395038089729428444444823380E0Q,
|
266 |
|
|
-2.533135309840530224072920725976994981638E0Q,
|
267 |
|
|
-1.605509621731068453869408718565392869560E0Q,
|
268 |
|
|
-2.518966692256192789269859830255724429375E-1Q,
|
269 |
|
|
};
|
270 |
|
|
#define NP3r2_4D 9
|
271 |
|
|
static const __float128 P3r2_4D[NP3r2_4D + 1] = {
|
272 |
|
|
3.682353957237979993646169732962573930237E-7Q,
|
273 |
|
|
5.386741661883067824698973455566332102029E-5Q,
|
274 |
|
|
2.906881154171822780345134853794241037053E-3Q,
|
275 |
|
|
7.545832595801289519475806339863492074126E-2Q,
|
276 |
|
|
1.029405357245594877344360389469584526654E0Q,
|
277 |
|
|
7.565706120589873131187989560509757626725E0Q,
|
278 |
|
|
2.951172890699569545357692207898667665796E1Q,
|
279 |
|
|
5.785723537170311456298467310529815457536E1Q,
|
280 |
|
|
5.095621464598267889126015412522773474467E1Q,
|
281 |
|
|
1.602958484169953109437547474953308401442E1Q,
|
282 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
283 |
|
|
};
|
284 |
|
|
|
285 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
286 |
|
|
Peak relative error 1.0e-35
|
287 |
|
|
0.3125 <= 1/x <= 0.375 */
|
288 |
|
|
#define NP2r7_3r2N 9
|
289 |
|
|
static const __float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
|
290 |
|
|
-1.917322340814391131073820537027234322550E-7Q,
|
291 |
|
|
-1.966595744473227183846019639723259011906E-5Q,
|
292 |
|
|
-7.177081163619679403212623526632690465290E-4Q,
|
293 |
|
|
-1.206467373860974695661544653741899755695E-2Q,
|
294 |
|
|
-1.008656452188539812154551482286328107316E-1Q,
|
295 |
|
|
-4.216016116408810856620947307438823892707E-1Q,
|
296 |
|
|
-8.378631013025721741744285026537009814161E-1Q,
|
297 |
|
|
-6.973895635309960850033762745957946272579E-1Q,
|
298 |
|
|
-1.797864718878320770670740413285763554812E-1Q,
|
299 |
|
|
-4.098025357743657347681137871388402849581E-3Q,
|
300 |
|
|
};
|
301 |
|
|
#define NP2r7_3r2D 8
|
302 |
|
|
static const __float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
|
303 |
|
|
2.726858489303036441686496086962545034018E-6Q,
|
304 |
|
|
2.840430827557109238386808968234848081424E-4Q,
|
305 |
|
|
1.063826772041781947891481054529454088832E-2Q,
|
306 |
|
|
1.864775537138364773178044431045514405468E-1Q,
|
307 |
|
|
1.665660052857205170440952607701728254211E0Q,
|
308 |
|
|
7.723745889544331153080842168958348568395E0Q,
|
309 |
|
|
1.810726427571829798856428548102077799835E1Q,
|
310 |
|
|
1.986460672157794440666187503833545388527E1Q,
|
311 |
|
|
8.645503204552282306364296517220055815488E0Q,
|
312 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
313 |
|
|
};
|
314 |
|
|
|
315 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
316 |
|
|
Peak relative error 1.3e-36
|
317 |
|
|
0.3125 <= 1/x <= 0.4375 */
|
318 |
|
|
#define NP2r3_2r7N 9
|
319 |
|
|
static const __float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
|
320 |
|
|
-1.594642785584856746358609622003310312622E-6Q,
|
321 |
|
|
-1.323238196302221554194031733595194539794E-4Q,
|
322 |
|
|
-3.856087818696874802689922536987100372345E-3Q,
|
323 |
|
|
-5.113241710697777193011470733601522047399E-2Q,
|
324 |
|
|
-3.334229537209911914449990372942022350558E-1Q,
|
325 |
|
|
-1.075703518198127096179198549659283422832E0Q,
|
326 |
|
|
-1.634174803414062725476343124267110981807E0Q,
|
327 |
|
|
-1.030133247434119595616826842367268304880E0Q,
|
328 |
|
|
-1.989811539080358501229347481000707289391E-1Q,
|
329 |
|
|
-3.246859189246653459359775001466924610236E-3Q,
|
330 |
|
|
};
|
331 |
|
|
#define NP2r3_2r7D 8
|
332 |
|
|
static const __float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
|
333 |
|
|
2.267936634217251403663034189684284173018E-5Q,
|
334 |
|
|
1.918112982168673386858072491437971732237E-3Q,
|
335 |
|
|
5.771704085468423159125856786653868219522E-2Q,
|
336 |
|
|
8.056124451167969333717642810661498890507E-1Q,
|
337 |
|
|
5.687897967531010276788680634413789328776E0Q,
|
338 |
|
|
2.072596760717695491085444438270778394421E1Q,
|
339 |
|
|
3.801722099819929988585197088613160496684E1Q,
|
340 |
|
|
3.254620235902912339534998592085115836829E1Q,
|
341 |
|
|
1.104847772130720331801884344645060675036E1Q,
|
342 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
343 |
|
|
};
|
344 |
|
|
|
345 |
|
|
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
|
346 |
|
|
Peak relative error 1.2e-35
|
347 |
|
|
0.4375 <= 1/x <= 0.5 */
|
348 |
|
|
#define NP2_2r3N 8
|
349 |
|
|
static const __float128 P2_2r3N[NP2_2r3N + 1] = {
|
350 |
|
|
-1.001042324337684297465071506097365389123E-4Q,
|
351 |
|
|
-6.289034524673365824853547252689991418981E-3Q,
|
352 |
|
|
-1.346527918018624234373664526930736205806E-1Q,
|
353 |
|
|
-1.268808313614288355444506172560463315102E0Q,
|
354 |
|
|
-5.654126123607146048354132115649177406163E0Q,
|
355 |
|
|
-1.186649511267312652171775803270911971693E1Q,
|
356 |
|
|
-1.094032424931998612551588246779200724257E1Q,
|
357 |
|
|
-3.728792136814520055025256353193674625267E0Q,
|
358 |
|
|
-3.000348318524471807839934764596331810608E-1Q,
|
359 |
|
|
};
|
360 |
|
|
#define NP2_2r3D 8
|
361 |
|
|
static const __float128 P2_2r3D[NP2_2r3D + 1] = {
|
362 |
|
|
1.423705538269770974803901422532055612980E-3Q,
|
363 |
|
|
9.171476630091439978533535167485230575894E-2Q,
|
364 |
|
|
2.049776318166637248868444600215942828537E0Q,
|
365 |
|
|
2.068970329743769804547326701946144899583E1Q,
|
366 |
|
|
1.025103500560831035592731539565060347709E2Q,
|
367 |
|
|
2.528088049697570728252145557167066708284E2Q,
|
368 |
|
|
2.992160327587558573740271294804830114205E2Q,
|
369 |
|
|
1.540193761146551025832707739468679973036E2Q,
|
370 |
|
|
2.779516701986912132637672140709452502650E1Q,
|
371 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
372 |
|
|
};
|
373 |
|
|
|
374 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
375 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
376 |
|
|
Peak relative error 2.2e-35
|
377 |
|
|
|
378 |
|
|
#define NQ16_IN 10
|
379 |
|
|
static const __float128 Q16_IN[NQ16_IN + 1] = {
|
380 |
|
|
2.343640834407975740545326632205999437469E-18Q,
|
381 |
|
|
2.667978112927811452221176781536278257448E-15Q,
|
382 |
|
|
1.178415018484555397390098879501969116536E-12Q,
|
383 |
|
|
2.622049767502719728905924701288614016597E-10Q,
|
384 |
|
|
3.196908059607618864801313380896308968673E-8Q,
|
385 |
|
|
2.179466154171673958770030655199434798494E-6Q,
|
386 |
|
|
8.139959091628545225221976413795645177291E-5Q,
|
387 |
|
|
1.563900725721039825236927137885747138654E-3Q,
|
388 |
|
|
1.355172364265825167113562519307194840307E-2Q,
|
389 |
|
|
3.928058355906967977269780046844768588532E-2Q,
|
390 |
|
|
1.107891967702173292405380993183694932208E-2Q,
|
391 |
|
|
};
|
392 |
|
|
#define NQ16_ID 9
|
393 |
|
|
static const __float128 Q16_ID[NQ16_ID + 1] = {
|
394 |
|
|
3.199850952578356211091219295199301766718E-17Q,
|
395 |
|
|
3.652601488020654842194486058637953363918E-14Q,
|
396 |
|
|
1.620179741394865258354608590461839031281E-11Q,
|
397 |
|
|
3.629359209474609630056463248923684371426E-9Q,
|
398 |
|
|
4.473680923894354600193264347733477363305E-7Q,
|
399 |
|
|
3.106368086644715743265603656011050476736E-5Q,
|
400 |
|
|
1.198239259946770604954664925153424252622E-3Q,
|
401 |
|
|
2.446041004004283102372887804475767568272E-2Q,
|
402 |
|
|
2.403235525011860603014707768815113698768E-1Q,
|
403 |
|
|
9.491006790682158612266270665136910927149E-1Q,
|
404 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
405 |
|
|
};
|
406 |
|
|
|
407 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
408 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
409 |
|
|
Peak relative error 5.1e-36
|
410 |
|
|
0.0625 <= 1/x <= 0.125 */
|
411 |
|
|
#define NQ8_16N 11
|
412 |
|
|
static const __float128 Q8_16N[NQ8_16N + 1] = {
|
413 |
|
|
1.001954266485599464105669390693597125904E-17Q,
|
414 |
|
|
7.545499865295034556206475956620160007849E-15Q,
|
415 |
|
|
2.267838684785673931024792538193202559922E-12Q,
|
416 |
|
|
3.561909705814420373609574999542459912419E-10Q,
|
417 |
|
|
3.216201422768092505214730633842924944671E-8Q,
|
418 |
|
|
1.731194793857907454569364622452058554314E-6Q,
|
419 |
|
|
5.576944613034537050396518509871004586039E-5Q,
|
420 |
|
|
1.051787760316848982655967052985391418146E-3Q,
|
421 |
|
|
1.102852974036687441600678598019883746959E-2Q,
|
422 |
|
|
5.834647019292460494254225988766702933571E-2Q,
|
423 |
|
|
1.290281921604364618912425380717127576529E-1Q,
|
424 |
|
|
7.598886310387075708640370806458926458301E-2Q,
|
425 |
|
|
};
|
426 |
|
|
#define NQ8_16D 11
|
427 |
|
|
static const __float128 Q8_16D[NQ8_16D + 1] = {
|
428 |
|
|
1.368001558508338469503329967729951830843E-16Q,
|
429 |
|
|
1.034454121857542147020549303317348297289E-13Q,
|
430 |
|
|
3.128109209247090744354764050629381674436E-11Q,
|
431 |
|
|
4.957795214328501986562102573522064468671E-9Q,
|
432 |
|
|
4.537872468606711261992676606899273588899E-7Q,
|
433 |
|
|
2.493639207101727713192687060517509774182E-5Q,
|
434 |
|
|
8.294957278145328349785532236663051405805E-4Q,
|
435 |
|
|
1.646471258966713577374948205279380115839E-2Q,
|
436 |
|
|
1.878910092770966718491814497982191447073E-1Q,
|
437 |
|
|
1.152641605706170353727903052525652504075E0Q,
|
438 |
|
|
3.383550240669773485412333679367792932235E0Q,
|
439 |
|
|
3.823875252882035706910024716609908473970E0Q,
|
440 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
441 |
|
|
};
|
442 |
|
|
|
443 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
444 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
445 |
|
|
Peak relative error 3.9e-35
|
446 |
|
|
0.125 <= 1/x <= 0.1875 */
|
447 |
|
|
#define NQ5_8N 10
|
448 |
|
|
static const __float128 Q5_8N[NQ5_8N + 1] = {
|
449 |
|
|
1.750399094021293722243426623211733898747E-13Q,
|
450 |
|
|
6.483426211748008735242909236490115050294E-11Q,
|
451 |
|
|
9.279430665656575457141747875716899958373E-9Q,
|
452 |
|
|
6.696634968526907231258534757736576340266E-7Q,
|
453 |
|
|
2.666560823798895649685231292142838188061E-5Q,
|
454 |
|
|
6.025087697259436271271562769707550594540E-4Q,
|
455 |
|
|
7.652807734168613251901945778921336353485E-3Q,
|
456 |
|
|
5.226269002589406461622551452343519078905E-2Q,
|
457 |
|
|
1.748390159751117658969324896330142895079E-1Q,
|
458 |
|
|
2.378188719097006494782174902213083589660E-1Q,
|
459 |
|
|
8.383984859679804095463699702165659216831E-2Q,
|
460 |
|
|
};
|
461 |
|
|
#define NQ5_8D 10
|
462 |
|
|
static const __float128 Q5_8D[NQ5_8D + 1] = {
|
463 |
|
|
2.389878229704327939008104855942987615715E-12Q,
|
464 |
|
|
8.926142817142546018703814194987786425099E-10Q,
|
465 |
|
|
1.294065862406745901206588525833274399038E-7Q,
|
466 |
|
|
9.524139899457666250828752185212769682191E-6Q,
|
467 |
|
|
3.908332488377770886091936221573123353489E-4Q,
|
468 |
|
|
9.250427033957236609624199884089916836748E-3Q,
|
469 |
|
|
1.263420066165922645975830877751588421451E-1Q,
|
470 |
|
|
9.692527053860420229711317379861733180654E-1Q,
|
471 |
|
|
3.937813834630430172221329298841520707954E0Q,
|
472 |
|
|
7.603126427436356534498908111445191312181E0Q,
|
473 |
|
|
5.670677653334105479259958485084550934305E0Q,
|
474 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
475 |
|
|
};
|
476 |
|
|
|
477 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
478 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
479 |
|
|
Peak relative error 3.2e-35
|
480 |
|
|
0.1875 <= 1/x <= 0.25 */
|
481 |
|
|
#define NQ4_5N 10
|
482 |
|
|
static const __float128 Q4_5N[NQ4_5N + 1] = {
|
483 |
|
|
2.233870042925895644234072357400122854086E-11Q,
|
484 |
|
|
5.146223225761993222808463878999151699792E-9Q,
|
485 |
|
|
4.459114531468296461688753521109797474523E-7Q,
|
486 |
|
|
1.891397692931537975547242165291668056276E-5Q,
|
487 |
|
|
4.279519145911541776938964806470674565504E-4Q,
|
488 |
|
|
5.275239415656560634702073291768904783989E-3Q,
|
489 |
|
|
3.468698403240744801278238473898432608887E-2Q,
|
490 |
|
|
1.138773146337708415188856882915457888274E-1Q,
|
491 |
|
|
1.622717518946443013587108598334636458955E-1Q,
|
492 |
|
|
7.249040006390586123760992346453034628227E-2Q,
|
493 |
|
|
1.941595365256460232175236758506411486667E-3Q,
|
494 |
|
|
};
|
495 |
|
|
#define NQ4_5D 9
|
496 |
|
|
static const __float128 Q4_5D[NQ4_5D + 1] = {
|
497 |
|
|
3.049977232266999249626430127217988047453E-10Q,
|
498 |
|
|
7.120883230531035857746096928889676144099E-8Q,
|
499 |
|
|
6.301786064753734446784637919554359588859E-6Q,
|
500 |
|
|
2.762010530095069598480766869426308077192E-4Q,
|
501 |
|
|
6.572163250572867859316828886203406361251E-3Q,
|
502 |
|
|
8.752566114841221958200215255461843397776E-2Q,
|
503 |
|
|
6.487654992874805093499285311075289932664E-1Q,
|
504 |
|
|
2.576550017826654579451615283022812801435E0Q,
|
505 |
|
|
5.056392229924022835364779562707348096036E0Q,
|
506 |
|
|
4.179770081068251464907531367859072157773E0Q,
|
507 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
508 |
|
|
};
|
509 |
|
|
|
510 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
511 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
512 |
|
|
Peak relative error 1.4e-36
|
513 |
|
|
0.25 <= 1/x <= 0.3125 */
|
514 |
|
|
#define NQ3r2_4N 10
|
515 |
|
|
static const __float128 Q3r2_4N[NQ3r2_4N + 1] = {
|
516 |
|
|
6.126167301024815034423262653066023684411E-10Q,
|
517 |
|
|
1.043969327113173261820028225053598975128E-7Q,
|
518 |
|
|
6.592927270288697027757438170153763220190E-6Q,
|
519 |
|
|
2.009103660938497963095652951912071336730E-4Q,
|
520 |
|
|
3.220543385492643525985862356352195896964E-3Q,
|
521 |
|
|
2.774405975730545157543417650436941650990E-2Q,
|
522 |
|
|
1.258114008023826384487378016636555041129E-1Q,
|
523 |
|
|
2.811724258266902502344701449984698323860E-1Q,
|
524 |
|
|
2.691837665193548059322831687432415014067E-1Q,
|
525 |
|
|
7.949087384900985370683770525312735605034E-2Q,
|
526 |
|
|
1.229509543620976530030153018986910810747E-3Q,
|
527 |
|
|
};
|
528 |
|
|
#define NQ3r2_4D 9
|
529 |
|
|
static const __float128 Q3r2_4D[NQ3r2_4D + 1] = {
|
530 |
|
|
8.364260446128475461539941389210166156568E-9Q,
|
531 |
|
|
1.451301850638956578622154585560759862764E-6Q,
|
532 |
|
|
9.431830010924603664244578867057141839463E-5Q,
|
533 |
|
|
3.004105101667433434196388593004526182741E-3Q,
|
534 |
|
|
5.148157397848271739710011717102773780221E-2Q,
|
535 |
|
|
4.901089301726939576055285374953887874895E-1Q,
|
536 |
|
|
2.581760991981709901216967665934142240346E0Q,
|
537 |
|
|
7.257105880775059281391729708630912791847E0Q,
|
538 |
|
|
1.006014717326362868007913423810737369312E1Q,
|
539 |
|
|
5.879416600465399514404064187445293212470E0Q,
|
540 |
|
|
/* 1.000000000000000000000000000000000000000E0*/
|
541 |
|
|
};
|
542 |
|
|
|
543 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
544 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
545 |
|
|
Peak relative error 3.8e-36
|
546 |
|
|
0.3125 <= 1/x <= 0.375 */
|
547 |
|
|
#define NQ2r7_3r2N 9
|
548 |
|
|
static const __float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
|
549 |
|
|
7.584861620402450302063691901886141875454E-8Q,
|
550 |
|
|
9.300939338814216296064659459966041794591E-6Q,
|
551 |
|
|
4.112108906197521696032158235392604947895E-4Q,
|
552 |
|
|
8.515168851578898791897038357239630654431E-3Q,
|
553 |
|
|
8.971286321017307400142720556749573229058E-2Q,
|
554 |
|
|
4.885856732902956303343015636331874194498E-1Q,
|
555 |
|
|
1.334506268733103291656253500506406045846E0Q,
|
556 |
|
|
1.681207956863028164179042145803851824654E0Q,
|
557 |
|
|
8.165042692571721959157677701625853772271E-1Q,
|
558 |
|
|
9.805848115375053300608712721986235900715E-2Q,
|
559 |
|
|
};
|
560 |
|
|
#define NQ2r7_3r2D 9
|
561 |
|
|
static const __float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
|
562 |
|
|
1.035586492113036586458163971239438078160E-6Q,
|
563 |
|
|
1.301999337731768381683593636500979713689E-4Q,
|
564 |
|
|
5.993695702564527062553071126719088859654E-3Q,
|
565 |
|
|
1.321184892887881883489141186815457808785E-1Q,
|
566 |
|
|
1.528766555485015021144963194165165083312E0Q,
|
567 |
|
|
9.561463309176490874525827051566494939295E0Q,
|
568 |
|
|
3.203719484883967351729513662089163356911E1Q,
|
569 |
|
|
5.497294687660930446641539152123568668447E1Q,
|
570 |
|
|
4.391158169390578768508675452986948391118E1Q,
|
571 |
|
|
1.347836630730048077907818943625789418378E1Q,
|
572 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
573 |
|
|
};
|
574 |
|
|
|
575 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
576 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
577 |
|
|
Peak relative error 2.2e-35
|
578 |
|
|
0.375 <= 1/x <= 0.4375 */
|
579 |
|
|
#define NQ2r3_2r7N 9
|
580 |
|
|
static const __float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
|
581 |
|
|
4.455027774980750211349941766420190722088E-7Q,
|
582 |
|
|
4.031998274578520170631601850866780366466E-5Q,
|
583 |
|
|
1.273987274325947007856695677491340636339E-3Q,
|
584 |
|
|
1.818754543377448509897226554179659122873E-2Q,
|
585 |
|
|
1.266748858326568264126353051352269875352E-1Q,
|
586 |
|
|
4.327578594728723821137731555139472880414E-1Q,
|
587 |
|
|
6.892532471436503074928194969154192615359E-1Q,
|
588 |
|
|
4.490775818438716873422163588640262036506E-1Q,
|
589 |
|
|
8.649615949297322440032000346117031581572E-2Q,
|
590 |
|
|
7.261345286655345047417257611469066147561E-4Q,
|
591 |
|
|
};
|
592 |
|
|
#define NQ2r3_2r7D 8
|
593 |
|
|
static const __float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
|
594 |
|
|
6.082600739680555266312417978064954793142E-6Q,
|
595 |
|
|
5.693622538165494742945717226571441747567E-4Q,
|
596 |
|
|
1.901625907009092204458328768129666975975E-2Q,
|
597 |
|
|
2.958689532697857335456896889409923371570E-1Q,
|
598 |
|
|
2.343124711045660081603809437993368799568E0Q,
|
599 |
|
|
9.665894032187458293568704885528192804376E0Q,
|
600 |
|
|
2.035273104990617136065743426322454881353E1Q,
|
601 |
|
|
2.044102010478792896815088858740075165531E1Q,
|
602 |
|
|
8.445937177863155827844146643468706599304E0Q,
|
603 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
604 |
|
|
};
|
605 |
|
|
|
606 |
|
|
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
|
607 |
|
|
Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
|
608 |
|
|
Peak relative error 3.1e-36
|
609 |
|
|
0.4375 <= 1/x <= 0.5 */
|
610 |
|
|
#define NQ2_2r3N 9
|
611 |
|
|
static const __float128 Q2_2r3N[NQ2_2r3N + 1] = {
|
612 |
|
|
2.817566786579768804844367382809101929314E-6Q,
|
613 |
|
|
2.122772176396691634147024348373539744935E-4Q,
|
614 |
|
|
5.501378031780457828919593905395747517585E-3Q,
|
615 |
|
|
6.355374424341762686099147452020466524659E-2Q,
|
616 |
|
|
3.539652320122661637429658698954748337223E-1Q,
|
617 |
|
|
9.571721066119617436343740541777014319695E-1Q,
|
618 |
|
|
1.196258777828426399432550698612171955305E0Q,
|
619 |
|
|
6.069388659458926158392384709893753793967E-1Q,
|
620 |
|
|
9.026746127269713176512359976978248763621E-2Q,
|
621 |
|
|
5.317668723070450235320878117210807236375E-4Q,
|
622 |
|
|
};
|
623 |
|
|
#define NQ2_2r3D 8
|
624 |
|
|
static const __float128 Q2_2r3D[NQ2_2r3D + 1] = {
|
625 |
|
|
3.846924354014260866793741072933159380158E-5Q,
|
626 |
|
|
3.017562820057704325510067178327449946763E-3Q,
|
627 |
|
|
8.356305620686867949798885808540444210935E-2Q,
|
628 |
|
|
1.068314930499906838814019619594424586273E0Q,
|
629 |
|
|
6.900279623894821067017966573640732685233E0Q,
|
630 |
|
|
2.307667390886377924509090271780839563141E1Q,
|
631 |
|
|
3.921043465412723970791036825401273528513E1Q,
|
632 |
|
|
3.167569478939719383241775717095729233436E1Q,
|
633 |
|
|
1.051023841699200920276198346301543665909E1Q,
|
634 |
|
|
/* 1.000000000000000000000000000000000000000E0*/
|
635 |
|
|
};
|
636 |
|
|
|
637 |
|
|
|
638 |
|
|
/* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
|
639 |
|
|
|
640 |
|
|
static __float128
|
641 |
|
|
neval (__float128 x, const __float128 *p, int n)
|
642 |
|
|
{
|
643 |
|
|
__float128 y;
|
644 |
|
|
|
645 |
|
|
p += n;
|
646 |
|
|
y = *p--;
|
647 |
|
|
do
|
648 |
|
|
{
|
649 |
|
|
y = y * x + *p--;
|
650 |
|
|
}
|
651 |
|
|
while (--n > 0);
|
652 |
|
|
return y;
|
653 |
|
|
}
|
654 |
|
|
|
655 |
|
|
|
656 |
|
|
/* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
|
657 |
|
|
|
658 |
|
|
static __float128
|
659 |
|
|
deval (__float128 x, const __float128 *p, int n)
|
660 |
|
|
{
|
661 |
|
|
__float128 y;
|
662 |
|
|
|
663 |
|
|
p += n;
|
664 |
|
|
y = x + *p--;
|
665 |
|
|
do
|
666 |
|
|
{
|
667 |
|
|
y = y * x + *p--;
|
668 |
|
|
}
|
669 |
|
|
while (--n > 0);
|
670 |
|
|
return y;
|
671 |
|
|
}
|
672 |
|
|
|
673 |
|
|
|
674 |
|
|
/* Bessel function of the first kind, order zero. */
|
675 |
|
|
|
676 |
|
|
__float128
|
677 |
|
|
j0q (__float128 x)
|
678 |
|
|
{
|
679 |
|
|
__float128 xx, xinv, z, p, q, c, s, cc, ss;
|
680 |
|
|
|
681 |
|
|
if (! finiteq (x))
|
682 |
|
|
{
|
683 |
|
|
if (x != x)
|
684 |
|
|
return x;
|
685 |
|
|
else
|
686 |
|
|
return 0.0Q;
|
687 |
|
|
}
|
688 |
|
|
if (x == 0.0Q)
|
689 |
|
|
return 1.0Q;
|
690 |
|
|
|
691 |
|
|
xx = fabsq (x);
|
692 |
|
|
if (xx <= 2.0Q)
|
693 |
|
|
{
|
694 |
|
|
/* 0 <= x <= 2 */
|
695 |
|
|
z = xx * xx;
|
696 |
|
|
p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
|
697 |
|
|
p -= 0.25Q * z;
|
698 |
|
|
p += 1.0Q;
|
699 |
|
|
return p;
|
700 |
|
|
}
|
701 |
|
|
|
702 |
|
|
xinv = 1.0Q / xx;
|
703 |
|
|
z = xinv * xinv;
|
704 |
|
|
if (xinv <= 0.25)
|
705 |
|
|
{
|
706 |
|
|
if (xinv <= 0.125)
|
707 |
|
|
{
|
708 |
|
|
if (xinv <= 0.0625)
|
709 |
|
|
{
|
710 |
|
|
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
|
711 |
|
|
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
|
712 |
|
|
}
|
713 |
|
|
else
|
714 |
|
|
{
|
715 |
|
|
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
|
716 |
|
|
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
|
717 |
|
|
}
|
718 |
|
|
}
|
719 |
|
|
else if (xinv <= 0.1875)
|
720 |
|
|
{
|
721 |
|
|
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
|
722 |
|
|
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
|
723 |
|
|
}
|
724 |
|
|
else
|
725 |
|
|
{
|
726 |
|
|
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
|
727 |
|
|
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
|
728 |
|
|
}
|
729 |
|
|
} /* .25 */
|
730 |
|
|
else /* if (xinv <= 0.5) */
|
731 |
|
|
{
|
732 |
|
|
if (xinv <= 0.375)
|
733 |
|
|
{
|
734 |
|
|
if (xinv <= 0.3125)
|
735 |
|
|
{
|
736 |
|
|
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
|
737 |
|
|
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
|
738 |
|
|
}
|
739 |
|
|
else
|
740 |
|
|
{
|
741 |
|
|
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
|
742 |
|
|
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
|
743 |
|
|
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
|
744 |
|
|
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
|
745 |
|
|
}
|
746 |
|
|
}
|
747 |
|
|
else if (xinv <= 0.4375)
|
748 |
|
|
{
|
749 |
|
|
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
|
750 |
|
|
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
|
751 |
|
|
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
|
752 |
|
|
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
|
753 |
|
|
}
|
754 |
|
|
else
|
755 |
|
|
{
|
756 |
|
|
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
|
757 |
|
|
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
|
758 |
|
|
}
|
759 |
|
|
}
|
760 |
|
|
p = 1.0Q + z * p;
|
761 |
|
|
q = z * xinv * q;
|
762 |
|
|
q = q - 0.125Q * xinv;
|
763 |
|
|
/* X = x - pi/4
|
764 |
|
|
cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
|
765 |
|
|
= 1/sqrt(2) * (cos(x) + sin(x))
|
766 |
|
|
sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
|
767 |
|
|
= 1/sqrt(2) * (sin(x) - cos(x))
|
768 |
|
|
sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
769 |
|
|
cf. Fdlibm. */
|
770 |
|
|
sincosq (xx, &s, &c);
|
771 |
|
|
ss = s - c;
|
772 |
|
|
cc = s + c;
|
773 |
|
|
z = - cosq (xx + xx);
|
774 |
|
|
if ((s * c) < 0)
|
775 |
|
|
cc = z / ss;
|
776 |
|
|
else
|
777 |
|
|
ss = z / cc;
|
778 |
|
|
z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
|
779 |
|
|
return z;
|
780 |
|
|
}
|
781 |
|
|
|
782 |
|
|
|
783 |
|
|
/* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2)
|
784 |
|
|
Peak absolute error 1.7e-36 (relative where Y0 > 1)
|
785 |
|
|
|
786 |
|
|
#define NY0_2N 7
|
787 |
|
|
static __float128 Y0_2N[NY0_2N + 1] = {
|
788 |
|
|
-1.062023609591350692692296993537002558155E19Q,
|
789 |
|
|
2.542000883190248639104127452714966858866E19Q,
|
790 |
|
|
-1.984190771278515324281415820316054696545E18Q,
|
791 |
|
|
4.982586044371592942465373274440222033891E16Q,
|
792 |
|
|
-5.529326354780295177243773419090123407550E14Q,
|
793 |
|
|
3.013431465522152289279088265336861140391E12Q,
|
794 |
|
|
-7.959436160727126750732203098982718347785E9Q,
|
795 |
|
|
8.230845651379566339707130644134372793322E6Q,
|
796 |
|
|
};
|
797 |
|
|
#define NY0_2D 7
|
798 |
|
|
static __float128 Y0_2D[NY0_2D + 1] = {
|
799 |
|
|
1.438972634353286978700329883122253752192E20Q,
|
800 |
|
|
1.856409101981569254247700169486907405500E18Q,
|
801 |
|
|
1.219693352678218589553725579802986255614E16Q,
|
802 |
|
|
5.389428943282838648918475915779958097958E13Q,
|
803 |
|
|
1.774125762108874864433872173544743051653E11Q,
|
804 |
|
|
4.522104832545149534808218252434693007036E8Q,
|
805 |
|
|
8.872187401232943927082914504125234454930E5Q,
|
806 |
|
|
1.251945613186787532055610876304669413955E3Q,
|
807 |
|
|
/* 1.000000000000000000000000000000000000000E0 */
|
808 |
|
|
};
|
809 |
|
|
|
810 |
|
|
|
811 |
|
|
/* Bessel function of the second kind, order zero. */
|
812 |
|
|
|
813 |
|
|
__float128
|
814 |
|
|
y0q (__float128 x)
|
815 |
|
|
{
|
816 |
|
|
__float128 xx, xinv, z, p, q, c, s, cc, ss;
|
817 |
|
|
|
818 |
|
|
if (! finiteq (x))
|
819 |
|
|
{
|
820 |
|
|
if (x != x)
|
821 |
|
|
return x;
|
822 |
|
|
else
|
823 |
|
|
return 0.0Q;
|
824 |
|
|
}
|
825 |
|
|
if (x <= 0.0Q)
|
826 |
|
|
{
|
827 |
|
|
if (x < 0.0Q)
|
828 |
|
|
return (zero / (zero * x));
|
829 |
|
|
return -HUGE_VALQ + x;
|
830 |
|
|
}
|
831 |
|
|
xx = fabsq (x);
|
832 |
|
|
if (xx <= 2.0Q)
|
833 |
|
|
{
|
834 |
|
|
/* 0 <= x <= 2 */
|
835 |
|
|
z = xx * xx;
|
836 |
|
|
p = neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
|
837 |
|
|
p = TWOOPI * logq (x) * j0q (x) + p;
|
838 |
|
|
return p;
|
839 |
|
|
}
|
840 |
|
|
|
841 |
|
|
xinv = 1.0Q / xx;
|
842 |
|
|
z = xinv * xinv;
|
843 |
|
|
if (xinv <= 0.25)
|
844 |
|
|
{
|
845 |
|
|
if (xinv <= 0.125)
|
846 |
|
|
{
|
847 |
|
|
if (xinv <= 0.0625)
|
848 |
|
|
{
|
849 |
|
|
p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
|
850 |
|
|
q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
|
851 |
|
|
}
|
852 |
|
|
else
|
853 |
|
|
{
|
854 |
|
|
p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
|
855 |
|
|
q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
|
856 |
|
|
}
|
857 |
|
|
}
|
858 |
|
|
else if (xinv <= 0.1875)
|
859 |
|
|
{
|
860 |
|
|
p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
|
861 |
|
|
q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
|
862 |
|
|
}
|
863 |
|
|
else
|
864 |
|
|
{
|
865 |
|
|
p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
|
866 |
|
|
q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
|
867 |
|
|
}
|
868 |
|
|
} /* .25 */
|
869 |
|
|
else /* if (xinv <= 0.5) */
|
870 |
|
|
{
|
871 |
|
|
if (xinv <= 0.375)
|
872 |
|
|
{
|
873 |
|
|
if (xinv <= 0.3125)
|
874 |
|
|
{
|
875 |
|
|
p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
|
876 |
|
|
q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
|
877 |
|
|
}
|
878 |
|
|
else
|
879 |
|
|
{
|
880 |
|
|
p = neval (z, P2r7_3r2N, NP2r7_3r2N)
|
881 |
|
|
/ deval (z, P2r7_3r2D, NP2r7_3r2D);
|
882 |
|
|
q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
|
883 |
|
|
/ deval (z, Q2r7_3r2D, NQ2r7_3r2D);
|
884 |
|
|
}
|
885 |
|
|
}
|
886 |
|
|
else if (xinv <= 0.4375)
|
887 |
|
|
{
|
888 |
|
|
p = neval (z, P2r3_2r7N, NP2r3_2r7N)
|
889 |
|
|
/ deval (z, P2r3_2r7D, NP2r3_2r7D);
|
890 |
|
|
q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
|
891 |
|
|
/ deval (z, Q2r3_2r7D, NQ2r3_2r7D);
|
892 |
|
|
}
|
893 |
|
|
else
|
894 |
|
|
{
|
895 |
|
|
p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
|
896 |
|
|
q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
|
897 |
|
|
}
|
898 |
|
|
}
|
899 |
|
|
p = 1.0Q + z * p;
|
900 |
|
|
q = z * xinv * q;
|
901 |
|
|
q = q - 0.125Q * xinv;
|
902 |
|
|
/* X = x - pi/4
|
903 |
|
|
cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
|
904 |
|
|
= 1/sqrt(2) * (cos(x) + sin(x))
|
905 |
|
|
sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
|
906 |
|
|
= 1/sqrt(2) * (sin(x) - cos(x))
|
907 |
|
|
sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
|
908 |
|
|
cf. Fdlibm. */
|
909 |
|
|
sincosq (x, &s, &c);
|
910 |
|
|
ss = s - c;
|
911 |
|
|
cc = s + c;
|
912 |
|
|
z = - cosq (x + x);
|
913 |
|
|
if ((s * c) < 0)
|
914 |
|
|
cc = z / ss;
|
915 |
|
|
else
|
916 |
|
|
ss = z / cc;
|
917 |
|
|
z = ONEOSQPI * (p * ss + q * cc) / sqrtq (x);
|
918 |
|
|
return z;
|
919 |
|
|
}
|