OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [log1pq.c] - Blame information for rev 792

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 740 jeremybenn
/*                                                      log1pl.c
2
 *
3
 *      Relative error logarithm
4
 *      Natural logarithm of 1+x, 128-bit long double precision
5
 *
6
 *
7
 *
8
 * SYNOPSIS:
9
 *
10
 * long double x, y, log1pl();
11
 *
12
 * y = log1pl( x );
13
 *
14
 *
15
 *
16
 * DESCRIPTION:
17
 *
18
 * Returns the base e (2.718...) logarithm of 1+x.
19
 *
20
 * The argument 1+x is separated into its exponent and fractional
21
 * parts.  If the exponent is between -1 and +1, the logarithm
22
 * of the fraction is approximated by
23
 *
24
 *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
25
 *
26
 * Otherwise, setting  z = 2(w-1)/(w+1),
27
 *
28
 *     log(w) = z + z^3 P(z)/Q(z).
29
 *
30
 *
31
 *
32
 * ACCURACY:
33
 *
34
 *                      Relative error:
35
 * arithmetic   domain     # trials      peak         rms
36
 *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
37
 */
38
 
39
/* Copyright 2001 by Stephen L. Moshier
40
 
41
    This library is free software; you can redistribute it and/or
42
    modify it under the terms of the GNU Lesser General Public
43
    License as published by the Free Software Foundation; either
44
    version 2.1 of the License, or (at your option) any later version.
45
 
46
    This library is distributed in the hope that it will be useful,
47
    but WITHOUT ANY WARRANTY; without even the implied warranty of
48
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
49
    Lesser General Public License for more details.
50
 
51
    You should have received a copy of the GNU Lesser General Public
52
    License along with this library; if not, write to the Free Software
53
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
54
 
55
 
56
#include "quadmath-imp.h"
57
 
58
/* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
59
 * 1/sqrt(2) <= 1+x < sqrt(2)
60
 * Theoretical peak relative error = 5.3e-37,
61
 * relative peak error spread = 2.3e-14
62
 */
63
static const __float128
64
  P12 = 1.538612243596254322971797716843006400388E-6Q,
65
  P11 = 4.998469661968096229986658302195402690910E-1Q,
66
  P10 = 2.321125933898420063925789532045674660756E1Q,
67
  P9 = 4.114517881637811823002128927449878962058E2Q,
68
  P8 = 3.824952356185897735160588078446136783779E3Q,
69
  P7 = 2.128857716871515081352991964243375186031E4Q,
70
  P6 = 7.594356839258970405033155585486712125861E4Q,
71
  P5 = 1.797628303815655343403735250238293741397E5Q,
72
  P4 = 2.854829159639697837788887080758954924001E5Q,
73
  P3 = 3.007007295140399532324943111654767187848E5Q,
74
  P2 = 2.014652742082537582487669938141683759923E5Q,
75
  P1 = 7.771154681358524243729929227226708890930E4Q,
76
  P0 = 1.313572404063446165910279910527789794488E4Q,
77
  /* Q12 = 1.000000000000000000000000000000000000000E0Q, */
78
  Q11 = 4.839208193348159620282142911143429644326E1Q,
79
  Q10 = 9.104928120962988414618126155557301584078E2Q,
80
  Q9 = 9.147150349299596453976674231612674085381E3Q,
81
  Q8 = 5.605842085972455027590989944010492125825E4Q,
82
  Q7 = 2.248234257620569139969141618556349415120E5Q,
83
  Q6 = 6.132189329546557743179177159925690841200E5Q,
84
  Q5 = 1.158019977462989115839826904108208787040E6Q,
85
  Q4 = 1.514882452993549494932585972882995548426E6Q,
86
  Q3 = 1.347518538384329112529391120390701166528E6Q,
87
  Q2 = 7.777690340007566932935753241556479363645E5Q,
88
  Q1 = 2.626900195321832660448791748036714883242E5Q,
89
  Q0 = 3.940717212190338497730839731583397586124E4Q;
90
 
91
/* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
92
 * where z = 2(x-1)/(x+1)
93
 * 1/sqrt(2) <= x < sqrt(2)
94
 * Theoretical peak relative error = 1.1e-35,
95
 * relative peak error spread 1.1e-9
96
 */
97
static const __float128
98
  R5 = -8.828896441624934385266096344596648080902E-1Q,
99
  R4 = 8.057002716646055371965756206836056074715E1Q,
100
  R3 = -2.024301798136027039250415126250455056397E3Q,
101
  R2 = 2.048819892795278657810231591630928516206E4Q,
102
  R1 = -8.977257995689735303686582344659576526998E4Q,
103
  R0 = 1.418134209872192732479751274970992665513E5Q,
104
  /* S6 = 1.000000000000000000000000000000000000000E0Q, */
105
  S5 = -1.186359407982897997337150403816839480438E2Q,
106
  S4 = 3.998526750980007367835804959888064681098E3Q,
107
  S3 = -5.748542087379434595104154610899551484314E4Q,
108
  S2 = 4.001557694070773974936904547424676279307E5Q,
109
  S1 = -1.332535117259762928288745111081235577029E6Q,
110
  S0 = 1.701761051846631278975701529965589676574E6Q;
111
 
112
/* C1 + C2 = ln 2 */
113
static const __float128 C1 = 6.93145751953125E-1Q;
114
static const __float128 C2 = 1.428606820309417232121458176568075500134E-6Q;
115
 
116
static const __float128 sqrth = 0.7071067811865475244008443621048490392848Q;
117
static const __float128 zero = 0.0Q;
118
 
119
 
120
__float128
121
log1pq (__float128 xm1)
122
{
123
  __float128 x, y, z, r, s;
124
  ieee854_float128 u;
125
  int32_t hx;
126
  int e;
127
 
128
  /* Test for NaN or infinity input. */
129
  u.value = xm1;
130
  hx = u.words32.w0;
131
  if (hx >= 0x7fff0000)
132
    return xm1;
133
 
134
  /* log1p(+- 0) = +- 0.  */
135
  if (((hx & 0x7fffffff) == 0)
136
      && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
137
    return xm1;
138
 
139
  x = xm1 + 1.0Q;
140
 
141
  /* log1p(-1) = -inf */
142
  if (x <= 0.0Q)
143
    {
144
      if (x == 0.0Q)
145
        return (-1.0Q / (x - x));
146
      else
147
        return (zero / (x - x));
148
    }
149
 
150
  /* Separate mantissa from exponent.  */
151
 
152
  /* Use frexp used so that denormal numbers will be handled properly.  */
153
  x = frexpq (x, &e);
154
 
155
  /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
156
     where z = 2(x-1)/x+1).  */
157
  if ((e > 2) || (e < -2))
158
    {
159
      if (x < sqrth)
160
        {                       /* 2( 2x-1 )/( 2x+1 ) */
161
          e -= 1;
162
          z = x - 0.5Q;
163
          y = 0.5Q * z + 0.5Q;
164
        }
165
      else
166
        {                       /*  2 (x-1)/(x+1)   */
167
          z = x - 0.5Q;
168
          z -= 0.5Q;
169
          y = 0.5Q * x + 0.5Q;
170
        }
171
      x = z / y;
172
      z = x * x;
173
      r = ((((R5 * z
174
              + R4) * z
175
             + R3) * z
176
            + R2) * z
177
           + R1) * z
178
        + R0;
179
      s = (((((z
180
               + S5) * z
181
              + S4) * z
182
             + S3) * z
183
            + S2) * z
184
           + S1) * z
185
        + S0;
186
      z = x * (z * r / s);
187
      z = z + e * C2;
188
      z = z + x;
189
      z = z + e * C1;
190
      return (z);
191
    }
192
 
193
 
194
  /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
195
 
196
  if (x < sqrth)
197
    {
198
      e -= 1;
199
      if (e != 0)
200
        x = 2.0Q * x - 1.0Q;    /*  2x - 1  */
201
      else
202
        x = xm1;
203
    }
204
  else
205
    {
206
      if (e != 0)
207
        x = x - 1.0Q;
208
      else
209
        x = xm1;
210
    }
211
  z = x * x;
212
  r = (((((((((((P12 * x
213
                 + P11) * x
214
                + P10) * x
215
               + P9) * x
216
              + P8) * x
217
             + P7) * x
218
            + P6) * x
219
           + P5) * x
220
          + P4) * x
221
         + P3) * x
222
        + P2) * x
223
       + P1) * x
224
    + P0;
225
  s = (((((((((((x
226
                 + Q11) * x
227
                + Q10) * x
228
               + Q9) * x
229
              + Q8) * x
230
             + Q7) * x
231
            + Q6) * x
232
           + Q5) * x
233
          + Q4) * x
234
         + Q3) * x
235
        + Q2) * x
236
       + Q1) * x
237
    + Q0;
238
  y = x * (z * r / s);
239
  y = y + e * C2;
240
  z = y - 0.5Q * z;
241
  z = z + x;
242
  z = z + e * C1;
243
  return (z);
244
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.