OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-dev/] [or1k-gcc/] [libstdc++-v3/] [testsuite/] [util/] [testsuite_random.h] - Blame information for rev 848

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 742 jeremybenn
// -*- C++ -*-
2
 
3
// Copyright (C) 2011 Free Software Foundation, Inc.
4
//
5
// This file is part of the GNU ISO C++ Library.  This library is free
6
// software; you can redistribute it and/or modify it under the terms
7
// of the GNU General Public License as published by the Free Software
8
// Foundation; either version 3, or (at your option) any later
9
// version.
10
 
11
// This library is distributed in the hope that it will be useful, but
12
// WITHOUT ANY WARRANTY; without even the implied warranty of
13
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
// General Public License for more details.
15
 
16
// You should have received a copy of the GNU General Public License along
17
// with this library; see the file COPYING3.  If not see
18
// <http://www.gnu.org/licenses/>.
19
 
20
/**
21
 * @file testsuite_random.h
22
 */
23
 
24
#ifndef _GLIBCXX_TESTSUITE_RANDOM_H
25
#define _GLIBCXX_TESTSUITE_RANDOM_H
26
 
27
#include <cmath>
28
#include <initializer_list>
29
#include <testsuite_hooks.h>
30
 
31
namespace __gnu_test
32
{
33
  // Adapted for libstdc++ from GNU gsl-1.14/randist/test.c
34
  // Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007, 2010
35
  // James Theiler, Brian Gough
36
  template<unsigned long BINS = 100,
37
           unsigned long N = 100000,
38
           typename Distribution, typename Pdf>
39
    void
40
    testDiscreteDist(Distribution& f, Pdf pdf)
41
    {
42
      bool test __attribute__((unused)) = true;
43
      double count[BINS], p[BINS];
44
 
45
      for (unsigned long i = 0; i < BINS; i++)
46
        count[i] = 0;
47
 
48
      for (unsigned long i = 0; i < N; i++)
49
        {
50
          auto r = f();
51
          if (r >= 0 && (unsigned long)r < BINS)
52
            count[r]++;
53
        }
54
 
55
      for (unsigned long i = 0; i < BINS; i++)
56
        p[i] = pdf(i);
57
 
58
      for (unsigned long i = 0; i < BINS; i++)
59
        {
60
          bool status_i;
61
          double d = std::abs(count[i] - N * p[i]);
62
 
63
          if (p[i] != 0)
64
            {
65
              double s = d / std::sqrt(N * p[i]);
66
              status_i = (s > 5) && (d > 1);
67
            }
68
          else
69
            status_i = (count[i] != 0);
70
 
71
          VERIFY( !status_i );
72
        }
73
    }
74
 
75
  inline double
76
  bernoulli_pdf(int k, double p)
77
  {
78
    if (k == 0)
79
      return 1 - p;
80
    else if (k == 1)
81
      return p;
82
    else
83
      return 0.0;
84
  }
85
 
86
#ifdef _GLIBCXX_USE_C99_MATH_TR1
87
  inline double
88
  binomial_pdf(int k, int n, double p)
89
  {
90
    if (k < 0 || k > n)
91
      return 0.0;
92
    else
93
      {
94
        double q;
95
 
96
        if (p == 0.0)
97
          q = (k == 0) ? 1.0 : 0.0;
98
        else if (p == 1.0)
99
          q = (k == n) ? 1.0 : 0.0;
100
        else
101
          {
102
            double ln_Cnk = (std::lgamma(n + 1.0) - std::lgamma(k + 1.0)
103
                             - std::lgamma(n - k + 1.0));
104
            q = ln_Cnk + k * std::log(p) + (n - k) * std::log1p(-p);
105
            q = std::exp(q);
106
          }
107
 
108
        return q;
109
      }
110
  }
111
#endif
112
 
113
  inline double
114
  discrete_pdf(int k, std::initializer_list<double> wl)
115
  {
116
    if (!wl.size())
117
      wl = { 1.0 };
118
 
119
    if (k < 0 || (std::size_t)k >= wl.size())
120
      return 0.0;
121
    else
122
      {
123
        double sum = 0.0;
124
        for (auto it = wl.begin(); it != wl.end(); ++it)
125
          sum += *it;
126
        return wl.begin()[k] / sum;
127
      }
128
  }
129
 
130
  inline double
131
  geometric_pdf(int k, double p)
132
  {
133
    if (k < 0)
134
      return 0.0;
135
    else if (k == 0)
136
      return p;
137
    else
138
      return p * std::pow(1 - p, k);
139
  }
140
 
141
#ifdef _GLIBCXX_USE_C99_MATH_TR1
142
  inline double
143
  negative_binomial_pdf(int k, int n, double p)
144
  {
145
    if (k < 0)
146
      return 0.0;
147
    else
148
      {
149
        double f = std::lgamma(k + (double)n);
150
        double a = std::lgamma(n);
151
        double b = std::lgamma(k + 1.0);
152
 
153
        return std::exp(f - a - b) * std::pow(p, n) * std::pow(1 - p, k);
154
      }
155
  }
156
 
157
  inline double
158
  poisson_pdf(int k, double mu)
159
  {
160
    if (k < 0)
161
      return 0.0;
162
    else
163
      {
164
        double lf = std::lgamma(k + 1.0);
165
        return std::exp(std::log(mu) * k - lf - mu);
166
      }
167
  }
168
#endif
169
 
170
  inline double
171
  uniform_int_pdf(int k, int a, int b)
172
  {
173
    if (k < 0 || k < a || k > b)
174
      return 0.0;
175
    else
176
      return 1.0 / (b - a + 1.0);
177
  }
178
 
179
} // namespace __gnu_test
180
 
181
#endif // #ifndef _GLIBCXX_TESTSUITE_RANDOM_H

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.