OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libstdc++-v3/] [include/] [bits/] [random.tcc] - Blame information for rev 742

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 742 jeremybenn
// random number generation (out of line) -*- C++ -*-
2
 
3
// Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the
7
// terms of the GNU General Public License as published by the
8
// Free Software Foundation; either version 3, or (at your option)
9
// any later version.
10
 
11
// This library is distributed in the hope that it will be useful,
12
// but WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
// GNU General Public License for more details.
15
 
16
// Under Section 7 of GPL version 3, you are granted additional
17
// permissions described in the GCC Runtime Library Exception, version
18
// 3.1, as published by the Free Software Foundation.
19
 
20
// You should have received a copy of the GNU General Public License and
21
// a copy of the GCC Runtime Library Exception along with this program;
22
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23
// .
24
 
25
/** @file bits/random.tcc
26
 *  This is an internal header file, included by other library headers.
27
 *  Do not attempt to use it directly. @headername{random}
28
 */
29
 
30
#ifndef _RANDOM_TCC
31
#define _RANDOM_TCC 1
32
 
33
#include  // std::accumulate and std::partial_sum
34
 
35
namespace std _GLIBCXX_VISIBILITY(default)
36
{
37
  /*
38
   * (Further) implementation-space details.
39
   */
40
  namespace __detail
41
  {
42
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
43
 
44
    // General case for x = (ax + c) mod m -- use Schrage's algorithm to
45
    // avoid integer overflow.
46
    //
47
    // Because a and c are compile-time integral constants the compiler
48
    // kindly elides any unreachable paths.
49
    //
50
    // Preconditions:  a > 0, m > 0.
51
    //
52
    // XXX FIXME: as-is, only works correctly for __m % __a < __m / __a.
53
    //
54
    template
55
      struct _Mod
56
      {
57
        static _Tp
58
        __calc(_Tp __x)
59
        {
60
          if (__a == 1)
61
            __x %= __m;
62
          else
63
            {
64
              static const _Tp __q = __m / __a;
65
              static const _Tp __r = __m % __a;
66
 
67
              _Tp __t1 = __a * (__x % __q);
68
              _Tp __t2 = __r * (__x / __q);
69
              if (__t1 >= __t2)
70
                __x = __t1 - __t2;
71
              else
72
                __x = __m - __t2 + __t1;
73
            }
74
 
75
          if (__c != 0)
76
            {
77
              const _Tp __d = __m - __x;
78
              if (__d > __c)
79
                __x += __c;
80
              else
81
                __x = __c - __d;
82
            }
83
          return __x;
84
        }
85
      };
86
 
87
    // Special case for m == 0 -- use unsigned integer overflow as modulo
88
    // operator.
89
    template
90
      struct _Mod<_Tp, __m, __a, __c, true>
91
      {
92
        static _Tp
93
        __calc(_Tp __x)
94
        { return __a * __x + __c; }
95
      };
96
 
97
    template
98
             typename _UnaryOperation>
99
      _OutputIterator
100
      __transform(_InputIterator __first, _InputIterator __last,
101
                  _OutputIterator __result, _UnaryOperation __unary_op)
102
      {
103
        for (; __first != __last; ++__first, ++__result)
104
          *__result = __unary_op(*__first);
105
        return __result;
106
      }
107
 
108
  _GLIBCXX_END_NAMESPACE_VERSION
109
  } // namespace __detail
110
 
111
_GLIBCXX_BEGIN_NAMESPACE_VERSION
112
 
113
  template
114
    constexpr _UIntType
115
    linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier;
116
 
117
  template
118
    constexpr _UIntType
119
    linear_congruential_engine<_UIntType, __a, __c, __m>::increment;
120
 
121
  template
122
    constexpr _UIntType
123
    linear_congruential_engine<_UIntType, __a, __c, __m>::modulus;
124
 
125
  template
126
    constexpr _UIntType
127
    linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed;
128
 
129
  /**
130
   * Seeds the LCR with integral value @p __s, adjusted so that the
131
   * ring identity is never a member of the convergence set.
132
   */
133
  template
134
    void
135
    linear_congruential_engine<_UIntType, __a, __c, __m>::
136
    seed(result_type __s)
137
    {
138
      if ((__detail::__mod<_UIntType, __m>(__c) == 0)
139
          && (__detail::__mod<_UIntType, __m>(__s) == 0))
140
        _M_x = 1;
141
      else
142
        _M_x = __detail::__mod<_UIntType, __m>(__s);
143
    }
144
 
145
  /**
146
   * Seeds the LCR engine with a value generated by @p __q.
147
   */
148
  template
149
    template
150
      typename std::enable_if::value>::type
151
      linear_congruential_engine<_UIntType, __a, __c, __m>::
152
      seed(_Sseq& __q)
153
      {
154
        const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits
155
                                        : std::__lg(__m);
156
        const _UIntType __k = (__k0 + 31) / 32;
157
        uint_least32_t __arr[__k + 3];
158
        __q.generate(__arr + 0, __arr + __k + 3);
159
        _UIntType __factor = 1u;
160
        _UIntType __sum = 0u;
161
        for (size_t __j = 0; __j < __k; ++__j)
162
          {
163
            __sum += __arr[__j + 3] * __factor;
164
            __factor *= __detail::_Shift<_UIntType, 32>::__value;
165
          }
166
        seed(__sum);
167
      }
168
 
169
  template
170
           typename _CharT, typename _Traits>
171
    std::basic_ostream<_CharT, _Traits>&
172
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
173
               const linear_congruential_engine<_UIntType,
174
                                                __a, __c, __m>& __lcr)
175
    {
176
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
177
      typedef typename __ostream_type::ios_base    __ios_base;
178
 
179
      const typename __ios_base::fmtflags __flags = __os.flags();
180
      const _CharT __fill = __os.fill();
181
      __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
182
      __os.fill(__os.widen(' '));
183
 
184
      __os << __lcr._M_x;
185
 
186
      __os.flags(__flags);
187
      __os.fill(__fill);
188
      return __os;
189
    }
190
 
191
  template
192
           typename _CharT, typename _Traits>
193
    std::basic_istream<_CharT, _Traits>&
194
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
195
               linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr)
196
    {
197
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
198
      typedef typename __istream_type::ios_base    __ios_base;
199
 
200
      const typename __ios_base::fmtflags __flags = __is.flags();
201
      __is.flags(__ios_base::dec);
202
 
203
      __is >> __lcr._M_x;
204
 
205
      __is.flags(__flags);
206
      return __is;
207
    }
208
 
209
 
210
  template
211
           size_t __w, size_t __n, size_t __m, size_t __r,
212
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
213
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
214
           _UIntType __f>
215
    constexpr size_t
216
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
217
                            __s, __b, __t, __c, __l, __f>::word_size;
218
 
219
  template
220
           size_t __w, size_t __n, size_t __m, size_t __r,
221
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
222
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
223
           _UIntType __f>
224
    constexpr size_t
225
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
226
                            __s, __b, __t, __c, __l, __f>::state_size;
227
 
228
  template
229
           size_t __w, size_t __n, size_t __m, size_t __r,
230
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
231
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
232
           _UIntType __f>
233
    constexpr size_t
234
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
235
                            __s, __b, __t, __c, __l, __f>::shift_size;
236
 
237
  template
238
           size_t __w, size_t __n, size_t __m, size_t __r,
239
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
240
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
241
           _UIntType __f>
242
    constexpr size_t
243
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
244
                            __s, __b, __t, __c, __l, __f>::mask_bits;
245
 
246
  template
247
           size_t __w, size_t __n, size_t __m, size_t __r,
248
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
249
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
250
           _UIntType __f>
251
    constexpr _UIntType
252
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
253
                            __s, __b, __t, __c, __l, __f>::xor_mask;
254
 
255
  template
256
           size_t __w, size_t __n, size_t __m, size_t __r,
257
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
258
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
259
           _UIntType __f>
260
    constexpr size_t
261
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
262
                            __s, __b, __t, __c, __l, __f>::tempering_u;
263
 
264
  template
265
           size_t __w, size_t __n, size_t __m, size_t __r,
266
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
267
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
268
           _UIntType __f>
269
    constexpr _UIntType
270
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
271
                            __s, __b, __t, __c, __l, __f>::tempering_d;
272
 
273
  template
274
           size_t __w, size_t __n, size_t __m, size_t __r,
275
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
276
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
277
           _UIntType __f>
278
    constexpr size_t
279
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
280
                            __s, __b, __t, __c, __l, __f>::tempering_s;
281
 
282
  template
283
           size_t __w, size_t __n, size_t __m, size_t __r,
284
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
285
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
286
           _UIntType __f>
287
    constexpr _UIntType
288
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
289
                            __s, __b, __t, __c, __l, __f>::tempering_b;
290
 
291
  template
292
           size_t __w, size_t __n, size_t __m, size_t __r,
293
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
294
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
295
           _UIntType __f>
296
    constexpr size_t
297
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
298
                            __s, __b, __t, __c, __l, __f>::tempering_t;
299
 
300
  template
301
           size_t __w, size_t __n, size_t __m, size_t __r,
302
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
303
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
304
           _UIntType __f>
305
    constexpr _UIntType
306
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
307
                            __s, __b, __t, __c, __l, __f>::tempering_c;
308
 
309
  template
310
           size_t __w, size_t __n, size_t __m, size_t __r,
311
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
312
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
313
           _UIntType __f>
314
    constexpr size_t
315
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
316
                            __s, __b, __t, __c, __l, __f>::tempering_l;
317
 
318
  template
319
           size_t __w, size_t __n, size_t __m, size_t __r,
320
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
321
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
322
           _UIntType __f>
323
    constexpr _UIntType
324
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
325
                            __s, __b, __t, __c, __l, __f>::
326
                                              initialization_multiplier;
327
 
328
  template
329
           size_t __w, size_t __n, size_t __m, size_t __r,
330
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
331
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
332
           _UIntType __f>
333
    constexpr _UIntType
334
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
335
                            __s, __b, __t, __c, __l, __f>::default_seed;
336
 
337
  template
338
           size_t __w, size_t __n, size_t __m, size_t __r,
339
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
340
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
341
           _UIntType __f>
342
    void
343
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
344
                            __s, __b, __t, __c, __l, __f>::
345
    seed(result_type __sd)
346
    {
347
      _M_x[0] = __detail::__mod<_UIntType,
348
        __detail::_Shift<_UIntType, __w>::__value>(__sd);
349
 
350
      for (size_t __i = 1; __i < state_size; ++__i)
351
        {
352
          _UIntType __x = _M_x[__i - 1];
353
          __x ^= __x >> (__w - 2);
354
          __x *= __f;
355
          __x += __detail::__mod<_UIntType, __n>(__i);
356
          _M_x[__i] = __detail::__mod<_UIntType,
357
            __detail::_Shift<_UIntType, __w>::__value>(__x);
358
        }
359
      _M_p = state_size;
360
    }
361
 
362
  template
363
           size_t __w, size_t __n, size_t __m, size_t __r,
364
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
365
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
366
           _UIntType __f>
367
    template
368
      typename std::enable_if::value>::type
369
      mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
370
                              __s, __b, __t, __c, __l, __f>::
371
      seed(_Sseq& __q)
372
      {
373
        const _UIntType __upper_mask = (~_UIntType()) << __r;
374
        const size_t __k = (__w + 31) / 32;
375
        uint_least32_t __arr[__n * __k];
376
        __q.generate(__arr + 0, __arr + __n * __k);
377
 
378
        bool __zero = true;
379
        for (size_t __i = 0; __i < state_size; ++__i)
380
          {
381
            _UIntType __factor = 1u;
382
            _UIntType __sum = 0u;
383
            for (size_t __j = 0; __j < __k; ++__j)
384
              {
385
                __sum += __arr[__k * __i + __j] * __factor;
386
                __factor *= __detail::_Shift<_UIntType, 32>::__value;
387
              }
388
            _M_x[__i] = __detail::__mod<_UIntType,
389
              __detail::_Shift<_UIntType, __w>::__value>(__sum);
390
 
391
            if (__zero)
392
              {
393
                if (__i == 0)
394
                  {
395
                    if ((_M_x[0] & __upper_mask) != 0u)
396
                      __zero = false;
397
                  }
398
                else if (_M_x[__i] != 0u)
399
                  __zero = false;
400
              }
401
          }
402
        if (__zero)
403
          _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value;
404
      }
405
 
406
  template
407
           size_t __n, size_t __m, size_t __r,
408
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
409
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
410
           _UIntType __f>
411
    typename
412
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
413
                            __s, __b, __t, __c, __l, __f>::result_type
414
    mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d,
415
                            __s, __b, __t, __c, __l, __f>::
416
    operator()()
417
    {
418
      // Reload the vector - cost is O(n) amortized over n calls.
419
      if (_M_p >= state_size)
420
        {
421
          const _UIntType __upper_mask = (~_UIntType()) << __r;
422
          const _UIntType __lower_mask = ~__upper_mask;
423
 
424
          for (size_t __k = 0; __k < (__n - __m); ++__k)
425
            {
426
              _UIntType __y = ((_M_x[__k] & __upper_mask)
427
                               | (_M_x[__k + 1] & __lower_mask));
428
              _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1)
429
                           ^ ((__y & 0x01) ? __a : 0));
430
            }
431
 
432
          for (size_t __k = (__n - __m); __k < (__n - 1); ++__k)
433
            {
434
              _UIntType __y = ((_M_x[__k] & __upper_mask)
435
                               | (_M_x[__k + 1] & __lower_mask));
436
              _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1)
437
                           ^ ((__y & 0x01) ? __a : 0));
438
            }
439
 
440
          _UIntType __y = ((_M_x[__n - 1] & __upper_mask)
441
                           | (_M_x[0] & __lower_mask));
442
          _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1)
443
                           ^ ((__y & 0x01) ? __a : 0));
444
          _M_p = 0;
445
        }
446
 
447
      // Calculate o(x(i)).
448
      result_type __z = _M_x[_M_p++];
449
      __z ^= (__z >> __u) & __d;
450
      __z ^= (__z << __s) & __b;
451
      __z ^= (__z << __t) & __c;
452
      __z ^= (__z >> __l);
453
 
454
      return __z;
455
    }
456
 
457
  template
458
           size_t __n, size_t __m, size_t __r,
459
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
460
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
461
           _UIntType __f, typename _CharT, typename _Traits>
462
    std::basic_ostream<_CharT, _Traits>&
463
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
464
               const mersenne_twister_engine<_UIntType, __w, __n, __m,
465
               __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
466
    {
467
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
468
      typedef typename __ostream_type::ios_base    __ios_base;
469
 
470
      const typename __ios_base::fmtflags __flags = __os.flags();
471
      const _CharT __fill = __os.fill();
472
      const _CharT __space = __os.widen(' ');
473
      __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
474
      __os.fill(__space);
475
 
476
      for (size_t __i = 0; __i < __n; ++__i)
477
        __os << __x._M_x[__i] << __space;
478
      __os << __x._M_p;
479
 
480
      __os.flags(__flags);
481
      __os.fill(__fill);
482
      return __os;
483
    }
484
 
485
  template
486
           size_t __n, size_t __m, size_t __r,
487
           _UIntType __a, size_t __u, _UIntType __d, size_t __s,
488
           _UIntType __b, size_t __t, _UIntType __c, size_t __l,
489
           _UIntType __f, typename _CharT, typename _Traits>
490
    std::basic_istream<_CharT, _Traits>&
491
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
492
               mersenne_twister_engine<_UIntType, __w, __n, __m,
493
               __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x)
494
    {
495
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
496
      typedef typename __istream_type::ios_base    __ios_base;
497
 
498
      const typename __ios_base::fmtflags __flags = __is.flags();
499
      __is.flags(__ios_base::dec | __ios_base::skipws);
500
 
501
      for (size_t __i = 0; __i < __n; ++__i)
502
        __is >> __x._M_x[__i];
503
      __is >> __x._M_p;
504
 
505
      __is.flags(__flags);
506
      return __is;
507
    }
508
 
509
 
510
  template
511
    constexpr size_t
512
    subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size;
513
 
514
  template
515
    constexpr size_t
516
    subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag;
517
 
518
  template
519
    constexpr size_t
520
    subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag;
521
 
522
  template
523
    constexpr _UIntType
524
    subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed;
525
 
526
  template
527
    void
528
    subtract_with_carry_engine<_UIntType, __w, __s, __r>::
529
    seed(result_type __value)
530
    {
531
      std::linear_congruential_engine
532
        __lcg(__value == 0u ? default_seed : __value);
533
 
534
      const size_t __n = (__w + 31) / 32;
535
 
536
      for (size_t __i = 0; __i < long_lag; ++__i)
537
        {
538
          _UIntType __sum = 0u;
539
          _UIntType __factor = 1u;
540
          for (size_t __j = 0; __j < __n; ++__j)
541
            {
542
              __sum += __detail::__mod
543
                       __detail::_Shift::__value>
544
                         (__lcg()) * __factor;
545
              __factor *= __detail::_Shift<_UIntType, 32>::__value;
546
            }
547
          _M_x[__i] = __detail::__mod<_UIntType,
548
            __detail::_Shift<_UIntType, __w>::__value>(__sum);
549
        }
550
      _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
551
      _M_p = 0;
552
    }
553
 
554
  template
555
    template
556
      typename std::enable_if::value>::type
557
      subtract_with_carry_engine<_UIntType, __w, __s, __r>::
558
      seed(_Sseq& __q)
559
      {
560
        const size_t __k = (__w + 31) / 32;
561
        uint_least32_t __arr[__r * __k];
562
        __q.generate(__arr + 0, __arr + __r * __k);
563
 
564
        for (size_t __i = 0; __i < long_lag; ++__i)
565
          {
566
            _UIntType __sum = 0u;
567
            _UIntType __factor = 1u;
568
            for (size_t __j = 0; __j < __k; ++__j)
569
              {
570
                __sum += __arr[__k * __i + __j] * __factor;
571
                __factor *= __detail::_Shift<_UIntType, 32>::__value;
572
              }
573
            _M_x[__i] = __detail::__mod<_UIntType,
574
              __detail::_Shift<_UIntType, __w>::__value>(__sum);
575
          }
576
        _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0;
577
        _M_p = 0;
578
      }
579
 
580
  template
581
    typename subtract_with_carry_engine<_UIntType, __w, __s, __r>::
582
             result_type
583
    subtract_with_carry_engine<_UIntType, __w, __s, __r>::
584
    operator()()
585
    {
586
      // Derive short lag index from current index.
587
      long __ps = _M_p - short_lag;
588
      if (__ps < 0)
589
        __ps += long_lag;
590
 
591
      // Calculate new x(i) without overflow or division.
592
      // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry
593
      // cannot overflow.
594
      _UIntType __xi;
595
      if (_M_x[__ps] >= _M_x[_M_p] + _M_carry)
596
        {
597
          __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry;
598
          _M_carry = 0;
599
        }
600
      else
601
        {
602
          __xi = (__detail::_Shift<_UIntType, __w>::__value
603
                  - _M_x[_M_p] - _M_carry + _M_x[__ps]);
604
          _M_carry = 1;
605
        }
606
      _M_x[_M_p] = __xi;
607
 
608
      // Adjust current index to loop around in ring buffer.
609
      if (++_M_p >= long_lag)
610
        _M_p = 0;
611
 
612
      return __xi;
613
    }
614
 
615
  template
616
           typename _CharT, typename _Traits>
617
    std::basic_ostream<_CharT, _Traits>&
618
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
619
               const subtract_with_carry_engine<_UIntType,
620
                                                __w, __s, __r>& __x)
621
    {
622
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
623
      typedef typename __ostream_type::ios_base    __ios_base;
624
 
625
      const typename __ios_base::fmtflags __flags = __os.flags();
626
      const _CharT __fill = __os.fill();
627
      const _CharT __space = __os.widen(' ');
628
      __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
629
      __os.fill(__space);
630
 
631
      for (size_t __i = 0; __i < __r; ++__i)
632
        __os << __x._M_x[__i] << __space;
633
      __os << __x._M_carry << __space << __x._M_p;
634
 
635
      __os.flags(__flags);
636
      __os.fill(__fill);
637
      return __os;
638
    }
639
 
640
  template
641
           typename _CharT, typename _Traits>
642
    std::basic_istream<_CharT, _Traits>&
643
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
644
               subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x)
645
    {
646
      typedef std::basic_ostream<_CharT, _Traits>  __istream_type;
647
      typedef typename __istream_type::ios_base    __ios_base;
648
 
649
      const typename __ios_base::fmtflags __flags = __is.flags();
650
      __is.flags(__ios_base::dec | __ios_base::skipws);
651
 
652
      for (size_t __i = 0; __i < __r; ++__i)
653
        __is >> __x._M_x[__i];
654
      __is >> __x._M_carry;
655
      __is >> __x._M_p;
656
 
657
      __is.flags(__flags);
658
      return __is;
659
    }
660
 
661
 
662
  template
663
    constexpr size_t
664
    discard_block_engine<_RandomNumberEngine, __p, __r>::block_size;
665
 
666
  template
667
    constexpr size_t
668
    discard_block_engine<_RandomNumberEngine, __p, __r>::used_block;
669
 
670
  template
671
    typename discard_block_engine<_RandomNumberEngine,
672
                           __p, __r>::result_type
673
    discard_block_engine<_RandomNumberEngine, __p, __r>::
674
    operator()()
675
    {
676
      if (_M_n >= used_block)
677
        {
678
          _M_b.discard(block_size - _M_n);
679
          _M_n = 0;
680
        }
681
      ++_M_n;
682
      return _M_b();
683
    }
684
 
685
  template
686
           typename _CharT, typename _Traits>
687
    std::basic_ostream<_CharT, _Traits>&
688
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
689
               const discard_block_engine<_RandomNumberEngine,
690
               __p, __r>& __x)
691
    {
692
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
693
      typedef typename __ostream_type::ios_base    __ios_base;
694
 
695
      const typename __ios_base::fmtflags __flags = __os.flags();
696
      const _CharT __fill = __os.fill();
697
      const _CharT __space = __os.widen(' ');
698
      __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
699
      __os.fill(__space);
700
 
701
      __os << __x.base() << __space << __x._M_n;
702
 
703
      __os.flags(__flags);
704
      __os.fill(__fill);
705
      return __os;
706
    }
707
 
708
  template
709
           typename _CharT, typename _Traits>
710
    std::basic_istream<_CharT, _Traits>&
711
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
712
               discard_block_engine<_RandomNumberEngine, __p, __r>& __x)
713
    {
714
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
715
      typedef typename __istream_type::ios_base    __ios_base;
716
 
717
      const typename __ios_base::fmtflags __flags = __is.flags();
718
      __is.flags(__ios_base::dec | __ios_base::skipws);
719
 
720
      __is >> __x._M_b >> __x._M_n;
721
 
722
      __is.flags(__flags);
723
      return __is;
724
    }
725
 
726
 
727
  template
728
    typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
729
      result_type
730
    independent_bits_engine<_RandomNumberEngine, __w, _UIntType>::
731
    operator()()
732
    {
733
      const long double __r = static_cast(_M_b.max())
734
                            - static_cast(_M_b.min()) + 1.0L;
735
      const result_type __m = std::log(__r) / std::log(2.0L);
736
      result_type __n, __n0, __y0, __y1, __s0, __s1;
737
      for (size_t __i = 0; __i < 2; ++__i)
738
        {
739
          __n = (__w + __m - 1) / __m + __i;
740
          __n0 = __n - __w % __n;
741
          const result_type __w0 = __w / __n;
742
          const result_type __w1 = __w0 + 1;
743
          __s0 = result_type(1) << __w0;
744
          __s1 = result_type(1) << __w1;
745
          __y0 = __s0 * (__r / __s0);
746
          __y1 = __s1 * (__r / __s1);
747
          if (__r - __y0 <= __y0 / __n)
748
            break;
749
        }
750
 
751
      result_type __sum = 0;
752
      for (size_t __k = 0; __k < __n0; ++__k)
753
        {
754
          result_type __u;
755
          do
756
            __u = _M_b() - _M_b.min();
757
          while (__u >= __y0);
758
          __sum = __s0 * __sum + __u % __s0;
759
        }
760
      for (size_t __k = __n0; __k < __n; ++__k)
761
        {
762
          result_type __u;
763
          do
764
            __u = _M_b() - _M_b.min();
765
          while (__u >= __y1);
766
          __sum = __s1 * __sum + __u % __s1;
767
        }
768
      return __sum;
769
    }
770
 
771
 
772
  template
773
    constexpr size_t
774
    shuffle_order_engine<_RandomNumberEngine, __k>::table_size;
775
 
776
  template
777
    typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type
778
    shuffle_order_engine<_RandomNumberEngine, __k>::
779
    operator()()
780
    {
781
      size_t __j = __k * ((_M_y - _M_b.min())
782
                          / (_M_b.max() - _M_b.min() + 1.0L));
783
      _M_y = _M_v[__j];
784
      _M_v[__j] = _M_b();
785
 
786
      return _M_y;
787
    }
788
 
789
  template
790
           typename _CharT, typename _Traits>
791
    std::basic_ostream<_CharT, _Traits>&
792
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
793
               const shuffle_order_engine<_RandomNumberEngine, __k>& __x)
794
    {
795
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
796
      typedef typename __ostream_type::ios_base    __ios_base;
797
 
798
      const typename __ios_base::fmtflags __flags = __os.flags();
799
      const _CharT __fill = __os.fill();
800
      const _CharT __space = __os.widen(' ');
801
      __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left);
802
      __os.fill(__space);
803
 
804
      __os << __x.base();
805
      for (size_t __i = 0; __i < __k; ++__i)
806
        __os << __space << __x._M_v[__i];
807
      __os << __space << __x._M_y;
808
 
809
      __os.flags(__flags);
810
      __os.fill(__fill);
811
      return __os;
812
    }
813
 
814
  template
815
           typename _CharT, typename _Traits>
816
    std::basic_istream<_CharT, _Traits>&
817
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
818
               shuffle_order_engine<_RandomNumberEngine, __k>& __x)
819
    {
820
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
821
      typedef typename __istream_type::ios_base    __ios_base;
822
 
823
      const typename __ios_base::fmtflags __flags = __is.flags();
824
      __is.flags(__ios_base::dec | __ios_base::skipws);
825
 
826
      __is >> __x._M_b;
827
      for (size_t __i = 0; __i < __k; ++__i)
828
        __is >> __x._M_v[__i];
829
      __is >> __x._M_y;
830
 
831
      __is.flags(__flags);
832
      return __is;
833
    }
834
 
835
 
836
  template
837
    template
838
      typename uniform_int_distribution<_IntType>::result_type
839
      uniform_int_distribution<_IntType>::
840
      operator()(_UniformRandomNumberGenerator& __urng,
841
                 const param_type& __param)
842
      {
843
        typedef typename std::make_unsigned
844
          _UniformRandomNumberGenerator::result_type>::type __urngtype;
845
        typedef typename std::make_unsigned::type __utype;
846
        typedef typename std::conditional<(sizeof(__urngtype)
847
                                           > sizeof(__utype)),
848
          __urngtype, __utype>::type __uctype;
849
 
850
        const __uctype __urngmin = __urng.min();
851
        const __uctype __urngmax = __urng.max();
852
        const __uctype __urngrange = __urngmax - __urngmin;
853
        const __uctype __urange
854
          = __uctype(__param.b()) - __uctype(__param.a());
855
 
856
        __uctype __ret;
857
 
858
        if (__urngrange > __urange)
859
          {
860
            // downscaling
861
            const __uctype __uerange = __urange + 1; // __urange can be zero
862
            const __uctype __scaling = __urngrange / __uerange;
863
            const __uctype __past = __uerange * __scaling;
864
            do
865
              __ret = __uctype(__urng()) - __urngmin;
866
            while (__ret >= __past);
867
            __ret /= __scaling;
868
          }
869
        else if (__urngrange < __urange)
870
          {
871
            // upscaling
872
            /*
873
              Note that every value in [0, urange]
874
              can be written uniquely as
875
 
876
              (urngrange + 1) * high + low
877
 
878
              where
879
 
880
              high in [0, urange / (urngrange + 1)]
881
 
882
              and
883
 
884
              low in [0, urngrange].
885
            */
886
            __uctype __tmp; // wraparound control
887
            do
888
              {
889
                const __uctype __uerngrange = __urngrange + 1;
890
                __tmp = (__uerngrange * operator()
891
                         (__urng, param_type(0, __urange / __uerngrange)));
892
                __ret = __tmp + (__uctype(__urng()) - __urngmin);
893
              }
894
            while (__ret > __urange || __ret < __tmp);
895
          }
896
        else
897
          __ret = __uctype(__urng()) - __urngmin;
898
 
899
        return __ret + __param.a();
900
      }
901
 
902
  template
903
    std::basic_ostream<_CharT, _Traits>&
904
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
905
               const uniform_int_distribution<_IntType>& __x)
906
    {
907
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
908
      typedef typename __ostream_type::ios_base    __ios_base;
909
 
910
      const typename __ios_base::fmtflags __flags = __os.flags();
911
      const _CharT __fill = __os.fill();
912
      const _CharT __space = __os.widen(' ');
913
      __os.flags(__ios_base::scientific | __ios_base::left);
914
      __os.fill(__space);
915
 
916
      __os << __x.a() << __space << __x.b();
917
 
918
      __os.flags(__flags);
919
      __os.fill(__fill);
920
      return __os;
921
    }
922
 
923
  template
924
    std::basic_istream<_CharT, _Traits>&
925
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
926
               uniform_int_distribution<_IntType>& __x)
927
    {
928
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
929
      typedef typename __istream_type::ios_base    __ios_base;
930
 
931
      const typename __ios_base::fmtflags __flags = __is.flags();
932
      __is.flags(__ios_base::dec | __ios_base::skipws);
933
 
934
      _IntType __a, __b;
935
      __is >> __a >> __b;
936
      __x.param(typename uniform_int_distribution<_IntType>::
937
                param_type(__a, __b));
938
 
939
      __is.flags(__flags);
940
      return __is;
941
    }
942
 
943
 
944
  template
945
    std::basic_ostream<_CharT, _Traits>&
946
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
947
               const uniform_real_distribution<_RealType>& __x)
948
    {
949
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
950
      typedef typename __ostream_type::ios_base    __ios_base;
951
 
952
      const typename __ios_base::fmtflags __flags = __os.flags();
953
      const _CharT __fill = __os.fill();
954
      const std::streamsize __precision = __os.precision();
955
      const _CharT __space = __os.widen(' ');
956
      __os.flags(__ios_base::scientific | __ios_base::left);
957
      __os.fill(__space);
958
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
959
 
960
      __os << __x.a() << __space << __x.b();
961
 
962
      __os.flags(__flags);
963
      __os.fill(__fill);
964
      __os.precision(__precision);
965
      return __os;
966
    }
967
 
968
  template
969
    std::basic_istream<_CharT, _Traits>&
970
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
971
               uniform_real_distribution<_RealType>& __x)
972
    {
973
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
974
      typedef typename __istream_type::ios_base    __ios_base;
975
 
976
      const typename __ios_base::fmtflags __flags = __is.flags();
977
      __is.flags(__ios_base::skipws);
978
 
979
      _RealType __a, __b;
980
      __is >> __a >> __b;
981
      __x.param(typename uniform_real_distribution<_RealType>::
982
                param_type(__a, __b));
983
 
984
      __is.flags(__flags);
985
      return __is;
986
    }
987
 
988
 
989
  template
990
    std::basic_ostream<_CharT, _Traits>&
991
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
992
               const bernoulli_distribution& __x)
993
    {
994
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
995
      typedef typename __ostream_type::ios_base    __ios_base;
996
 
997
      const typename __ios_base::fmtflags __flags = __os.flags();
998
      const _CharT __fill = __os.fill();
999
      const std::streamsize __precision = __os.precision();
1000
      __os.flags(__ios_base::scientific | __ios_base::left);
1001
      __os.fill(__os.widen(' '));
1002
      __os.precision(std::numeric_limits::max_digits10);
1003
 
1004
      __os << __x.p();
1005
 
1006
      __os.flags(__flags);
1007
      __os.fill(__fill);
1008
      __os.precision(__precision);
1009
      return __os;
1010
    }
1011
 
1012
 
1013
  template
1014
    template
1015
      typename geometric_distribution<_IntType>::result_type
1016
      geometric_distribution<_IntType>::
1017
      operator()(_UniformRandomNumberGenerator& __urng,
1018
                 const param_type& __param)
1019
      {
1020
        // About the epsilon thing see this thread:
1021
        // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html
1022
        const double __naf =
1023
          (1 - std::numeric_limits::epsilon()) / 2;
1024
        // The largest _RealType convertible to _IntType.
1025
        const double __thr =
1026
          std::numeric_limits<_IntType>::max() + __naf;
1027
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1028
          __aurng(__urng);
1029
 
1030
        double __cand;
1031
        do
1032
          __cand = std::floor(std::log(__aurng()) / __param._M_log_1_p);
1033
        while (__cand >= __thr);
1034
 
1035
        return result_type(__cand + __naf);
1036
      }
1037
 
1038
  template
1039
           typename _CharT, typename _Traits>
1040
    std::basic_ostream<_CharT, _Traits>&
1041
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1042
               const geometric_distribution<_IntType>& __x)
1043
    {
1044
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1045
      typedef typename __ostream_type::ios_base    __ios_base;
1046
 
1047
      const typename __ios_base::fmtflags __flags = __os.flags();
1048
      const _CharT __fill = __os.fill();
1049
      const std::streamsize __precision = __os.precision();
1050
      __os.flags(__ios_base::scientific | __ios_base::left);
1051
      __os.fill(__os.widen(' '));
1052
      __os.precision(std::numeric_limits::max_digits10);
1053
 
1054
      __os << __x.p();
1055
 
1056
      __os.flags(__flags);
1057
      __os.fill(__fill);
1058
      __os.precision(__precision);
1059
      return __os;
1060
    }
1061
 
1062
  template
1063
           typename _CharT, typename _Traits>
1064
    std::basic_istream<_CharT, _Traits>&
1065
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1066
               geometric_distribution<_IntType>& __x)
1067
    {
1068
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1069
      typedef typename __istream_type::ios_base    __ios_base;
1070
 
1071
      const typename __ios_base::fmtflags __flags = __is.flags();
1072
      __is.flags(__ios_base::skipws);
1073
 
1074
      double __p;
1075
      __is >> __p;
1076
      __x.param(typename geometric_distribution<_IntType>::param_type(__p));
1077
 
1078
      __is.flags(__flags);
1079
      return __is;
1080
    }
1081
 
1082
  // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5.
1083
  template
1084
    template
1085
      typename negative_binomial_distribution<_IntType>::result_type
1086
      negative_binomial_distribution<_IntType>::
1087
      operator()(_UniformRandomNumberGenerator& __urng)
1088
      {
1089
        const double __y = _M_gd(__urng);
1090
 
1091
        // XXX Is the constructor too slow?
1092
        std::poisson_distribution __poisson(__y);
1093
        return __poisson(__urng);
1094
      }
1095
 
1096
  template
1097
    template
1098
      typename negative_binomial_distribution<_IntType>::result_type
1099
      negative_binomial_distribution<_IntType>::
1100
      operator()(_UniformRandomNumberGenerator& __urng,
1101
                 const param_type& __p)
1102
      {
1103
        typedef typename std::gamma_distribution::param_type
1104
          param_type;
1105
 
1106
        const double __y =
1107
          _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p()));
1108
 
1109
        std::poisson_distribution __poisson(__y);
1110
        return __poisson(__urng);
1111
      }
1112
 
1113
  template
1114
    std::basic_ostream<_CharT, _Traits>&
1115
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1116
               const negative_binomial_distribution<_IntType>& __x)
1117
    {
1118
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1119
      typedef typename __ostream_type::ios_base    __ios_base;
1120
 
1121
      const typename __ios_base::fmtflags __flags = __os.flags();
1122
      const _CharT __fill = __os.fill();
1123
      const std::streamsize __precision = __os.precision();
1124
      const _CharT __space = __os.widen(' ');
1125
      __os.flags(__ios_base::scientific | __ios_base::left);
1126
      __os.fill(__os.widen(' '));
1127
      __os.precision(std::numeric_limits::max_digits10);
1128
 
1129
      __os << __x.k() << __space << __x.p()
1130
           << __space << __x._M_gd;
1131
 
1132
      __os.flags(__flags);
1133
      __os.fill(__fill);
1134
      __os.precision(__precision);
1135
      return __os;
1136
    }
1137
 
1138
  template
1139
    std::basic_istream<_CharT, _Traits>&
1140
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1141
               negative_binomial_distribution<_IntType>& __x)
1142
    {
1143
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1144
      typedef typename __istream_type::ios_base    __ios_base;
1145
 
1146
      const typename __ios_base::fmtflags __flags = __is.flags();
1147
      __is.flags(__ios_base::skipws);
1148
 
1149
      _IntType __k;
1150
      double __p;
1151
      __is >> __k >> __p >> __x._M_gd;
1152
      __x.param(typename negative_binomial_distribution<_IntType>::
1153
                param_type(__k, __p));
1154
 
1155
      __is.flags(__flags);
1156
      return __is;
1157
    }
1158
 
1159
 
1160
  template
1161
    void
1162
    poisson_distribution<_IntType>::param_type::
1163
    _M_initialize()
1164
    {
1165
#if _GLIBCXX_USE_C99_MATH_TR1
1166
      if (_M_mean >= 12)
1167
        {
1168
          const double __m = std::floor(_M_mean);
1169
          _M_lm_thr = std::log(_M_mean);
1170
          _M_lfm = std::lgamma(__m + 1);
1171
          _M_sm = std::sqrt(__m);
1172
 
1173
          const double __pi_4 = 0.7853981633974483096156608458198757L;
1174
          const double __dx = std::sqrt(2 * __m * std::log(32 * __m
1175
                                                              / __pi_4));
1176
          _M_d = std::round(std::max(6.0, std::min(__m, __dx)));
1177
          const double __cx = 2 * __m + _M_d;
1178
          _M_scx = std::sqrt(__cx / 2);
1179
          _M_1cx = 1 / __cx;
1180
 
1181
          _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx);
1182
          _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2))
1183
                / _M_d;
1184
        }
1185
      else
1186
#endif
1187
        _M_lm_thr = std::exp(-_M_mean);
1188
      }
1189
 
1190
  /**
1191
   * A rejection algorithm when mean >= 12 and a simple method based
1192
   * upon the multiplication of uniform random variates otherwise.
1193
   * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1194
   * is defined.
1195
   *
1196
   * Reference:
1197
   * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1198
   * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!).
1199
   */
1200
  template
1201
    template
1202
      typename poisson_distribution<_IntType>::result_type
1203
      poisson_distribution<_IntType>::
1204
      operator()(_UniformRandomNumberGenerator& __urng,
1205
                 const param_type& __param)
1206
      {
1207
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1208
          __aurng(__urng);
1209
#if _GLIBCXX_USE_C99_MATH_TR1
1210
        if (__param.mean() >= 12)
1211
          {
1212
            double __x;
1213
 
1214
            // See comments above...
1215
            const double __naf =
1216
              (1 - std::numeric_limits::epsilon()) / 2;
1217
            const double __thr =
1218
              std::numeric_limits<_IntType>::max() + __naf;
1219
 
1220
            const double __m = std::floor(__param.mean());
1221
            // sqrt(pi / 2)
1222
            const double __spi_2 = 1.2533141373155002512078826424055226L;
1223
            const double __c1 = __param._M_sm * __spi_2;
1224
            const double __c2 = __param._M_c2b + __c1;
1225
            const double __c3 = __c2 + 1;
1226
            const double __c4 = __c3 + 1;
1227
            // e^(1 / 78)
1228
            const double __e178 = 1.0129030479320018583185514777512983L;
1229
            const double __c5 = __c4 + __e178;
1230
            const double __c = __param._M_cb + __c5;
1231
            const double __2cx = 2 * (2 * __m + __param._M_d);
1232
 
1233
            bool __reject = true;
1234
            do
1235
              {
1236
                const double __u = __c * __aurng();
1237
                const double __e = -std::log(__aurng());
1238
 
1239
                double __w = 0.0;
1240
 
1241
                if (__u <= __c1)
1242
                  {
1243
                    const double __n = _M_nd(__urng);
1244
                    const double __y = -std::abs(__n) * __param._M_sm - 1;
1245
                    __x = std::floor(__y);
1246
                    __w = -__n * __n / 2;
1247
                    if (__x < -__m)
1248
                      continue;
1249
                  }
1250
                else if (__u <= __c2)
1251
                  {
1252
                    const double __n = _M_nd(__urng);
1253
                    const double __y = 1 + std::abs(__n) * __param._M_scx;
1254
                    __x = std::ceil(__y);
1255
                    __w = __y * (2 - __y) * __param._M_1cx;
1256
                    if (__x > __param._M_d)
1257
                      continue;
1258
                  }
1259
                else if (__u <= __c3)
1260
                  // NB: This case not in the book, nor in the Errata,
1261
                  // but should be ok...
1262
                  __x = -1;
1263
                else if (__u <= __c4)
1264
                  __x = 0;
1265
                else if (__u <= __c5)
1266
                  __x = 1;
1267
                else
1268
                  {
1269
                    const double __v = -std::log(__aurng());
1270
                    const double __y = __param._M_d
1271
                                     + __v * __2cx / __param._M_d;
1272
                    __x = std::ceil(__y);
1273
                    __w = -__param._M_d * __param._M_1cx * (1 + __y / 2);
1274
                  }
1275
 
1276
                __reject = (__w - __e - __x * __param._M_lm_thr
1277
                            > __param._M_lfm - std::lgamma(__x + __m + 1));
1278
 
1279
                __reject |= __x + __m >= __thr;
1280
 
1281
              } while (__reject);
1282
 
1283
            return result_type(__x + __m + __naf);
1284
          }
1285
        else
1286
#endif
1287
          {
1288
            _IntType     __x = 0;
1289
            double __prod = 1.0;
1290
 
1291
            do
1292
              {
1293
                __prod *= __aurng();
1294
                __x += 1;
1295
              }
1296
            while (__prod > __param._M_lm_thr);
1297
 
1298
            return __x - 1;
1299
          }
1300
      }
1301
 
1302
  template
1303
           typename _CharT, typename _Traits>
1304
    std::basic_ostream<_CharT, _Traits>&
1305
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1306
               const poisson_distribution<_IntType>& __x)
1307
    {
1308
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1309
      typedef typename __ostream_type::ios_base    __ios_base;
1310
 
1311
      const typename __ios_base::fmtflags __flags = __os.flags();
1312
      const _CharT __fill = __os.fill();
1313
      const std::streamsize __precision = __os.precision();
1314
      const _CharT __space = __os.widen(' ');
1315
      __os.flags(__ios_base::scientific | __ios_base::left);
1316
      __os.fill(__space);
1317
      __os.precision(std::numeric_limits::max_digits10);
1318
 
1319
      __os << __x.mean() << __space << __x._M_nd;
1320
 
1321
      __os.flags(__flags);
1322
      __os.fill(__fill);
1323
      __os.precision(__precision);
1324
      return __os;
1325
    }
1326
 
1327
  template
1328
           typename _CharT, typename _Traits>
1329
    std::basic_istream<_CharT, _Traits>&
1330
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1331
               poisson_distribution<_IntType>& __x)
1332
    {
1333
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1334
      typedef typename __istream_type::ios_base    __ios_base;
1335
 
1336
      const typename __ios_base::fmtflags __flags = __is.flags();
1337
      __is.flags(__ios_base::skipws);
1338
 
1339
      double __mean;
1340
      __is >> __mean >> __x._M_nd;
1341
      __x.param(typename poisson_distribution<_IntType>::param_type(__mean));
1342
 
1343
      __is.flags(__flags);
1344
      return __is;
1345
    }
1346
 
1347
 
1348
  template
1349
    void
1350
    binomial_distribution<_IntType>::param_type::
1351
    _M_initialize()
1352
    {
1353
      const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p;
1354
 
1355
      _M_easy = true;
1356
 
1357
#if _GLIBCXX_USE_C99_MATH_TR1
1358
      if (_M_t * __p12 >= 8)
1359
        {
1360
          _M_easy = false;
1361
          const double __np = std::floor(_M_t * __p12);
1362
          const double __pa = __np / _M_t;
1363
          const double __1p = 1 - __pa;
1364
 
1365
          const double __pi_4 = 0.7853981633974483096156608458198757L;
1366
          const double __d1x =
1367
            std::sqrt(__np * __1p * std::log(32 * __np
1368
                                             / (81 * __pi_4 * __1p)));
1369
          _M_d1 = std::round(std::max(1.0, __d1x));
1370
          const double __d2x =
1371
            std::sqrt(__np * __1p * std::log(32 * _M_t * __1p
1372
                                             / (__pi_4 * __pa)));
1373
          _M_d2 = std::round(std::max(1.0, __d2x));
1374
 
1375
          // sqrt(pi / 2)
1376
          const double __spi_2 = 1.2533141373155002512078826424055226L;
1377
          _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np));
1378
          _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p));
1379
          _M_c = 2 * _M_d1 / __np;
1380
          _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2;
1381
          const double __a12 = _M_a1 + _M_s2 * __spi_2;
1382
          const double __s1s = _M_s1 * _M_s1;
1383
          _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p))
1384
                             * 2 * __s1s / _M_d1
1385
                             * std::exp(-_M_d1 * _M_d1 / (2 * __s1s)));
1386
          const double __s2s = _M_s2 * _M_s2;
1387
          _M_s = (_M_a123 + 2 * __s2s / _M_d2
1388
                  * std::exp(-_M_d2 * _M_d2 / (2 * __s2s)));
1389
          _M_lf = (std::lgamma(__np + 1)
1390
                   + std::lgamma(_M_t - __np + 1));
1391
          _M_lp1p = std::log(__pa / __1p);
1392
 
1393
          _M_q = -std::log(1 - (__p12 - __pa) / __1p);
1394
        }
1395
      else
1396
#endif
1397
        _M_q = -std::log(1 - __p12);
1398
    }
1399
 
1400
  template
1401
    template
1402
      typename binomial_distribution<_IntType>::result_type
1403
      binomial_distribution<_IntType>::
1404
      _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t)
1405
      {
1406
        _IntType __x = 0;
1407
        double __sum = 0.0;
1408
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1409
          __aurng(__urng);
1410
 
1411
        do
1412
          {
1413
            const double __e = -std::log(__aurng());
1414
            __sum += __e / (__t - __x);
1415
            __x += 1;
1416
          }
1417
        while (__sum <= _M_param._M_q);
1418
 
1419
        return __x - 1;
1420
      }
1421
 
1422
  /**
1423
   * A rejection algorithm when t * p >= 8 and a simple waiting time
1424
   * method - the second in the referenced book - otherwise.
1425
   * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1
1426
   * is defined.
1427
   *
1428
   * Reference:
1429
   * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1430
   * New York, 1986, Ch. X, Sect. 4 (+ Errata!).
1431
   */
1432
  template
1433
    template
1434
      typename binomial_distribution<_IntType>::result_type
1435
      binomial_distribution<_IntType>::
1436
      operator()(_UniformRandomNumberGenerator& __urng,
1437
                 const param_type& __param)
1438
      {
1439
        result_type __ret;
1440
        const _IntType __t = __param.t();
1441
        const double __p = __param.p();
1442
        const double __p12 = __p <= 0.5 ? __p : 1.0 - __p;
1443
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
1444
          __aurng(__urng);
1445
 
1446
#if _GLIBCXX_USE_C99_MATH_TR1
1447
        if (!__param._M_easy)
1448
          {
1449
            double __x;
1450
 
1451
            // See comments above...
1452
            const double __naf =
1453
              (1 - std::numeric_limits::epsilon()) / 2;
1454
            const double __thr =
1455
              std::numeric_limits<_IntType>::max() + __naf;
1456
 
1457
            const double __np = std::floor(__t * __p12);
1458
 
1459
            // sqrt(pi / 2)
1460
            const double __spi_2 = 1.2533141373155002512078826424055226L;
1461
            const double __a1 = __param._M_a1;
1462
            const double __a12 = __a1 + __param._M_s2 * __spi_2;
1463
            const double __a123 = __param._M_a123;
1464
            const double __s1s = __param._M_s1 * __param._M_s1;
1465
            const double __s2s = __param._M_s2 * __param._M_s2;
1466
 
1467
            bool __reject;
1468
            do
1469
              {
1470
                const double __u = __param._M_s * __aurng();
1471
 
1472
                double __v;
1473
 
1474
                if (__u <= __a1)
1475
                  {
1476
                    const double __n = _M_nd(__urng);
1477
                    const double __y = __param._M_s1 * std::abs(__n);
1478
                    __reject = __y >= __param._M_d1;
1479
                    if (!__reject)
1480
                      {
1481
                        const double __e = -std::log(__aurng());
1482
                        __x = std::floor(__y);
1483
                        __v = -__e - __n * __n / 2 + __param._M_c;
1484
                      }
1485
                  }
1486
                else if (__u <= __a12)
1487
                  {
1488
                    const double __n = _M_nd(__urng);
1489
                    const double __y = __param._M_s2 * std::abs(__n);
1490
                    __reject = __y >= __param._M_d2;
1491
                    if (!__reject)
1492
                      {
1493
                        const double __e = -std::log(__aurng());
1494
                        __x = std::floor(-__y);
1495
                        __v = -__e - __n * __n / 2;
1496
                      }
1497
                  }
1498
                else if (__u <= __a123)
1499
                  {
1500
                    const double __e1 = -std::log(__aurng());
1501
                    const double __e2 = -std::log(__aurng());
1502
 
1503
                    const double __y = __param._M_d1
1504
                                     + 2 * __s1s * __e1 / __param._M_d1;
1505
                    __x = std::floor(__y);
1506
                    __v = (-__e2 + __param._M_d1 * (1 / (__t - __np)
1507
                                                    -__y / (2 * __s1s)));
1508
                    __reject = false;
1509
                  }
1510
                else
1511
                  {
1512
                    const double __e1 = -std::log(__aurng());
1513
                    const double __e2 = -std::log(__aurng());
1514
 
1515
                    const double __y = __param._M_d2
1516
                                     + 2 * __s2s * __e1 / __param._M_d2;
1517
                    __x = std::floor(-__y);
1518
                    __v = -__e2 - __param._M_d2 * __y / (2 * __s2s);
1519
                    __reject = false;
1520
                  }
1521
 
1522
                __reject = __reject || __x < -__np || __x > __t - __np;
1523
                if (!__reject)
1524
                  {
1525
                    const double __lfx =
1526
                      std::lgamma(__np + __x + 1)
1527
                      + std::lgamma(__t - (__np + __x) + 1);
1528
                    __reject = __v > __param._M_lf - __lfx
1529
                             + __x * __param._M_lp1p;
1530
                  }
1531
 
1532
                __reject |= __x + __np >= __thr;
1533
              }
1534
            while (__reject);
1535
 
1536
            __x += __np + __naf;
1537
 
1538
            const _IntType __z = _M_waiting(__urng, __t - _IntType(__x));
1539
            __ret = _IntType(__x) + __z;
1540
          }
1541
        else
1542
#endif
1543
          __ret = _M_waiting(__urng, __t);
1544
 
1545
        if (__p12 != __p)
1546
          __ret = __t - __ret;
1547
        return __ret;
1548
      }
1549
 
1550
  template
1551
           typename _CharT, typename _Traits>
1552
    std::basic_ostream<_CharT, _Traits>&
1553
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1554
               const binomial_distribution<_IntType>& __x)
1555
    {
1556
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1557
      typedef typename __ostream_type::ios_base    __ios_base;
1558
 
1559
      const typename __ios_base::fmtflags __flags = __os.flags();
1560
      const _CharT __fill = __os.fill();
1561
      const std::streamsize __precision = __os.precision();
1562
      const _CharT __space = __os.widen(' ');
1563
      __os.flags(__ios_base::scientific | __ios_base::left);
1564
      __os.fill(__space);
1565
      __os.precision(std::numeric_limits::max_digits10);
1566
 
1567
      __os << __x.t() << __space << __x.p()
1568
           << __space << __x._M_nd;
1569
 
1570
      __os.flags(__flags);
1571
      __os.fill(__fill);
1572
      __os.precision(__precision);
1573
      return __os;
1574
    }
1575
 
1576
  template
1577
           typename _CharT, typename _Traits>
1578
    std::basic_istream<_CharT, _Traits>&
1579
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1580
               binomial_distribution<_IntType>& __x)
1581
    {
1582
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1583
      typedef typename __istream_type::ios_base    __ios_base;
1584
 
1585
      const typename __ios_base::fmtflags __flags = __is.flags();
1586
      __is.flags(__ios_base::dec | __ios_base::skipws);
1587
 
1588
      _IntType __t;
1589
      double __p;
1590
      __is >> __t >> __p >> __x._M_nd;
1591
      __x.param(typename binomial_distribution<_IntType>::
1592
                param_type(__t, __p));
1593
 
1594
      __is.flags(__flags);
1595
      return __is;
1596
    }
1597
 
1598
 
1599
  template
1600
    std::basic_ostream<_CharT, _Traits>&
1601
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1602
               const exponential_distribution<_RealType>& __x)
1603
    {
1604
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1605
      typedef typename __ostream_type::ios_base    __ios_base;
1606
 
1607
      const typename __ios_base::fmtflags __flags = __os.flags();
1608
      const _CharT __fill = __os.fill();
1609
      const std::streamsize __precision = __os.precision();
1610
      __os.flags(__ios_base::scientific | __ios_base::left);
1611
      __os.fill(__os.widen(' '));
1612
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1613
 
1614
      __os << __x.lambda();
1615
 
1616
      __os.flags(__flags);
1617
      __os.fill(__fill);
1618
      __os.precision(__precision);
1619
      return __os;
1620
    }
1621
 
1622
  template
1623
    std::basic_istream<_CharT, _Traits>&
1624
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1625
               exponential_distribution<_RealType>& __x)
1626
    {
1627
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1628
      typedef typename __istream_type::ios_base    __ios_base;
1629
 
1630
      const typename __ios_base::fmtflags __flags = __is.flags();
1631
      __is.flags(__ios_base::dec | __ios_base::skipws);
1632
 
1633
      _RealType __lambda;
1634
      __is >> __lambda;
1635
      __x.param(typename exponential_distribution<_RealType>::
1636
                param_type(__lambda));
1637
 
1638
      __is.flags(__flags);
1639
      return __is;
1640
    }
1641
 
1642
 
1643
  /**
1644
   * Polar method due to Marsaglia.
1645
   *
1646
   * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag,
1647
   * New York, 1986, Ch. V, Sect. 4.4.
1648
   */
1649
  template
1650
    template
1651
      typename normal_distribution<_RealType>::result_type
1652
      normal_distribution<_RealType>::
1653
      operator()(_UniformRandomNumberGenerator& __urng,
1654
                 const param_type& __param)
1655
      {
1656
        result_type __ret;
1657
        __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1658
          __aurng(__urng);
1659
 
1660
        if (_M_saved_available)
1661
          {
1662
            _M_saved_available = false;
1663
            __ret = _M_saved;
1664
          }
1665
        else
1666
          {
1667
            result_type __x, __y, __r2;
1668
            do
1669
              {
1670
                __x = result_type(2.0) * __aurng() - 1.0;
1671
                __y = result_type(2.0) * __aurng() - 1.0;
1672
                __r2 = __x * __x + __y * __y;
1673
              }
1674
            while (__r2 > 1.0 || __r2 == 0.0);
1675
 
1676
            const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2);
1677
            _M_saved = __x * __mult;
1678
            _M_saved_available = true;
1679
            __ret = __y * __mult;
1680
          }
1681
 
1682
        __ret = __ret * __param.stddev() + __param.mean();
1683
        return __ret;
1684
      }
1685
 
1686
  template
1687
    bool
1688
    operator==(const std::normal_distribution<_RealType>& __d1,
1689
               const std::normal_distribution<_RealType>& __d2)
1690
    {
1691
      if (__d1._M_param == __d2._M_param
1692
          && __d1._M_saved_available == __d2._M_saved_available)
1693
        {
1694
          if (__d1._M_saved_available
1695
              && __d1._M_saved == __d2._M_saved)
1696
            return true;
1697
          else if(!__d1._M_saved_available)
1698
            return true;
1699
          else
1700
            return false;
1701
        }
1702
      else
1703
        return false;
1704
    }
1705
 
1706
  template
1707
    std::basic_ostream<_CharT, _Traits>&
1708
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1709
               const normal_distribution<_RealType>& __x)
1710
    {
1711
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1712
      typedef typename __ostream_type::ios_base    __ios_base;
1713
 
1714
      const typename __ios_base::fmtflags __flags = __os.flags();
1715
      const _CharT __fill = __os.fill();
1716
      const std::streamsize __precision = __os.precision();
1717
      const _CharT __space = __os.widen(' ');
1718
      __os.flags(__ios_base::scientific | __ios_base::left);
1719
      __os.fill(__space);
1720
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1721
 
1722
      __os << __x.mean() << __space << __x.stddev()
1723
           << __space << __x._M_saved_available;
1724
      if (__x._M_saved_available)
1725
        __os << __space << __x._M_saved;
1726
 
1727
      __os.flags(__flags);
1728
      __os.fill(__fill);
1729
      __os.precision(__precision);
1730
      return __os;
1731
    }
1732
 
1733
  template
1734
    std::basic_istream<_CharT, _Traits>&
1735
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1736
               normal_distribution<_RealType>& __x)
1737
    {
1738
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1739
      typedef typename __istream_type::ios_base    __ios_base;
1740
 
1741
      const typename __ios_base::fmtflags __flags = __is.flags();
1742
      __is.flags(__ios_base::dec | __ios_base::skipws);
1743
 
1744
      double __mean, __stddev;
1745
      __is >> __mean >> __stddev
1746
           >> __x._M_saved_available;
1747
      if (__x._M_saved_available)
1748
        __is >> __x._M_saved;
1749
      __x.param(typename normal_distribution<_RealType>::
1750
                param_type(__mean, __stddev));
1751
 
1752
      __is.flags(__flags);
1753
      return __is;
1754
    }
1755
 
1756
 
1757
  template
1758
    std::basic_ostream<_CharT, _Traits>&
1759
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1760
               const lognormal_distribution<_RealType>& __x)
1761
    {
1762
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1763
      typedef typename __ostream_type::ios_base    __ios_base;
1764
 
1765
      const typename __ios_base::fmtflags __flags = __os.flags();
1766
      const _CharT __fill = __os.fill();
1767
      const std::streamsize __precision = __os.precision();
1768
      const _CharT __space = __os.widen(' ');
1769
      __os.flags(__ios_base::scientific | __ios_base::left);
1770
      __os.fill(__space);
1771
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1772
 
1773
      __os << __x.m() << __space << __x.s()
1774
           << __space << __x._M_nd;
1775
 
1776
      __os.flags(__flags);
1777
      __os.fill(__fill);
1778
      __os.precision(__precision);
1779
      return __os;
1780
    }
1781
 
1782
  template
1783
    std::basic_istream<_CharT, _Traits>&
1784
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1785
               lognormal_distribution<_RealType>& __x)
1786
    {
1787
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1788
      typedef typename __istream_type::ios_base    __ios_base;
1789
 
1790
      const typename __ios_base::fmtflags __flags = __is.flags();
1791
      __is.flags(__ios_base::dec | __ios_base::skipws);
1792
 
1793
      _RealType __m, __s;
1794
      __is >> __m >> __s >> __x._M_nd;
1795
      __x.param(typename lognormal_distribution<_RealType>::
1796
                param_type(__m, __s));
1797
 
1798
      __is.flags(__flags);
1799
      return __is;
1800
    }
1801
 
1802
 
1803
  template
1804
    std::basic_ostream<_CharT, _Traits>&
1805
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1806
               const chi_squared_distribution<_RealType>& __x)
1807
    {
1808
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1809
      typedef typename __ostream_type::ios_base    __ios_base;
1810
 
1811
      const typename __ios_base::fmtflags __flags = __os.flags();
1812
      const _CharT __fill = __os.fill();
1813
      const std::streamsize __precision = __os.precision();
1814
      const _CharT __space = __os.widen(' ');
1815
      __os.flags(__ios_base::scientific | __ios_base::left);
1816
      __os.fill(__space);
1817
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1818
 
1819
      __os << __x.n() << __space << __x._M_gd;
1820
 
1821
      __os.flags(__flags);
1822
      __os.fill(__fill);
1823
      __os.precision(__precision);
1824
      return __os;
1825
    }
1826
 
1827
  template
1828
    std::basic_istream<_CharT, _Traits>&
1829
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1830
               chi_squared_distribution<_RealType>& __x)
1831
    {
1832
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1833
      typedef typename __istream_type::ios_base    __ios_base;
1834
 
1835
      const typename __ios_base::fmtflags __flags = __is.flags();
1836
      __is.flags(__ios_base::dec | __ios_base::skipws);
1837
 
1838
      _RealType __n;
1839
      __is >> __n >> __x._M_gd;
1840
      __x.param(typename chi_squared_distribution<_RealType>::
1841
                param_type(__n));
1842
 
1843
      __is.flags(__flags);
1844
      return __is;
1845
    }
1846
 
1847
 
1848
  template
1849
    template
1850
      typename cauchy_distribution<_RealType>::result_type
1851
      cauchy_distribution<_RealType>::
1852
      operator()(_UniformRandomNumberGenerator& __urng,
1853
                 const param_type& __p)
1854
      {
1855
        __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
1856
          __aurng(__urng);
1857
        _RealType __u;
1858
        do
1859
          __u = __aurng();
1860
        while (__u == 0.5);
1861
 
1862
        const _RealType __pi = 3.1415926535897932384626433832795029L;
1863
        return __p.a() + __p.b() * std::tan(__pi * __u);
1864
      }
1865
 
1866
  template
1867
    std::basic_ostream<_CharT, _Traits>&
1868
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1869
               const cauchy_distribution<_RealType>& __x)
1870
    {
1871
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1872
      typedef typename __ostream_type::ios_base    __ios_base;
1873
 
1874
      const typename __ios_base::fmtflags __flags = __os.flags();
1875
      const _CharT __fill = __os.fill();
1876
      const std::streamsize __precision = __os.precision();
1877
      const _CharT __space = __os.widen(' ');
1878
      __os.flags(__ios_base::scientific | __ios_base::left);
1879
      __os.fill(__space);
1880
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1881
 
1882
      __os << __x.a() << __space << __x.b();
1883
 
1884
      __os.flags(__flags);
1885
      __os.fill(__fill);
1886
      __os.precision(__precision);
1887
      return __os;
1888
    }
1889
 
1890
  template
1891
    std::basic_istream<_CharT, _Traits>&
1892
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1893
               cauchy_distribution<_RealType>& __x)
1894
    {
1895
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1896
      typedef typename __istream_type::ios_base    __ios_base;
1897
 
1898
      const typename __ios_base::fmtflags __flags = __is.flags();
1899
      __is.flags(__ios_base::dec | __ios_base::skipws);
1900
 
1901
      _RealType __a, __b;
1902
      __is >> __a >> __b;
1903
      __x.param(typename cauchy_distribution<_RealType>::
1904
                param_type(__a, __b));
1905
 
1906
      __is.flags(__flags);
1907
      return __is;
1908
    }
1909
 
1910
 
1911
  template
1912
    std::basic_ostream<_CharT, _Traits>&
1913
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1914
               const fisher_f_distribution<_RealType>& __x)
1915
    {
1916
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1917
      typedef typename __ostream_type::ios_base    __ios_base;
1918
 
1919
      const typename __ios_base::fmtflags __flags = __os.flags();
1920
      const _CharT __fill = __os.fill();
1921
      const std::streamsize __precision = __os.precision();
1922
      const _CharT __space = __os.widen(' ');
1923
      __os.flags(__ios_base::scientific | __ios_base::left);
1924
      __os.fill(__space);
1925
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1926
 
1927
      __os << __x.m() << __space << __x.n()
1928
           << __space << __x._M_gd_x << __space << __x._M_gd_y;
1929
 
1930
      __os.flags(__flags);
1931
      __os.fill(__fill);
1932
      __os.precision(__precision);
1933
      return __os;
1934
    }
1935
 
1936
  template
1937
    std::basic_istream<_CharT, _Traits>&
1938
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1939
               fisher_f_distribution<_RealType>& __x)
1940
    {
1941
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1942
      typedef typename __istream_type::ios_base    __ios_base;
1943
 
1944
      const typename __ios_base::fmtflags __flags = __is.flags();
1945
      __is.flags(__ios_base::dec | __ios_base::skipws);
1946
 
1947
      _RealType __m, __n;
1948
      __is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y;
1949
      __x.param(typename fisher_f_distribution<_RealType>::
1950
                param_type(__m, __n));
1951
 
1952
      __is.flags(__flags);
1953
      return __is;
1954
    }
1955
 
1956
 
1957
  template
1958
    std::basic_ostream<_CharT, _Traits>&
1959
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
1960
               const student_t_distribution<_RealType>& __x)
1961
    {
1962
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
1963
      typedef typename __ostream_type::ios_base    __ios_base;
1964
 
1965
      const typename __ios_base::fmtflags __flags = __os.flags();
1966
      const _CharT __fill = __os.fill();
1967
      const std::streamsize __precision = __os.precision();
1968
      const _CharT __space = __os.widen(' ');
1969
      __os.flags(__ios_base::scientific | __ios_base::left);
1970
      __os.fill(__space);
1971
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
1972
 
1973
      __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd;
1974
 
1975
      __os.flags(__flags);
1976
      __os.fill(__fill);
1977
      __os.precision(__precision);
1978
      return __os;
1979
    }
1980
 
1981
  template
1982
    std::basic_istream<_CharT, _Traits>&
1983
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
1984
               student_t_distribution<_RealType>& __x)
1985
    {
1986
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
1987
      typedef typename __istream_type::ios_base    __ios_base;
1988
 
1989
      const typename __ios_base::fmtflags __flags = __is.flags();
1990
      __is.flags(__ios_base::dec | __ios_base::skipws);
1991
 
1992
      _RealType __n;
1993
      __is >> __n >> __x._M_nd >> __x._M_gd;
1994
      __x.param(typename student_t_distribution<_RealType>::param_type(__n));
1995
 
1996
      __is.flags(__flags);
1997
      return __is;
1998
    }
1999
 
2000
 
2001
  template
2002
    void
2003
    gamma_distribution<_RealType>::param_type::
2004
    _M_initialize()
2005
    {
2006
      _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha;
2007
 
2008
      const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0);
2009
      _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1);
2010
    }
2011
 
2012
  /**
2013
   * Marsaglia, G. and Tsang, W. W.
2014
   * "A Simple Method for Generating Gamma Variables"
2015
   * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000.
2016
   */
2017
  template
2018
    template
2019
      typename gamma_distribution<_RealType>::result_type
2020
      gamma_distribution<_RealType>::
2021
      operator()(_UniformRandomNumberGenerator& __urng,
2022
                 const param_type& __param)
2023
      {
2024
        __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2025
          __aurng(__urng);
2026
 
2027
        result_type __u, __v, __n;
2028
        const result_type __a1 = (__param._M_malpha
2029
                                  - _RealType(1.0) / _RealType(3.0));
2030
 
2031
        do
2032
          {
2033
            do
2034
              {
2035
                __n = _M_nd(__urng);
2036
                __v = result_type(1.0) + __param._M_a2 * __n;
2037
              }
2038
            while (__v <= 0.0);
2039
 
2040
            __v = __v * __v * __v;
2041
            __u = __aurng();
2042
          }
2043
        while (__u > result_type(1.0) - 0.331 * __n * __n * __n * __n
2044
               && (std::log(__u) > (0.5 * __n * __n + __a1
2045
                                    * (1.0 - __v + std::log(__v)))));
2046
 
2047
        if (__param.alpha() == __param._M_malpha)
2048
          return __a1 * __v * __param.beta();
2049
        else
2050
          {
2051
            do
2052
              __u = __aurng();
2053
            while (__u == 0.0);
2054
 
2055
            return (std::pow(__u, result_type(1.0) / __param.alpha())
2056
                    * __a1 * __v * __param.beta());
2057
          }
2058
      }
2059
 
2060
  template
2061
    std::basic_ostream<_CharT, _Traits>&
2062
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2063
               const gamma_distribution<_RealType>& __x)
2064
    {
2065
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2066
      typedef typename __ostream_type::ios_base    __ios_base;
2067
 
2068
      const typename __ios_base::fmtflags __flags = __os.flags();
2069
      const _CharT __fill = __os.fill();
2070
      const std::streamsize __precision = __os.precision();
2071
      const _CharT __space = __os.widen(' ');
2072
      __os.flags(__ios_base::scientific | __ios_base::left);
2073
      __os.fill(__space);
2074
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
2075
 
2076
      __os << __x.alpha() << __space << __x.beta()
2077
           << __space << __x._M_nd;
2078
 
2079
      __os.flags(__flags);
2080
      __os.fill(__fill);
2081
      __os.precision(__precision);
2082
      return __os;
2083
    }
2084
 
2085
  template
2086
    std::basic_istream<_CharT, _Traits>&
2087
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
2088
               gamma_distribution<_RealType>& __x)
2089
    {
2090
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2091
      typedef typename __istream_type::ios_base    __ios_base;
2092
 
2093
      const typename __ios_base::fmtflags __flags = __is.flags();
2094
      __is.flags(__ios_base::dec | __ios_base::skipws);
2095
 
2096
      _RealType __alpha_val, __beta_val;
2097
      __is >> __alpha_val >> __beta_val >> __x._M_nd;
2098
      __x.param(typename gamma_distribution<_RealType>::
2099
                param_type(__alpha_val, __beta_val));
2100
 
2101
      __is.flags(__flags);
2102
      return __is;
2103
    }
2104
 
2105
 
2106
  template
2107
    template
2108
      typename weibull_distribution<_RealType>::result_type
2109
      weibull_distribution<_RealType>::
2110
      operator()(_UniformRandomNumberGenerator& __urng,
2111
                 const param_type& __p)
2112
      {
2113
        __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2114
          __aurng(__urng);
2115
        return __p.b() * std::pow(-std::log(__aurng()),
2116
                                  result_type(1) / __p.a());
2117
      }
2118
 
2119
  template
2120
    std::basic_ostream<_CharT, _Traits>&
2121
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2122
               const weibull_distribution<_RealType>& __x)
2123
    {
2124
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2125
      typedef typename __ostream_type::ios_base    __ios_base;
2126
 
2127
      const typename __ios_base::fmtflags __flags = __os.flags();
2128
      const _CharT __fill = __os.fill();
2129
      const std::streamsize __precision = __os.precision();
2130
      const _CharT __space = __os.widen(' ');
2131
      __os.flags(__ios_base::scientific | __ios_base::left);
2132
      __os.fill(__space);
2133
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
2134
 
2135
      __os << __x.a() << __space << __x.b();
2136
 
2137
      __os.flags(__flags);
2138
      __os.fill(__fill);
2139
      __os.precision(__precision);
2140
      return __os;
2141
    }
2142
 
2143
  template
2144
    std::basic_istream<_CharT, _Traits>&
2145
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
2146
               weibull_distribution<_RealType>& __x)
2147
    {
2148
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2149
      typedef typename __istream_type::ios_base    __ios_base;
2150
 
2151
      const typename __ios_base::fmtflags __flags = __is.flags();
2152
      __is.flags(__ios_base::dec | __ios_base::skipws);
2153
 
2154
      _RealType __a, __b;
2155
      __is >> __a >> __b;
2156
      __x.param(typename weibull_distribution<_RealType>::
2157
                param_type(__a, __b));
2158
 
2159
      __is.flags(__flags);
2160
      return __is;
2161
    }
2162
 
2163
 
2164
  template
2165
    template
2166
      typename extreme_value_distribution<_RealType>::result_type
2167
      extreme_value_distribution<_RealType>::
2168
      operator()(_UniformRandomNumberGenerator& __urng,
2169
                 const param_type& __p)
2170
      {
2171
        __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
2172
          __aurng(__urng);
2173
        return __p.a() - __p.b() * std::log(-std::log(__aurng()));
2174
      }
2175
 
2176
  template
2177
    std::basic_ostream<_CharT, _Traits>&
2178
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2179
               const extreme_value_distribution<_RealType>& __x)
2180
    {
2181
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2182
      typedef typename __ostream_type::ios_base    __ios_base;
2183
 
2184
      const typename __ios_base::fmtflags __flags = __os.flags();
2185
      const _CharT __fill = __os.fill();
2186
      const std::streamsize __precision = __os.precision();
2187
      const _CharT __space = __os.widen(' ');
2188
      __os.flags(__ios_base::scientific | __ios_base::left);
2189
      __os.fill(__space);
2190
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
2191
 
2192
      __os << __x.a() << __space << __x.b();
2193
 
2194
      __os.flags(__flags);
2195
      __os.fill(__fill);
2196
      __os.precision(__precision);
2197
      return __os;
2198
    }
2199
 
2200
  template
2201
    std::basic_istream<_CharT, _Traits>&
2202
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
2203
               extreme_value_distribution<_RealType>& __x)
2204
    {
2205
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2206
      typedef typename __istream_type::ios_base    __ios_base;
2207
 
2208
      const typename __ios_base::fmtflags __flags = __is.flags();
2209
      __is.flags(__ios_base::dec | __ios_base::skipws);
2210
 
2211
      _RealType __a, __b;
2212
      __is >> __a >> __b;
2213
      __x.param(typename extreme_value_distribution<_RealType>::
2214
                param_type(__a, __b));
2215
 
2216
      __is.flags(__flags);
2217
      return __is;
2218
    }
2219
 
2220
 
2221
  template
2222
    void
2223
    discrete_distribution<_IntType>::param_type::
2224
    _M_initialize()
2225
    {
2226
      if (_M_prob.size() < 2)
2227
        {
2228
          _M_prob.clear();
2229
          return;
2230
        }
2231
 
2232
      const double __sum = std::accumulate(_M_prob.begin(),
2233
                                           _M_prob.end(), 0.0);
2234
      // Now normalize the probabilites.
2235
      __detail::__transform(_M_prob.begin(), _M_prob.end(), _M_prob.begin(),
2236
                          std::bind2nd(std::divides(), __sum));
2237
      // Accumulate partial sums.
2238
      _M_cp.reserve(_M_prob.size());
2239
      std::partial_sum(_M_prob.begin(), _M_prob.end(),
2240
                       std::back_inserter(_M_cp));
2241
      // Make sure the last cumulative probability is one.
2242
      _M_cp[_M_cp.size() - 1] = 1.0;
2243
    }
2244
 
2245
  template
2246
    template
2247
      discrete_distribution<_IntType>::param_type::
2248
      param_type(size_t __nw, double __xmin, double __xmax, _Func __fw)
2249
      : _M_prob(), _M_cp()
2250
      {
2251
        const size_t __n = __nw == 0 ? 1 : __nw;
2252
        const double __delta = (__xmax - __xmin) / __n;
2253
 
2254
        _M_prob.reserve(__n);
2255
        for (size_t __k = 0; __k < __nw; ++__k)
2256
          _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta));
2257
 
2258
        _M_initialize();
2259
      }
2260
 
2261
  template
2262
    template
2263
      typename discrete_distribution<_IntType>::result_type
2264
      discrete_distribution<_IntType>::
2265
      operator()(_UniformRandomNumberGenerator& __urng,
2266
                 const param_type& __param)
2267
      {
2268
        if (__param._M_cp.empty())
2269
          return result_type(0);
2270
 
2271
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2272
          __aurng(__urng);
2273
 
2274
        const double __p = __aurng();
2275
        auto __pos = std::lower_bound(__param._M_cp.begin(),
2276
                                      __param._M_cp.end(), __p);
2277
 
2278
        return __pos - __param._M_cp.begin();
2279
      }
2280
 
2281
  template
2282
    std::basic_ostream<_CharT, _Traits>&
2283
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2284
               const discrete_distribution<_IntType>& __x)
2285
    {
2286
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2287
      typedef typename __ostream_type::ios_base    __ios_base;
2288
 
2289
      const typename __ios_base::fmtflags __flags = __os.flags();
2290
      const _CharT __fill = __os.fill();
2291
      const std::streamsize __precision = __os.precision();
2292
      const _CharT __space = __os.widen(' ');
2293
      __os.flags(__ios_base::scientific | __ios_base::left);
2294
      __os.fill(__space);
2295
      __os.precision(std::numeric_limits::max_digits10);
2296
 
2297
      std::vector __prob = __x.probabilities();
2298
      __os << __prob.size();
2299
      for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit)
2300
        __os << __space << *__dit;
2301
 
2302
      __os.flags(__flags);
2303
      __os.fill(__fill);
2304
      __os.precision(__precision);
2305
      return __os;
2306
    }
2307
 
2308
  template
2309
    std::basic_istream<_CharT, _Traits>&
2310
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
2311
               discrete_distribution<_IntType>& __x)
2312
    {
2313
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2314
      typedef typename __istream_type::ios_base    __ios_base;
2315
 
2316
      const typename __ios_base::fmtflags __flags = __is.flags();
2317
      __is.flags(__ios_base::dec | __ios_base::skipws);
2318
 
2319
      size_t __n;
2320
      __is >> __n;
2321
 
2322
      std::vector __prob_vec;
2323
      __prob_vec.reserve(__n);
2324
      for (; __n != 0; --__n)
2325
        {
2326
          double __prob;
2327
          __is >> __prob;
2328
          __prob_vec.push_back(__prob);
2329
        }
2330
 
2331
      __x.param(typename discrete_distribution<_IntType>::
2332
                param_type(__prob_vec.begin(), __prob_vec.end()));
2333
 
2334
      __is.flags(__flags);
2335
      return __is;
2336
    }
2337
 
2338
 
2339
  template
2340
    void
2341
    piecewise_constant_distribution<_RealType>::param_type::
2342
    _M_initialize()
2343
    {
2344
      if (_M_int.size() < 2
2345
          || (_M_int.size() == 2
2346
              && _M_int[0] == _RealType(0)
2347
              && _M_int[1] == _RealType(1)))
2348
        {
2349
          _M_int.clear();
2350
          _M_den.clear();
2351
          return;
2352
        }
2353
 
2354
      const double __sum = std::accumulate(_M_den.begin(),
2355
                                           _M_den.end(), 0.0);
2356
 
2357
      __detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
2358
                            std::bind2nd(std::divides(), __sum));
2359
 
2360
      _M_cp.reserve(_M_den.size());
2361
      std::partial_sum(_M_den.begin(), _M_den.end(),
2362
                       std::back_inserter(_M_cp));
2363
 
2364
      // Make sure the last cumulative probability is one.
2365
      _M_cp[_M_cp.size() - 1] = 1.0;
2366
 
2367
      for (size_t __k = 0; __k < _M_den.size(); ++__k)
2368
        _M_den[__k] /= _M_int[__k + 1] - _M_int[__k];
2369
    }
2370
 
2371
  template
2372
    template
2373
      piecewise_constant_distribution<_RealType>::param_type::
2374
      param_type(_InputIteratorB __bbegin,
2375
                 _InputIteratorB __bend,
2376
                 _InputIteratorW __wbegin)
2377
      : _M_int(), _M_den(), _M_cp()
2378
      {
2379
        if (__bbegin != __bend)
2380
          {
2381
            for (;;)
2382
              {
2383
                _M_int.push_back(*__bbegin);
2384
                ++__bbegin;
2385
                if (__bbegin == __bend)
2386
                  break;
2387
 
2388
                _M_den.push_back(*__wbegin);
2389
                ++__wbegin;
2390
              }
2391
          }
2392
 
2393
        _M_initialize();
2394
      }
2395
 
2396
  template
2397
    template
2398
      piecewise_constant_distribution<_RealType>::param_type::
2399
      param_type(initializer_list<_RealType> __bl, _Func __fw)
2400
      : _M_int(), _M_den(), _M_cp()
2401
      {
2402
        _M_int.reserve(__bl.size());
2403
        for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
2404
          _M_int.push_back(*__biter);
2405
 
2406
        _M_den.reserve(_M_int.size() - 1);
2407
        for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
2408
          _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k])));
2409
 
2410
        _M_initialize();
2411
      }
2412
 
2413
  template
2414
    template
2415
      piecewise_constant_distribution<_RealType>::param_type::
2416
      param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
2417
      : _M_int(), _M_den(), _M_cp()
2418
      {
2419
        const size_t __n = __nw == 0 ? 1 : __nw;
2420
        const _RealType __delta = (__xmax - __xmin) / __n;
2421
 
2422
        _M_int.reserve(__n + 1);
2423
        for (size_t __k = 0; __k <= __nw; ++__k)
2424
          _M_int.push_back(__xmin + __k * __delta);
2425
 
2426
        _M_den.reserve(__n);
2427
        for (size_t __k = 0; __k < __nw; ++__k)
2428
          _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta));
2429
 
2430
        _M_initialize();
2431
      }
2432
 
2433
  template
2434
    template
2435
      typename piecewise_constant_distribution<_RealType>::result_type
2436
      piecewise_constant_distribution<_RealType>::
2437
      operator()(_UniformRandomNumberGenerator& __urng,
2438
                 const param_type& __param)
2439
      {
2440
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2441
          __aurng(__urng);
2442
 
2443
        const double __p = __aurng();
2444
        if (__param._M_cp.empty())
2445
          return __p;
2446
 
2447
        auto __pos = std::lower_bound(__param._M_cp.begin(),
2448
                                      __param._M_cp.end(), __p);
2449
        const size_t __i = __pos - __param._M_cp.begin();
2450
 
2451
        const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
2452
 
2453
        return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i];
2454
      }
2455
 
2456
  template
2457
    std::basic_ostream<_CharT, _Traits>&
2458
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2459
               const piecewise_constant_distribution<_RealType>& __x)
2460
    {
2461
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2462
      typedef typename __ostream_type::ios_base    __ios_base;
2463
 
2464
      const typename __ios_base::fmtflags __flags = __os.flags();
2465
      const _CharT __fill = __os.fill();
2466
      const std::streamsize __precision = __os.precision();
2467
      const _CharT __space = __os.widen(' ');
2468
      __os.flags(__ios_base::scientific | __ios_base::left);
2469
      __os.fill(__space);
2470
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
2471
 
2472
      std::vector<_RealType> __int = __x.intervals();
2473
      __os << __int.size() - 1;
2474
 
2475
      for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
2476
        __os << __space << *__xit;
2477
 
2478
      std::vector __den = __x.densities();
2479
      for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
2480
        __os << __space << *__dit;
2481
 
2482
      __os.flags(__flags);
2483
      __os.fill(__fill);
2484
      __os.precision(__precision);
2485
      return __os;
2486
    }
2487
 
2488
  template
2489
    std::basic_istream<_CharT, _Traits>&
2490
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
2491
               piecewise_constant_distribution<_RealType>& __x)
2492
    {
2493
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2494
      typedef typename __istream_type::ios_base    __ios_base;
2495
 
2496
      const typename __ios_base::fmtflags __flags = __is.flags();
2497
      __is.flags(__ios_base::dec | __ios_base::skipws);
2498
 
2499
      size_t __n;
2500
      __is >> __n;
2501
 
2502
      std::vector<_RealType> __int_vec;
2503
      __int_vec.reserve(__n + 1);
2504
      for (size_t __i = 0; __i <= __n; ++__i)
2505
        {
2506
          _RealType __int;
2507
          __is >> __int;
2508
          __int_vec.push_back(__int);
2509
        }
2510
 
2511
      std::vector __den_vec;
2512
      __den_vec.reserve(__n);
2513
      for (size_t __i = 0; __i < __n; ++__i)
2514
        {
2515
          double __den;
2516
          __is >> __den;
2517
          __den_vec.push_back(__den);
2518
        }
2519
 
2520
      __x.param(typename piecewise_constant_distribution<_RealType>::
2521
          param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
2522
 
2523
      __is.flags(__flags);
2524
      return __is;
2525
    }
2526
 
2527
 
2528
  template
2529
    void
2530
    piecewise_linear_distribution<_RealType>::param_type::
2531
    _M_initialize()
2532
    {
2533
      if (_M_int.size() < 2
2534
          || (_M_int.size() == 2
2535
              && _M_int[0] == _RealType(0)
2536
              && _M_int[1] == _RealType(1)
2537
              && _M_den[0] == _M_den[1]))
2538
        {
2539
          _M_int.clear();
2540
          _M_den.clear();
2541
          return;
2542
        }
2543
 
2544
      double __sum = 0.0;
2545
      _M_cp.reserve(_M_int.size() - 1);
2546
      _M_m.reserve(_M_int.size() - 1);
2547
      for (size_t __k = 0; __k < _M_int.size() - 1; ++__k)
2548
        {
2549
          const _RealType __delta = _M_int[__k + 1] - _M_int[__k];
2550
          __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta;
2551
          _M_cp.push_back(__sum);
2552
          _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta);
2553
        }
2554
 
2555
      //  Now normalize the densities...
2556
      __detail::__transform(_M_den.begin(), _M_den.end(), _M_den.begin(),
2557
                          std::bind2nd(std::divides(), __sum));
2558
      //  ... and partial sums...
2559
      __detail::__transform(_M_cp.begin(), _M_cp.end(), _M_cp.begin(),
2560
                            std::bind2nd(std::divides(), __sum));
2561
      //  ... and slopes.
2562
      __detail::__transform(_M_m.begin(), _M_m.end(), _M_m.begin(),
2563
                            std::bind2nd(std::divides(), __sum));
2564
      //  Make sure the last cumulative probablility is one.
2565
      _M_cp[_M_cp.size() - 1] = 1.0;
2566
     }
2567
 
2568
  template
2569
    template
2570
      piecewise_linear_distribution<_RealType>::param_type::
2571
      param_type(_InputIteratorB __bbegin,
2572
                 _InputIteratorB __bend,
2573
                 _InputIteratorW __wbegin)
2574
      : _M_int(), _M_den(), _M_cp(), _M_m()
2575
      {
2576
        for (; __bbegin != __bend; ++__bbegin, ++__wbegin)
2577
          {
2578
            _M_int.push_back(*__bbegin);
2579
            _M_den.push_back(*__wbegin);
2580
          }
2581
 
2582
        _M_initialize();
2583
      }
2584
 
2585
  template
2586
    template
2587
      piecewise_linear_distribution<_RealType>::param_type::
2588
      param_type(initializer_list<_RealType> __bl, _Func __fw)
2589
      : _M_int(), _M_den(), _M_cp(), _M_m()
2590
      {
2591
        _M_int.reserve(__bl.size());
2592
        _M_den.reserve(__bl.size());
2593
        for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter)
2594
          {
2595
            _M_int.push_back(*__biter);
2596
            _M_den.push_back(__fw(*__biter));
2597
          }
2598
 
2599
        _M_initialize();
2600
      }
2601
 
2602
  template
2603
    template
2604
      piecewise_linear_distribution<_RealType>::param_type::
2605
      param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw)
2606
      : _M_int(), _M_den(), _M_cp(), _M_m()
2607
      {
2608
        const size_t __n = __nw == 0 ? 1 : __nw;
2609
        const _RealType __delta = (__xmax - __xmin) / __n;
2610
 
2611
        _M_int.reserve(__n + 1);
2612
        _M_den.reserve(__n + 1);
2613
        for (size_t __k = 0; __k <= __nw; ++__k)
2614
          {
2615
            _M_int.push_back(__xmin + __k * __delta);
2616
            _M_den.push_back(__fw(_M_int[__k] + __delta));
2617
          }
2618
 
2619
        _M_initialize();
2620
      }
2621
 
2622
  template
2623
    template
2624
      typename piecewise_linear_distribution<_RealType>::result_type
2625
      piecewise_linear_distribution<_RealType>::
2626
      operator()(_UniformRandomNumberGenerator& __urng,
2627
                 const param_type& __param)
2628
      {
2629
        __detail::_Adaptor<_UniformRandomNumberGenerator, double>
2630
          __aurng(__urng);
2631
 
2632
        const double __p = __aurng();
2633
        if (__param._M_cp.empty())
2634
          return __p;
2635
 
2636
        auto __pos = std::lower_bound(__param._M_cp.begin(),
2637
                                      __param._M_cp.end(), __p);
2638
        const size_t __i = __pos - __param._M_cp.begin();
2639
 
2640
        const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0;
2641
 
2642
        const double __a = 0.5 * __param._M_m[__i];
2643
        const double __b = __param._M_den[__i];
2644
        const double __cm = __p - __pref;
2645
 
2646
        _RealType __x = __param._M_int[__i];
2647
        if (__a == 0)
2648
          __x += __cm / __b;
2649
        else
2650
          {
2651
            const double __d = __b * __b + 4.0 * __a * __cm;
2652
            __x += 0.5 * (std::sqrt(__d) - __b) / __a;
2653
          }
2654
 
2655
        return __x;
2656
      }
2657
 
2658
  template
2659
    std::basic_ostream<_CharT, _Traits>&
2660
    operator<<(std::basic_ostream<_CharT, _Traits>& __os,
2661
               const piecewise_linear_distribution<_RealType>& __x)
2662
    {
2663
      typedef std::basic_ostream<_CharT, _Traits>  __ostream_type;
2664
      typedef typename __ostream_type::ios_base    __ios_base;
2665
 
2666
      const typename __ios_base::fmtflags __flags = __os.flags();
2667
      const _CharT __fill = __os.fill();
2668
      const std::streamsize __precision = __os.precision();
2669
      const _CharT __space = __os.widen(' ');
2670
      __os.flags(__ios_base::scientific | __ios_base::left);
2671
      __os.fill(__space);
2672
      __os.precision(std::numeric_limits<_RealType>::max_digits10);
2673
 
2674
      std::vector<_RealType> __int = __x.intervals();
2675
      __os << __int.size() - 1;
2676
 
2677
      for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit)
2678
        __os << __space << *__xit;
2679
 
2680
      std::vector __den = __x.densities();
2681
      for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit)
2682
        __os << __space << *__dit;
2683
 
2684
      __os.flags(__flags);
2685
      __os.fill(__fill);
2686
      __os.precision(__precision);
2687
      return __os;
2688
    }
2689
 
2690
  template
2691
    std::basic_istream<_CharT, _Traits>&
2692
    operator>>(std::basic_istream<_CharT, _Traits>& __is,
2693
               piecewise_linear_distribution<_RealType>& __x)
2694
    {
2695
      typedef std::basic_istream<_CharT, _Traits>  __istream_type;
2696
      typedef typename __istream_type::ios_base    __ios_base;
2697
 
2698
      const typename __ios_base::fmtflags __flags = __is.flags();
2699
      __is.flags(__ios_base::dec | __ios_base::skipws);
2700
 
2701
      size_t __n;
2702
      __is >> __n;
2703
 
2704
      std::vector<_RealType> __int_vec;
2705
      __int_vec.reserve(__n + 1);
2706
      for (size_t __i = 0; __i <= __n; ++__i)
2707
        {
2708
          _RealType __int;
2709
          __is >> __int;
2710
          __int_vec.push_back(__int);
2711
        }
2712
 
2713
      std::vector __den_vec;
2714
      __den_vec.reserve(__n + 1);
2715
      for (size_t __i = 0; __i <= __n; ++__i)
2716
        {
2717
          double __den;
2718
          __is >> __den;
2719
          __den_vec.push_back(__den);
2720
        }
2721
 
2722
      __x.param(typename piecewise_linear_distribution<_RealType>::
2723
          param_type(__int_vec.begin(), __int_vec.end(), __den_vec.begin()));
2724
 
2725
      __is.flags(__flags);
2726
      return __is;
2727
    }
2728
 
2729
 
2730
  template
2731
    seed_seq::seed_seq(std::initializer_list<_IntType> __il)
2732
    {
2733
      for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter)
2734
        _M_v.push_back(__detail::__mod
2735
                       __detail::_Shift::__value>(*__iter));
2736
    }
2737
 
2738
  template
2739
    seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end)
2740
    {
2741
      for (_InputIterator __iter = __begin; __iter != __end; ++__iter)
2742
        _M_v.push_back(__detail::__mod
2743
                       __detail::_Shift::__value>(*__iter));
2744
    }
2745
 
2746
  template
2747
    void
2748
    seed_seq::generate(_RandomAccessIterator __begin,
2749
                       _RandomAccessIterator __end)
2750
    {
2751
      typedef typename iterator_traits<_RandomAccessIterator>::value_type
2752
        _Type;
2753
 
2754
      if (__begin == __end)
2755
        return;
2756
 
2757
      std::fill(__begin, __end, _Type(0x8b8b8b8bu));
2758
 
2759
      const size_t __n = __end - __begin;
2760
      const size_t __s = _M_v.size();
2761
      const size_t __t = (__n >= 623) ? 11
2762
                       : (__n >=  68) ? 7
2763
                       : (__n >=  39) ? 5
2764
                       : (__n >=   7) ? 3
2765
                       : (__n - 1) / 2;
2766
      const size_t __p = (__n - __t) / 2;
2767
      const size_t __q = __p + __t;
2768
      const size_t __m = std::max(__s + 1, __n);
2769
 
2770
      for (size_t __k = 0; __k < __m; ++__k)
2771
        {
2772
          _Type __arg = (__begin[__k % __n]
2773
                         ^ __begin[(__k + __p) % __n]
2774
                         ^ __begin[(__k - 1) % __n]);
2775
          _Type __r1 = __arg ^ (__arg >> 27);
2776
          __r1 = __detail::__mod<_Type,
2777
                    __detail::_Shift<_Type, 32>::__value>(1664525u * __r1);
2778
          _Type __r2 = __r1;
2779
          if (__k == 0)
2780
            __r2 += __s;
2781
          else if (__k <= __s)
2782
            __r2 += __k % __n + _M_v[__k - 1];
2783
          else
2784
            __r2 += __k % __n;
2785
          __r2 = __detail::__mod<_Type,
2786
                   __detail::_Shift<_Type, 32>::__value>(__r2);
2787
          __begin[(__k + __p) % __n] += __r1;
2788
          __begin[(__k + __q) % __n] += __r2;
2789
          __begin[__k % __n] = __r2;
2790
        }
2791
 
2792
      for (size_t __k = __m; __k < __m + __n; ++__k)
2793
        {
2794
          _Type __arg = (__begin[__k % __n]
2795
                         + __begin[(__k + __p) % __n]
2796
                         + __begin[(__k - 1) % __n]);
2797
          _Type __r3 = __arg ^ (__arg >> 27);
2798
          __r3 = __detail::__mod<_Type,
2799
                   __detail::_Shift<_Type, 32>::__value>(1566083941u * __r3);
2800
          _Type __r4 = __r3 - __k % __n;
2801
          __r4 = __detail::__mod<_Type,
2802
                   __detail::_Shift<_Type, 32>::__value>(__r4);
2803
          __begin[(__k + __p) % __n] ^= __r3;
2804
          __begin[(__k + __q) % __n] ^= __r4;
2805
          __begin[__k % __n] = __r4;
2806
        }
2807
    }
2808
 
2809
  template
2810
           typename _UniformRandomNumberGenerator>
2811
    _RealType
2812
    generate_canonical(_UniformRandomNumberGenerator& __urng)
2813
    {
2814
      const size_t __b
2815
        = std::min(static_cast(std::numeric_limits<_RealType>::digits),
2816
                   __bits);
2817
      const long double __r = static_cast(__urng.max())
2818
                            - static_cast(__urng.min()) + 1.0L;
2819
      const size_t __log2r = std::log(__r) / std::log(2.0L);
2820
      size_t __k = std::max(1UL, (__b + __log2r - 1UL) / __log2r);
2821
      _RealType __sum = _RealType(0);
2822
      _RealType __tmp = _RealType(1);
2823
      for (; __k != 0; --__k)
2824
        {
2825
          __sum += _RealType(__urng() - __urng.min()) * __tmp;
2826
          __tmp *= __r;
2827
        }
2828
      return __sum / __tmp;
2829
    }
2830
 
2831
_GLIBCXX_END_NAMESPACE_VERSION
2832
} // namespace
2833
 
2834
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.