OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libstdc++-v3/] [include/] [tr1/] [riemann_zeta.tcc] - Blame information for rev 742

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 742 jeremybenn
// Special functions -*- C++ -*-
2
 
3
// Copyright (C) 2006, 2007, 2008, 2009, 2010
4
// Free Software Foundation, Inc.
5
//
6
// This file is part of the GNU ISO C++ Library.  This library is free
7
// software; you can redistribute it and/or modify it under the
8
// terms of the GNU General Public License as published by the
9
// Free Software Foundation; either version 3, or (at your option)
10
// any later version.
11
//
12
// This library is distributed in the hope that it will be useful,
13
// but WITHOUT ANY WARRANTY; without even the implied warranty of
14
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
// GNU General Public License for more details.
16
//
17
// Under Section 7 of GPL version 3, you are granted additional
18
// permissions described in the GCC Runtime Library Exception, version
19
// 3.1, as published by the Free Software Foundation.
20
 
21
// You should have received a copy of the GNU General Public License and
22
// a copy of the GCC Runtime Library Exception along with this program;
23
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24
// .
25
 
26
/** @file tr1/riemann_zeta.tcc
27
 *  This is an internal header file, included by other library headers.
28
 *  Do not attempt to use it directly. @headername{tr1/cmath}
29
 */
30
 
31
//
32
// ISO C++ 14882 TR1: 5.2  Special functions
33
//
34
 
35
// Written by Edward Smith-Rowland based on:
36
//   (1) Handbook of Mathematical Functions,
37
//       Ed. by Milton Abramowitz and Irene A. Stegun,
38
//       Dover Publications, New-York, Section 5, pp. 807-808.
39
//   (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl
40
//   (3) Gamma, Exploring Euler's Constant, Julian Havil,
41
//       Princeton, 2003.
42
 
43
#ifndef _GLIBCXX_TR1_RIEMANN_ZETA_TCC
44
#define _GLIBCXX_TR1_RIEMANN_ZETA_TCC 1
45
 
46
#include "special_function_util.h"
47
 
48
namespace std _GLIBCXX_VISIBILITY(default)
49
{
50
namespace tr1
51
{
52
  // [5.2] Special functions
53
 
54
  // Implementation-space details.
55
  namespace __detail
56
  {
57
  _GLIBCXX_BEGIN_NAMESPACE_VERSION
58
 
59
    /**
60
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
61
     *           by summation for s > 1.
62
     *
63
     *   The Riemann zeta function is defined by:
64
     *    \f[
65
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
66
     *    \f]
67
     *   For s < 1 use the reflection formula:
68
     *    \f[
69
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
70
     *    \f]
71
     */
72
    template
73
    _Tp
74
    __riemann_zeta_sum(const _Tp __s)
75
    {
76
      //  A user shouldn't get to this.
77
      if (__s < _Tp(1))
78
        std::__throw_domain_error(__N("Bad argument in zeta sum."));
79
 
80
      const unsigned int max_iter = 10000;
81
      _Tp __zeta = _Tp(0);
82
      for (unsigned int __k = 1; __k < max_iter; ++__k)
83
        {
84
          _Tp __term = std::pow(static_cast<_Tp>(__k), -__s);
85
          if (__term < std::numeric_limits<_Tp>::epsilon())
86
            {
87
              break;
88
            }
89
          __zeta += __term;
90
        }
91
 
92
      return __zeta;
93
    }
94
 
95
 
96
    /**
97
     *   @brief  Evaluate the Riemann zeta function @f$ \zeta(s) @f$
98
     *           by an alternate series for s > 0.
99
     *
100
     *   The Riemann zeta function is defined by:
101
     *    \f[
102
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
103
     *    \f]
104
     *   For s < 1 use the reflection formula:
105
     *    \f[
106
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
107
     *    \f]
108
     */
109
    template
110
    _Tp
111
    __riemann_zeta_alt(const _Tp __s)
112
    {
113
      _Tp __sgn = _Tp(1);
114
      _Tp __zeta = _Tp(0);
115
      for (unsigned int __i = 1; __i < 10000000; ++__i)
116
        {
117
          _Tp __term = __sgn / std::pow(__i, __s);
118
          if (std::abs(__term) < std::numeric_limits<_Tp>::epsilon())
119
            break;
120
          __zeta += __term;
121
          __sgn *= _Tp(-1);
122
        }
123
      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
124
 
125
      return __zeta;
126
    }
127
 
128
 
129
    /**
130
     *   @brief  Evaluate the Riemann zeta function by series for all s != 1.
131
     *           Convergence is great until largish negative numbers.
132
     *           Then the convergence of the > 0 sum gets better.
133
     *
134
     *   The series is:
135
     *    \f[
136
     *      \zeta(s) = \frac{1}{1-2^{1-s}}
137
     *                 \sum_{n=0}^{\infty} \frac{1}{2^{n+1}}
138
     *                 \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (k+1)^{-s}
139
     *    \f]
140
     *   Havil 2003, p. 206.
141
     *
142
     *   The Riemann zeta function is defined by:
143
     *    \f[
144
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
145
     *    \f]
146
     *   For s < 1 use the reflection formula:
147
     *    \f[
148
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
149
     *    \f]
150
     */
151
    template
152
    _Tp
153
    __riemann_zeta_glob(const _Tp __s)
154
    {
155
      _Tp __zeta = _Tp(0);
156
 
157
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
158
      //  Max e exponent before overflow.
159
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
160
                               * std::log(_Tp(10)) - _Tp(1);
161
 
162
      //  This series works until the binomial coefficient blows up
163
      //  so use reflection.
164
      if (__s < _Tp(0))
165
        {
166
#if _GLIBCXX_USE_C99_MATH_TR1
167
          if (std::tr1::fmod(__s,_Tp(2)) == _Tp(0))
168
            return _Tp(0);
169
          else
170
#endif
171
            {
172
              _Tp __zeta = __riemann_zeta_glob(_Tp(1) - __s);
173
              __zeta *= std::pow(_Tp(2)
174
                     * __numeric_constants<_Tp>::__pi(), __s)
175
                     * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
176
#if _GLIBCXX_USE_C99_MATH_TR1
177
                     * std::exp(std::tr1::lgamma(_Tp(1) - __s))
178
#else
179
                     * std::exp(__log_gamma(_Tp(1) - __s))
180
#endif
181
                     / __numeric_constants<_Tp>::__pi();
182
              return __zeta;
183
            }
184
        }
185
 
186
      _Tp __num = _Tp(0.5L);
187
      const unsigned int __maxit = 10000;
188
      for (unsigned int __i = 0; __i < __maxit; ++__i)
189
        {
190
          bool __punt = false;
191
          _Tp __sgn = _Tp(1);
192
          _Tp __term = _Tp(0);
193
          for (unsigned int __j = 0; __j <= __i; ++__j)
194
            {
195
#if _GLIBCXX_USE_C99_MATH_TR1
196
              _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
197
                              - std::tr1::lgamma(_Tp(1 + __j))
198
                              - std::tr1::lgamma(_Tp(1 + __i - __j));
199
#else
200
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
201
                              - __log_gamma(_Tp(1 + __j))
202
                              - __log_gamma(_Tp(1 + __i - __j));
203
#endif
204
              if (__bincoeff > __max_bincoeff)
205
                {
206
                  //  This only gets hit for x << 0.
207
                  __punt = true;
208
                  break;
209
                }
210
              __bincoeff = std::exp(__bincoeff);
211
              __term += __sgn * __bincoeff * std::pow(_Tp(1 + __j), -__s);
212
              __sgn *= _Tp(-1);
213
            }
214
          if (__punt)
215
            break;
216
          __term *= __num;
217
          __zeta += __term;
218
          if (std::abs(__term/__zeta) < __eps)
219
            break;
220
          __num *= _Tp(0.5L);
221
        }
222
 
223
      __zeta /= _Tp(1) - std::pow(_Tp(2), _Tp(1) - __s);
224
 
225
      return __zeta;
226
    }
227
 
228
 
229
    /**
230
     *   @brief  Compute the Riemann zeta function @f$ \zeta(s) @f$
231
     *           using the product over prime factors.
232
     *    \f[
233
     *      \zeta(s) = \Pi_{i=1}^\infty \frac{1}{1 - p_i^{-s}}
234
     *    \f]
235
     *    where @f$ {p_i} @f$ are the prime numbers.
236
     *
237
     *   The Riemann zeta function is defined by:
238
     *    \f[
239
     *      \zeta(s) = \sum_{k=1}^{\infty} \frac{1}{k^{s}} for s > 1
240
     *    \f]
241
     *   For s < 1 use the reflection formula:
242
     *    \f[
243
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
244
     *    \f]
245
     */
246
    template
247
    _Tp
248
    __riemann_zeta_product(const _Tp __s)
249
    {
250
      static const _Tp __prime[] = {
251
        _Tp(2), _Tp(3), _Tp(5), _Tp(7), _Tp(11), _Tp(13), _Tp(17), _Tp(19),
252
        _Tp(23), _Tp(29), _Tp(31), _Tp(37), _Tp(41), _Tp(43), _Tp(47),
253
        _Tp(53), _Tp(59), _Tp(61), _Tp(67), _Tp(71), _Tp(73), _Tp(79),
254
        _Tp(83), _Tp(89), _Tp(97), _Tp(101), _Tp(103), _Tp(107), _Tp(109)
255
      };
256
      static const unsigned int __num_primes = sizeof(__prime) / sizeof(_Tp);
257
 
258
      _Tp __zeta = _Tp(1);
259
      for (unsigned int __i = 0; __i < __num_primes; ++__i)
260
        {
261
          const _Tp __fact = _Tp(1) - std::pow(__prime[__i], -__s);
262
          __zeta *= __fact;
263
          if (_Tp(1) - __fact < std::numeric_limits<_Tp>::epsilon())
264
            break;
265
        }
266
 
267
      __zeta = _Tp(1) / __zeta;
268
 
269
      return __zeta;
270
    }
271
 
272
 
273
    /**
274
     *   @brief  Return the Riemann zeta function @f$ \zeta(s) @f$.
275
     *
276
     *   The Riemann zeta function is defined by:
277
     *    \f[
278
     *      \zeta(s) = \sum_{k=1}^{\infty} k^{-s} for s > 1
279
     *                 \frac{(2\pi)^s}{pi} sin(\frac{\pi s}{2})
280
     *                 \Gamma (1 - s) \zeta (1 - s) for s < 1
281
     *    \f]
282
     *   For s < 1 use the reflection formula:
283
     *    \f[
284
     *      \zeta(s) = 2^s \pi^{s-1} \Gamma(1-s) \zeta(1-s)
285
     *    \f]
286
     */
287
    template
288
    _Tp
289
    __riemann_zeta(const _Tp __s)
290
    {
291
      if (__isnan(__s))
292
        return std::numeric_limits<_Tp>::quiet_NaN();
293
      else if (__s == _Tp(1))
294
        return std::numeric_limits<_Tp>::infinity();
295
      else if (__s < -_Tp(19))
296
        {
297
          _Tp __zeta = __riemann_zeta_product(_Tp(1) - __s);
298
          __zeta *= std::pow(_Tp(2) * __numeric_constants<_Tp>::__pi(), __s)
299
                 * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
300
#if _GLIBCXX_USE_C99_MATH_TR1
301
                 * std::exp(std::tr1::lgamma(_Tp(1) - __s))
302
#else
303
                 * std::exp(__log_gamma(_Tp(1) - __s))
304
#endif
305
                 / __numeric_constants<_Tp>::__pi();
306
          return __zeta;
307
        }
308
      else if (__s < _Tp(20))
309
        {
310
          //  Global double sum or McLaurin?
311
          bool __glob = true;
312
          if (__glob)
313
            return __riemann_zeta_glob(__s);
314
          else
315
            {
316
              if (__s > _Tp(1))
317
                return __riemann_zeta_sum(__s);
318
              else
319
                {
320
                  _Tp __zeta = std::pow(_Tp(2)
321
                                * __numeric_constants<_Tp>::__pi(), __s)
322
                         * std::sin(__numeric_constants<_Tp>::__pi_2() * __s)
323
#if _GLIBCXX_USE_C99_MATH_TR1
324
                             * std::tr1::tgamma(_Tp(1) - __s)
325
#else
326
                             * std::exp(__log_gamma(_Tp(1) - __s))
327
#endif
328
                             * __riemann_zeta_sum(_Tp(1) - __s);
329
                  return __zeta;
330
                }
331
            }
332
        }
333
      else
334
        return __riemann_zeta_product(__s);
335
    }
336
 
337
 
338
    /**
339
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
340
     *           for all s != 1 and x > -1.
341
     *
342
     *   The Hurwitz zeta function is defined by:
343
     *   @f[
344
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
345
     *   @f]
346
     *   The Riemann zeta function is a special case:
347
     *   @f[
348
     *     \zeta(s) = \zeta(1,s)
349
     *   @f]
350
     *
351
     *   This functions uses the double sum that converges for s != 1
352
     *   and x > -1:
353
     *   @f[
354
     *     \zeta(x,s) = \frac{1}{s-1}
355
     *                \sum_{n=0}^{\infty} \frac{1}{n + 1}
356
     *                \sum_{k=0}^{n} (-1)^k \frac{n!}{(n-k)!k!} (x+k)^{-s}
357
     *   @f]
358
     */
359
    template
360
    _Tp
361
    __hurwitz_zeta_glob(const _Tp __a, const _Tp __s)
362
    {
363
      _Tp __zeta = _Tp(0);
364
 
365
      const _Tp __eps = std::numeric_limits<_Tp>::epsilon();
366
      //  Max e exponent before overflow.
367
      const _Tp __max_bincoeff = std::numeric_limits<_Tp>::max_exponent10
368
                               * std::log(_Tp(10)) - _Tp(1);
369
 
370
      const unsigned int __maxit = 10000;
371
      for (unsigned int __i = 0; __i < __maxit; ++__i)
372
        {
373
          bool __punt = false;
374
          _Tp __sgn = _Tp(1);
375
          _Tp __term = _Tp(0);
376
          for (unsigned int __j = 0; __j <= __i; ++__j)
377
            {
378
#if _GLIBCXX_USE_C99_MATH_TR1
379
              _Tp __bincoeff =  std::tr1::lgamma(_Tp(1 + __i))
380
                              - std::tr1::lgamma(_Tp(1 + __j))
381
                              - std::tr1::lgamma(_Tp(1 + __i - __j));
382
#else
383
              _Tp __bincoeff =  __log_gamma(_Tp(1 + __i))
384
                              - __log_gamma(_Tp(1 + __j))
385
                              - __log_gamma(_Tp(1 + __i - __j));
386
#endif
387
              if (__bincoeff > __max_bincoeff)
388
                {
389
                  //  This only gets hit for x << 0.
390
                  __punt = true;
391
                  break;
392
                }
393
              __bincoeff = std::exp(__bincoeff);
394
              __term += __sgn * __bincoeff * std::pow(_Tp(__a + __j), -__s);
395
              __sgn *= _Tp(-1);
396
            }
397
          if (__punt)
398
            break;
399
          __term /= _Tp(__i + 1);
400
          if (std::abs(__term / __zeta) < __eps)
401
            break;
402
          __zeta += __term;
403
        }
404
 
405
      __zeta /= __s - _Tp(1);
406
 
407
      return __zeta;
408
    }
409
 
410
 
411
    /**
412
     *   @brief  Return the Hurwitz zeta function @f$ \zeta(x,s) @f$
413
     *           for all s != 1 and x > -1.
414
     *
415
     *   The Hurwitz zeta function is defined by:
416
     *   @f[
417
     *     \zeta(x,s) = \sum_{n=0}^{\infty} \frac{1}{(n + x)^s}
418
     *   @f]
419
     *   The Riemann zeta function is a special case:
420
     *   @f[
421
     *     \zeta(s) = \zeta(1,s)
422
     *   @f]
423
     */
424
    template
425
    inline _Tp
426
    __hurwitz_zeta(const _Tp __a, const _Tp __s)
427
    {
428
      return __hurwitz_zeta_glob(__a, __s);
429
    }
430
 
431
  _GLIBCXX_END_NAMESPACE_VERSION
432
  } // namespace std::tr1::__detail
433
}
434
}
435
 
436
#endif // _GLIBCXX_TR1_RIEMANN_ZETA_TCC

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.