OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [jnq.c] - Blame information for rev 864

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 740 jeremybenn
/*
2
 * ====================================================
3
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4
 *
5
 * Developed at SunPro, a Sun Microsystems, Inc. business.
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
 
12
/* Modifications for 128-bit long double are
13
   Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
14
   and are incorporated herein by permission of the author.  The author
15
   reserves the right to distribute this material elsewhere under different
16
   copying permissions.  These modifications are distributed here under
17
   the following terms:
18
 
19
    This library is free software; you can redistribute it and/or
20
    modify it under the terms of the GNU Lesser General Public
21
    License as published by the Free Software Foundation; either
22
    version 2.1 of the License, or (at your option) any later version.
23
 
24
    This library is distributed in the hope that it will be useful,
25
    but WITHOUT ANY WARRANTY; without even the implied warranty of
26
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
    Lesser General Public License for more details.
28
 
29
    You should have received a copy of the GNU Lesser General Public
30
    License along with this library; if not, write to the Free Software
31
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
32
 
33
/*
34
 * __ieee754_jn(n, x), __ieee754_yn(n, x)
35
 * floating point Bessel's function of the 1st and 2nd kind
36
 * of order n
37
 *
38
 * Special cases:
39
 *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
40
 *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
41
 * Note 2. About jn(n,x), yn(n,x)
42
 *      For n=0, j0(x) is called,
43
 *      for n=1, j1(x) is called,
44
 *      for n<x, forward recursion us used starting
45
 *      from values of j0(x) and j1(x).
46
 *      for n>x, a continued fraction approximation to
47
 *      j(n,x)/j(n-1,x) is evaluated and then backward
48
 *      recursion is used starting from a supposed value
49
 *      for j(n,x). The resulting value of j(0,x) is
50
 *      compared with the actual value to correct the
51
 *      supposed value of j(n,x).
52
 *
53
 *      yn(n,x) is similar in all respects, except
54
 *      that forward recursion is used for all
55
 *      values of n>1.
56
 *
57
 */
58
 
59
#include "quadmath-imp.h"
60
 
61
static const __float128
62
  invsqrtpi = 5.6418958354775628694807945156077258584405E-1Q,
63
  two = 2.0e0Q,
64
  one = 1.0e0Q,
65
  zero = 0.0Q;
66
 
67
 
68
__float128
69
jnq (int n, __float128 x)
70
{
71
  uint32_t se;
72
  int32_t i, ix, sgn;
73
  __float128 a, b, temp, di;
74
  __float128 z, w;
75
  ieee854_float128 u;
76
 
77
 
78
  /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
79
   * Thus, J(-n,x) = J(n,-x)
80
   */
81
 
82
  u.value = x;
83
  se = u.words32.w0;
84
  ix = se & 0x7fffffff;
85
 
86
  /* if J(n,NaN) is NaN */
87
  if (ix >= 0x7fff0000)
88
    {
89
      if ((u.words32.w0 & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3)
90
        return x + x;
91
    }
92
 
93
  if (n < 0)
94
    {
95
      n = -n;
96
      x = -x;
97
      se ^= 0x80000000;
98
    }
99
  if (n == 0)
100
    return (j0q (x));
101
  if (n == 1)
102
    return (j1q (x));
103
  sgn = (n & 1) & (se >> 31);   /* even n -- 0, odd n -- sign(x) */
104
  x = fabsq (x);
105
 
106
  if (x == 0.0Q || ix >= 0x7fff0000)    /* if x is 0 or inf */
107
    b = zero;
108
  else if ((__float128) n <= x)
109
    {
110
      /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
111
      if (ix >= 0x412D0000)
112
        {                       /* x > 2**302 */
113
 
114
          /* ??? Could use an expansion for large x here.  */
115
 
116
          /* (x >> n**2)
117
           *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
118
           *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
119
           *      Let s=sin(x), c=cos(x),
120
           *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
121
           *
122
           *             n    sin(xn)*sqt2    cos(xn)*sqt2
123
           *          ----------------------------------
124
           *             0     s-c             c+s
125
           *             1    -s-c            -c+s
126
           *             2    -s+c            -c-s
127
           *             3     s+c             c-s
128
           */
129
          __float128 s;
130
          __float128 c;
131
          sincosq (x, &s, &c);
132
          switch (n & 3)
133
            {
134
            case 0:
135
              temp = c + s;
136
              break;
137
            case 1:
138
              temp = -c + s;
139
              break;
140
            case 2:
141
              temp = -c - s;
142
              break;
143
            case 3:
144
              temp = c - s;
145
              break;
146
            }
147
          b = invsqrtpi * temp / sqrtq (x);
148
        }
149
      else
150
        {
151
          a = j0q (x);
152
          b = j1q (x);
153
          for (i = 1; i < n; i++)
154
            {
155
              temp = b;
156
              b = b * ((__float128) (i + i) / x) - a;   /* avoid underflow */
157
              a = temp;
158
            }
159
        }
160
    }
161
  else
162
    {
163
      if (ix < 0x3fc60000)
164
        {                       /* x < 2**-57 */
165
          /* x is tiny, return the first Taylor expansion of J(n,x)
166
           * J(n,x) = 1/n!*(x/2)^n  - ...
167
           */
168
          if (n >= 400)         /* underflow, result < 10^-4952 */
169
            b = zero;
170
          else
171
            {
172
              temp = x * 0.5;
173
              b = temp;
174
              for (a = one, i = 2; i <= n; i++)
175
                {
176
                  a *= (__float128) i;  /* a = n! */
177
                  b *= temp;    /* b = (x/2)^n */
178
                }
179
              b = b / a;
180
            }
181
        }
182
      else
183
        {
184
          /* use backward recurrence */
185
          /*                      x      x^2      x^2
186
           *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
187
           *                      2n  - 2(n+1) - 2(n+2)
188
           *
189
           *                      1      1        1
190
           *  (for large x)   =  ----  ------   ------   .....
191
           *                      2n   2(n+1)   2(n+2)
192
           *                      -- - ------ - ------ -
193
           *                       x     x         x
194
           *
195
           * Let w = 2n/x and h=2/x, then the above quotient
196
           * is equal to the continued fraction:
197
           *                  1
198
           *      = -----------------------
199
           *                     1
200
           *         w - -----------------
201
           *                        1
202
           *              w+h - ---------
203
           *                     w+2h - ...
204
           *
205
           * To determine how many terms needed, let
206
           * Q(0) = w, Q(1) = w(w+h) - 1,
207
           * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
208
           * When Q(k) > 1e4      good for single
209
           * When Q(k) > 1e9      good for double
210
           * When Q(k) > 1e17     good for quadruple
211
           */
212
          /* determine k */
213
          __float128 t, v;
214
          __float128 q0, q1, h, tmp;
215
          int32_t k, m;
216
          w = (n + n) / (__float128) x;
217
          h = 2.0Q / (__float128) x;
218
          q0 = w;
219
          z = w + h;
220
          q1 = w * z - 1.0Q;
221
          k = 1;
222
          while (q1 < 1.0e17Q)
223
            {
224
              k += 1;
225
              z += h;
226
              tmp = z * q1 - q0;
227
              q0 = q1;
228
              q1 = tmp;
229
            }
230
          m = n + n;
231
          for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
232
            t = one / (i / x - t);
233
          a = t;
234
          b = one;
235
          /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
236
           *  Hence, if n*(log(2n/x)) > ...
237
           *  single 8.8722839355e+01
238
           *  double 7.09782712893383973096e+02
239
           *  __float128 1.1356523406294143949491931077970765006170e+04
240
           *  then recurrent value may overflow and the result is
241
           *  likely underflow to zero
242
           */
243
          tmp = n;
244
          v = two / x;
245
          tmp = tmp * logq (fabsq (v * tmp));
246
 
247
          if (tmp < 1.1356523406294143949491931077970765006170e+04Q)
248
            {
249
              for (i = n - 1, di = (__float128) (i + i); i > 0; i--)
250
                {
251
                  temp = b;
252
                  b *= di;
253
                  b = b / x - a;
254
                  a = temp;
255
                  di -= two;
256
                }
257
            }
258
          else
259
            {
260
              for (i = n - 1, di = (__float128) (i + i); i > 0; i--)
261
                {
262
                  temp = b;
263
                  b *= di;
264
                  b = b / x - a;
265
                  a = temp;
266
                  di -= two;
267
                  /* scale b to avoid spurious overflow */
268
                  if (b > 1e100Q)
269
                    {
270
                      a /= b;
271
                      t /= b;
272
                      b = one;
273
                    }
274
                }
275
            }
276
          b = (t * j0q (x) / b);
277
        }
278
    }
279
  if (sgn == 1)
280
    return -b;
281
  else
282
    return b;
283
}
284
 
285
__float128
286
ynq (int n, __float128 x)
287
{
288
  uint32_t se;
289
  int32_t i, ix;
290
  int32_t sign;
291
  __float128 a, b, temp;
292
  ieee854_float128 u;
293
 
294
  u.value = x;
295
  se = u.words32.w0;
296
  ix = se & 0x7fffffff;
297
 
298
  /* if Y(n,NaN) is NaN */
299
  if (ix >= 0x7fff0000)
300
    {
301
      if ((u.words32.w0 & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3)
302
        return x + x;
303
    }
304
  if (x <= 0.0Q)
305
    {
306
      if (x == 0.0Q)
307
        return -HUGE_VALQ + x;
308
      if (se & 0x80000000)
309
        return zero / (zero * x);
310
    }
311
  sign = 1;
312
  if (n < 0)
313
    {
314
      n = -n;
315
      sign = 1 - ((n & 1) << 1);
316
    }
317
  if (n == 0)
318
    return (y0q (x));
319
  if (n == 1)
320
    return (sign * y1q (x));
321
  if (ix >= 0x7fff0000)
322
    return zero;
323
  if (ix >= 0x412D0000)
324
    {                           /* x > 2**302 */
325
 
326
      /* ??? See comment above on the possible futility of this.  */
327
 
328
      /* (x >> n**2)
329
       *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
330
       *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
331
       *      Let s=sin(x), c=cos(x),
332
       *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
333
       *
334
       *             n    sin(xn)*sqt2    cos(xn)*sqt2
335
       *          ----------------------------------
336
       *             0     s-c             c+s
337
       *             1    -s-c            -c+s
338
       *             2    -s+c            -c-s
339
       *             3     s+c             c-s
340
       */
341
      __float128 s;
342
      __float128 c;
343
      sincosq (x, &s, &c);
344
      switch (n & 3)
345
        {
346
        case 0:
347
          temp = s - c;
348
          break;
349
        case 1:
350
          temp = -s - c;
351
          break;
352
        case 2:
353
          temp = -s + c;
354
          break;
355
        case 3:
356
          temp = s + c;
357
          break;
358
        }
359
      b = invsqrtpi * temp / sqrtq (x);
360
    }
361
  else
362
    {
363
      a = y0q (x);
364
      b = y1q (x);
365
      /* quit if b is -inf */
366
      u.value = b;
367
      se = u.words32.w0 & 0xffff0000;
368
      for (i = 1; i < n && se != 0xffff0000; i++)
369
        {
370
          temp = b;
371
          b = ((__float128) (i + i) / x) * b - a;
372
          u.value = b;
373
          se = u.words32.w0 & 0xffff0000;
374
          a = temp;
375
        }
376
    }
377
  if (sign > 0)
378
    return b;
379
  else
380
    return -b;
381
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.