OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [j0q.c] - Blame information for rev 778

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 740 jeremybenn
/*                                                      j0l.c
2
 *
3
 *      Bessel function of order zero
4
 *
5
 *
6
 *
7
 * SYNOPSIS:
8
 *
9
 * long double x, y, j0l();
10
 *
11
 * y = j0l( x );
12
 *
13
 *
14
 *
15
 * DESCRIPTION:
16
 *
17
 * Returns Bessel function of first kind, order zero of the argument.
18
 *
19
 * The domain is divided into two major intervals [0, 2] and
20
 * (2, infinity). In the first interval the rational approximation
21
 * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
22
 * The second interval is further partitioned into eight equal segments
23
 * of 1/x.
24
 *
25
 * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
26
 * X = x - pi/4,
27
 *
28
 * and the auxiliary functions are given by
29
 *
30
 * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
31
 * P0(x) = 1 + 1/x^2 R(1/x^2)
32
 *
33
 * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
34
 * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
35
 *
36
 *
37
 *
38
 * ACCURACY:
39
 *
40
 *                      Absolute error:
41
 * arithmetic   domain      # trials      peak         rms
42
 *    IEEE      0, 30       100000      1.7e-34      2.4e-35
43
 *
44
 *
45
 */
46
 
47
/*                                                      y0l.c
48
 *
49
 *      Bessel function of the second kind, order zero
50
 *
51
 *
52
 *
53
 * SYNOPSIS:
54
 *
55
 * double x, y, y0l();
56
 *
57
 * y = y0l( x );
58
 *
59
 *
60
 *
61
 * DESCRIPTION:
62
 *
63
 * Returns Bessel function of the second kind, of order
64
 * zero, of the argument.
65
 *
66
 * The approximation is the same as for J0(x), and
67
 * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
68
 *
69
 * ACCURACY:
70
 *
71
 *  Absolute error, when y0(x) < 1; else relative error:
72
 *
73
 * arithmetic   domain     # trials      peak         rms
74
 *    IEEE      0, 30       100000      3.0e-34     2.7e-35
75
 *
76
 */
77
 
78
/* Copyright 2001 by Stephen L. Moshier (moshier@na-net.ornl.gov).
79
 
80
    This library is free software; you can redistribute it and/or
81
    modify it under the terms of the GNU Lesser General Public
82
    License as published by the Free Software Foundation; either
83
    version 2.1 of the License, or (at your option) any later version.
84
 
85
    This library is distributed in the hope that it will be useful,
86
    but WITHOUT ANY WARRANTY; without even the implied warranty of
87
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
88
    Lesser General Public License for more details.
89
 
90
    You should have received a copy of the GNU Lesser General Public
91
    License along with this library; if not, write to the Free Software
92
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
93
 
94
#include "quadmath-imp.h"
95
 
96
/* 1 / sqrt(pi) */
97
static const __float128 ONEOSQPI = 5.6418958354775628694807945156077258584405E-1Q;
98
/* 2 / pi */
99
static const __float128 TWOOPI = 6.3661977236758134307553505349005744813784E-1Q;
100
static const __float128 zero = 0.0Q;
101
 
102
/* J0(x) = 1 - x^2/4 + x^2 x^2 R(x^2)
103
   Peak relative error 3.4e-37
104
 
105
#define NJ0_2N 6
106
static const __float128 J0_2N[NJ0_2N + 1] = {
107
  3.133239376997663645548490085151484674892E16Q,
108
 -5.479944965767990821079467311839107722107E14Q,
109
  6.290828903904724265980249871997551894090E12Q,
110
 -3.633750176832769659849028554429106299915E10Q,
111
  1.207743757532429576399485415069244807022E8Q,
112
 -2.107485999925074577174305650549367415465E5Q,
113
  1.562826808020631846245296572935547005859E2Q,
114
};
115
#define NJ0_2D 6
116
static const __float128 J0_2D[NJ0_2D + 1] = {
117
  2.005273201278504733151033654496928968261E18Q,
118
  2.063038558793221244373123294054149790864E16Q,
119
  1.053350447931127971406896594022010524994E14Q,
120
  3.496556557558702583143527876385508882310E11Q,
121
  8.249114511878616075860654484367133976306E8Q,
122
  1.402965782449571800199759247964242790589E6Q,
123
  1.619910762853439600957801751815074787351E3Q,
124
 /* 1.000000000000000000000000000000000000000E0 */
125
};
126
 
127
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2),
128
 
129
   Peak relative error 3.3e-36  */
130
#define NP16_IN 9
131
static const __float128 P16_IN[NP16_IN + 1] = {
132
  -1.901689868258117463979611259731176301065E-16Q,
133
  -1.798743043824071514483008340803573980931E-13Q,
134
  -6.481746687115262291873324132944647438959E-11Q,
135
  -1.150651553745409037257197798528294248012E-8Q,
136
  -1.088408467297401082271185599507222695995E-6Q,
137
  -5.551996725183495852661022587879817546508E-5Q,
138
  -1.477286941214245433866838787454880214736E-3Q,
139
  -1.882877976157714592017345347609200402472E-2Q,
140
  -9.620983176855405325086530374317855880515E-2Q,
141
  -1.271468546258855781530458854476627766233E-1Q,
142
};
143
#define NP16_ID 9
144
static const __float128 P16_ID[NP16_ID + 1] = {
145
  2.704625590411544837659891569420764475007E-15Q,
146
  2.562526347676857624104306349421985403573E-12Q,
147
  9.259137589952741054108665570122085036246E-10Q,
148
  1.651044705794378365237454962653430805272E-7Q,
149
  1.573561544138733044977714063100859136660E-5Q,
150
  8.134482112334882274688298469629884804056E-4Q,
151
  2.219259239404080863919375103673593571689E-2Q,
152
  2.976990606226596289580242451096393862792E-1Q,
153
  1.713895630454693931742734911930937246254E0Q,
154
  3.231552290717904041465898249160757368855E0Q,
155
  /* 1.000000000000000000000000000000000000000E0 */
156
};
157
 
158
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
159
    0.0625 <= 1/x <= 0.125
160
    Peak relative error 2.4e-35  */
161
#define NP8_16N 10
162
static const __float128 P8_16N[NP8_16N + 1] = {
163
  -2.335166846111159458466553806683579003632E-15Q,
164
  -1.382763674252402720401020004169367089975E-12Q,
165
  -3.192160804534716696058987967592784857907E-10Q,
166
  -3.744199606283752333686144670572632116899E-8Q,
167
  -2.439161236879511162078619292571922772224E-6Q,
168
  -9.068436986859420951664151060267045346549E-5Q,
169
  -1.905407090637058116299757292660002697359E-3Q,
170
  -2.164456143936718388053842376884252978872E-2Q,
171
  -1.212178415116411222341491717748696499966E-1Q,
172
  -2.782433626588541494473277445959593334494E-1Q,
173
  -1.670703190068873186016102289227646035035E-1Q,
174
};
175
#define NP8_16D 10
176
static const __float128 P8_16D[NP8_16D + 1] = {
177
  3.321126181135871232648331450082662856743E-14Q,
178
  1.971894594837650840586859228510007703641E-11Q,
179
  4.571144364787008285981633719513897281690E-9Q,
180
  5.396419143536287457142904742849052402103E-7Q,
181
  3.551548222385845912370226756036899901549E-5Q,
182
  1.342353874566932014705609788054598013516E-3Q,
183
  2.899133293006771317589357444614157734385E-2Q,
184
  3.455374978185770197704507681491574261545E-1Q,
185
  2.116616964297512311314454834712634820514E0Q,
186
  5.850768316827915470087758636881584174432E0Q,
187
  5.655273858938766830855753983631132928968E0Q,
188
  /* 1.000000000000000000000000000000000000000E0 */
189
};
190
 
191
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
192
  0.125 <= 1/x <= 0.1875
193
  Peak relative error 2.7e-35  */
194
#define NP5_8N 10
195
static const __float128 P5_8N[NP5_8N + 1] = {
196
  -1.270478335089770355749591358934012019596E-12Q,
197
  -4.007588712145412921057254992155810347245E-10Q,
198
  -4.815187822989597568124520080486652009281E-8Q,
199
  -2.867070063972764880024598300408284868021E-6Q,
200
  -9.218742195161302204046454768106063638006E-5Q,
201
  -1.635746821447052827526320629828043529997E-3Q,
202
  -1.570376886640308408247709616497261011707E-2Q,
203
  -7.656484795303305596941813361786219477807E-2Q,
204
  -1.659371030767513274944805479908858628053E-1Q,
205
  -1.185340550030955660015841796219919804915E-1Q,
206
  -8.920026499909994671248893388013790366712E-3Q,
207
};
208
#define NP5_8D 9
209
static const __float128 P5_8D[NP5_8D + 1] = {
210
  1.806902521016705225778045904631543990314E-11Q,
211
  5.728502760243502431663549179135868966031E-9Q,
212
  6.938168504826004255287618819550667978450E-7Q,
213
  4.183769964807453250763325026573037785902E-5Q,
214
  1.372660678476925468014882230851637878587E-3Q,
215
  2.516452105242920335873286419212708961771E-2Q,
216
  2.550502712902647803796267951846557316182E-1Q,
217
  1.365861559418983216913629123778747617072E0Q,
218
  3.523825618308783966723472468855042541407E0Q,
219
  3.656365803506136165615111349150536282434E0Q,
220
  /* 1.000000000000000000000000000000000000000E0 */
221
};
222
 
223
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
224
   Peak relative error 3.5e-35
225
   0.1875 <= 1/x <= 0.25  */
226
#define NP4_5N 9
227
static const __float128 P4_5N[NP4_5N + 1] = {
228
  -9.791405771694098960254468859195175708252E-10Q,
229
  -1.917193059944531970421626610188102836352E-7Q,
230
  -1.393597539508855262243816152893982002084E-5Q,
231
  -4.881863490846771259880606911667479860077E-4Q,
232
  -8.946571245022470127331892085881699269853E-3Q,
233
  -8.707474232568097513415336886103899434251E-2Q,
234
  -4.362042697474650737898551272505525973766E-1Q,
235
  -1.032712171267523975431451359962375617386E0Q,
236
  -9.630502683169895107062182070514713702346E-1Q,
237
  -2.251804386252969656586810309252357233320E-1Q,
238
};
239
#define NP4_5D 9
240
static const __float128 P4_5D[NP4_5D + 1] = {
241
  1.392555487577717669739688337895791213139E-8Q,
242
  2.748886559120659027172816051276451376854E-6Q,
243
  2.024717710644378047477189849678576659290E-4Q,
244
  7.244868609350416002930624752604670292469E-3Q,
245
  1.373631762292244371102989739300382152416E-1Q,
246
  1.412298581400224267910294815260613240668E0Q,
247
  7.742495637843445079276397723849017617210E0Q,
248
  2.138429269198406512028307045259503811861E1Q,
249
  2.651547684548423476506826951831712762610E1Q,
250
  1.167499382465291931571685222882909166935E1Q,
251
  /* 1.000000000000000000000000000000000000000E0 */
252
};
253
 
254
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
255
   Peak relative error 2.3e-36
256
   0.25 <= 1/x <= 0.3125  */
257
#define NP3r2_4N 9
258
static const __float128 P3r2_4N[NP3r2_4N + 1] = {
259
  -2.589155123706348361249809342508270121788E-8Q,
260
  -3.746254369796115441118148490849195516593E-6Q,
261
  -1.985595497390808544622893738135529701062E-4Q,
262
  -5.008253705202932091290132760394976551426E-3Q,
263
  -6.529469780539591572179155511840853077232E-2Q,
264
  -4.468736064761814602927408833818990271514E-1Q,
265
  -1.556391252586395038089729428444444823380E0Q,
266
  -2.533135309840530224072920725976994981638E0Q,
267
  -1.605509621731068453869408718565392869560E0Q,
268
  -2.518966692256192789269859830255724429375E-1Q,
269
};
270
#define NP3r2_4D 9
271
static const __float128 P3r2_4D[NP3r2_4D + 1] = {
272
  3.682353957237979993646169732962573930237E-7Q,
273
  5.386741661883067824698973455566332102029E-5Q,
274
  2.906881154171822780345134853794241037053E-3Q,
275
  7.545832595801289519475806339863492074126E-2Q,
276
  1.029405357245594877344360389469584526654E0Q,
277
  7.565706120589873131187989560509757626725E0Q,
278
  2.951172890699569545357692207898667665796E1Q,
279
  5.785723537170311456298467310529815457536E1Q,
280
  5.095621464598267889126015412522773474467E1Q,
281
  1.602958484169953109437547474953308401442E1Q,
282
  /* 1.000000000000000000000000000000000000000E0 */
283
};
284
 
285
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
286
   Peak relative error 1.0e-35
287
   0.3125 <= 1/x <= 0.375  */
288
#define NP2r7_3r2N 9
289
static const __float128 P2r7_3r2N[NP2r7_3r2N + 1] = {
290
  -1.917322340814391131073820537027234322550E-7Q,
291
  -1.966595744473227183846019639723259011906E-5Q,
292
  -7.177081163619679403212623526632690465290E-4Q,
293
  -1.206467373860974695661544653741899755695E-2Q,
294
  -1.008656452188539812154551482286328107316E-1Q,
295
  -4.216016116408810856620947307438823892707E-1Q,
296
  -8.378631013025721741744285026537009814161E-1Q,
297
  -6.973895635309960850033762745957946272579E-1Q,
298
  -1.797864718878320770670740413285763554812E-1Q,
299
  -4.098025357743657347681137871388402849581E-3Q,
300
};
301
#define NP2r7_3r2D 8
302
static const __float128 P2r7_3r2D[NP2r7_3r2D + 1] = {
303
  2.726858489303036441686496086962545034018E-6Q,
304
  2.840430827557109238386808968234848081424E-4Q,
305
  1.063826772041781947891481054529454088832E-2Q,
306
  1.864775537138364773178044431045514405468E-1Q,
307
  1.665660052857205170440952607701728254211E0Q,
308
  7.723745889544331153080842168958348568395E0Q,
309
  1.810726427571829798856428548102077799835E1Q,
310
  1.986460672157794440666187503833545388527E1Q,
311
  8.645503204552282306364296517220055815488E0Q,
312
  /* 1.000000000000000000000000000000000000000E0 */
313
};
314
 
315
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
316
   Peak relative error 1.3e-36
317
   0.3125 <= 1/x <= 0.4375  */
318
#define NP2r3_2r7N 9
319
static const __float128 P2r3_2r7N[NP2r3_2r7N + 1] = {
320
  -1.594642785584856746358609622003310312622E-6Q,
321
  -1.323238196302221554194031733595194539794E-4Q,
322
  -3.856087818696874802689922536987100372345E-3Q,
323
  -5.113241710697777193011470733601522047399E-2Q,
324
  -3.334229537209911914449990372942022350558E-1Q,
325
  -1.075703518198127096179198549659283422832E0Q,
326
  -1.634174803414062725476343124267110981807E0Q,
327
  -1.030133247434119595616826842367268304880E0Q,
328
  -1.989811539080358501229347481000707289391E-1Q,
329
  -3.246859189246653459359775001466924610236E-3Q,
330
};
331
#define NP2r3_2r7D 8
332
static const __float128 P2r3_2r7D[NP2r3_2r7D + 1] = {
333
  2.267936634217251403663034189684284173018E-5Q,
334
  1.918112982168673386858072491437971732237E-3Q,
335
  5.771704085468423159125856786653868219522E-2Q,
336
  8.056124451167969333717642810661498890507E-1Q,
337
  5.687897967531010276788680634413789328776E0Q,
338
  2.072596760717695491085444438270778394421E1Q,
339
  3.801722099819929988585197088613160496684E1Q,
340
  3.254620235902912339534998592085115836829E1Q,
341
  1.104847772130720331801884344645060675036E1Q,
342
  /* 1.000000000000000000000000000000000000000E0 */
343
};
344
 
345
/* J0(x)cosX + Y0(x)sinX = sqrt( 2/(pi x)) P0(x), P0(x) = 1 + 1/x^2 R(1/x^2)
346
   Peak relative error 1.2e-35
347
   0.4375 <= 1/x <= 0.5  */
348
#define NP2_2r3N 8
349
static const __float128 P2_2r3N[NP2_2r3N + 1] = {
350
  -1.001042324337684297465071506097365389123E-4Q,
351
  -6.289034524673365824853547252689991418981E-3Q,
352
  -1.346527918018624234373664526930736205806E-1Q,
353
  -1.268808313614288355444506172560463315102E0Q,
354
  -5.654126123607146048354132115649177406163E0Q,
355
  -1.186649511267312652171775803270911971693E1Q,
356
  -1.094032424931998612551588246779200724257E1Q,
357
  -3.728792136814520055025256353193674625267E0Q,
358
  -3.000348318524471807839934764596331810608E-1Q,
359
};
360
#define NP2_2r3D 8
361
static const __float128 P2_2r3D[NP2_2r3D + 1] = {
362
  1.423705538269770974803901422532055612980E-3Q,
363
  9.171476630091439978533535167485230575894E-2Q,
364
  2.049776318166637248868444600215942828537E0Q,
365
  2.068970329743769804547326701946144899583E1Q,
366
  1.025103500560831035592731539565060347709E2Q,
367
  2.528088049697570728252145557167066708284E2Q,
368
  2.992160327587558573740271294804830114205E2Q,
369
  1.540193761146551025832707739468679973036E2Q,
370
  2.779516701986912132637672140709452502650E1Q,
371
  /* 1.000000000000000000000000000000000000000E0 */
372
};
373
 
374
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
375
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
376
   Peak relative error 2.2e-35
377
 
378
#define NQ16_IN 10
379
static const __float128 Q16_IN[NQ16_IN + 1] = {
380
  2.343640834407975740545326632205999437469E-18Q,
381
  2.667978112927811452221176781536278257448E-15Q,
382
  1.178415018484555397390098879501969116536E-12Q,
383
  2.622049767502719728905924701288614016597E-10Q,
384
  3.196908059607618864801313380896308968673E-8Q,
385
  2.179466154171673958770030655199434798494E-6Q,
386
  8.139959091628545225221976413795645177291E-5Q,
387
  1.563900725721039825236927137885747138654E-3Q,
388
  1.355172364265825167113562519307194840307E-2Q,
389
  3.928058355906967977269780046844768588532E-2Q,
390
  1.107891967702173292405380993183694932208E-2Q,
391
};
392
#define NQ16_ID 9
393
static const __float128 Q16_ID[NQ16_ID + 1] = {
394
  3.199850952578356211091219295199301766718E-17Q,
395
  3.652601488020654842194486058637953363918E-14Q,
396
  1.620179741394865258354608590461839031281E-11Q,
397
  3.629359209474609630056463248923684371426E-9Q,
398
  4.473680923894354600193264347733477363305E-7Q,
399
  3.106368086644715743265603656011050476736E-5Q,
400
  1.198239259946770604954664925153424252622E-3Q,
401
  2.446041004004283102372887804475767568272E-2Q,
402
  2.403235525011860603014707768815113698768E-1Q,
403
  9.491006790682158612266270665136910927149E-1Q,
404
 /* 1.000000000000000000000000000000000000000E0 */
405
 };
406
 
407
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
408
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
409
   Peak relative error 5.1e-36
410
   0.0625 <= 1/x <= 0.125  */
411
#define NQ8_16N 11
412
static const __float128 Q8_16N[NQ8_16N + 1] = {
413
  1.001954266485599464105669390693597125904E-17Q,
414
  7.545499865295034556206475956620160007849E-15Q,
415
  2.267838684785673931024792538193202559922E-12Q,
416
  3.561909705814420373609574999542459912419E-10Q,
417
  3.216201422768092505214730633842924944671E-8Q,
418
  1.731194793857907454569364622452058554314E-6Q,
419
  5.576944613034537050396518509871004586039E-5Q,
420
  1.051787760316848982655967052985391418146E-3Q,
421
  1.102852974036687441600678598019883746959E-2Q,
422
  5.834647019292460494254225988766702933571E-2Q,
423
  1.290281921604364618912425380717127576529E-1Q,
424
  7.598886310387075708640370806458926458301E-2Q,
425
};
426
#define NQ8_16D 11
427
static const __float128 Q8_16D[NQ8_16D + 1] = {
428
  1.368001558508338469503329967729951830843E-16Q,
429
  1.034454121857542147020549303317348297289E-13Q,
430
  3.128109209247090744354764050629381674436E-11Q,
431
  4.957795214328501986562102573522064468671E-9Q,
432
  4.537872468606711261992676606899273588899E-7Q,
433
  2.493639207101727713192687060517509774182E-5Q,
434
  8.294957278145328349785532236663051405805E-4Q,
435
  1.646471258966713577374948205279380115839E-2Q,
436
  1.878910092770966718491814497982191447073E-1Q,
437
  1.152641605706170353727903052525652504075E0Q,
438
  3.383550240669773485412333679367792932235E0Q,
439
  3.823875252882035706910024716609908473970E0Q,
440
 /* 1.000000000000000000000000000000000000000E0 */
441
};
442
 
443
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
444
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
445
   Peak relative error 3.9e-35
446
   0.125 <= 1/x <= 0.1875  */
447
#define NQ5_8N 10
448
static const __float128 Q5_8N[NQ5_8N + 1] = {
449
  1.750399094021293722243426623211733898747E-13Q,
450
  6.483426211748008735242909236490115050294E-11Q,
451
  9.279430665656575457141747875716899958373E-9Q,
452
  6.696634968526907231258534757736576340266E-7Q,
453
  2.666560823798895649685231292142838188061E-5Q,
454
  6.025087697259436271271562769707550594540E-4Q,
455
  7.652807734168613251901945778921336353485E-3Q,
456
  5.226269002589406461622551452343519078905E-2Q,
457
  1.748390159751117658969324896330142895079E-1Q,
458
  2.378188719097006494782174902213083589660E-1Q,
459
  8.383984859679804095463699702165659216831E-2Q,
460
};
461
#define NQ5_8D 10
462
static const __float128 Q5_8D[NQ5_8D + 1] = {
463
  2.389878229704327939008104855942987615715E-12Q,
464
  8.926142817142546018703814194987786425099E-10Q,
465
  1.294065862406745901206588525833274399038E-7Q,
466
  9.524139899457666250828752185212769682191E-6Q,
467
  3.908332488377770886091936221573123353489E-4Q,
468
  9.250427033957236609624199884089916836748E-3Q,
469
  1.263420066165922645975830877751588421451E-1Q,
470
  9.692527053860420229711317379861733180654E-1Q,
471
  3.937813834630430172221329298841520707954E0Q,
472
  7.603126427436356534498908111445191312181E0Q,
473
  5.670677653334105479259958485084550934305E0Q,
474
 /* 1.000000000000000000000000000000000000000E0 */
475
};
476
 
477
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
478
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
479
   Peak relative error 3.2e-35
480
   0.1875 <= 1/x <= 0.25  */
481
#define NQ4_5N 10
482
static const __float128 Q4_5N[NQ4_5N + 1] = {
483
  2.233870042925895644234072357400122854086E-11Q,
484
  5.146223225761993222808463878999151699792E-9Q,
485
  4.459114531468296461688753521109797474523E-7Q,
486
  1.891397692931537975547242165291668056276E-5Q,
487
  4.279519145911541776938964806470674565504E-4Q,
488
  5.275239415656560634702073291768904783989E-3Q,
489
  3.468698403240744801278238473898432608887E-2Q,
490
  1.138773146337708415188856882915457888274E-1Q,
491
  1.622717518946443013587108598334636458955E-1Q,
492
  7.249040006390586123760992346453034628227E-2Q,
493
  1.941595365256460232175236758506411486667E-3Q,
494
};
495
#define NQ4_5D 9
496
static const __float128 Q4_5D[NQ4_5D + 1] = {
497
  3.049977232266999249626430127217988047453E-10Q,
498
  7.120883230531035857746096928889676144099E-8Q,
499
  6.301786064753734446784637919554359588859E-6Q,
500
  2.762010530095069598480766869426308077192E-4Q,
501
  6.572163250572867859316828886203406361251E-3Q,
502
  8.752566114841221958200215255461843397776E-2Q,
503
  6.487654992874805093499285311075289932664E-1Q,
504
  2.576550017826654579451615283022812801435E0Q,
505
  5.056392229924022835364779562707348096036E0Q,
506
  4.179770081068251464907531367859072157773E0Q,
507
 /* 1.000000000000000000000000000000000000000E0 */
508
};
509
 
510
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
511
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
512
   Peak relative error 1.4e-36
513
   0.25 <= 1/x <= 0.3125  */
514
#define NQ3r2_4N 10
515
static const __float128 Q3r2_4N[NQ3r2_4N + 1] = {
516
  6.126167301024815034423262653066023684411E-10Q,
517
  1.043969327113173261820028225053598975128E-7Q,
518
  6.592927270288697027757438170153763220190E-6Q,
519
  2.009103660938497963095652951912071336730E-4Q,
520
  3.220543385492643525985862356352195896964E-3Q,
521
  2.774405975730545157543417650436941650990E-2Q,
522
  1.258114008023826384487378016636555041129E-1Q,
523
  2.811724258266902502344701449984698323860E-1Q,
524
  2.691837665193548059322831687432415014067E-1Q,
525
  7.949087384900985370683770525312735605034E-2Q,
526
  1.229509543620976530030153018986910810747E-3Q,
527
};
528
#define NQ3r2_4D 9
529
static const __float128 Q3r2_4D[NQ3r2_4D + 1] = {
530
  8.364260446128475461539941389210166156568E-9Q,
531
  1.451301850638956578622154585560759862764E-6Q,
532
  9.431830010924603664244578867057141839463E-5Q,
533
  3.004105101667433434196388593004526182741E-3Q,
534
  5.148157397848271739710011717102773780221E-2Q,
535
  4.901089301726939576055285374953887874895E-1Q,
536
  2.581760991981709901216967665934142240346E0Q,
537
  7.257105880775059281391729708630912791847E0Q,
538
  1.006014717326362868007913423810737369312E1Q,
539
  5.879416600465399514404064187445293212470E0Q,
540
 /* 1.000000000000000000000000000000000000000E0*/
541
};
542
 
543
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
544
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
545
   Peak relative error 3.8e-36
546
   0.3125 <= 1/x <= 0.375  */
547
#define NQ2r7_3r2N 9
548
static const __float128 Q2r7_3r2N[NQ2r7_3r2N + 1] = {
549
  7.584861620402450302063691901886141875454E-8Q,
550
  9.300939338814216296064659459966041794591E-6Q,
551
  4.112108906197521696032158235392604947895E-4Q,
552
  8.515168851578898791897038357239630654431E-3Q,
553
  8.971286321017307400142720556749573229058E-2Q,
554
  4.885856732902956303343015636331874194498E-1Q,
555
  1.334506268733103291656253500506406045846E0Q,
556
  1.681207956863028164179042145803851824654E0Q,
557
  8.165042692571721959157677701625853772271E-1Q,
558
  9.805848115375053300608712721986235900715E-2Q,
559
};
560
#define NQ2r7_3r2D 9
561
static const __float128 Q2r7_3r2D[NQ2r7_3r2D + 1] = {
562
  1.035586492113036586458163971239438078160E-6Q,
563
  1.301999337731768381683593636500979713689E-4Q,
564
  5.993695702564527062553071126719088859654E-3Q,
565
  1.321184892887881883489141186815457808785E-1Q,
566
  1.528766555485015021144963194165165083312E0Q,
567
  9.561463309176490874525827051566494939295E0Q,
568
  3.203719484883967351729513662089163356911E1Q,
569
  5.497294687660930446641539152123568668447E1Q,
570
  4.391158169390578768508675452986948391118E1Q,
571
  1.347836630730048077907818943625789418378E1Q,
572
 /* 1.000000000000000000000000000000000000000E0 */
573
};
574
 
575
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
576
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
577
   Peak relative error 2.2e-35
578
   0.375 <= 1/x <= 0.4375  */
579
#define NQ2r3_2r7N 9
580
static const __float128 Q2r3_2r7N[NQ2r3_2r7N + 1] = {
581
  4.455027774980750211349941766420190722088E-7Q,
582
  4.031998274578520170631601850866780366466E-5Q,
583
  1.273987274325947007856695677491340636339E-3Q,
584
  1.818754543377448509897226554179659122873E-2Q,
585
  1.266748858326568264126353051352269875352E-1Q,
586
  4.327578594728723821137731555139472880414E-1Q,
587
  6.892532471436503074928194969154192615359E-1Q,
588
  4.490775818438716873422163588640262036506E-1Q,
589
  8.649615949297322440032000346117031581572E-2Q,
590
  7.261345286655345047417257611469066147561E-4Q,
591
};
592
#define NQ2r3_2r7D 8
593
static const __float128 Q2r3_2r7D[NQ2r3_2r7D + 1] = {
594
  6.082600739680555266312417978064954793142E-6Q,
595
  5.693622538165494742945717226571441747567E-4Q,
596
  1.901625907009092204458328768129666975975E-2Q,
597
  2.958689532697857335456896889409923371570E-1Q,
598
  2.343124711045660081603809437993368799568E0Q,
599
  9.665894032187458293568704885528192804376E0Q,
600
  2.035273104990617136065743426322454881353E1Q,
601
  2.044102010478792896815088858740075165531E1Q,
602
  8.445937177863155827844146643468706599304E0Q,
603
 /* 1.000000000000000000000000000000000000000E0 */
604
};
605
 
606
/* Y0(x)cosX - J0(x)sinX = sqrt( 2/(pi x)) Q0(x),
607
   Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
608
   Peak relative error 3.1e-36
609
   0.4375 <= 1/x <= 0.5  */
610
#define NQ2_2r3N 9
611
static const __float128 Q2_2r3N[NQ2_2r3N + 1] = {
612
  2.817566786579768804844367382809101929314E-6Q,
613
  2.122772176396691634147024348373539744935E-4Q,
614
  5.501378031780457828919593905395747517585E-3Q,
615
  6.355374424341762686099147452020466524659E-2Q,
616
  3.539652320122661637429658698954748337223E-1Q,
617
  9.571721066119617436343740541777014319695E-1Q,
618
  1.196258777828426399432550698612171955305E0Q,
619
  6.069388659458926158392384709893753793967E-1Q,
620
  9.026746127269713176512359976978248763621E-2Q,
621
  5.317668723070450235320878117210807236375E-4Q,
622
};
623
#define NQ2_2r3D 8
624
static const __float128 Q2_2r3D[NQ2_2r3D + 1] = {
625
  3.846924354014260866793741072933159380158E-5Q,
626
  3.017562820057704325510067178327449946763E-3Q,
627
  8.356305620686867949798885808540444210935E-2Q,
628
  1.068314930499906838814019619594424586273E0Q,
629
  6.900279623894821067017966573640732685233E0Q,
630
  2.307667390886377924509090271780839563141E1Q,
631
  3.921043465412723970791036825401273528513E1Q,
632
  3.167569478939719383241775717095729233436E1Q,
633
  1.051023841699200920276198346301543665909E1Q,
634
 /* 1.000000000000000000000000000000000000000E0*/
635
};
636
 
637
 
638
/* Evaluate P[n] x^n  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
639
 
640
static __float128
641
neval (__float128 x, const __float128 *p, int n)
642
{
643
  __float128 y;
644
 
645
  p += n;
646
  y = *p--;
647
  do
648
    {
649
      y = y * x + *p--;
650
    }
651
  while (--n > 0);
652
  return y;
653
}
654
 
655
 
656
/* Evaluate x^n+1  +  P[n] x^(n)  +  P[n-1] x^(n-1)  +  ...  +  P[0] */
657
 
658
static __float128
659
deval (__float128 x, const __float128 *p, int n)
660
{
661
  __float128 y;
662
 
663
  p += n;
664
  y = x + *p--;
665
  do
666
    {
667
      y = y * x + *p--;
668
    }
669
  while (--n > 0);
670
  return y;
671
}
672
 
673
 
674
/* Bessel function of the first kind, order zero.  */
675
 
676
__float128
677
j0q (__float128 x)
678
{
679
  __float128 xx, xinv, z, p, q, c, s, cc, ss;
680
 
681
  if (! finiteq (x))
682
    {
683
      if (x != x)
684
        return x;
685
      else
686
        return 0.0Q;
687
    }
688
  if (x == 0.0Q)
689
    return 1.0Q;
690
 
691
  xx = fabsq (x);
692
  if (xx <= 2.0Q)
693
    {
694
      /* 0 <= x <= 2 */
695
      z = xx * xx;
696
      p = z * z * neval (z, J0_2N, NJ0_2N) / deval (z, J0_2D, NJ0_2D);
697
      p -= 0.25Q * z;
698
      p += 1.0Q;
699
      return p;
700
    }
701
 
702
  xinv = 1.0Q / xx;
703
  z = xinv * xinv;
704
  if (xinv <= 0.25)
705
    {
706
      if (xinv <= 0.125)
707
        {
708
          if (xinv <= 0.0625)
709
            {
710
              p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
711
              q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
712
            }
713
          else
714
            {
715
              p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
716
              q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
717
            }
718
        }
719
      else if (xinv <= 0.1875)
720
        {
721
          p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
722
          q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
723
        }
724
      else
725
        {
726
          p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
727
          q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
728
        }
729
    }                           /* .25 */
730
  else /* if (xinv <= 0.5) */
731
    {
732
      if (xinv <= 0.375)
733
        {
734
          if (xinv <= 0.3125)
735
            {
736
              p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
737
              q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
738
            }
739
          else
740
            {
741
              p = neval (z, P2r7_3r2N, NP2r7_3r2N)
742
                  / deval (z, P2r7_3r2D, NP2r7_3r2D);
743
              q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
744
                  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
745
            }
746
        }
747
      else if (xinv <= 0.4375)
748
        {
749
          p = neval (z, P2r3_2r7N, NP2r3_2r7N)
750
              / deval (z, P2r3_2r7D, NP2r3_2r7D);
751
          q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
752
              / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
753
        }
754
      else
755
        {
756
          p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
757
          q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
758
        }
759
    }
760
  p = 1.0Q + z * p;
761
  q = z * xinv * q;
762
  q = q - 0.125Q * xinv;
763
  /* X = x - pi/4
764
     cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
765
     = 1/sqrt(2) * (cos(x) + sin(x))
766
     sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
767
     = 1/sqrt(2) * (sin(x) - cos(x))
768
     sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
769
     cf. Fdlibm.  */
770
  sincosq (xx, &s, &c);
771
  ss = s - c;
772
  cc = s + c;
773
  z = - cosq (xx + xx);
774
  if ((s * c) < 0)
775
    cc = z / ss;
776
  else
777
    ss = z / cc;
778
  z = ONEOSQPI * (p * cc - q * ss) / sqrtq (xx);
779
  return z;
780
}
781
 
782
 
783
/* Y0(x) = 2/pi * log(x) * J0(x) + R(x^2)
784
   Peak absolute error 1.7e-36 (relative where Y0 > 1)
785
 
786
#define NY0_2N 7
787
static __float128 Y0_2N[NY0_2N + 1] = {
788
 -1.062023609591350692692296993537002558155E19Q,
789
  2.542000883190248639104127452714966858866E19Q,
790
 -1.984190771278515324281415820316054696545E18Q,
791
  4.982586044371592942465373274440222033891E16Q,
792
 -5.529326354780295177243773419090123407550E14Q,
793
  3.013431465522152289279088265336861140391E12Q,
794
 -7.959436160727126750732203098982718347785E9Q,
795
  8.230845651379566339707130644134372793322E6Q,
796
};
797
#define NY0_2D 7
798
static __float128 Y0_2D[NY0_2D + 1] = {
799
  1.438972634353286978700329883122253752192E20Q,
800
  1.856409101981569254247700169486907405500E18Q,
801
  1.219693352678218589553725579802986255614E16Q,
802
  5.389428943282838648918475915779958097958E13Q,
803
  1.774125762108874864433872173544743051653E11Q,
804
  4.522104832545149534808218252434693007036E8Q,
805
  8.872187401232943927082914504125234454930E5Q,
806
  1.251945613186787532055610876304669413955E3Q,
807
 /* 1.000000000000000000000000000000000000000E0 */
808
};
809
 
810
 
811
/* Bessel function of the second kind, order zero.  */
812
 
813
__float128
814
y0q (__float128 x)
815
{
816
  __float128 xx, xinv, z, p, q, c, s, cc, ss;
817
 
818
  if (! finiteq (x))
819
    {
820
      if (x != x)
821
        return x;
822
      else
823
        return 0.0Q;
824
    }
825
  if (x <= 0.0Q)
826
    {
827
      if (x < 0.0Q)
828
        return (zero / (zero * x));
829
      return -HUGE_VALQ + x;
830
    }
831
  xx = fabsq (x);
832
  if (xx <= 2.0Q)
833
    {
834
      /* 0 <= x <= 2 */
835
      z = xx * xx;
836
      p = neval (z, Y0_2N, NY0_2N) / deval (z, Y0_2D, NY0_2D);
837
      p = TWOOPI * logq (x) * j0q (x) + p;
838
      return p;
839
    }
840
 
841
  xinv = 1.0Q / xx;
842
  z = xinv * xinv;
843
  if (xinv <= 0.25)
844
    {
845
      if (xinv <= 0.125)
846
        {
847
          if (xinv <= 0.0625)
848
            {
849
              p = neval (z, P16_IN, NP16_IN) / deval (z, P16_ID, NP16_ID);
850
              q = neval (z, Q16_IN, NQ16_IN) / deval (z, Q16_ID, NQ16_ID);
851
            }
852
          else
853
            {
854
              p = neval (z, P8_16N, NP8_16N) / deval (z, P8_16D, NP8_16D);
855
              q = neval (z, Q8_16N, NQ8_16N) / deval (z, Q8_16D, NQ8_16D);
856
            }
857
        }
858
      else if (xinv <= 0.1875)
859
        {
860
          p = neval (z, P5_8N, NP5_8N) / deval (z, P5_8D, NP5_8D);
861
          q = neval (z, Q5_8N, NQ5_8N) / deval (z, Q5_8D, NQ5_8D);
862
        }
863
      else
864
        {
865
          p = neval (z, P4_5N, NP4_5N) / deval (z, P4_5D, NP4_5D);
866
          q = neval (z, Q4_5N, NQ4_5N) / deval (z, Q4_5D, NQ4_5D);
867
        }
868
    }                           /* .25 */
869
  else /* if (xinv <= 0.5) */
870
    {
871
      if (xinv <= 0.375)
872
        {
873
          if (xinv <= 0.3125)
874
            {
875
              p = neval (z, P3r2_4N, NP3r2_4N) / deval (z, P3r2_4D, NP3r2_4D);
876
              q = neval (z, Q3r2_4N, NQ3r2_4N) / deval (z, Q3r2_4D, NQ3r2_4D);
877
            }
878
          else
879
            {
880
              p = neval (z, P2r7_3r2N, NP2r7_3r2N)
881
                  / deval (z, P2r7_3r2D, NP2r7_3r2D);
882
              q = neval (z, Q2r7_3r2N, NQ2r7_3r2N)
883
                  / deval (z, Q2r7_3r2D, NQ2r7_3r2D);
884
            }
885
        }
886
      else if (xinv <= 0.4375)
887
        {
888
          p = neval (z, P2r3_2r7N, NP2r3_2r7N)
889
              / deval (z, P2r3_2r7D, NP2r3_2r7D);
890
          q = neval (z, Q2r3_2r7N, NQ2r3_2r7N)
891
              / deval (z, Q2r3_2r7D, NQ2r3_2r7D);
892
        }
893
      else
894
        {
895
          p = neval (z, P2_2r3N, NP2_2r3N) / deval (z, P2_2r3D, NP2_2r3D);
896
          q = neval (z, Q2_2r3N, NQ2_2r3N) / deval (z, Q2_2r3D, NQ2_2r3D);
897
        }
898
    }
899
  p = 1.0Q + z * p;
900
  q = z * xinv * q;
901
  q = q - 0.125Q * xinv;
902
  /* X = x - pi/4
903
     cos(X) = cos(x) cos(pi/4) + sin(x) sin(pi/4)
904
     = 1/sqrt(2) * (cos(x) + sin(x))
905
     sin(X) = sin(x) cos(pi/4) - cos(x) sin(pi/4)
906
     = 1/sqrt(2) * (sin(x) - cos(x))
907
     sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
908
     cf. Fdlibm.  */
909
  sincosq (x, &s, &c);
910
  ss = s - c;
911
  cc = s + c;
912
  z = - cosq (x + x);
913
  if ((s * c) < 0)
914
    cc = z / ss;
915
  else
916
    ss = z / cc;
917
  z = ONEOSQPI * (p * ss + q * cc) / sqrtq (x);
918
  return z;
919
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.