OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libquadmath/] [math/] [tanq.c] - Blame information for rev 740

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 740 jeremybenn
/*
2
 * ====================================================
3
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4
 *
5
 * Developed at SunPro, a Sun Microsystems, Inc. business.
6
 * Permission to use, copy, modify, and distribute this
7
 * software is freely granted, provided that this notice
8
 * is preserved.
9
 * ====================================================
10
 */
11
 
12
/*
13
  Long double expansions are
14
  Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
15
  and are incorporated herein by permission of the author.  The author
16
  reserves the right to distribute this material elsewhere under different
17
  copying permissions.  These modifications are distributed here under
18
  the following terms:
19
 
20
    This library is free software; you can redistribute it and/or
21
    modify it under the terms of the GNU Lesser General Public
22
    License as published by the Free Software Foundation; either
23
    version 2.1 of the License, or (at your option) any later version.
24
 
25
    This library is distributed in the hope that it will be useful,
26
    but WITHOUT ANY WARRANTY; without even the implied warranty of
27
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
28
    Lesser General Public License for more details.
29
 
30
    You should have received a copy of the GNU Lesser General Public
31
    License along with this library; if not, write to the Free Software
32
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307  USA */
33
 
34
/* __quadmath_kernel_tanq( x, y, k )
35
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
36
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
37
 * Input y is the tail of x.
38
 * Input k indicates whether tan (if k=1) or
39
 * -1/tan (if k= -1) is returned.
40
 *
41
 * Algorithm
42
 *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
43
 *      2. if x < 2^-57, return x with inexact if x!=0.
44
 *      3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
45
 *          on [0,0.67433].
46
 *
47
 *         Note: tan(x+y) = tan(x) + tan'(x)*y
48
 *                        ~ tan(x) + (1+x*x)*y
49
 *         Therefore, for better accuracy in computing tan(x+y), let
50
 *              r = x^3 * R(x^2)
51
 *         then
52
 *              tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
53
 *
54
 *      4. For x in [0.67433,pi/4],  let y = pi/4 - x, then
55
 *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
56
 *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
57
 */
58
 
59
#include "quadmath-imp.h"
60
 
61
 
62
 
63
static const __float128
64
  one = 1.0Q,
65
  pio4hi = 7.8539816339744830961566084581987569936977E-1Q,
66
  pio4lo = 2.1679525325309452561992610065108379921906E-35Q,
67
 
68
  /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
69
 
70
     Peak relative error 8.0e-36  */
71
 TH =  3.333333333333333333333333333333333333333E-1Q,
72
 T0 = -1.813014711743583437742363284336855889393E7Q,
73
 T1 =  1.320767960008972224312740075083259247618E6Q,
74
 T2 = -2.626775478255838182468651821863299023956E4Q,
75
 T3 =  1.764573356488504935415411383687150199315E2Q,
76
 T4 = -3.333267763822178690794678978979803526092E-1Q,
77
 
78
 U0 = -1.359761033807687578306772463253710042010E8Q,
79
 U1 =  6.494370630656893175666729313065113194784E7Q,
80
 U2 = -4.180787672237927475505536849168729386782E6Q,
81
 U3 =  8.031643765106170040139966622980914621521E4Q,
82
 U4 = -5.323131271912475695157127875560667378597E2Q;
83
  /* 1.000000000000000000000000000000000000000E0 */
84
 
85
 
86
static __float128
87
__quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
88
{
89
  __float128 z, r, v, w, s;
90
  int32_t ix, sign = 1;
91
  ieee854_float128 u, u1;
92
 
93
  u.value = x;
94
  ix = u.words32.w0 & 0x7fffffff;
95
  if (ix < 0x3fc60000)          /* x < 2**-57 */
96
    {
97
      if ((int) x == 0)
98
        {                       /* generate inexact */
99
          if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3
100
               | (iy + 1)) == 0)
101
            return one / fabsq (x);
102
          else
103
            return (iy == 1) ? x : -one / x;
104
        }
105
    }
106
  if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
107
    {
108
      if ((u.words32.w0 & 0x80000000) != 0)
109
        {
110
          x = -x;
111
          y = -y;
112
          sign = -1;
113
        }
114
      else
115
        sign = 1;
116
      z = pio4hi - x;
117
      w = pio4lo - y;
118
      x = z + w;
119
      y = 0.0;
120
    }
121
  z = x * x;
122
  r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
123
  v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
124
  r = r / v;
125
 
126
  s = z * x;
127
  r = y + z * (s * r + y);
128
  r += TH * s;
129
  w = x + r;
130
  if (ix >= 0x3ffe5942)
131
    {
132
      v = (__float128) iy;
133
      w = (v - 2.0Q * (x - (w * w / (w + v) - r)));
134
      if (sign < 0)
135
        w = -w;
136
      return w;
137
    }
138
  if (iy == 1)
139
    return w;
140
  else
141
    {                           /* if allow error up to 2 ulp,
142
                                   simply return -1.0/(x+r) here */
143
      /*  compute -1.0/(x+r) accurately */
144
      u1.value = w;
145
      u1.words32.w2 = 0;
146
      u1.words32.w3 = 0;
147
      v = r - (u1.value - x);           /* u1+v = r+x */
148
      z = -1.0 / w;
149
      u.value = z;
150
      u.words32.w2 = 0;
151
      u.words32.w3 = 0;
152
      s = 1.0 + u.value * u1.value;
153
      return u.value + z * (s + u.value * v);
154
    }
155
}
156
 
157
 
158
 
159
 
160
 
161
 
162
 
163
/* s_tanl.c -- long double version of s_tan.c.
164
 * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
165
 */
166
 
167
/* @(#)s_tan.c 5.1 93/09/24 */
168
/*
169
 * ====================================================
170
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
171
 *
172
 * Developed at SunPro, a Sun Microsystems, Inc. business.
173
 * Permission to use, copy, modify, and distribute this
174
 * software is freely granted, provided that this notice
175
 * is preserved.
176
 * ====================================================
177
 */
178
 
179
/* tanl(x)
180
 * Return tangent function of x.
181
 *
182
 * kernel function:
183
 *      __kernel_tanq           ... tangent function on [-pi/4,pi/4]
184
 *      __ieee754_rem_pio2q     ... argument reduction routine
185
 *
186
 * Method.
187
 *      Let S,C and T denote the sin, cos and tan respectively on
188
 *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
189
 *      in [-pi/4 , +pi/4], and let n = k mod 4.
190
 *      We have
191
 *
192
 *          n        sin(x)      cos(x)        tan(x)
193
 *     ----------------------------------------------------------
194
 *          0          S           C             T
195
 *          1          C          -S            -1/T
196
 *          2         -S          -C             T
197
 *          3         -C           S            -1/T
198
 *     ----------------------------------------------------------
199
 *
200
 * Special cases:
201
 *      Let trig be any of sin, cos, or tan.
202
 *      trig(+-INF)  is NaN, with signals;
203
 *      trig(NaN)    is that NaN;
204
 *
205
 * Accuracy:
206
 *      TRIG(x) returns trig(x) nearly rounded
207
 */
208
 
209
 
210
__float128
211
tanq (__float128 x)
212
{
213
        __float128 y[2],z=0.0Q;
214
        int64_t n, ix;
215
 
216
    /* High word of x. */
217
        GET_FLT128_MSW64(ix,x);
218
 
219
    /* |x| ~< pi/4 */
220
        ix &= 0x7fffffffffffffffLL;
221
        if(ix <= 0x3ffe921fb54442d1LL) return __quadmath_kernel_tanq(x,z,1);
222
 
223
    /* tanl(Inf or NaN) is NaN */
224
        else if (ix>=0x7fff000000000000LL) {
225
            if (ix == 0x7fff000000000000LL) {
226
                GET_FLT128_LSW64(n,x);
227
            }
228
            return x-x;         /* NaN */
229
        }
230
 
231
    /* argument reduction needed */
232
        else {
233
            n = __quadmath_rem_pio2q(x,y);
234
                                        /*   1 -- n even, -1 -- n odd */
235
            return __quadmath_kernel_tanq(y[0],y[1],1-((n&1)<<1));
236
        }
237
}

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.