OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libstdc++-v3/] [include/] [ext/] [bitmap_allocator.h] - Blame information for rev 742

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 742 jeremybenn
// Bitmap Allocator. -*- C++ -*-
2
 
3
// Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
 
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
 
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// <http://www.gnu.org/licenses/>.
25
 
26
/** @file ext/bitmap_allocator.h
27
 *  This file is a GNU extension to the Standard C++ Library.
28
 */
29
 
30
#ifndef _BITMAP_ALLOCATOR_H
31
#define _BITMAP_ALLOCATOR_H 1
32
 
33
#include <utility> // For std::pair.
34
#include <bits/functexcept.h> // For __throw_bad_alloc().
35
#include <functional> // For greater_equal, and less_equal.
36
#include <new> // For operator new.
37
#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
38
#include <ext/concurrence.h>
39
#include <bits/move.h>
40
 
41
/** @brief The constant in the expression below is the alignment
42
 * required in bytes.
43
 */
44
#define _BALLOC_ALIGN_BYTES 8
45
 
46
namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
47
{
48
  using std::size_t;
49
  using std::ptrdiff_t;
50
 
51
  namespace __detail
52
  {
53
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
54
    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
55
     *
56
     *  @brief  __mini_vector<> is a stripped down version of the
57
     *  full-fledged std::vector<>.
58
     *
59
     *  It is to be used only for built-in types or PODs. Notable
60
     *  differences are:
61
     *
62
     *  1. Not all accessor functions are present.
63
     *  2. Used ONLY for PODs.
64
     *  3. No Allocator template argument. Uses ::operator new() to get
65
     *  memory, and ::operator delete() to free it.
66
     *  Caveat: The dtor does NOT free the memory allocated, so this a
67
     *  memory-leaking vector!
68
     */
69
    template<typename _Tp>
70
      class __mini_vector
71
      {
72
        __mini_vector(const __mini_vector&);
73
        __mini_vector& operator=(const __mini_vector&);
74
 
75
      public:
76
        typedef _Tp value_type;
77
        typedef _Tp* pointer;
78
        typedef _Tp& reference;
79
        typedef const _Tp& const_reference;
80
        typedef size_t size_type;
81
        typedef ptrdiff_t difference_type;
82
        typedef pointer iterator;
83
 
84
      private:
85
        pointer _M_start;
86
        pointer _M_finish;
87
        pointer _M_end_of_storage;
88
 
89
        size_type
90
        _M_space_left() const throw()
91
        { return _M_end_of_storage - _M_finish; }
92
 
93
        pointer
94
        allocate(size_type __n)
95
        { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
96
 
97
        void
98
        deallocate(pointer __p, size_type)
99
        { ::operator delete(__p); }
100
 
101
      public:
102
        // Members used: size(), push_back(), pop_back(),
103
        // insert(iterator, const_reference), erase(iterator),
104
        // begin(), end(), back(), operator[].
105
 
106
        __mini_vector()
107
        : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
108
 
109
        size_type
110
        size() const throw()
111
        { return _M_finish - _M_start; }
112
 
113
        iterator
114
        begin() const throw()
115
        { return this->_M_start; }
116
 
117
        iterator
118
        end() const throw()
119
        { return this->_M_finish; }
120
 
121
        reference
122
        back() const throw()
123
        { return *(this->end() - 1); }
124
 
125
        reference
126
        operator[](const size_type __pos) const throw()
127
        { return this->_M_start[__pos]; }
128
 
129
        void
130
        insert(iterator __pos, const_reference __x);
131
 
132
        void
133
        push_back(const_reference __x)
134
        {
135
          if (this->_M_space_left())
136
            {
137
              *this->end() = __x;
138
              ++this->_M_finish;
139
            }
140
          else
141
            this->insert(this->end(), __x);
142
        }
143
 
144
        void
145
        pop_back() throw()
146
        { --this->_M_finish; }
147
 
148
        void
149
        erase(iterator __pos) throw();
150
 
151
        void
152
        clear() throw()
153
        { this->_M_finish = this->_M_start; }
154
      };
155
 
156
    // Out of line function definitions.
157
    template<typename _Tp>
158
      void __mini_vector<_Tp>::
159
      insert(iterator __pos, const_reference __x)
160
      {
161
        if (this->_M_space_left())
162
          {
163
            size_type __to_move = this->_M_finish - __pos;
164
            iterator __dest = this->end();
165
            iterator __src = this->end() - 1;
166
 
167
            ++this->_M_finish;
168
            while (__to_move)
169
              {
170
                *__dest = *__src;
171
                --__dest; --__src; --__to_move;
172
              }
173
            *__pos = __x;
174
          }
175
        else
176
          {
177
            size_type __new_size = this->size() ? this->size() * 2 : 1;
178
            iterator __new_start = this->allocate(__new_size);
179
            iterator __first = this->begin();
180
            iterator __start = __new_start;
181
            while (__first != __pos)
182
              {
183
                *__start = *__first;
184
                ++__start; ++__first;
185
              }
186
            *__start = __x;
187
            ++__start;
188
            while (__first != this->end())
189
              {
190
                *__start = *__first;
191
                ++__start; ++__first;
192
              }
193
            if (this->_M_start)
194
              this->deallocate(this->_M_start, this->size());
195
 
196
            this->_M_start = __new_start;
197
            this->_M_finish = __start;
198
            this->_M_end_of_storage = this->_M_start + __new_size;
199
          }
200
      }
201
 
202
    template<typename _Tp>
203
      void __mini_vector<_Tp>::
204
      erase(iterator __pos) throw()
205
      {
206
        while (__pos + 1 != this->end())
207
          {
208
            *__pos = __pos[1];
209
            ++__pos;
210
          }
211
        --this->_M_finish;
212
      }
213
 
214
 
215
    template<typename _Tp>
216
      struct __mv_iter_traits
217
      {
218
        typedef typename _Tp::value_type value_type;
219
        typedef typename _Tp::difference_type difference_type;
220
      };
221
 
222
    template<typename _Tp>
223
      struct __mv_iter_traits<_Tp*>
224
      {
225
        typedef _Tp value_type;
226
        typedef ptrdiff_t difference_type;
227
      };
228
 
229
    enum
230
      {
231
        bits_per_byte = 8,
232
        bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
233
      };
234
 
235
    template<typename _ForwardIterator, typename _Tp, typename _Compare>
236
      _ForwardIterator
237
      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
238
                    const _Tp& __val, _Compare __comp)
239
      {
240
        typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
241
          _DistanceType;
242
 
243
        _DistanceType __len = __last - __first;
244
        _DistanceType __half;
245
        _ForwardIterator __middle;
246
 
247
        while (__len > 0)
248
          {
249
            __half = __len >> 1;
250
            __middle = __first;
251
            __middle += __half;
252
            if (__comp(*__middle, __val))
253
              {
254
                __first = __middle;
255
                ++__first;
256
                __len = __len - __half - 1;
257
              }
258
            else
259
              __len = __half;
260
          }
261
        return __first;
262
      }
263
 
264
    /** @brief The number of Blocks pointed to by the address pair
265
     *  passed to the function.
266
     */
267
    template<typename _AddrPair>
268
      inline size_t
269
      __num_blocks(_AddrPair __ap)
270
      { return (__ap.second - __ap.first) + 1; }
271
 
272
    /** @brief The number of Bit-maps pointed to by the address pair
273
     *  passed to the function.
274
     */
275
    template<typename _AddrPair>
276
      inline size_t
277
      __num_bitmaps(_AddrPair __ap)
278
      { return __num_blocks(__ap) / size_t(bits_per_block); }
279
 
280
    // _Tp should be a pointer type.
281
    template<typename _Tp>
282
      class _Inclusive_between
283
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
284
      {
285
        typedef _Tp pointer;
286
        pointer _M_ptr_value;
287
        typedef typename std::pair<_Tp, _Tp> _Block_pair;
288
 
289
      public:
290
        _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
291
        { }
292
 
293
        bool
294
        operator()(_Block_pair __bp) const throw()
295
        {
296
          if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
297
              && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
298
            return true;
299
          else
300
            return false;
301
        }
302
      };
303
 
304
    // Used to pass a Functor to functions by reference.
305
    template<typename _Functor>
306
      class _Functor_Ref
307
      : public std::unary_function<typename _Functor::argument_type,
308
                                   typename _Functor::result_type>
309
      {
310
        _Functor& _M_fref;
311
 
312
      public:
313
        typedef typename _Functor::argument_type argument_type;
314
        typedef typename _Functor::result_type result_type;
315
 
316
        _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
317
        { }
318
 
319
        result_type
320
        operator()(argument_type __arg)
321
        { return _M_fref(__arg); }
322
      };
323
 
324
    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
325
     *
326
     *  @brief  The class which acts as a predicate for applying the
327
     *  first-fit memory allocation policy for the bitmap allocator.
328
     */
329
    // _Tp should be a pointer type, and _Alloc is the Allocator for
330
    // the vector.
331
    template<typename _Tp>
332
      class _Ffit_finder
333
      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
334
      {
335
        typedef typename std::pair<_Tp, _Tp> _Block_pair;
336
        typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
337
        typedef typename _BPVector::difference_type _Counter_type;
338
 
339
        size_t* _M_pbitmap;
340
        _Counter_type _M_data_offset;
341
 
342
      public:
343
        _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
344
        { }
345
 
346
        bool
347
        operator()(_Block_pair __bp) throw()
348
        {
349
          // Set the _rover to the last physical location bitmap,
350
          // which is the bitmap which belongs to the first free
351
          // block. Thus, the bitmaps are in exact reverse order of
352
          // the actual memory layout. So, we count down the bitmaps,
353
          // which is the same as moving up the memory.
354
 
355
          // If the used count stored at the start of the Bit Map headers
356
          // is equal to the number of Objects that the current Block can
357
          // store, then there is definitely no space for another single
358
          // object, so just return false.
359
          _Counter_type __diff = __detail::__num_bitmaps(__bp);
360
 
361
          if (*(reinterpret_cast<size_t*>
362
                (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
363
            return false;
364
 
365
          size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
366
 
367
          for (_Counter_type __i = 0; __i < __diff; ++__i)
368
            {
369
              _M_data_offset = __i;
370
              if (*__rover)
371
                {
372
                  _M_pbitmap = __rover;
373
                  return true;
374
                }
375
              --__rover;
376
            }
377
          return false;
378
        }
379
 
380
        size_t*
381
        _M_get() const throw()
382
        { return _M_pbitmap; }
383
 
384
        _Counter_type
385
        _M_offset() const throw()
386
        { return _M_data_offset * size_t(bits_per_block); }
387
      };
388
 
389
    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
390
     *
391
     *  @brief  The bitmap counter which acts as the bitmap
392
     *  manipulator, and manages the bit-manipulation functions and
393
     *  the searching and identification functions on the bit-map.
394
     */
395
    // _Tp should be a pointer type.
396
    template<typename _Tp>
397
      class _Bitmap_counter
398
      {
399
        typedef typename
400
        __detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
401
        typedef typename _BPVector::size_type _Index_type;
402
        typedef _Tp pointer;
403
 
404
        _BPVector& _M_vbp;
405
        size_t* _M_curr_bmap;
406
        size_t* _M_last_bmap_in_block;
407
        _Index_type _M_curr_index;
408
 
409
      public:
410
        // Use the 2nd parameter with care. Make sure that such an
411
        // entry exists in the vector before passing that particular
412
        // index to this ctor.
413
        _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
414
        { this->_M_reset(__index); }
415
 
416
        void
417
        _M_reset(long __index = -1) throw()
418
        {
419
          if (__index == -1)
420
            {
421
              _M_curr_bmap = 0;
422
              _M_curr_index = static_cast<_Index_type>(-1);
423
              return;
424
            }
425
 
426
          _M_curr_index = __index;
427
          _M_curr_bmap = reinterpret_cast<size_t*>
428
            (_M_vbp[_M_curr_index].first) - 1;
429
 
430
          _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
431
 
432
          _M_last_bmap_in_block = _M_curr_bmap
433
            - ((_M_vbp[_M_curr_index].second
434
                - _M_vbp[_M_curr_index].first + 1)
435
               / size_t(bits_per_block) - 1);
436
        }
437
 
438
        // Dangerous Function! Use with extreme care. Pass to this
439
        // function ONLY those values that are known to be correct,
440
        // otherwise this will mess up big time.
441
        void
442
        _M_set_internal_bitmap(size_t* __new_internal_marker) throw()
443
        { _M_curr_bmap = __new_internal_marker; }
444
 
445
        bool
446
        _M_finished() const throw()
447
        { return(_M_curr_bmap == 0); }
448
 
449
        _Bitmap_counter&
450
        operator++() throw()
451
        {
452
          if (_M_curr_bmap == _M_last_bmap_in_block)
453
            {
454
              if (++_M_curr_index == _M_vbp.size())
455
                _M_curr_bmap = 0;
456
              else
457
                this->_M_reset(_M_curr_index);
458
            }
459
          else
460
            --_M_curr_bmap;
461
          return *this;
462
        }
463
 
464
        size_t*
465
        _M_get() const throw()
466
        { return _M_curr_bmap; }
467
 
468
        pointer
469
        _M_base() const throw()
470
        { return _M_vbp[_M_curr_index].first; }
471
 
472
        _Index_type
473
        _M_offset() const throw()
474
        {
475
          return size_t(bits_per_block)
476
            * ((reinterpret_cast<size_t*>(this->_M_base())
477
                - _M_curr_bmap) - 1);
478
        }
479
 
480
        _Index_type
481
        _M_where() const throw()
482
        { return _M_curr_index; }
483
      };
484
 
485
    /** @brief  Mark a memory address as allocated by re-setting the
486
     *  corresponding bit in the bit-map.
487
     */
488
    inline void
489
    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
490
    {
491
      size_t __mask = 1 << __pos;
492
      __mask = ~__mask;
493
      *__pbmap &= __mask;
494
    }
495
 
496
    /** @brief  Mark a memory address as free by setting the
497
     *  corresponding bit in the bit-map.
498
     */
499
    inline void
500
    __bit_free(size_t* __pbmap, size_t __pos) throw()
501
    {
502
      size_t __mask = 1 << __pos;
503
      *__pbmap |= __mask;
504
    }
505
 
506
  _GLIBCXX_END_NAMESPACE_VERSION
507
  } // namespace __detail
508
 
509
_GLIBCXX_BEGIN_NAMESPACE_VERSION
510
 
511
  /** @brief  Generic Version of the bsf instruction.
512
   */
513
  inline size_t
514
  _Bit_scan_forward(size_t __num)
515
  { return static_cast<size_t>(__builtin_ctzl(__num)); }
516
 
517
  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
518
   *
519
   *  @brief  The free list class for managing chunks of memory to be
520
   *  given to and returned by the bitmap_allocator.
521
   */
522
  class free_list
523
  {
524
  public:
525
    typedef size_t*                             value_type;
526
    typedef __detail::__mini_vector<value_type> vector_type;
527
    typedef vector_type::iterator               iterator;
528
    typedef __mutex                             __mutex_type;
529
 
530
  private:
531
    struct _LT_pointer_compare
532
    {
533
      bool
534
      operator()(const size_t* __pui,
535
                 const size_t __cui) const throw()
536
      { return *__pui < __cui; }
537
    };
538
 
539
#if defined __GTHREADS
540
    __mutex_type&
541
    _M_get_mutex()
542
    {
543
      static __mutex_type _S_mutex;
544
      return _S_mutex;
545
    }
546
#endif
547
 
548
    vector_type&
549
    _M_get_free_list()
550
    {
551
      static vector_type _S_free_list;
552
      return _S_free_list;
553
    }
554
 
555
    /** @brief  Performs validation of memory based on their size.
556
     *
557
     *  @param  __addr The pointer to the memory block to be
558
     *  validated.
559
     *
560
     *  Validates the memory block passed to this function and
561
     *  appropriately performs the action of managing the free list of
562
     *  blocks by adding this block to the free list or deleting this
563
     *  or larger blocks from the free list.
564
     */
565
    void
566
    _M_validate(size_t* __addr) throw()
567
    {
568
      vector_type& __free_list = _M_get_free_list();
569
      const vector_type::size_type __max_size = 64;
570
      if (__free_list.size() >= __max_size)
571
        {
572
          // Ok, the threshold value has been reached.  We determine
573
          // which block to remove from the list of free blocks.
574
          if (*__addr >= *__free_list.back())
575
            {
576
              // Ok, the new block is greater than or equal to the
577
              // last block in the list of free blocks. We just free
578
              // the new block.
579
              ::operator delete(static_cast<void*>(__addr));
580
              return;
581
            }
582
          else
583
            {
584
              // Deallocate the last block in the list of free lists,
585
              // and insert the new one in its correct position.
586
              ::operator delete(static_cast<void*>(__free_list.back()));
587
              __free_list.pop_back();
588
            }
589
        }
590
 
591
      // Just add the block to the list of free lists unconditionally.
592
      iterator __temp = __detail::__lower_bound
593
        (__free_list.begin(), __free_list.end(),
594
         *__addr, _LT_pointer_compare());
595
 
596
      // We may insert the new free list before _temp;
597
      __free_list.insert(__temp, __addr);
598
    }
599
 
600
    /** @brief  Decides whether the wastage of memory is acceptable for
601
     *  the current memory request and returns accordingly.
602
     *
603
     *  @param __block_size The size of the block available in the free
604
     *  list.
605
     *
606
     *  @param __required_size The required size of the memory block.
607
     *
608
     *  @return true if the wastage incurred is acceptable, else returns
609
     *  false.
610
     */
611
    bool
612
    _M_should_i_give(size_t __block_size,
613
                     size_t __required_size) throw()
614
    {
615
      const size_t __max_wastage_percentage = 36;
616
      if (__block_size >= __required_size &&
617
          (((__block_size - __required_size) * 100 / __block_size)
618
           < __max_wastage_percentage))
619
        return true;
620
      else
621
        return false;
622
    }
623
 
624
  public:
625
    /** @brief This function returns the block of memory to the
626
     *  internal free list.
627
     *
628
     *  @param  __addr The pointer to the memory block that was given
629
     *  by a call to the _M_get function.
630
     */
631
    inline void
632
    _M_insert(size_t* __addr) throw()
633
    {
634
#if defined __GTHREADS
635
      __scoped_lock __bfl_lock(_M_get_mutex());
636
#endif
637
      // Call _M_validate to decide what should be done with
638
      // this particular free list.
639
      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
640
      // See discussion as to why this is 1!
641
    }
642
 
643
    /** @brief  This function gets a block of memory of the specified
644
     *  size from the free list.
645
     *
646
     *  @param  __sz The size in bytes of the memory required.
647
     *
648
     *  @return  A pointer to the new memory block of size at least
649
     *  equal to that requested.
650
     */
651
    size_t*
652
    _M_get(size_t __sz) throw(std::bad_alloc);
653
 
654
    /** @brief  This function just clears the internal Free List, and
655
     *  gives back all the memory to the OS.
656
     */
657
    void
658
    _M_clear();
659
  };
660
 
661
 
662
  // Forward declare the class.
663
  template<typename _Tp>
664
    class bitmap_allocator;
665
 
666
  // Specialize for void:
667
  template<>
668
    class bitmap_allocator<void>
669
    {
670
    public:
671
      typedef void*       pointer;
672
      typedef const void* const_pointer;
673
 
674
      // Reference-to-void members are impossible.
675
      typedef void  value_type;
676
      template<typename _Tp1>
677
        struct rebind
678
        {
679
          typedef bitmap_allocator<_Tp1> other;
680
        };
681
    };
682
 
683
  /**
684
   * @brief Bitmap Allocator, primary template.
685
   * @ingroup allocators
686
   */
687
  template<typename _Tp>
688
    class bitmap_allocator : private free_list
689
    {
690
    public:
691
      typedef size_t                    size_type;
692
      typedef ptrdiff_t                 difference_type;
693
      typedef _Tp*                      pointer;
694
      typedef const _Tp*                const_pointer;
695
      typedef _Tp&                      reference;
696
      typedef const _Tp&                const_reference;
697
      typedef _Tp                       value_type;
698
      typedef free_list::__mutex_type   __mutex_type;
699
 
700
      template<typename _Tp1>
701
        struct rebind
702
        {
703
          typedef bitmap_allocator<_Tp1> other;
704
        };
705
 
706
    private:
707
      template<size_t _BSize, size_t _AlignSize>
708
        struct aligned_size
709
        {
710
          enum
711
            {
712
              modulus = _BSize % _AlignSize,
713
              value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
714
            };
715
        };
716
 
717
      struct _Alloc_block
718
      {
719
        char __M_unused[aligned_size<sizeof(value_type),
720
                        _BALLOC_ALIGN_BYTES>::value];
721
      };
722
 
723
 
724
      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
725
 
726
      typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
727
      typedef typename _BPVector::iterator _BPiter;
728
 
729
      template<typename _Predicate>
730
        static _BPiter
731
        _S_find(_Predicate __p)
732
        {
733
          _BPiter __first = _S_mem_blocks.begin();
734
          while (__first != _S_mem_blocks.end() && !__p(*__first))
735
            ++__first;
736
          return __first;
737
        }
738
 
739
#if defined _GLIBCXX_DEBUG
740
      // Complexity: O(lg(N)). Where, N is the number of block of size
741
      // sizeof(value_type).
742
      void
743
      _S_check_for_free_blocks() throw()
744
      {
745
        typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
746
        _BPiter __bpi = _S_find(_FFF());
747
 
748
        _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
749
      }
750
#endif
751
 
752
      /** @brief  Responsible for exponentially growing the internal
753
       *  memory pool.
754
       *
755
       *  @throw  std::bad_alloc. If memory can not be allocated.
756
       *
757
       *  Complexity: O(1), but internally depends upon the
758
       *  complexity of the function free_list::_M_get. The part where
759
       *  the bitmap headers are written has complexity: O(X),where X
760
       *  is the number of blocks of size sizeof(value_type) within
761
       *  the newly acquired block. Having a tight bound.
762
       */
763
      void
764
      _S_refill_pool() throw(std::bad_alloc)
765
      {
766
#if defined _GLIBCXX_DEBUG
767
        _S_check_for_free_blocks();
768
#endif
769
 
770
        const size_t __num_bitmaps = (_S_block_size
771
                                      / size_t(__detail::bits_per_block));
772
        const size_t __size_to_allocate = sizeof(size_t)
773
          + _S_block_size * sizeof(_Alloc_block)
774
          + __num_bitmaps * sizeof(size_t);
775
 
776
        size_t* __temp =
777
          reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
778
        *__temp = 0;
779
        ++__temp;
780
 
781
        // The Header information goes at the Beginning of the Block.
782
        _Block_pair __bp =
783
          std::make_pair(reinterpret_cast<_Alloc_block*>
784
                         (__temp + __num_bitmaps),
785
                         reinterpret_cast<_Alloc_block*>
786
                         (__temp + __num_bitmaps)
787
                         + _S_block_size - 1);
788
 
789
        // Fill the Vector with this information.
790
        _S_mem_blocks.push_back(__bp);
791
 
792
        for (size_t __i = 0; __i < __num_bitmaps; ++__i)
793
          __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
794
 
795
        _S_block_size *= 2;
796
      }
797
 
798
      static _BPVector _S_mem_blocks;
799
      static size_t _S_block_size;
800
      static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
801
      static typename _BPVector::size_type _S_last_dealloc_index;
802
#if defined __GTHREADS
803
      static __mutex_type _S_mut;
804
#endif
805
 
806
    public:
807
 
808
      /** @brief  Allocates memory for a single object of size
809
       *  sizeof(_Tp).
810
       *
811
       *  @throw  std::bad_alloc. If memory can not be allocated.
812
       *
813
       *  Complexity: Worst case complexity is O(N), but that
814
       *  is hardly ever hit. If and when this particular case is
815
       *  encountered, the next few cases are guaranteed to have a
816
       *  worst case complexity of O(1)!  That's why this function
817
       *  performs very well on average. You can consider this
818
       *  function to have a complexity referred to commonly as:
819
       *  Amortized Constant time.
820
       */
821
      pointer
822
      _M_allocate_single_object() throw(std::bad_alloc)
823
      {
824
#if defined __GTHREADS
825
        __scoped_lock __bit_lock(_S_mut);
826
#endif
827
 
828
        // The algorithm is something like this: The last_request
829
        // variable points to the last accessed Bit Map. When such a
830
        // condition occurs, we try to find a free block in the
831
        // current bitmap, or succeeding bitmaps until the last bitmap
832
        // is reached. If no free block turns up, we resort to First
833
        // Fit method.
834
 
835
        // WARNING: Do not re-order the condition in the while
836
        // statement below, because it relies on C++'s short-circuit
837
        // evaluation. The return from _S_last_request->_M_get() will
838
        // NOT be dereference able if _S_last_request->_M_finished()
839
        // returns true. This would inevitably lead to a NULL pointer
840
        // dereference if tinkered with.
841
        while (_S_last_request._M_finished() == false
842
               && (*(_S_last_request._M_get()) == 0))
843
          _S_last_request.operator++();
844
 
845
        if (__builtin_expect(_S_last_request._M_finished() == true, false))
846
          {
847
            // Fall Back to First Fit algorithm.
848
            typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
849
            _FFF __fff;
850
            _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
851
 
852
            if (__bpi != _S_mem_blocks.end())
853
              {
854
                // Search was successful. Ok, now mark the first bit from
855
                // the right as 0, meaning Allocated. This bit is obtained
856
                // by calling _M_get() on __fff.
857
                size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
858
                __detail::__bit_allocate(__fff._M_get(), __nz_bit);
859
 
860
                _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
861
 
862
                // Now, get the address of the bit we marked as allocated.
863
                pointer __ret = reinterpret_cast<pointer>
864
                  (__bpi->first + __fff._M_offset() + __nz_bit);
865
                size_t* __puse_count =
866
                  reinterpret_cast<size_t*>
867
                  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
868
 
869
                ++(*__puse_count);
870
                return __ret;
871
              }
872
            else
873
              {
874
                // Search was unsuccessful. We Add more memory to the
875
                // pool by calling _S_refill_pool().
876
                _S_refill_pool();
877
 
878
                // _M_Reset the _S_last_request structure to the first
879
                // free block's bit map.
880
                _S_last_request._M_reset(_S_mem_blocks.size() - 1);
881
 
882
                // Now, mark that bit as allocated.
883
              }
884
          }
885
 
886
        // _S_last_request holds a pointer to a valid bit map, that
887
        // points to a free block in memory.
888
        size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
889
        __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
890
 
891
        pointer __ret = reinterpret_cast<pointer>
892
          (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
893
 
894
        size_t* __puse_count = reinterpret_cast<size_t*>
895
          (_S_mem_blocks[_S_last_request._M_where()].first)
896
          - (__detail::
897
             __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
898
 
899
        ++(*__puse_count);
900
        return __ret;
901
      }
902
 
903
      /** @brief  Deallocates memory that belongs to a single object of
904
       *  size sizeof(_Tp).
905
       *
906
       *  Complexity: O(lg(N)), but the worst case is not hit
907
       *  often!  This is because containers usually deallocate memory
908
       *  close to each other and this case is handled in O(1) time by
909
       *  the deallocate function.
910
       */
911
      void
912
      _M_deallocate_single_object(pointer __p) throw()
913
      {
914
#if defined __GTHREADS
915
        __scoped_lock __bit_lock(_S_mut);
916
#endif
917
        _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
918
 
919
        typedef typename _BPVector::iterator _Iterator;
920
        typedef typename _BPVector::difference_type _Difference_type;
921
 
922
        _Difference_type __diff;
923
        long __displacement;
924
 
925
        _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
926
 
927
        __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
928
        if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
929
          {
930
            _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
931
                                  <= _S_mem_blocks.size() - 1);
932
 
933
            // Initial Assumption was correct!
934
            __diff = _S_last_dealloc_index;
935
            __displacement = __real_p - _S_mem_blocks[__diff].first;
936
          }
937
        else
938
          {
939
            _Iterator _iter = _S_find(__ibt);
940
 
941
            _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
942
 
943
            __diff = _iter - _S_mem_blocks.begin();
944
            __displacement = __real_p - _S_mem_blocks[__diff].first;
945
            _S_last_dealloc_index = __diff;
946
          }
947
 
948
        // Get the position of the iterator that has been found.
949
        const size_t __rotate = (__displacement
950
                                 % size_t(__detail::bits_per_block));
951
        size_t* __bitmapC =
952
          reinterpret_cast<size_t*>
953
          (_S_mem_blocks[__diff].first) - 1;
954
        __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
955
 
956
        __detail::__bit_free(__bitmapC, __rotate);
957
        size_t* __puse_count = reinterpret_cast<size_t*>
958
          (_S_mem_blocks[__diff].first)
959
          - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
960
 
961
        _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
962
 
963
        --(*__puse_count);
964
 
965
        if (__builtin_expect(*__puse_count == 0, false))
966
          {
967
            _S_block_size /= 2;
968
 
969
            // We can safely remove this block.
970
            // _Block_pair __bp = _S_mem_blocks[__diff];
971
            this->_M_insert(__puse_count);
972
            _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
973
 
974
            // Reset the _S_last_request variable to reflect the
975
            // erased block. We do this to protect future requests
976
            // after the last block has been removed from a particular
977
            // memory Chunk, which in turn has been returned to the
978
            // free list, and hence had been erased from the vector,
979
            // so the size of the vector gets reduced by 1.
980
            if ((_Difference_type)_S_last_request._M_where() >= __diff--)
981
              _S_last_request._M_reset(__diff);
982
 
983
            // If the Index into the vector of the region of memory
984
            // that might hold the next address that will be passed to
985
            // deallocated may have been invalidated due to the above
986
            // erase procedure being called on the vector, hence we
987
            // try to restore this invariant too.
988
            if (_S_last_dealloc_index >= _S_mem_blocks.size())
989
              {
990
                _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
991
                _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
992
              }
993
          }
994
      }
995
 
996
    public:
997
      bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
998
      { }
999
 
1000
      bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1001
      { }
1002
 
1003
      template<typename _Tp1>
1004
        bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1005
        { }
1006
 
1007
      ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1008
      { }
1009
 
1010
      pointer
1011
      allocate(size_type __n)
1012
      {
1013
        if (__n > this->max_size())
1014
          std::__throw_bad_alloc();
1015
 
1016
        if (__builtin_expect(__n == 1, true))
1017
          return this->_M_allocate_single_object();
1018
        else
1019
          {
1020
            const size_type __b = __n * sizeof(value_type);
1021
            return reinterpret_cast<pointer>(::operator new(__b));
1022
          }
1023
      }
1024
 
1025
      pointer
1026
      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1027
      { return allocate(__n); }
1028
 
1029
      void
1030
      deallocate(pointer __p, size_type __n) throw()
1031
      {
1032
        if (__builtin_expect(__p != 0, true))
1033
          {
1034
            if (__builtin_expect(__n == 1, true))
1035
              this->_M_deallocate_single_object(__p);
1036
            else
1037
              ::operator delete(__p);
1038
          }
1039
      }
1040
 
1041
      pointer
1042
      address(reference __r) const _GLIBCXX_NOEXCEPT
1043
      { return std::__addressof(__r); }
1044
 
1045
      const_pointer
1046
      address(const_reference __r) const _GLIBCXX_NOEXCEPT
1047
      { return std::__addressof(__r); }
1048
 
1049
      size_type
1050
      max_size() const _GLIBCXX_USE_NOEXCEPT
1051
      { return size_type(-1) / sizeof(value_type); }
1052
 
1053
#ifdef __GXX_EXPERIMENTAL_CXX0X__
1054
      template<typename _Up, typename... _Args>
1055
        void
1056
        construct(_Up* __p, _Args&&... __args)
1057
        { ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1058
 
1059
      template<typename _Up>
1060
        void
1061
        destroy(_Up* __p)
1062
        { __p->~_Up(); }
1063
#else
1064
      void
1065
      construct(pointer __p, const_reference __data)
1066
      { ::new((void *)__p) value_type(__data); }
1067
 
1068
      void
1069
      destroy(pointer __p)
1070
      { __p->~value_type(); }
1071
#endif
1072
    };
1073
 
1074
  template<typename _Tp1, typename _Tp2>
1075
    bool
1076
    operator==(const bitmap_allocator<_Tp1>&,
1077
               const bitmap_allocator<_Tp2>&) throw()
1078
    { return true; }
1079
 
1080
  template<typename _Tp1, typename _Tp2>
1081
    bool
1082
    operator!=(const bitmap_allocator<_Tp1>&,
1083
               const bitmap_allocator<_Tp2>&) throw()
1084
  { return false; }
1085
 
1086
  // Static member definitions.
1087
  template<typename _Tp>
1088
    typename bitmap_allocator<_Tp>::_BPVector
1089
    bitmap_allocator<_Tp>::_S_mem_blocks;
1090
 
1091
  template<typename _Tp>
1092
    size_t bitmap_allocator<_Tp>::_S_block_size =
1093
    2 * size_t(__detail::bits_per_block);
1094
 
1095
  template<typename _Tp>
1096
    typename bitmap_allocator<_Tp>::_BPVector::size_type
1097
    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1098
 
1099
  template<typename _Tp>
1100
    __detail::_Bitmap_counter
1101
      <typename bitmap_allocator<_Tp>::_Alloc_block*>
1102
    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1103
 
1104
#if defined __GTHREADS
1105
  template<typename _Tp>
1106
    typename bitmap_allocator<_Tp>::__mutex_type
1107
    bitmap_allocator<_Tp>::_S_mut;
1108
#endif
1109
 
1110
_GLIBCXX_END_NAMESPACE_VERSION
1111
} // namespace __gnu_cxx
1112
 
1113
#endif 
1114
 

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.