OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [logq.c] - Blame information for rev 864

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 740 jeremybenn
/*                                                      logll.c
2
 *
3
 * Natural logarithm for 128-bit long double precision.
4
 *
5
 *
6
 *
7
 * SYNOPSIS:
8
 *
9
 * long double x, y, logl();
10
 *
11
 * y = logl( x );
12
 *
13
 *
14
 *
15
 * DESCRIPTION:
16
 *
17
 * Returns the base e (2.718...) logarithm of x.
18
 *
19
 * The argument is separated into its exponent and fractional
20
 * parts.  Use of a lookup table increases the speed of the routine.
21
 * The program uses logarithms tabulated at intervals of 1/128 to
22
 * cover the domain from approximately 0.7 to 1.4.
23
 *
24
 * On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
25
 *     log(1+x) = x - 0.5 x^2 + x^3 P(x) .
26
 *
27
 *
28
 *
29
 * ACCURACY:
30
 *
31
 *                      Relative error:
32
 * arithmetic   domain     # trials      peak         rms
33
 *    IEEE   0.875, 1.125   100000      1.2e-34    4.1e-35
34
 *    IEEE   0.125, 8       100000      1.2e-34    4.1e-35
35
 *
36
 *
37
 * WARNING:
38
 *
39
 * This program uses integer operations on bit fields of floating-point
40
 * numbers.  It does not work with data structures other than the
41
 * structure assumed.
42
 *
43
 */
44
 
45
/* Copyright 2001 by Stephen L. Moshier <moshier@na-net.ornl.gov>
46
 
47
    This library is free software; you can redistribute it and/or
48
    modify it under the terms of the GNU Lesser General Public
49
    License as published by the Free Software Foundation; either
50
    version 2.1 of the License, or (at your option) any later version.
51
 
52
    This library is distributed in the hope that it will be useful,
53
    but WITHOUT ANY WARRANTY; without even the implied warranty of
54
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
55
    Lesser General Public License for more details.
56
 
57
    You should have received a copy of the GNU Lesser General Public
58
    License along with this library; if not, write to the Free Software
59
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
60
 
61
#include "quadmath-imp.h"
62
 
63
/* log(1+x) = x - .5 x^2 + x^3 l(x)
64
   -.0078125 <= x <= +.0078125
65
   peak relative error 1.2e-37 */
66
static const __float128
67
l3 =   3.333333333333333333333333333333336096926E-1Q,
68
l4 =  -2.499999999999999999999999999486853077002E-1Q,
69
l5 =   1.999999999999999999999999998515277861905E-1Q,
70
l6 =  -1.666666666666666666666798448356171665678E-1Q,
71
l7 =   1.428571428571428571428808945895490721564E-1Q,
72
l8 =  -1.249999999999999987884655626377588149000E-1Q,
73
l9 =   1.111111111111111093947834982832456459186E-1Q,
74
l10 = -1.000000000000532974938900317952530453248E-1Q,
75
l11 =  9.090909090915566247008015301349979892689E-2Q,
76
l12 = -8.333333211818065121250921925397567745734E-2Q,
77
l13 =  7.692307559897661630807048686258659316091E-2Q,
78
l14 = -7.144242754190814657241902218399056829264E-2Q,
79
l15 =  6.668057591071739754844678883223432347481E-2Q;
80
 
81
/* Lookup table of ln(t) - (t-1)
82
    t = 0.5 + (k+26)/128)
83
    k = 0, ..., 91   */
84
static const __float128 logtbl[92] = {
85
-5.5345593589352099112142921677820359632418E-2Q,
86
-5.2108257402767124761784665198737642086148E-2Q,
87
-4.8991686870576856279407775480686721935120E-2Q,
88
-4.5993270766361228596215288742353061431071E-2Q,
89
-4.3110481649613269682442058976885699556950E-2Q,
90
-4.0340872319076331310838085093194799765520E-2Q,
91
-3.7682072451780927439219005993827431503510E-2Q,
92
-3.5131785416234343803903228503274262719586E-2Q,
93
-3.2687785249045246292687241862699949178831E-2Q,
94
-3.0347913785027239068190798397055267411813E-2Q,
95
-2.8110077931525797884641940838507561326298E-2Q,
96
-2.5972247078357715036426583294246819637618E-2Q,
97
-2.3932450635346084858612873953407168217307E-2Q,
98
-2.1988775689981395152022535153795155900240E-2Q,
99
-2.0139364778244501615441044267387667496733E-2Q,
100
-1.8382413762093794819267536615342902718324E-2Q,
101
-1.6716169807550022358923589720001638093023E-2Q,
102
-1.5138929457710992616226033183958974965355E-2Q,
103
-1.3649036795397472900424896523305726435029E-2Q,
104
-1.2244881690473465543308397998034325468152E-2Q,
105
-1.0924898127200937840689817557742469105693E-2Q,
106
-9.6875626072830301572839422532631079809328E-3Q,
107
-8.5313926245226231463436209313499745894157E-3Q,
108
-7.4549452072765973384933565912143044991706E-3Q,
109
-6.4568155251217050991200599386801665681310E-3Q,
110
-5.5356355563671005131126851708522185605193E-3Q,
111
-4.6900728132525199028885749289712348829878E-3Q,
112
-3.9188291218610470766469347968659624282519E-3Q,
113
-3.2206394539524058873423550293617843896540E-3Q,
114
-2.5942708080877805657374888909297113032132E-3Q,
115
-2.0385211375711716729239156839929281289086E-3Q,
116
-1.5522183228760777967376942769773768850872E-3Q,
117
-1.1342191863606077520036253234446621373191E-3Q,
118
-7.8340854719967065861624024730268350459991E-4Q,
119
-4.9869831458030115699628274852562992756174E-4Q,
120
-2.7902661731604211834685052867305795169688E-4Q,
121
-1.2335696813916860754951146082826952093496E-4Q,
122
-3.0677461025892873184042490943581654591817E-5Q,
123
#define ZERO logtbl[38]
124
 0.0000000000000000000000000000000000000000E0Q,
125
-3.0359557945051052537099938863236321874198E-5Q,
126
-1.2081346403474584914595395755316412213151E-4Q,
127
-2.7044071846562177120083903771008342059094E-4Q,
128
-4.7834133324631162897179240322783590830326E-4Q,
129
-7.4363569786340080624467487620270965403695E-4Q,
130
-1.0654639687057968333207323853366578860679E-3Q,
131
-1.4429854811877171341298062134712230604279E-3Q,
132
-1.8753781835651574193938679595797367137975E-3Q,
133
-2.3618380914922506054347222273705859653658E-3Q,
134
-2.9015787624124743013946600163375853631299E-3Q,
135
-3.4938307889254087318399313316921940859043E-3Q,
136
-4.1378413103128673800485306215154712148146E-3Q,
137
-4.8328735414488877044289435125365629849599E-3Q,
138
-5.5782063183564351739381962360253116934243E-3Q,
139
-6.3731336597098858051938306767880719015261E-3Q,
140
-7.2169643436165454612058905294782949315193E-3Q,
141
-8.1090214990427641365934846191367315083867E-3Q,
142
-9.0486422112807274112838713105168375482480E-3Q,
143
-1.0035177140880864314674126398350812606841E-2Q,
144
-1.1067990155502102718064936259435676477423E-2Q,
145
-1.2146457974158024928196575103115488672416E-2Q,
146
-1.3269969823361415906628825374158424754308E-2Q,
147
-1.4437927104692837124388550722759686270765E-2Q,
148
-1.5649743073340777659901053944852735064621E-2Q,
149
-1.6904842527181702880599758489058031645317E-2Q,
150
-1.8202661505988007336096407340750378994209E-2Q,
151
-1.9542647000370545390701192438691126552961E-2Q,
152
-2.0924256670080119637427928803038530924742E-2Q,
153
-2.2346958571309108496179613803760727786257E-2Q,
154
-2.3810230892650362330447187267648486279460E-2Q,
155
-2.5313561699385640380910474255652501521033E-2Q,
156
-2.6856448685790244233704909690165496625399E-2Q,
157
-2.8438398935154170008519274953860128449036E-2Q,
158
-3.0058928687233090922411781058956589863039E-2Q,
159
-3.1717563112854831855692484086486099896614E-2Q,
160
-3.3413836095418743219397234253475252001090E-2Q,
161
-3.5147290019036555862676702093393332533702E-2Q,
162
-3.6917475563073933027920505457688955423688E-2Q,
163
-3.8723951502862058660874073462456610731178E-2Q,
164
-4.0566284516358241168330505467000838017425E-2Q,
165
-4.2444048996543693813649967076598766917965E-2Q,
166
-4.4356826869355401653098777649745233339196E-2Q,
167
-4.6304207416957323121106944474331029996141E-2Q,
168
-4.8285787106164123613318093945035804818364E-2Q,
169
-5.0301169421838218987124461766244507342648E-2Q,
170
-5.2349964705088137924875459464622098310997E-2Q,
171
-5.4431789996103111613753440311680967840214E-2Q,
172
-5.6546268881465384189752786409400404404794E-2Q,
173
-5.8693031345788023909329239565012647817664E-2Q,
174
-6.0871713627532018185577188079210189048340E-2Q,
175
-6.3081958078862169742820420185833800925568E-2Q,
176
-6.5323413029406789694910800219643791556918E-2Q,
177
-6.7595732653791419081537811574227049288168E-2Q
178
};
179
 
180
/* ln(2) = ln2a + ln2b with extended precision. */
181
static const __float128
182
  ln2a = 6.93145751953125e-1Q,
183
  ln2b = 1.4286068203094172321214581765680755001344E-6Q;
184
 
185
__float128
186
logq (__float128 x)
187
{
188
  __float128 z, y, w;
189
  ieee854_float128 u, t;
190
  unsigned int m;
191
  int k, e;
192
 
193
  u.value = x;
194
  m = u.words32.w0;
195
 
196
  /* Check for IEEE special cases.  */
197
  k = m & 0x7fffffff;
198
  /* log(0) = -infinity. */
199
  if ((k | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
200
    {
201
      return -0.5Q / ZERO;
202
    }
203
  /* log ( x < 0 ) = NaN */
204
  if (m & 0x80000000)
205
    {
206
      return (x - x) / ZERO;
207
    }
208
  /* log (infinity or NaN) */
209
  if (k >= 0x7fff0000)
210
    {
211
      return x + x;
212
    }
213
 
214
  /* Extract exponent and reduce domain to 0.703125 <= u < 1.40625  */
215
  e = (int) (m >> 16) - (int) 0x3ffe;
216
  m &= 0xffff;
217
  u.words32.w0 = m | 0x3ffe0000;
218
  m |= 0x10000;
219
  /* Find lookup table index k from high order bits of the significand. */
220
  if (m < 0x16800)
221
    {
222
      k = (m - 0xff00) >> 9;
223
      /* t is the argument 0.5 + (k+26)/128
224
         of the nearest item to u in the lookup table.  */
225
      t.words32.w0 = 0x3fff0000 + (k << 9);
226
      t.words32.w1 = 0;
227
      t.words32.w2 = 0;
228
      t.words32.w3 = 0;
229
      u.words32.w0 += 0x10000;
230
      e -= 1;
231
      k += 64;
232
    }
233
  else
234
    {
235
      k = (m - 0xfe00) >> 10;
236
      t.words32.w0 = 0x3ffe0000 + (k << 10);
237
      t.words32.w1 = 0;
238
      t.words32.w2 = 0;
239
      t.words32.w3 = 0;
240
    }
241
  /* On this interval the table is not used due to cancellation error.  */
242
  if ((x <= 1.0078125Q) && (x >= 0.9921875Q))
243
    {
244
      z = x - 1.0Q;
245
      k = 64;
246
      t.value  = 1.0Q;
247
      e = 0;
248
    }
249
  else
250
    {
251
      /* log(u) = log( t u/t ) = log(t) + log(u/t)
252
         log(t) is tabulated in the lookup table.
253
         Express log(u/t) = log(1+z),  where z = u/t - 1 = (u-t)/t.
254
         cf. Cody & Waite. */
255
      z = (u.value - t.value) / t.value;
256
    }
257
  /* Series expansion of log(1+z).  */
258
  w = z * z;
259
  y = ((((((((((((l15 * z
260
                  + l14) * z
261
                 + l13) * z
262
                + l12) * z
263
               + l11) * z
264
              + l10) * z
265
             + l9) * z
266
            + l8) * z
267
           + l7) * z
268
          + l6) * z
269
         + l5) * z
270
        + l4) * z
271
       + l3) * z * w;
272
  y -= 0.5 * w;
273
  y += e * ln2b;  /* Base 2 exponent offset times ln(2).  */
274
  y += z;
275
  y += logtbl[k-26]; /* log(t) - (t-1) */
276
  y += (t.value - 1.0Q);
277
  y += e * ln2a;
278
  return y;
279
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.