OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [bfd/] [elf64-hppa.c] - Blame information for rev 831

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Support for HPPA 64-bit ELF
2
   Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3
   Free Software Foundation, Inc.
4
 
5
   This file is part of BFD, the Binary File Descriptor library.
6
 
7
   This program is free software; you can redistribute it and/or modify
8
   it under the terms of the GNU General Public License as published by
9
   the Free Software Foundation; either version 3 of the License, or
10
   (at your option) any later version.
11
 
12
   This program is distributed in the hope that it will be useful,
13
   but WITHOUT ANY WARRANTY; without even the implied warranty of
14
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
   GNU General Public License for more details.
16
 
17
   You should have received a copy of the GNU General Public License
18
   along with this program; if not, write to the Free Software
19
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20
   MA 02110-1301, USA.  */
21
 
22
#include "sysdep.h"
23
#include "bfd.h"
24
#include "libbfd.h"
25
#include "elf-bfd.h"
26
#include "elf/hppa.h"
27
#include "libhppa.h"
28
#include "elf64-hppa.h"
29
 
30
/* This is the code recommended in the autoconf documentation, almost
31
   verbatim.  */
32
#ifndef __GNUC__
33
# if HAVE_ALLOCA_H
34
#  include <alloca.h>
35
# else
36
#  ifdef _AIX
37
/* Indented so that pre-ansi C compilers will ignore it, rather than
38
   choke on it.  Some versions of AIX require this to be the first
39
   thing in the file.  */
40
 #pragma alloca
41
#  else
42
#   ifndef alloca /* predefined by HP cc +Olibcalls */
43
#    if !defined (__STDC__) && !defined (__hpux)
44
extern char *alloca ();
45
#    else
46
extern void *alloca ();
47
#    endif /* __STDC__, __hpux */
48
#   endif /* alloca */
49
#  endif /* _AIX */
50
# endif /* HAVE_ALLOCA_H */
51
#else
52
extern void *alloca (size_t);
53
#endif /* __GNUC__ */
54
 
55
 
56
#define ARCH_SIZE              64
57
 
58
#define PLT_ENTRY_SIZE 0x10
59
#define DLT_ENTRY_SIZE 0x8
60
#define OPD_ENTRY_SIZE 0x20
61
 
62
#define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
63
 
64
/* The stub is supposed to load the target address and target's DP
65
   value out of the PLT, then do an external branch to the target
66
   address.
67
 
68
   LDD PLTOFF(%r27),%r1
69
   BVE (%r1)
70
   LDD PLTOFF+8(%r27),%r27
71
 
72
   Note that we must use the LDD with a 14 bit displacement, not the one
73
   with a 5 bit displacement.  */
74
static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
75
                          0x53, 0x7b, 0x00, 0x00 };
76
 
77
struct elf64_hppa_dyn_hash_entry
78
{
79
  struct bfd_hash_entry root;
80
 
81
  /* Offsets for this symbol in various linker sections.  */
82
  bfd_vma dlt_offset;
83
  bfd_vma plt_offset;
84
  bfd_vma opd_offset;
85
  bfd_vma stub_offset;
86
 
87
  /* The symbol table entry, if any, that this was derived from.  */
88
  struct elf_link_hash_entry *h;
89
 
90
  /* The index of the (possibly local) symbol in the input bfd and its
91
     associated BFD.  Needed so that we can have relocs against local
92
     symbols in shared libraries.  */
93
  long sym_indx;
94
  bfd *owner;
95
 
96
  /* Dynamic symbols may need to have two different values.  One for
97
     the dynamic symbol table, one for the normal symbol table.
98
 
99
     In such cases we store the symbol's real value and section
100
     index here so we can restore the real value before we write
101
     the normal symbol table.  */
102
  bfd_vma st_value;
103
  int st_shndx;
104
 
105
  /* Used to count non-got, non-plt relocations for delayed sizing
106
     of relocation sections.  */
107
  struct elf64_hppa_dyn_reloc_entry
108
  {
109
    /* Next relocation in the chain.  */
110
    struct elf64_hppa_dyn_reloc_entry *next;
111
 
112
    /* The type of the relocation.  */
113
    int type;
114
 
115
    /* The input section of the relocation.  */
116
    asection *sec;
117
 
118
    /* The index of the section symbol for the input section of
119
       the relocation.  Only needed when building shared libraries.  */
120
    int sec_symndx;
121
 
122
    /* The offset within the input section of the relocation.  */
123
    bfd_vma offset;
124
 
125
    /* The addend for the relocation.  */
126
    bfd_vma addend;
127
 
128
  } *reloc_entries;
129
 
130
  /* Nonzero if this symbol needs an entry in one of the linker
131
     sections.  */
132
  unsigned want_dlt;
133
  unsigned want_plt;
134
  unsigned want_opd;
135
  unsigned want_stub;
136
};
137
 
138
struct elf64_hppa_dyn_hash_table
139
{
140
  struct bfd_hash_table root;
141
};
142
 
143
struct elf64_hppa_link_hash_table
144
{
145
  struct elf_link_hash_table root;
146
 
147
  /* Shortcuts to get to the various linker defined sections.  */
148
  asection *dlt_sec;
149
  asection *dlt_rel_sec;
150
  asection *plt_sec;
151
  asection *plt_rel_sec;
152
  asection *opd_sec;
153
  asection *opd_rel_sec;
154
  asection *other_rel_sec;
155
 
156
  /* Offset of __gp within .plt section.  When the PLT gets large we want
157
     to slide __gp into the PLT section so that we can continue to use
158
     single DP relative instructions to load values out of the PLT.  */
159
  bfd_vma gp_offset;
160
 
161
  /* Note this is not strictly correct.  We should create a stub section for
162
     each input section with calls.  The stub section should be placed before
163
     the section with the call.  */
164
  asection *stub_sec;
165
 
166
  bfd_vma text_segment_base;
167
  bfd_vma data_segment_base;
168
 
169
  struct elf64_hppa_dyn_hash_table dyn_hash_table;
170
 
171
  /* We build tables to map from an input section back to its
172
     symbol index.  This is the BFD for which we currently have
173
     a map.  */
174
  bfd *section_syms_bfd;
175
 
176
  /* Array of symbol numbers for each input section attached to the
177
     current BFD.  */
178
  int *section_syms;
179
};
180
 
181
#define elf64_hppa_hash_table(p) \
182
  ((struct elf64_hppa_link_hash_table *) ((p)->hash))
183
 
184
typedef struct bfd_hash_entry *(*new_hash_entry_func)
185
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
186
 
187
static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
188
  PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
189
           const char *string));
190
static struct bfd_link_hash_table *elf64_hppa_hash_table_create
191
  PARAMS ((bfd *abfd));
192
static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
193
  PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
194
           bfd_boolean create, bfd_boolean copy));
195
static void elf64_hppa_dyn_hash_traverse
196
  PARAMS ((struct elf64_hppa_dyn_hash_table *table,
197
           bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
198
           PTR info));
199
 
200
static const char *get_dyn_name
201
  PARAMS ((bfd *, struct elf_link_hash_entry *,
202
           const Elf_Internal_Rela *, char **, size_t *));
203
 
204
/* This must follow the definitions of the various derived linker
205
   hash tables and shared functions.  */
206
#include "elf-hppa.h"
207
 
208
static bfd_boolean elf64_hppa_object_p
209
  PARAMS ((bfd *));
210
 
211
static void elf64_hppa_post_process_headers
212
  PARAMS ((bfd *, struct bfd_link_info *));
213
 
214
static bfd_boolean elf64_hppa_create_dynamic_sections
215
  PARAMS ((bfd *, struct bfd_link_info *));
216
 
217
static bfd_boolean elf64_hppa_adjust_dynamic_symbol
218
  PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
219
 
220
static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
221
  PARAMS ((struct elf_link_hash_entry *, PTR));
222
 
223
static bfd_boolean elf64_hppa_size_dynamic_sections
224
  PARAMS ((bfd *, struct bfd_link_info *));
225
 
226
static bfd_boolean elf64_hppa_link_output_symbol_hook
227
  PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
228
           asection *, struct elf_link_hash_entry *));
229
 
230
static bfd_boolean elf64_hppa_finish_dynamic_symbol
231
  PARAMS ((bfd *, struct bfd_link_info *,
232
           struct elf_link_hash_entry *, Elf_Internal_Sym *));
233
 
234
static enum elf_reloc_type_class elf64_hppa_reloc_type_class
235
  PARAMS ((const Elf_Internal_Rela *));
236
 
237
static bfd_boolean elf64_hppa_finish_dynamic_sections
238
  PARAMS ((bfd *, struct bfd_link_info *));
239
 
240
static bfd_boolean elf64_hppa_check_relocs
241
  PARAMS ((bfd *, struct bfd_link_info *,
242
           asection *, const Elf_Internal_Rela *));
243
 
244
static bfd_boolean elf64_hppa_dynamic_symbol_p
245
  PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
246
 
247
static bfd_boolean elf64_hppa_mark_exported_functions
248
  PARAMS ((struct elf_link_hash_entry *, PTR));
249
 
250
static bfd_boolean elf64_hppa_finalize_opd
251
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
 
253
static bfd_boolean elf64_hppa_finalize_dlt
254
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
255
 
256
static bfd_boolean allocate_global_data_dlt
257
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
258
 
259
static bfd_boolean allocate_global_data_plt
260
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
 
262
static bfd_boolean allocate_global_data_stub
263
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
 
265
static bfd_boolean allocate_global_data_opd
266
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
267
 
268
static bfd_boolean get_reloc_section
269
  PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
270
 
271
static bfd_boolean count_dyn_reloc
272
  PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
273
           int, asection *, int, bfd_vma, bfd_vma));
274
 
275
static bfd_boolean allocate_dynrel_entries
276
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
277
 
278
static bfd_boolean elf64_hppa_finalize_dynreloc
279
  PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
280
 
281
static bfd_boolean get_opd
282
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
283
 
284
static bfd_boolean get_plt
285
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
286
 
287
static bfd_boolean get_dlt
288
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
289
 
290
static bfd_boolean get_stub
291
  PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
292
 
293
static int elf64_hppa_elf_get_symbol_type
294
  PARAMS ((Elf_Internal_Sym *, int));
295
 
296
static bfd_boolean
297
elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
298
                                bfd *abfd ATTRIBUTE_UNUSED,
299
                                new_hash_entry_func new,
300
                                unsigned int entsize)
301
{
302
  memset (ht, 0, sizeof (*ht));
303
  return bfd_hash_table_init (&ht->root, new, entsize);
304
}
305
 
306
static struct bfd_hash_entry*
307
elf64_hppa_new_dyn_hash_entry (entry, table, string)
308
     struct bfd_hash_entry *entry;
309
     struct bfd_hash_table *table;
310
     const char *string;
311
{
312
  struct elf64_hppa_dyn_hash_entry *ret;
313
  ret = (struct elf64_hppa_dyn_hash_entry *) entry;
314
 
315
  /* Allocate the structure if it has not already been allocated by a
316
     subclass.  */
317
  if (!ret)
318
    ret = bfd_hash_allocate (table, sizeof (*ret));
319
 
320
  if (!ret)
321
    return 0;
322
 
323
  /* Call the allocation method of the superclass.  */
324
  ret = ((struct elf64_hppa_dyn_hash_entry *)
325
         bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
326
 
327
  /* Initialize our local data.  All zeros.  */
328
  memset (&ret->dlt_offset, 0,
329
          (sizeof (struct elf64_hppa_dyn_hash_entry)
330
           - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
331
 
332
  return &ret->root;
333
}
334
 
335
/* Create the derived linker hash table.  The PA64 ELF port uses this
336
   derived hash table to keep information specific to the PA ElF
337
   linker (without using static variables).  */
338
 
339
static struct bfd_link_hash_table*
340
elf64_hppa_hash_table_create (abfd)
341
     bfd *abfd;
342
{
343
  struct elf64_hppa_link_hash_table *ret;
344
 
345
  ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
346
  if (!ret)
347
    return 0;
348
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
349
                                      _bfd_elf_link_hash_newfunc,
350
                                      sizeof (struct elf_link_hash_entry)))
351
    {
352
      bfd_release (abfd, ret);
353
      return 0;
354
    }
355
 
356
  if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
357
                                       elf64_hppa_new_dyn_hash_entry,
358
                                       sizeof (struct elf64_hppa_dyn_hash_entry)))
359
    return 0;
360
  return &ret->root.root;
361
}
362
 
363
/* Look up an entry in a PA64 ELF linker hash table.  */
364
 
365
static struct elf64_hppa_dyn_hash_entry *
366
elf64_hppa_dyn_hash_lookup(table, string, create, copy)
367
     struct elf64_hppa_dyn_hash_table *table;
368
     const char *string;
369
     bfd_boolean create, copy;
370
{
371
  return ((struct elf64_hppa_dyn_hash_entry *)
372
          bfd_hash_lookup (&table->root, string, create, copy));
373
}
374
 
375
/* Traverse a PA64 ELF linker hash table.  */
376
 
377
static void
378
elf64_hppa_dyn_hash_traverse (table, func, info)
379
     struct elf64_hppa_dyn_hash_table *table;
380
     bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
381
     PTR info;
382
{
383
  (bfd_hash_traverse
384
   (&table->root,
385
    (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
386
    info));
387
}
388
 
389
/* Return nonzero if ABFD represents a PA2.0 ELF64 file.
390
 
391
   Additionally we set the default architecture and machine.  */
392
static bfd_boolean
393
elf64_hppa_object_p (abfd)
394
     bfd *abfd;
395
{
396
  Elf_Internal_Ehdr * i_ehdrp;
397
  unsigned int flags;
398
 
399
  i_ehdrp = elf_elfheader (abfd);
400
  if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
401
    {
402
      /* GCC on hppa-linux produces binaries with OSABI=Linux,
403
         but the kernel produces corefiles with OSABI=SysV.  */
404
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
405
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
406
        return FALSE;
407
    }
408
  else
409
    {
410
      /* HPUX produces binaries with OSABI=HPUX,
411
         but the kernel produces corefiles with OSABI=SysV.  */
412
      if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
413
          && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
414
        return FALSE;
415
    }
416
 
417
  flags = i_ehdrp->e_flags;
418
  switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
419
    {
420
    case EFA_PARISC_1_0:
421
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
422
    case EFA_PARISC_1_1:
423
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
424
    case EFA_PARISC_2_0:
425
      if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
426
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
427
      else
428
        return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
429
    case EFA_PARISC_2_0 | EF_PARISC_WIDE:
430
      return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
431
    }
432
  /* Don't be fussy.  */
433
  return TRUE;
434
}
435
 
436
/* Given section type (hdr->sh_type), return a boolean indicating
437
   whether or not the section is an elf64-hppa specific section.  */
438
static bfd_boolean
439
elf64_hppa_section_from_shdr (bfd *abfd,
440
                              Elf_Internal_Shdr *hdr,
441
                              const char *name,
442
                              int shindex)
443
{
444
  asection *newsect;
445
 
446
  switch (hdr->sh_type)
447
    {
448
    case SHT_PARISC_EXT:
449
      if (strcmp (name, ".PARISC.archext") != 0)
450
        return FALSE;
451
      break;
452
    case SHT_PARISC_UNWIND:
453
      if (strcmp (name, ".PARISC.unwind") != 0)
454
        return FALSE;
455
      break;
456
    case SHT_PARISC_DOC:
457
    case SHT_PARISC_ANNOT:
458
    default:
459
      return FALSE;
460
    }
461
 
462
  if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
463
    return FALSE;
464
  newsect = hdr->bfd_section;
465
 
466
  return TRUE;
467
}
468
 
469
/* Construct a string for use in the elf64_hppa_dyn_hash_table.  The
470
   name describes what was once potentially anonymous memory.  We
471
   allocate memory as necessary, possibly reusing PBUF/PLEN.  */
472
 
473
static const char *
474
get_dyn_name (abfd, h, rel, pbuf, plen)
475
     bfd *abfd;
476
     struct elf_link_hash_entry *h;
477
     const Elf_Internal_Rela *rel;
478
     char **pbuf;
479
     size_t *plen;
480
{
481
  asection *sec = abfd->sections;
482
  size_t nlen, tlen;
483
  char *buf;
484
  size_t len;
485
 
486
  if (h && rel->r_addend == 0)
487
    return h->root.root.string;
488
 
489
  if (h)
490
    nlen = strlen (h->root.root.string);
491
  else
492
    nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
493
  tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
494
 
495
  len = *plen;
496
  buf = *pbuf;
497
  if (len < tlen)
498
    {
499
      if (buf)
500
        free (buf);
501
      *pbuf = buf = malloc (tlen);
502
      *plen = len = tlen;
503
      if (!buf)
504
        return NULL;
505
    }
506
 
507
  if (h)
508
    {
509
      memcpy (buf, h->root.root.string, nlen);
510
      buf[nlen++] = '+';
511
      sprintf_vma (buf + nlen, rel->r_addend);
512
    }
513
  else
514
    {
515
      nlen = sprintf (buf, "%x:%lx",
516
                      sec->id & 0xffffffff,
517
                      (long) ELF64_R_SYM (rel->r_info));
518
      if (rel->r_addend)
519
        {
520
          buf[nlen++] = '+';
521
          sprintf_vma (buf + nlen, rel->r_addend);
522
        }
523
    }
524
 
525
  return buf;
526
}
527
 
528
/* SEC is a section containing relocs for an input BFD when linking; return
529
   a suitable section for holding relocs in the output BFD for a link.  */
530
 
531
static bfd_boolean
532
get_reloc_section (abfd, hppa_info, sec)
533
     bfd *abfd;
534
     struct elf64_hppa_link_hash_table *hppa_info;
535
     asection *sec;
536
{
537
  const char *srel_name;
538
  asection *srel;
539
  bfd *dynobj;
540
 
541
  srel_name = (bfd_elf_string_from_elf_section
542
               (abfd, elf_elfheader(abfd)->e_shstrndx,
543
                elf_section_data(sec)->rel_hdr.sh_name));
544
  if (srel_name == NULL)
545
    return FALSE;
546
 
547
  BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
548
               && strcmp (bfd_get_section_name (abfd, sec),
549
                          srel_name + 5) == 0)
550
              || (CONST_STRNEQ (srel_name, ".rel")
551
                  && strcmp (bfd_get_section_name (abfd, sec),
552
                             srel_name + 4) == 0));
553
 
554
  dynobj = hppa_info->root.dynobj;
555
  if (!dynobj)
556
    hppa_info->root.dynobj = dynobj = abfd;
557
 
558
  srel = bfd_get_section_by_name (dynobj, srel_name);
559
  if (srel == NULL)
560
    {
561
      srel = bfd_make_section_with_flags (dynobj, srel_name,
562
                                          (SEC_ALLOC
563
                                           | SEC_LOAD
564
                                           | SEC_HAS_CONTENTS
565
                                           | SEC_IN_MEMORY
566
                                           | SEC_LINKER_CREATED
567
                                           | SEC_READONLY));
568
      if (srel == NULL
569
          || !bfd_set_section_alignment (dynobj, srel, 3))
570
        return FALSE;
571
    }
572
 
573
  hppa_info->other_rel_sec = srel;
574
  return TRUE;
575
}
576
 
577
/* Add a new entry to the list of dynamic relocations against DYN_H.
578
 
579
   We use this to keep a record of all the FPTR relocations against a
580
   particular symbol so that we can create FPTR relocations in the
581
   output file.  */
582
 
583
static bfd_boolean
584
count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
585
     bfd *abfd;
586
     struct elf64_hppa_dyn_hash_entry *dyn_h;
587
     int type;
588
     asection *sec;
589
     int sec_symndx;
590
     bfd_vma offset;
591
     bfd_vma addend;
592
{
593
  struct elf64_hppa_dyn_reloc_entry *rent;
594
 
595
  rent = (struct elf64_hppa_dyn_reloc_entry *)
596
  bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
597
  if (!rent)
598
    return FALSE;
599
 
600
  rent->next = dyn_h->reloc_entries;
601
  rent->type = type;
602
  rent->sec = sec;
603
  rent->sec_symndx = sec_symndx;
604
  rent->offset = offset;
605
  rent->addend = addend;
606
  dyn_h->reloc_entries = rent;
607
 
608
  return TRUE;
609
}
610
 
611
/* Scan the RELOCS and record the type of dynamic entries that each
612
   referenced symbol needs.  */
613
 
614
static bfd_boolean
615
elf64_hppa_check_relocs (abfd, info, sec, relocs)
616
     bfd *abfd;
617
     struct bfd_link_info *info;
618
     asection *sec;
619
     const Elf_Internal_Rela *relocs;
620
{
621
  struct elf64_hppa_link_hash_table *hppa_info;
622
  const Elf_Internal_Rela *relend;
623
  Elf_Internal_Shdr *symtab_hdr;
624
  const Elf_Internal_Rela *rel;
625
  asection *dlt, *plt, *stubs;
626
  char *buf;
627
  size_t buf_len;
628
  unsigned int sec_symndx;
629
 
630
  if (info->relocatable)
631
    return TRUE;
632
 
633
  /* If this is the first dynamic object found in the link, create
634
     the special sections required for dynamic linking.  */
635
  if (! elf_hash_table (info)->dynamic_sections_created)
636
    {
637
      if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
638
        return FALSE;
639
    }
640
 
641
  hppa_info = elf64_hppa_hash_table (info);
642
  symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
643
 
644
  /* If necessary, build a new table holding section symbols indices
645
     for this BFD.  */
646
 
647
  if (info->shared && hppa_info->section_syms_bfd != abfd)
648
    {
649
      unsigned long i;
650
      unsigned int highest_shndx;
651
      Elf_Internal_Sym *local_syms = NULL;
652
      Elf_Internal_Sym *isym, *isymend;
653
      bfd_size_type amt;
654
 
655
      /* We're done with the old cache of section index to section symbol
656
         index information.  Free it.
657
 
658
         ?!? Note we leak the last section_syms array.  Presumably we
659
         could free it in one of the later routines in this file.  */
660
      if (hppa_info->section_syms)
661
        free (hppa_info->section_syms);
662
 
663
      /* Read this BFD's local symbols.  */
664
      if (symtab_hdr->sh_info != 0)
665
        {
666
          local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
667
          if (local_syms == NULL)
668
            local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
669
                                               symtab_hdr->sh_info, 0,
670
                                               NULL, NULL, NULL);
671
          if (local_syms == NULL)
672
            return FALSE;
673
        }
674
 
675
      /* Record the highest section index referenced by the local symbols.  */
676
      highest_shndx = 0;
677
      isymend = local_syms + symtab_hdr->sh_info;
678
      for (isym = local_syms; isym < isymend; isym++)
679
        {
680
          if (isym->st_shndx > highest_shndx
681
              && isym->st_shndx < SHN_LORESERVE)
682
            highest_shndx = isym->st_shndx;
683
        }
684
 
685
      /* Allocate an array to hold the section index to section symbol index
686
         mapping.  Bump by one since we start counting at zero.  */
687
      highest_shndx++;
688
      amt = highest_shndx;
689
      amt *= sizeof (int);
690
      hppa_info->section_syms = (int *) bfd_malloc (amt);
691
 
692
      /* Now walk the local symbols again.  If we find a section symbol,
693
         record the index of the symbol into the section_syms array.  */
694
      for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
695
        {
696
          if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
697
            hppa_info->section_syms[isym->st_shndx] = i;
698
        }
699
 
700
      /* We are finished with the local symbols.  */
701
      if (local_syms != NULL
702
          && symtab_hdr->contents != (unsigned char *) local_syms)
703
        {
704
          if (! info->keep_memory)
705
            free (local_syms);
706
          else
707
            {
708
              /* Cache the symbols for elf_link_input_bfd.  */
709
              symtab_hdr->contents = (unsigned char *) local_syms;
710
            }
711
        }
712
 
713
      /* Record which BFD we built the section_syms mapping for.  */
714
      hppa_info->section_syms_bfd = abfd;
715
    }
716
 
717
  /* Record the symbol index for this input section.  We may need it for
718
     relocations when building shared libraries.  When not building shared
719
     libraries this value is never really used, but assign it to zero to
720
     prevent out of bounds memory accesses in other routines.  */
721
  if (info->shared)
722
    {
723
      sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
724
 
725
      /* If we did not find a section symbol for this section, then
726
         something went terribly wrong above.  */
727
      if (sec_symndx == SHN_BAD)
728
        return FALSE;
729
 
730
      if (sec_symndx < SHN_LORESERVE)
731
        sec_symndx = hppa_info->section_syms[sec_symndx];
732
      else
733
        sec_symndx = 0;
734
    }
735
  else
736
    sec_symndx = 0;
737
 
738
  dlt = plt = stubs = NULL;
739
  buf = NULL;
740
  buf_len = 0;
741
 
742
  relend = relocs + sec->reloc_count;
743
  for (rel = relocs; rel < relend; ++rel)
744
    {
745
      enum
746
        {
747
          NEED_DLT = 1,
748
          NEED_PLT = 2,
749
          NEED_STUB = 4,
750
          NEED_OPD = 8,
751
          NEED_DYNREL = 16,
752
        };
753
 
754
      struct elf_link_hash_entry *h = NULL;
755
      unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
756
      struct elf64_hppa_dyn_hash_entry *dyn_h;
757
      int need_entry;
758
      const char *addr_name;
759
      bfd_boolean maybe_dynamic;
760
      int dynrel_type = R_PARISC_NONE;
761
      static reloc_howto_type *howto;
762
 
763
      if (r_symndx >= symtab_hdr->sh_info)
764
        {
765
          /* We're dealing with a global symbol -- find its hash entry
766
             and mark it as being referenced.  */
767
          long indx = r_symndx - symtab_hdr->sh_info;
768
          h = elf_sym_hashes (abfd)[indx];
769
          while (h->root.type == bfd_link_hash_indirect
770
                 || h->root.type == bfd_link_hash_warning)
771
            h = (struct elf_link_hash_entry *) h->root.u.i.link;
772
 
773
          h->ref_regular = 1;
774
        }
775
 
776
      /* We can only get preliminary data on whether a symbol is
777
         locally or externally defined, as not all of the input files
778
         have yet been processed.  Do something with what we know, as
779
         this may help reduce memory usage and processing time later.  */
780
      maybe_dynamic = FALSE;
781
      if (h && ((info->shared
782
                 && (!info->symbolic
783
                     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
784
                || !h->def_regular
785
                || h->root.type == bfd_link_hash_defweak))
786
        maybe_dynamic = TRUE;
787
 
788
      howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
789
      need_entry = 0;
790
      switch (howto->type)
791
        {
792
        /* These are simple indirect references to symbols through the
793
           DLT.  We need to create a DLT entry for any symbols which
794
           appears in a DLTIND relocation.  */
795
        case R_PARISC_DLTIND21L:
796
        case R_PARISC_DLTIND14R:
797
        case R_PARISC_DLTIND14F:
798
        case R_PARISC_DLTIND14WR:
799
        case R_PARISC_DLTIND14DR:
800
          need_entry = NEED_DLT;
801
          break;
802
 
803
        /* ?!?  These need a DLT entry.  But I have no idea what to do with
804
           the "link time TP value.  */
805
        case R_PARISC_LTOFF_TP21L:
806
        case R_PARISC_LTOFF_TP14R:
807
        case R_PARISC_LTOFF_TP14F:
808
        case R_PARISC_LTOFF_TP64:
809
        case R_PARISC_LTOFF_TP14WR:
810
        case R_PARISC_LTOFF_TP14DR:
811
        case R_PARISC_LTOFF_TP16F:
812
        case R_PARISC_LTOFF_TP16WF:
813
        case R_PARISC_LTOFF_TP16DF:
814
          need_entry = NEED_DLT;
815
          break;
816
 
817
        /* These are function calls.  Depending on their precise target we
818
           may need to make a stub for them.  The stub uses the PLT, so we
819
           need to create PLT entries for these symbols too.  */
820
        case R_PARISC_PCREL12F:
821
        case R_PARISC_PCREL17F:
822
        case R_PARISC_PCREL22F:
823
        case R_PARISC_PCREL32:
824
        case R_PARISC_PCREL64:
825
        case R_PARISC_PCREL21L:
826
        case R_PARISC_PCREL17R:
827
        case R_PARISC_PCREL17C:
828
        case R_PARISC_PCREL14R:
829
        case R_PARISC_PCREL14F:
830
        case R_PARISC_PCREL22C:
831
        case R_PARISC_PCREL14WR:
832
        case R_PARISC_PCREL14DR:
833
        case R_PARISC_PCREL16F:
834
        case R_PARISC_PCREL16WF:
835
        case R_PARISC_PCREL16DF:
836
          need_entry = (NEED_PLT | NEED_STUB);
837
          break;
838
 
839
        case R_PARISC_PLTOFF21L:
840
        case R_PARISC_PLTOFF14R:
841
        case R_PARISC_PLTOFF14F:
842
        case R_PARISC_PLTOFF14WR:
843
        case R_PARISC_PLTOFF14DR:
844
        case R_PARISC_PLTOFF16F:
845
        case R_PARISC_PLTOFF16WF:
846
        case R_PARISC_PLTOFF16DF:
847
          need_entry = (NEED_PLT);
848
          break;
849
 
850
        case R_PARISC_DIR64:
851
          if (info->shared || maybe_dynamic)
852
            need_entry = (NEED_DYNREL);
853
          dynrel_type = R_PARISC_DIR64;
854
          break;
855
 
856
        /* This is an indirect reference through the DLT to get the address
857
           of a OPD descriptor.  Thus we need to make a DLT entry that points
858
           to an OPD entry.  */
859
        case R_PARISC_LTOFF_FPTR21L:
860
        case R_PARISC_LTOFF_FPTR14R:
861
        case R_PARISC_LTOFF_FPTR14WR:
862
        case R_PARISC_LTOFF_FPTR14DR:
863
        case R_PARISC_LTOFF_FPTR32:
864
        case R_PARISC_LTOFF_FPTR64:
865
        case R_PARISC_LTOFF_FPTR16F:
866
        case R_PARISC_LTOFF_FPTR16WF:
867
        case R_PARISC_LTOFF_FPTR16DF:
868
          if (info->shared || maybe_dynamic)
869
            need_entry = (NEED_DLT | NEED_OPD);
870
          else
871
            need_entry = (NEED_DLT | NEED_OPD);
872
          dynrel_type = R_PARISC_FPTR64;
873
          break;
874
 
875
        /* This is a simple OPD entry.  */
876
        case R_PARISC_FPTR64:
877
          if (info->shared || maybe_dynamic)
878
            need_entry = (NEED_OPD | NEED_DYNREL);
879
          else
880
            need_entry = (NEED_OPD);
881
          dynrel_type = R_PARISC_FPTR64;
882
          break;
883
 
884
        /* Add more cases as needed.  */
885
        }
886
 
887
      if (!need_entry)
888
        continue;
889
 
890
      /* Collect a canonical name for this address.  */
891
      addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
892
 
893
      /* Collect the canonical entry data for this address.  */
894
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
895
                                          addr_name, TRUE, TRUE);
896
      BFD_ASSERT (dyn_h);
897
 
898
      /* Stash away enough information to be able to find this symbol
899
         regardless of whether or not it is local or global.  */
900
      dyn_h->h = h;
901
      dyn_h->owner = abfd;
902
      dyn_h->sym_indx = r_symndx;
903
 
904
      /* ?!? We may need to do some error checking in here.  */
905
      /* Create what's needed.  */
906
      if (need_entry & NEED_DLT)
907
        {
908
          if (! hppa_info->dlt_sec
909
              && ! get_dlt (abfd, info, hppa_info))
910
            goto err_out;
911
          dyn_h->want_dlt = 1;
912
        }
913
 
914
      if (need_entry & NEED_PLT)
915
        {
916
          if (! hppa_info->plt_sec
917
              && ! get_plt (abfd, info, hppa_info))
918
            goto err_out;
919
          dyn_h->want_plt = 1;
920
        }
921
 
922
      if (need_entry & NEED_STUB)
923
        {
924
          if (! hppa_info->stub_sec
925
              && ! get_stub (abfd, info, hppa_info))
926
            goto err_out;
927
          dyn_h->want_stub = 1;
928
        }
929
 
930
      if (need_entry & NEED_OPD)
931
        {
932
          if (! hppa_info->opd_sec
933
              && ! get_opd (abfd, info, hppa_info))
934
            goto err_out;
935
 
936
          dyn_h->want_opd = 1;
937
 
938
          /* FPTRs are not allocated by the dynamic linker for PA64, though
939
             it is possible that will change in the future.  */
940
 
941
          /* This could be a local function that had its address taken, in
942
             which case H will be NULL.  */
943
          if (h)
944
            h->needs_plt = 1;
945
        }
946
 
947
      /* Add a new dynamic relocation to the chain of dynamic
948
         relocations for this symbol.  */
949
      if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
950
        {
951
          if (! hppa_info->other_rel_sec
952
              && ! get_reloc_section (abfd, hppa_info, sec))
953
            goto err_out;
954
 
955
          if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
956
                                sec_symndx, rel->r_offset, rel->r_addend))
957
            goto err_out;
958
 
959
          /* If we are building a shared library and we just recorded
960
             a dynamic R_PARISC_FPTR64 relocation, then make sure the
961
             section symbol for this section ends up in the dynamic
962
             symbol table.  */
963
          if (info->shared && dynrel_type == R_PARISC_FPTR64
964
              && ! (bfd_elf_link_record_local_dynamic_symbol
965
                    (info, abfd, sec_symndx)))
966
            return FALSE;
967
        }
968
    }
969
 
970
  if (buf)
971
    free (buf);
972
  return TRUE;
973
 
974
 err_out:
975
  if (buf)
976
    free (buf);
977
  return FALSE;
978
}
979
 
980
struct elf64_hppa_allocate_data
981
{
982
  struct bfd_link_info *info;
983
  bfd_size_type ofs;
984
};
985
 
986
/* Should we do dynamic things to this symbol?  */
987
 
988
static bfd_boolean
989
elf64_hppa_dynamic_symbol_p (h, info)
990
     struct elf_link_hash_entry *h;
991
     struct bfd_link_info *info;
992
{
993
  /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
994
     and relocations that retrieve a function descriptor?  Assume the
995
     worst for now.  */
996
  if (_bfd_elf_dynamic_symbol_p (h, info, 1))
997
    {
998
      /* ??? Why is this here and not elsewhere is_local_label_name.  */
999
      if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1000
        return FALSE;
1001
 
1002
      return TRUE;
1003
    }
1004
  else
1005
    return FALSE;
1006
}
1007
 
1008
/* Mark all functions exported by this file so that we can later allocate
1009
   entries in .opd for them.  */
1010
 
1011
static bfd_boolean
1012
elf64_hppa_mark_exported_functions (h, data)
1013
     struct elf_link_hash_entry *h;
1014
     PTR data;
1015
{
1016
  struct bfd_link_info *info = (struct bfd_link_info *)data;
1017
  struct elf64_hppa_link_hash_table *hppa_info;
1018
 
1019
  hppa_info = elf64_hppa_hash_table (info);
1020
 
1021
  if (h->root.type == bfd_link_hash_warning)
1022
    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1023
 
1024
  if (h
1025
      && (h->root.type == bfd_link_hash_defined
1026
          || h->root.type == bfd_link_hash_defweak)
1027
      && h->root.u.def.section->output_section != NULL
1028
      && h->type == STT_FUNC)
1029
    {
1030
       struct elf64_hppa_dyn_hash_entry *dyn_h;
1031
 
1032
      /* Add this symbol to the PA64 linker hash table.  */
1033
      dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1034
                                          h->root.root.string, TRUE, TRUE);
1035
      BFD_ASSERT (dyn_h);
1036
      dyn_h->h = h;
1037
 
1038
      if (! hppa_info->opd_sec
1039
          && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1040
        return FALSE;
1041
 
1042
      dyn_h->want_opd = 1;
1043
      /* Put a flag here for output_symbol_hook.  */
1044
      dyn_h->st_shndx = -1;
1045
      h->needs_plt = 1;
1046
    }
1047
 
1048
  return TRUE;
1049
}
1050
 
1051
/* Allocate space for a DLT entry.  */
1052
 
1053
static bfd_boolean
1054
allocate_global_data_dlt (dyn_h, data)
1055
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1056
     PTR data;
1057
{
1058
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1059
 
1060
  if (dyn_h->want_dlt)
1061
    {
1062
      struct elf_link_hash_entry *h = dyn_h->h;
1063
 
1064
      if (x->info->shared)
1065
        {
1066
          /* Possibly add the symbol to the local dynamic symbol
1067
             table since we might need to create a dynamic relocation
1068
             against it.  */
1069
          if (! h
1070
              || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1071
            {
1072
              bfd *owner;
1073
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1074
 
1075
              if (! (bfd_elf_link_record_local_dynamic_symbol
1076
                     (x->info, owner, dyn_h->sym_indx)))
1077
                return FALSE;
1078
            }
1079
        }
1080
 
1081
      dyn_h->dlt_offset = x->ofs;
1082
      x->ofs += DLT_ENTRY_SIZE;
1083
    }
1084
  return TRUE;
1085
}
1086
 
1087
/* Allocate space for a DLT.PLT entry.  */
1088
 
1089
static bfd_boolean
1090
allocate_global_data_plt (dyn_h, data)
1091
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1092
     PTR data;
1093
{
1094
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1095
 
1096
  if (dyn_h->want_plt
1097
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1098
      && !((dyn_h->h->root.type == bfd_link_hash_defined
1099
            || dyn_h->h->root.type == bfd_link_hash_defweak)
1100
           && dyn_h->h->root.u.def.section->output_section != NULL))
1101
    {
1102
      dyn_h->plt_offset = x->ofs;
1103
      x->ofs += PLT_ENTRY_SIZE;
1104
      if (dyn_h->plt_offset < 0x2000)
1105
        elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1106
    }
1107
  else
1108
    dyn_h->want_plt = 0;
1109
 
1110
  return TRUE;
1111
}
1112
 
1113
/* Allocate space for a STUB entry.  */
1114
 
1115
static bfd_boolean
1116
allocate_global_data_stub (dyn_h, data)
1117
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1118
     PTR data;
1119
{
1120
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1121
 
1122
  if (dyn_h->want_stub
1123
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1124
      && !((dyn_h->h->root.type == bfd_link_hash_defined
1125
            || dyn_h->h->root.type == bfd_link_hash_defweak)
1126
           && dyn_h->h->root.u.def.section->output_section != NULL))
1127
    {
1128
      dyn_h->stub_offset = x->ofs;
1129
      x->ofs += sizeof (plt_stub);
1130
    }
1131
  else
1132
    dyn_h->want_stub = 0;
1133
  return TRUE;
1134
}
1135
 
1136
/* Allocate space for a FPTR entry.  */
1137
 
1138
static bfd_boolean
1139
allocate_global_data_opd (dyn_h, data)
1140
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1141
     PTR data;
1142
{
1143
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1144
 
1145
  if (dyn_h->want_opd)
1146
    {
1147
      struct elf_link_hash_entry *h = dyn_h->h;
1148
 
1149
      if (h)
1150
        while (h->root.type == bfd_link_hash_indirect
1151
               || h->root.type == bfd_link_hash_warning)
1152
          h = (struct elf_link_hash_entry *) h->root.u.i.link;
1153
 
1154
      /* We never need an opd entry for a symbol which is not
1155
         defined by this output file.  */
1156
      if (h && (h->root.type == bfd_link_hash_undefined
1157
                || h->root.type == bfd_link_hash_undefweak
1158
                || h->root.u.def.section->output_section == NULL))
1159
        dyn_h->want_opd = 0;
1160
 
1161
      /* If we are creating a shared library, took the address of a local
1162
         function or might export this function from this object file, then
1163
         we have to create an opd descriptor.  */
1164
      else if (x->info->shared
1165
               || h == NULL
1166
               || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1167
               || (h->root.type == bfd_link_hash_defined
1168
                   || h->root.type == bfd_link_hash_defweak))
1169
        {
1170
          /* If we are creating a shared library, then we will have to
1171
             create a runtime relocation for the symbol to properly
1172
             initialize the .opd entry.  Make sure the symbol gets
1173
             added to the dynamic symbol table.  */
1174
          if (x->info->shared
1175
              && (h == NULL || (h->dynindx == -1)))
1176
            {
1177
              bfd *owner;
1178
              owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1179
 
1180
              if (!bfd_elf_link_record_local_dynamic_symbol
1181
                    (x->info, owner, dyn_h->sym_indx))
1182
                return FALSE;
1183
            }
1184
 
1185
          /* This may not be necessary or desirable anymore now that
1186
             we have some support for dealing with section symbols
1187
             in dynamic relocs.  But name munging does make the result
1188
             much easier to debug.  ie, the EPLT reloc will reference
1189
             a symbol like .foobar, instead of .text + offset.  */
1190
          if (x->info->shared && h)
1191
            {
1192
              char *new_name;
1193
              struct elf_link_hash_entry *nh;
1194
 
1195
              new_name = alloca (strlen (h->root.root.string) + 2);
1196
              new_name[0] = '.';
1197
              strcpy (new_name + 1, h->root.root.string);
1198
 
1199
              nh = elf_link_hash_lookup (elf_hash_table (x->info),
1200
                                         new_name, TRUE, TRUE, TRUE);
1201
 
1202
              nh->root.type = h->root.type;
1203
              nh->root.u.def.value = h->root.u.def.value;
1204
              nh->root.u.def.section = h->root.u.def.section;
1205
 
1206
              if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1207
                return FALSE;
1208
 
1209
             }
1210
          dyn_h->opd_offset = x->ofs;
1211
          x->ofs += OPD_ENTRY_SIZE;
1212
        }
1213
 
1214
      /* Otherwise we do not need an opd entry.  */
1215
      else
1216
        dyn_h->want_opd = 0;
1217
    }
1218
  return TRUE;
1219
}
1220
 
1221
/* HP requires the EI_OSABI field to be filled in.  The assignment to
1222
   EI_ABIVERSION may not be strictly necessary.  */
1223
 
1224
static void
1225
elf64_hppa_post_process_headers (abfd, link_info)
1226
     bfd * abfd;
1227
     struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1228
{
1229
  Elf_Internal_Ehdr * i_ehdrp;
1230
 
1231
  i_ehdrp = elf_elfheader (abfd);
1232
 
1233
  i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1234
  i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1235
}
1236
 
1237
/* Create function descriptor section (.opd).  This section is called .opd
1238
   because it contains "official procedure descriptors".  The "official"
1239
   refers to the fact that these descriptors are used when taking the address
1240
   of a procedure, thus ensuring a unique address for each procedure.  */
1241
 
1242
static bfd_boolean
1243
get_opd (abfd, info, hppa_info)
1244
     bfd *abfd;
1245
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1246
     struct elf64_hppa_link_hash_table *hppa_info;
1247
{
1248
  asection *opd;
1249
  bfd *dynobj;
1250
 
1251
  opd = hppa_info->opd_sec;
1252
  if (!opd)
1253
    {
1254
      dynobj = hppa_info->root.dynobj;
1255
      if (!dynobj)
1256
        hppa_info->root.dynobj = dynobj = abfd;
1257
 
1258
      opd = bfd_make_section_with_flags (dynobj, ".opd",
1259
                                         (SEC_ALLOC
1260
                                          | SEC_LOAD
1261
                                          | SEC_HAS_CONTENTS
1262
                                          | SEC_IN_MEMORY
1263
                                          | SEC_LINKER_CREATED));
1264
      if (!opd
1265
          || !bfd_set_section_alignment (abfd, opd, 3))
1266
        {
1267
          BFD_ASSERT (0);
1268
          return FALSE;
1269
        }
1270
 
1271
      hppa_info->opd_sec = opd;
1272
    }
1273
 
1274
  return TRUE;
1275
}
1276
 
1277
/* Create the PLT section.  */
1278
 
1279
static bfd_boolean
1280
get_plt (abfd, info, hppa_info)
1281
     bfd *abfd;
1282
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1283
     struct elf64_hppa_link_hash_table *hppa_info;
1284
{
1285
  asection *plt;
1286
  bfd *dynobj;
1287
 
1288
  plt = hppa_info->plt_sec;
1289
  if (!plt)
1290
    {
1291
      dynobj = hppa_info->root.dynobj;
1292
      if (!dynobj)
1293
        hppa_info->root.dynobj = dynobj = abfd;
1294
 
1295
      plt = bfd_make_section_with_flags (dynobj, ".plt",
1296
                                         (SEC_ALLOC
1297
                                          | SEC_LOAD
1298
                                          | SEC_HAS_CONTENTS
1299
                                          | SEC_IN_MEMORY
1300
                                          | SEC_LINKER_CREATED));
1301
      if (!plt
1302
          || !bfd_set_section_alignment (abfd, plt, 3))
1303
        {
1304
          BFD_ASSERT (0);
1305
          return FALSE;
1306
        }
1307
 
1308
      hppa_info->plt_sec = plt;
1309
    }
1310
 
1311
  return TRUE;
1312
}
1313
 
1314
/* Create the DLT section.  */
1315
 
1316
static bfd_boolean
1317
get_dlt (abfd, info, hppa_info)
1318
     bfd *abfd;
1319
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1320
     struct elf64_hppa_link_hash_table *hppa_info;
1321
{
1322
  asection *dlt;
1323
  bfd *dynobj;
1324
 
1325
  dlt = hppa_info->dlt_sec;
1326
  if (!dlt)
1327
    {
1328
      dynobj = hppa_info->root.dynobj;
1329
      if (!dynobj)
1330
        hppa_info->root.dynobj = dynobj = abfd;
1331
 
1332
      dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1333
                                         (SEC_ALLOC
1334
                                          | SEC_LOAD
1335
                                          | SEC_HAS_CONTENTS
1336
                                          | SEC_IN_MEMORY
1337
                                          | SEC_LINKER_CREATED));
1338
      if (!dlt
1339
          || !bfd_set_section_alignment (abfd, dlt, 3))
1340
        {
1341
          BFD_ASSERT (0);
1342
          return FALSE;
1343
        }
1344
 
1345
      hppa_info->dlt_sec = dlt;
1346
    }
1347
 
1348
  return TRUE;
1349
}
1350
 
1351
/* Create the stubs section.  */
1352
 
1353
static bfd_boolean
1354
get_stub (abfd, info, hppa_info)
1355
     bfd *abfd;
1356
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1357
     struct elf64_hppa_link_hash_table *hppa_info;
1358
{
1359
  asection *stub;
1360
  bfd *dynobj;
1361
 
1362
  stub = hppa_info->stub_sec;
1363
  if (!stub)
1364
    {
1365
      dynobj = hppa_info->root.dynobj;
1366
      if (!dynobj)
1367
        hppa_info->root.dynobj = dynobj = abfd;
1368
 
1369
      stub = bfd_make_section_with_flags (dynobj, ".stub",
1370
                                          (SEC_ALLOC | SEC_LOAD
1371
                                           | SEC_HAS_CONTENTS
1372
                                           | SEC_IN_MEMORY
1373
                                           | SEC_READONLY
1374
                                           | SEC_LINKER_CREATED));
1375
      if (!stub
1376
          || !bfd_set_section_alignment (abfd, stub, 3))
1377
        {
1378
          BFD_ASSERT (0);
1379
          return FALSE;
1380
        }
1381
 
1382
      hppa_info->stub_sec = stub;
1383
    }
1384
 
1385
  return TRUE;
1386
}
1387
 
1388
/* Create sections necessary for dynamic linking.  This is only a rough
1389
   cut and will likely change as we learn more about the somewhat
1390
   unusual dynamic linking scheme HP uses.
1391
 
1392
   .stub:
1393
        Contains code to implement cross-space calls.  The first time one
1394
        of the stubs is used it will call into the dynamic linker, later
1395
        calls will go straight to the target.
1396
 
1397
        The only stub we support right now looks like
1398
 
1399
        ldd OFFSET(%dp),%r1
1400
        bve %r0(%r1)
1401
        ldd OFFSET+8(%dp),%dp
1402
 
1403
        Other stubs may be needed in the future.  We may want the remove
1404
        the break/nop instruction.  It is only used right now to keep the
1405
        offset of a .plt entry and a .stub entry in sync.
1406
 
1407
   .dlt:
1408
        This is what most people call the .got.  HP used a different name.
1409
        Losers.
1410
 
1411
   .rela.dlt:
1412
        Relocations for the DLT.
1413
 
1414
   .plt:
1415
        Function pointers as address,gp pairs.
1416
 
1417
   .rela.plt:
1418
        Should contain dynamic IPLT (and EPLT?) relocations.
1419
 
1420
   .opd:
1421
        FPTRS
1422
 
1423
   .rela.opd:
1424
        EPLT relocations for symbols exported from shared libraries.  */
1425
 
1426
static bfd_boolean
1427
elf64_hppa_create_dynamic_sections (abfd, info)
1428
     bfd *abfd;
1429
     struct bfd_link_info *info;
1430
{
1431
  asection *s;
1432
 
1433
  if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1434
    return FALSE;
1435
 
1436
  if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1437
    return FALSE;
1438
 
1439
  if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1440
    return FALSE;
1441
 
1442
  if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1443
    return FALSE;
1444
 
1445
  s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1446
                                   (SEC_ALLOC | SEC_LOAD
1447
                                    | SEC_HAS_CONTENTS
1448
                                    | SEC_IN_MEMORY
1449
                                    | SEC_READONLY
1450
                                    | SEC_LINKER_CREATED));
1451
  if (s == NULL
1452
      || !bfd_set_section_alignment (abfd, s, 3))
1453
    return FALSE;
1454
  elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1455
 
1456
  s = bfd_make_section_with_flags (abfd, ".rela.plt",
1457
                                   (SEC_ALLOC | SEC_LOAD
1458
                                    | SEC_HAS_CONTENTS
1459
                                    | SEC_IN_MEMORY
1460
                                    | SEC_READONLY
1461
                                    | SEC_LINKER_CREATED));
1462
  if (s == NULL
1463
      || !bfd_set_section_alignment (abfd, s, 3))
1464
    return FALSE;
1465
  elf64_hppa_hash_table (info)->plt_rel_sec = s;
1466
 
1467
  s = bfd_make_section_with_flags (abfd, ".rela.data",
1468
                                   (SEC_ALLOC | SEC_LOAD
1469
                                    | SEC_HAS_CONTENTS
1470
                                    | SEC_IN_MEMORY
1471
                                    | SEC_READONLY
1472
                                    | SEC_LINKER_CREATED));
1473
  if (s == NULL
1474
      || !bfd_set_section_alignment (abfd, s, 3))
1475
    return FALSE;
1476
  elf64_hppa_hash_table (info)->other_rel_sec = s;
1477
 
1478
  s = bfd_make_section_with_flags (abfd, ".rela.opd",
1479
                                   (SEC_ALLOC | SEC_LOAD
1480
                                    | SEC_HAS_CONTENTS
1481
                                    | SEC_IN_MEMORY
1482
                                    | SEC_READONLY
1483
                                    | SEC_LINKER_CREATED));
1484
  if (s == NULL
1485
      || !bfd_set_section_alignment (abfd, s, 3))
1486
    return FALSE;
1487
  elf64_hppa_hash_table (info)->opd_rel_sec = s;
1488
 
1489
  return TRUE;
1490
}
1491
 
1492
/* Allocate dynamic relocations for those symbols that turned out
1493
   to be dynamic.  */
1494
 
1495
static bfd_boolean
1496
allocate_dynrel_entries (dyn_h, data)
1497
     struct elf64_hppa_dyn_hash_entry *dyn_h;
1498
     PTR data;
1499
{
1500
  struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1501
  struct elf64_hppa_link_hash_table *hppa_info;
1502
  struct elf64_hppa_dyn_reloc_entry *rent;
1503
  bfd_boolean dynamic_symbol, shared;
1504
 
1505
  hppa_info = elf64_hppa_hash_table (x->info);
1506
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1507
  shared = x->info->shared;
1508
 
1509
  /* We may need to allocate relocations for a non-dynamic symbol
1510
     when creating a shared library.  */
1511
  if (!dynamic_symbol && !shared)
1512
    return TRUE;
1513
 
1514
  /* Take care of the normal data relocations.  */
1515
 
1516
  for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1517
    {
1518
      /* Allocate one iff we are building a shared library, the relocation
1519
         isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1520
      if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1521
        continue;
1522
 
1523
      hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1524
 
1525
      /* Make sure this symbol gets into the dynamic symbol table if it is
1526
         not already recorded.  ?!? This should not be in the loop since
1527
         the symbol need only be added once.  */
1528
      if (dyn_h->h == 0
1529
          || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1530
        if (!bfd_elf_link_record_local_dynamic_symbol
1531
            (x->info, rent->sec->owner, dyn_h->sym_indx))
1532
          return FALSE;
1533
    }
1534
 
1535
  /* Take care of the GOT and PLT relocations.  */
1536
 
1537
  if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1538
    hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1539
 
1540
  /* If we are building a shared library, then every symbol that has an
1541
     opd entry will need an EPLT relocation to relocate the symbol's address
1542
     and __gp value based on the runtime load address.  */
1543
  if (shared && dyn_h->want_opd)
1544
    hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1545
 
1546
  if (dyn_h->want_plt && dynamic_symbol)
1547
    {
1548
      bfd_size_type t = 0;
1549
 
1550
      /* Dynamic symbols get one IPLT relocation.  Local symbols in
1551
         shared libraries get two REL relocations.  Local symbols in
1552
         main applications get nothing.  */
1553
      if (dynamic_symbol)
1554
        t = sizeof (Elf64_External_Rela);
1555
      else if (shared)
1556
        t = 2 * sizeof (Elf64_External_Rela);
1557
 
1558
      hppa_info->plt_rel_sec->size += t;
1559
    }
1560
 
1561
  return TRUE;
1562
}
1563
 
1564
/* Adjust a symbol defined by a dynamic object and referenced by a
1565
   regular object.  */
1566
 
1567
static bfd_boolean
1568
elf64_hppa_adjust_dynamic_symbol (info, h)
1569
     struct bfd_link_info *info ATTRIBUTE_UNUSED;
1570
     struct elf_link_hash_entry *h;
1571
{
1572
  /* ??? Undefined symbols with PLT entries should be re-defined
1573
     to be the PLT entry.  */
1574
 
1575
  /* If this is a weak symbol, and there is a real definition, the
1576
     processor independent code will have arranged for us to see the
1577
     real definition first, and we can just use the same value.  */
1578
  if (h->u.weakdef != NULL)
1579
    {
1580
      BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1581
                  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1582
      h->root.u.def.section = h->u.weakdef->root.u.def.section;
1583
      h->root.u.def.value = h->u.weakdef->root.u.def.value;
1584
      return TRUE;
1585
    }
1586
 
1587
  /* If this is a reference to a symbol defined by a dynamic object which
1588
     is not a function, we might allocate the symbol in our .dynbss section
1589
     and allocate a COPY dynamic relocation.
1590
 
1591
     But PA64 code is canonically PIC, so as a rule we can avoid this sort
1592
     of hackery.  */
1593
 
1594
  return TRUE;
1595
}
1596
 
1597
/* This function is called via elf_link_hash_traverse to mark millicode
1598
   symbols with a dynindx of -1 and to remove the string table reference
1599
   from the dynamic symbol table.  If the symbol is not a millicode symbol,
1600
   elf64_hppa_mark_exported_functions is called.  */
1601
 
1602
static bfd_boolean
1603
elf64_hppa_mark_milli_and_exported_functions (h, data)
1604
     struct elf_link_hash_entry *h;
1605
     PTR data;
1606
{
1607
  struct bfd_link_info *info = (struct bfd_link_info *)data;
1608
  struct elf_link_hash_entry *elf = h;
1609
 
1610
  if (elf->root.type == bfd_link_hash_warning)
1611
    elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1612
 
1613
  if (elf->type == STT_PARISC_MILLI)
1614
    {
1615
      if (elf->dynindx != -1)
1616
        {
1617
          elf->dynindx = -1;
1618
          _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1619
                                  elf->dynstr_index);
1620
        }
1621
      return TRUE;
1622
    }
1623
 
1624
  return elf64_hppa_mark_exported_functions (h, data);
1625
}
1626
 
1627
/* Set the final sizes of the dynamic sections and allocate memory for
1628
   the contents of our special sections.  */
1629
 
1630
static bfd_boolean
1631
elf64_hppa_size_dynamic_sections (output_bfd, info)
1632
     bfd *output_bfd;
1633
     struct bfd_link_info *info;
1634
{
1635
  bfd *dynobj;
1636
  asection *s;
1637
  bfd_boolean plt;
1638
  bfd_boolean relocs;
1639
  bfd_boolean reltext;
1640
  struct elf64_hppa_allocate_data data;
1641
  struct elf64_hppa_link_hash_table *hppa_info;
1642
 
1643
  hppa_info = elf64_hppa_hash_table (info);
1644
 
1645
  dynobj = elf_hash_table (info)->dynobj;
1646
  BFD_ASSERT (dynobj != NULL);
1647
 
1648
  /* Mark each function this program exports so that we will allocate
1649
     space in the .opd section for each function's FPTR.  If we are
1650
     creating dynamic sections, change the dynamic index of millicode
1651
     symbols to -1 and remove them from the string table for .dynstr.
1652
 
1653
     We have to traverse the main linker hash table since we have to
1654
     find functions which may not have been mentioned in any relocs.  */
1655
  elf_link_hash_traverse (elf_hash_table (info),
1656
                          (elf_hash_table (info)->dynamic_sections_created
1657
                           ? elf64_hppa_mark_milli_and_exported_functions
1658
                           : elf64_hppa_mark_exported_functions),
1659
                          info);
1660
 
1661
  if (elf_hash_table (info)->dynamic_sections_created)
1662
    {
1663
      /* Set the contents of the .interp section to the interpreter.  */
1664
      if (info->executable)
1665
        {
1666
          s = bfd_get_section_by_name (dynobj, ".interp");
1667
          BFD_ASSERT (s != NULL);
1668
          s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1669
          s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1670
        }
1671
    }
1672
  else
1673
    {
1674
      /* We may have created entries in the .rela.got section.
1675
         However, if we are not creating the dynamic sections, we will
1676
         not actually use these entries.  Reset the size of .rela.dlt,
1677
         which will cause it to get stripped from the output file
1678
         below.  */
1679
      s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1680
      if (s != NULL)
1681
        s->size = 0;
1682
    }
1683
 
1684
  /* Allocate the GOT entries.  */
1685
 
1686
  data.info = info;
1687
  if (elf64_hppa_hash_table (info)->dlt_sec)
1688
    {
1689
      data.ofs = 0x0;
1690
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1691
                                    allocate_global_data_dlt, &data);
1692
      hppa_info->dlt_sec->size = data.ofs;
1693
 
1694
      data.ofs = 0x0;
1695
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696
                                    allocate_global_data_plt, &data);
1697
      hppa_info->plt_sec->size = data.ofs;
1698
 
1699
      data.ofs = 0x0;
1700
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1701
                                    allocate_global_data_stub, &data);
1702
      hppa_info->stub_sec->size = data.ofs;
1703
    }
1704
 
1705
  /* Allocate space for entries in the .opd section.  */
1706
  if (elf64_hppa_hash_table (info)->opd_sec)
1707
    {
1708
      data.ofs = 0;
1709
      elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1710
                                    allocate_global_data_opd, &data);
1711
      hppa_info->opd_sec->size = data.ofs;
1712
    }
1713
 
1714
  /* Now allocate space for dynamic relocations, if necessary.  */
1715
  if (hppa_info->root.dynamic_sections_created)
1716
    elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1717
                                  allocate_dynrel_entries, &data);
1718
 
1719
  /* The sizes of all the sections are set.  Allocate memory for them.  */
1720
  plt = FALSE;
1721
  relocs = FALSE;
1722
  reltext = FALSE;
1723
  for (s = dynobj->sections; s != NULL; s = s->next)
1724
    {
1725
      const char *name;
1726
 
1727
      if ((s->flags & SEC_LINKER_CREATED) == 0)
1728
        continue;
1729
 
1730
      /* It's OK to base decisions on the section name, because none
1731
         of the dynobj section names depend upon the input files.  */
1732
      name = bfd_get_section_name (dynobj, s);
1733
 
1734
      if (strcmp (name, ".plt") == 0)
1735
        {
1736
          /* Remember whether there is a PLT.  */
1737
          plt = s->size != 0;
1738
        }
1739
      else if (strcmp (name, ".opd") == 0
1740
               || CONST_STRNEQ (name, ".dlt")
1741
               || strcmp (name, ".stub") == 0
1742
               || strcmp (name, ".got") == 0)
1743
        {
1744
          /* Strip this section if we don't need it; see the comment below.  */
1745
        }
1746
      else if (CONST_STRNEQ (name, ".rela"))
1747
        {
1748
          if (s->size != 0)
1749
            {
1750
              asection *target;
1751
 
1752
              /* Remember whether there are any reloc sections other
1753
                 than .rela.plt.  */
1754
              if (strcmp (name, ".rela.plt") != 0)
1755
                {
1756
                  const char *outname;
1757
 
1758
                  relocs = TRUE;
1759
 
1760
                  /* If this relocation section applies to a read only
1761
                     section, then we probably need a DT_TEXTREL
1762
                     entry.  The entries in the .rela.plt section
1763
                     really apply to the .got section, which we
1764
                     created ourselves and so know is not readonly.  */
1765
                  outname = bfd_get_section_name (output_bfd,
1766
                                                  s->output_section);
1767
                  target = bfd_get_section_by_name (output_bfd, outname + 4);
1768
                  if (target != NULL
1769
                      && (target->flags & SEC_READONLY) != 0
1770
                      && (target->flags & SEC_ALLOC) != 0)
1771
                    reltext = TRUE;
1772
                }
1773
 
1774
              /* We use the reloc_count field as a counter if we need
1775
                 to copy relocs into the output file.  */
1776
              s->reloc_count = 0;
1777
            }
1778
        }
1779
      else
1780
        {
1781
          /* It's not one of our sections, so don't allocate space.  */
1782
          continue;
1783
        }
1784
 
1785
      if (s->size == 0)
1786
        {
1787
          /* If we don't need this section, strip it from the
1788
             output file.  This is mostly to handle .rela.bss and
1789
             .rela.plt.  We must create both sections in
1790
             create_dynamic_sections, because they must be created
1791
             before the linker maps input sections to output
1792
             sections.  The linker does that before
1793
             adjust_dynamic_symbol is called, and it is that
1794
             function which decides whether anything needs to go
1795
             into these sections.  */
1796
          s->flags |= SEC_EXCLUDE;
1797
          continue;
1798
        }
1799
 
1800
      if ((s->flags & SEC_HAS_CONTENTS) == 0)
1801
        continue;
1802
 
1803
      /* Allocate memory for the section contents if it has not
1804
         been allocated already.  We use bfd_zalloc here in case
1805
         unused entries are not reclaimed before the section's
1806
         contents are written out.  This should not happen, but this
1807
         way if it does, we get a R_PARISC_NONE reloc instead of
1808
         garbage.  */
1809
      if (s->contents == NULL)
1810
        {
1811
          s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1812
          if (s->contents == NULL)
1813
            return FALSE;
1814
        }
1815
    }
1816
 
1817
  if (elf_hash_table (info)->dynamic_sections_created)
1818
    {
1819
      /* Always create a DT_PLTGOT.  It actually has nothing to do with
1820
         the PLT, it is how we communicate the __gp value of a load
1821
         module to the dynamic linker.  */
1822
#define add_dynamic_entry(TAG, VAL) \
1823
  _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1824
 
1825
      if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1826
          || !add_dynamic_entry (DT_PLTGOT, 0))
1827
        return FALSE;
1828
 
1829
      /* Add some entries to the .dynamic section.  We fill in the
1830
         values later, in elf64_hppa_finish_dynamic_sections, but we
1831
         must add the entries now so that we get the correct size for
1832
         the .dynamic section.  The DT_DEBUG entry is filled in by the
1833
         dynamic linker and used by the debugger.  */
1834
      if (! info->shared)
1835
        {
1836
          if (!add_dynamic_entry (DT_DEBUG, 0)
1837
              || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1838
              || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1839
            return FALSE;
1840
        }
1841
 
1842
      /* Force DT_FLAGS to always be set.
1843
         Required by HPUX 11.00 patch PHSS_26559.  */
1844
      if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1845
        return FALSE;
1846
 
1847
      if (plt)
1848
        {
1849
          if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1850
              || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1851
              || !add_dynamic_entry (DT_JMPREL, 0))
1852
            return FALSE;
1853
        }
1854
 
1855
      if (relocs)
1856
        {
1857
          if (!add_dynamic_entry (DT_RELA, 0)
1858
              || !add_dynamic_entry (DT_RELASZ, 0)
1859
              || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1860
            return FALSE;
1861
        }
1862
 
1863
      if (reltext)
1864
        {
1865
          if (!add_dynamic_entry (DT_TEXTREL, 0))
1866
            return FALSE;
1867
          info->flags |= DF_TEXTREL;
1868
        }
1869
    }
1870
#undef add_dynamic_entry
1871
 
1872
  return TRUE;
1873
}
1874
 
1875
/* Called after we have output the symbol into the dynamic symbol
1876
   table, but before we output the symbol into the normal symbol
1877
   table.
1878
 
1879
   For some symbols we had to change their address when outputting
1880
   the dynamic symbol table.  We undo that change here so that
1881
   the symbols have their expected value in the normal symbol
1882
   table.  Ick.  */
1883
 
1884
static bfd_boolean
1885
elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1886
     struct bfd_link_info *info;
1887
     const char *name;
1888
     Elf_Internal_Sym *sym;
1889
     asection *input_sec ATTRIBUTE_UNUSED;
1890
     struct elf_link_hash_entry *h;
1891
{
1892
  struct elf64_hppa_link_hash_table *hppa_info;
1893
  struct elf64_hppa_dyn_hash_entry *dyn_h;
1894
 
1895
  /* We may be called with the file symbol or section symbols.
1896
     They never need munging, so it is safe to ignore them.  */
1897
  if (!name)
1898
    return TRUE;
1899
 
1900
  /* Get the PA dyn_symbol (if any) associated with NAME.  */
1901
  hppa_info = elf64_hppa_hash_table (info);
1902
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1903
                                      name, FALSE, FALSE);
1904
  if (!dyn_h || dyn_h->h != h)
1905
    return TRUE;
1906
 
1907
  /* Function symbols for which we created .opd entries *may* have been
1908
     munged by finish_dynamic_symbol and have to be un-munged here.
1909
 
1910
     Note that finish_dynamic_symbol sometimes turns dynamic symbols
1911
     into non-dynamic ones, so we initialize st_shndx to -1 in
1912
     mark_exported_functions and check to see if it was overwritten
1913
     here instead of just checking dyn_h->h->dynindx.  */
1914
  if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1915
    {
1916
      /* Restore the saved value and section index.  */
1917
      sym->st_value = dyn_h->st_value;
1918
      sym->st_shndx = dyn_h->st_shndx;
1919
    }
1920
 
1921
  return TRUE;
1922
}
1923
 
1924
/* Finish up dynamic symbol handling.  We set the contents of various
1925
   dynamic sections here.  */
1926
 
1927
static bfd_boolean
1928
elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1929
     bfd *output_bfd;
1930
     struct bfd_link_info *info;
1931
     struct elf_link_hash_entry *h;
1932
     Elf_Internal_Sym *sym;
1933
{
1934
  asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1935
  struct elf64_hppa_link_hash_table *hppa_info;
1936
  struct elf64_hppa_dyn_hash_entry *dyn_h;
1937
 
1938
  hppa_info = elf64_hppa_hash_table (info);
1939
  dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1940
                                      h->root.root.string, FALSE, FALSE);
1941
 
1942
  stub = hppa_info->stub_sec;
1943
  splt = hppa_info->plt_sec;
1944
  sdlt = hppa_info->dlt_sec;
1945
  sopd = hppa_info->opd_sec;
1946
  spltrel = hppa_info->plt_rel_sec;
1947
  sdltrel = hppa_info->dlt_rel_sec;
1948
 
1949
  /* Incredible.  It is actually necessary to NOT use the symbol's real
1950
     value when building the dynamic symbol table for a shared library.
1951
     At least for symbols that refer to functions.
1952
 
1953
     We will store a new value and section index into the symbol long
1954
     enough to output it into the dynamic symbol table, then we restore
1955
     the original values (in elf64_hppa_link_output_symbol_hook).  */
1956
  if (dyn_h && dyn_h->want_opd)
1957
    {
1958
      BFD_ASSERT (sopd != NULL);
1959
 
1960
      /* Save away the original value and section index so that we
1961
         can restore them later.  */
1962
      dyn_h->st_value = sym->st_value;
1963
      dyn_h->st_shndx = sym->st_shndx;
1964
 
1965
      /* For the dynamic symbol table entry, we want the value to be
1966
         address of this symbol's entry within the .opd section.  */
1967
      sym->st_value = (dyn_h->opd_offset
1968
                       + sopd->output_offset
1969
                       + sopd->output_section->vma);
1970
      sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1971
                                                         sopd->output_section);
1972
    }
1973
 
1974
  /* Initialize a .plt entry if requested.  */
1975
  if (dyn_h && dyn_h->want_plt
1976
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1977
    {
1978
      bfd_vma value;
1979
      Elf_Internal_Rela rel;
1980
      bfd_byte *loc;
1981
 
1982
      BFD_ASSERT (splt != NULL && spltrel != NULL);
1983
 
1984
      /* We do not actually care about the value in the PLT entry
1985
         if we are creating a shared library and the symbol is
1986
         still undefined, we create a dynamic relocation to fill
1987
         in the correct value.  */
1988
      if (info->shared && h->root.type == bfd_link_hash_undefined)
1989
        value = 0;
1990
      else
1991
        value = (h->root.u.def.value + h->root.u.def.section->vma);
1992
 
1993
      /* Fill in the entry in the procedure linkage table.
1994
 
1995
         The format of a plt entry is
1996
         <funcaddr> <__gp>.
1997
 
1998
         plt_offset is the offset within the PLT section at which to
1999
         install the PLT entry.
2000
 
2001
         We are modifying the in-memory PLT contents here, so we do not add
2002
         in the output_offset of the PLT section.  */
2003
 
2004
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2005
      value = _bfd_get_gp_value (splt->output_section->owner);
2006
      bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2007
 
2008
      /* Create a dynamic IPLT relocation for this entry.
2009
 
2010
         We are creating a relocation in the output file's PLT section,
2011
         which is included within the DLT secton.  So we do need to include
2012
         the PLT's output_offset in the computation of the relocation's
2013
         address.  */
2014
      rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2015
                      + splt->output_section->vma);
2016
      rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2017
      rel.r_addend = 0;
2018
 
2019
      loc = spltrel->contents;
2020
      loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2021
      bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2022
    }
2023
 
2024
  /* Initialize an external call stub entry if requested.  */
2025
  if (dyn_h && dyn_h->want_stub
2026
      && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2027
    {
2028
      bfd_vma value;
2029
      int insn;
2030
      unsigned int max_offset;
2031
 
2032
      BFD_ASSERT (stub != NULL);
2033
 
2034
      /* Install the generic stub template.
2035
 
2036
         We are modifying the contents of the stub section, so we do not
2037
         need to include the stub section's output_offset here.  */
2038
      memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2039
 
2040
      /* Fix up the first ldd instruction.
2041
 
2042
         We are modifying the contents of the STUB section in memory,
2043
         so we do not need to include its output offset in this computation.
2044
 
2045
         Note the plt_offset value is the value of the PLT entry relative to
2046
         the start of the PLT section.  These instructions will reference
2047
         data relative to the value of __gp, which may not necessarily have
2048
         the same address as the start of the PLT section.
2049
 
2050
         gp_offset contains the offset of __gp within the PLT section.  */
2051
      value = dyn_h->plt_offset - hppa_info->gp_offset;
2052
 
2053
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2054
      if (output_bfd->arch_info->mach >= 25)
2055
        {
2056
          /* Wide mode allows 16 bit offsets.  */
2057
          max_offset = 32768;
2058
          insn &= ~ 0xfff1;
2059
          insn |= re_assemble_16 ((int) value);
2060
        }
2061
      else
2062
        {
2063
          max_offset = 8192;
2064
          insn &= ~ 0x3ff1;
2065
          insn |= re_assemble_14 ((int) value);
2066
        }
2067
 
2068
      if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2069
        {
2070
          (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2071
                                 dyn_h->root.string,
2072
                                 (long) value);
2073
          return FALSE;
2074
        }
2075
 
2076
      bfd_put_32 (stub->owner, (bfd_vma) insn,
2077
                  stub->contents + dyn_h->stub_offset);
2078
 
2079
      /* Fix up the second ldd instruction.  */
2080
      value += 8;
2081
      insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2082
      if (output_bfd->arch_info->mach >= 25)
2083
        {
2084
          insn &= ~ 0xfff1;
2085
          insn |= re_assemble_16 ((int) value);
2086
        }
2087
      else
2088
        {
2089
          insn &= ~ 0x3ff1;
2090
          insn |= re_assemble_14 ((int) value);
2091
        }
2092
      bfd_put_32 (stub->owner, (bfd_vma) insn,
2093
                  stub->contents + dyn_h->stub_offset + 8);
2094
    }
2095
 
2096
  return TRUE;
2097
}
2098
 
2099
/* The .opd section contains FPTRs for each function this file
2100
   exports.  Initialize the FPTR entries.  */
2101
 
2102
static bfd_boolean
2103
elf64_hppa_finalize_opd (dyn_h, data)
2104
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2105
     PTR data;
2106
{
2107
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2108
  struct elf64_hppa_link_hash_table *hppa_info;
2109
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2110
  asection *sopd;
2111
  asection *sopdrel;
2112
 
2113
  hppa_info = elf64_hppa_hash_table (info);
2114
  sopd = hppa_info->opd_sec;
2115
  sopdrel = hppa_info->opd_rel_sec;
2116
 
2117
  if (h && dyn_h->want_opd)
2118
    {
2119
      bfd_vma value;
2120
 
2121
      /* The first two words of an .opd entry are zero.
2122
 
2123
         We are modifying the contents of the OPD section in memory, so we
2124
         do not need to include its output offset in this computation.  */
2125
      memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2126
 
2127
      value = (h->root.u.def.value
2128
               + h->root.u.def.section->output_section->vma
2129
               + h->root.u.def.section->output_offset);
2130
 
2131
      /* The next word is the address of the function.  */
2132
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2133
 
2134
      /* The last word is our local __gp value.  */
2135
      value = _bfd_get_gp_value (sopd->output_section->owner);
2136
      bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2137
    }
2138
 
2139
  /* If we are generating a shared library, we must generate EPLT relocations
2140
     for each entry in the .opd, even for static functions (they may have
2141
     had their address taken).  */
2142
  if (info->shared && dyn_h && dyn_h->want_opd)
2143
    {
2144
      Elf_Internal_Rela rel;
2145
      bfd_byte *loc;
2146
      int dynindx;
2147
 
2148
      /* We may need to do a relocation against a local symbol, in
2149
         which case we have to look up it's dynamic symbol index off
2150
         the local symbol hash table.  */
2151
      if (h && h->dynindx != -1)
2152
        dynindx = h->dynindx;
2153
      else
2154
        dynindx
2155
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2156
                                                dyn_h->sym_indx);
2157
 
2158
      /* The offset of this relocation is the absolute address of the
2159
         .opd entry for this symbol.  */
2160
      rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2161
                      + sopd->output_section->vma);
2162
 
2163
      /* If H is non-null, then we have an external symbol.
2164
 
2165
         It is imperative that we use a different dynamic symbol for the
2166
         EPLT relocation if the symbol has global scope.
2167
 
2168
         In the dynamic symbol table, the function symbol will have a value
2169
         which is address of the function's .opd entry.
2170
 
2171
         Thus, we can not use that dynamic symbol for the EPLT relocation
2172
         (if we did, the data in the .opd would reference itself rather
2173
         than the actual address of the function).  Instead we have to use
2174
         a new dynamic symbol which has the same value as the original global
2175
         function symbol.
2176
 
2177
         We prefix the original symbol with a "." and use the new symbol in
2178
         the EPLT relocation.  This new symbol has already been recorded in
2179
         the symbol table, we just have to look it up and use it.
2180
 
2181
         We do not have such problems with static functions because we do
2182
         not make their addresses in the dynamic symbol table point to
2183
         the .opd entry.  Ultimately this should be safe since a static
2184
         function can not be directly referenced outside of its shared
2185
         library.
2186
 
2187
         We do have to play similar games for FPTR relocations in shared
2188
         libraries, including those for static symbols.  See the FPTR
2189
         handling in elf64_hppa_finalize_dynreloc.  */
2190
      if (h)
2191
        {
2192
          char *new_name;
2193
          struct elf_link_hash_entry *nh;
2194
 
2195
          new_name = alloca (strlen (h->root.root.string) + 2);
2196
          new_name[0] = '.';
2197
          strcpy (new_name + 1, h->root.root.string);
2198
 
2199
          nh = elf_link_hash_lookup (elf_hash_table (info),
2200
                                     new_name, FALSE, FALSE, FALSE);
2201
 
2202
          /* All we really want from the new symbol is its dynamic
2203
             symbol index.  */
2204
          dynindx = nh->dynindx;
2205
        }
2206
 
2207
      rel.r_addend = 0;
2208
      rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2209
 
2210
      loc = sopdrel->contents;
2211
      loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2212
      bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2213
    }
2214
  return TRUE;
2215
}
2216
 
2217
/* The .dlt section contains addresses for items referenced through the
2218
   dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2219
   we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2220
 
2221
static bfd_boolean
2222
elf64_hppa_finalize_dlt (dyn_h, data)
2223
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2224
     PTR data;
2225
{
2226
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2227
  struct elf64_hppa_link_hash_table *hppa_info;
2228
  asection *sdlt, *sdltrel;
2229
  struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2230
 
2231
  hppa_info = elf64_hppa_hash_table (info);
2232
 
2233
  sdlt = hppa_info->dlt_sec;
2234
  sdltrel = hppa_info->dlt_rel_sec;
2235
 
2236
  /* H/DYN_H may refer to a local variable and we know it's
2237
     address, so there is no need to create a relocation.  Just install
2238
     the proper value into the DLT, note this shortcut can not be
2239
     skipped when building a shared library.  */
2240
  if (! info->shared && h && dyn_h->want_dlt)
2241
    {
2242
      bfd_vma value;
2243
 
2244
      /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2245
         to point to the FPTR entry in the .opd section.
2246
 
2247
         We include the OPD's output offset in this computation as
2248
         we are referring to an absolute address in the resulting
2249
         object file.  */
2250
      if (dyn_h->want_opd)
2251
        {
2252
          value = (dyn_h->opd_offset
2253
                   + hppa_info->opd_sec->output_offset
2254
                   + hppa_info->opd_sec->output_section->vma);
2255
        }
2256
      else if ((h->root.type == bfd_link_hash_defined
2257
                || h->root.type == bfd_link_hash_defweak)
2258
               && h->root.u.def.section)
2259
        {
2260
          value = h->root.u.def.value + h->root.u.def.section->output_offset;
2261
          if (h->root.u.def.section->output_section)
2262
            value += h->root.u.def.section->output_section->vma;
2263
          else
2264
            value += h->root.u.def.section->vma;
2265
        }
2266
      else
2267
        /* We have an undefined function reference.  */
2268
        value = 0;
2269
 
2270
      /* We do not need to include the output offset of the DLT section
2271
         here because we are modifying the in-memory contents.  */
2272
      bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2273
    }
2274
 
2275
  /* Create a relocation for the DLT entry associated with this symbol.
2276
     When building a shared library the symbol does not have to be dynamic.  */
2277
  if (dyn_h->want_dlt
2278
      && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2279
    {
2280
      Elf_Internal_Rela rel;
2281
      bfd_byte *loc;
2282
      int dynindx;
2283
 
2284
      /* We may need to do a relocation against a local symbol, in
2285
         which case we have to look up it's dynamic symbol index off
2286
         the local symbol hash table.  */
2287
      if (h && h->dynindx != -1)
2288
        dynindx = h->dynindx;
2289
      else
2290
        dynindx
2291
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2292
                                                dyn_h->sym_indx);
2293
 
2294
      /* Create a dynamic relocation for this entry.  Do include the output
2295
         offset of the DLT entry since we need an absolute address in the
2296
         resulting object file.  */
2297
      rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2298
                      + sdlt->output_section->vma);
2299
      if (h && h->type == STT_FUNC)
2300
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2301
      else
2302
          rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2303
      rel.r_addend = 0;
2304
 
2305
      loc = sdltrel->contents;
2306
      loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2307
      bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2308
    }
2309
  return TRUE;
2310
}
2311
 
2312
/* Finalize the dynamic relocations.  Specifically the FPTR relocations
2313
   for dynamic functions used to initialize static data.  */
2314
 
2315
static bfd_boolean
2316
elf64_hppa_finalize_dynreloc (dyn_h, data)
2317
     struct elf64_hppa_dyn_hash_entry *dyn_h;
2318
     PTR data;
2319
{
2320
  struct bfd_link_info *info = (struct bfd_link_info *)data;
2321
  struct elf64_hppa_link_hash_table *hppa_info;
2322
  struct elf_link_hash_entry *h;
2323
  int dynamic_symbol;
2324
 
2325
  dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2326
 
2327
  if (!dynamic_symbol && !info->shared)
2328
    return TRUE;
2329
 
2330
  if (dyn_h->reloc_entries)
2331
    {
2332
      struct elf64_hppa_dyn_reloc_entry *rent;
2333
      int dynindx;
2334
 
2335
      hppa_info = elf64_hppa_hash_table (info);
2336
      h = dyn_h->h;
2337
 
2338
      /* We may need to do a relocation against a local symbol, in
2339
         which case we have to look up it's dynamic symbol index off
2340
         the local symbol hash table.  */
2341
      if (h && h->dynindx != -1)
2342
        dynindx = h->dynindx;
2343
      else
2344
        dynindx
2345
          = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2346
                                                dyn_h->sym_indx);
2347
 
2348
      for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2349
        {
2350
          Elf_Internal_Rela rel;
2351
          bfd_byte *loc;
2352
 
2353
          /* Allocate one iff we are building a shared library, the relocation
2354
             isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2355
          if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2356
            continue;
2357
 
2358
          /* Create a dynamic relocation for this entry.
2359
 
2360
             We need the output offset for the reloc's section because
2361
             we are creating an absolute address in the resulting object
2362
             file.  */
2363
          rel.r_offset = (rent->offset + rent->sec->output_offset
2364
                          + rent->sec->output_section->vma);
2365
 
2366
          /* An FPTR64 relocation implies that we took the address of
2367
             a function and that the function has an entry in the .opd
2368
             section.  We want the FPTR64 relocation to reference the
2369
             entry in .opd.
2370
 
2371
             We could munge the symbol value in the dynamic symbol table
2372
             (in fact we already do for functions with global scope) to point
2373
             to the .opd entry.  Then we could use that dynamic symbol in
2374
             this relocation.
2375
 
2376
             Or we could do something sensible, not munge the symbol's
2377
             address and instead just use a different symbol to reference
2378
             the .opd entry.  At least that seems sensible until you
2379
             realize there's no local dynamic symbols we can use for that
2380
             purpose.  Thus the hair in the check_relocs routine.
2381
 
2382
             We use a section symbol recorded by check_relocs as the
2383
             base symbol for the relocation.  The addend is the difference
2384
             between the section symbol and the address of the .opd entry.  */
2385
          if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2386
            {
2387
              bfd_vma value, value2;
2388
 
2389
              /* First compute the address of the opd entry for this symbol.  */
2390
              value = (dyn_h->opd_offset
2391
                       + hppa_info->opd_sec->output_section->vma
2392
                       + hppa_info->opd_sec->output_offset);
2393
 
2394
              /* Compute the value of the start of the section with
2395
                 the relocation.  */
2396
              value2 = (rent->sec->output_section->vma
2397
                        + rent->sec->output_offset);
2398
 
2399
              /* Compute the difference between the start of the section
2400
                 with the relocation and the opd entry.  */
2401
              value -= value2;
2402
 
2403
              /* The result becomes the addend of the relocation.  */
2404
              rel.r_addend = value;
2405
 
2406
              /* The section symbol becomes the symbol for the dynamic
2407
                 relocation.  */
2408
              dynindx
2409
                = _bfd_elf_link_lookup_local_dynindx (info,
2410
                                                      rent->sec->owner,
2411
                                                      rent->sec_symndx);
2412
            }
2413
          else
2414
            rel.r_addend = rent->addend;
2415
 
2416
          rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2417
 
2418
          loc = hppa_info->other_rel_sec->contents;
2419
          loc += (hppa_info->other_rel_sec->reloc_count++
2420
                  * sizeof (Elf64_External_Rela));
2421
          bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2422
                                     &rel, loc);
2423
        }
2424
    }
2425
 
2426
  return TRUE;
2427
}
2428
 
2429
/* Used to decide how to sort relocs in an optimal manner for the
2430
   dynamic linker, before writing them out.  */
2431
 
2432
static enum elf_reloc_type_class
2433
elf64_hppa_reloc_type_class (rela)
2434
     const Elf_Internal_Rela *rela;
2435
{
2436
  if (ELF64_R_SYM (rela->r_info) == 0)
2437
    return reloc_class_relative;
2438
 
2439
  switch ((int) ELF64_R_TYPE (rela->r_info))
2440
    {
2441
    case R_PARISC_IPLT:
2442
      return reloc_class_plt;
2443
    case R_PARISC_COPY:
2444
      return reloc_class_copy;
2445
    default:
2446
      return reloc_class_normal;
2447
    }
2448
}
2449
 
2450
/* Finish up the dynamic sections.  */
2451
 
2452
static bfd_boolean
2453
elf64_hppa_finish_dynamic_sections (output_bfd, info)
2454
     bfd *output_bfd;
2455
     struct bfd_link_info *info;
2456
{
2457
  bfd *dynobj;
2458
  asection *sdyn;
2459
  struct elf64_hppa_link_hash_table *hppa_info;
2460
 
2461
  hppa_info = elf64_hppa_hash_table (info);
2462
 
2463
  /* Finalize the contents of the .opd section.  */
2464
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2465
                                elf64_hppa_finalize_opd,
2466
                                info);
2467
 
2468
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2469
                                elf64_hppa_finalize_dynreloc,
2470
                                info);
2471
 
2472
  /* Finalize the contents of the .dlt section.  */
2473
  dynobj = elf_hash_table (info)->dynobj;
2474
  /* Finalize the contents of the .dlt section.  */
2475
  elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2476
                                elf64_hppa_finalize_dlt,
2477
                                info);
2478
 
2479
  sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2480
 
2481
  if (elf_hash_table (info)->dynamic_sections_created)
2482
    {
2483
      Elf64_External_Dyn *dyncon, *dynconend;
2484
 
2485
      BFD_ASSERT (sdyn != NULL);
2486
 
2487
      dyncon = (Elf64_External_Dyn *) sdyn->contents;
2488
      dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2489
      for (; dyncon < dynconend; dyncon++)
2490
        {
2491
          Elf_Internal_Dyn dyn;
2492
          asection *s;
2493
 
2494
          bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2495
 
2496
          switch (dyn.d_tag)
2497
            {
2498
            default:
2499
              break;
2500
 
2501
            case DT_HP_LOAD_MAP:
2502
              /* Compute the absolute address of 16byte scratchpad area
2503
                 for the dynamic linker.
2504
 
2505
                 By convention the linker script will allocate the scratchpad
2506
                 area at the start of the .data section.  So all we have to
2507
                 to is find the start of the .data section.  */
2508
              s = bfd_get_section_by_name (output_bfd, ".data");
2509
              dyn.d_un.d_ptr = s->vma;
2510
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511
              break;
2512
 
2513
            case DT_PLTGOT:
2514
              /* HP's use PLTGOT to set the GOT register.  */
2515
              dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2516
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2517
              break;
2518
 
2519
            case DT_JMPREL:
2520
              s = hppa_info->plt_rel_sec;
2521
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2522
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523
              break;
2524
 
2525
            case DT_PLTRELSZ:
2526
              s = hppa_info->plt_rel_sec;
2527
              dyn.d_un.d_val = s->size;
2528
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529
              break;
2530
 
2531
            case DT_RELA:
2532
              s = hppa_info->other_rel_sec;
2533
              if (! s || ! s->size)
2534
                s = hppa_info->dlt_rel_sec;
2535
              if (! s || ! s->size)
2536
                s = hppa_info->opd_rel_sec;
2537
              dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2538
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539
              break;
2540
 
2541
            case DT_RELASZ:
2542
              s = hppa_info->other_rel_sec;
2543
              dyn.d_un.d_val = s->size;
2544
              s = hppa_info->dlt_rel_sec;
2545
              dyn.d_un.d_val += s->size;
2546
              s = hppa_info->opd_rel_sec;
2547
              dyn.d_un.d_val += s->size;
2548
              /* There is some question about whether or not the size of
2549
                 the PLT relocs should be included here.  HP's tools do
2550
                 it, so we'll emulate them.  */
2551
              s = hppa_info->plt_rel_sec;
2552
              dyn.d_un.d_val += s->size;
2553
              bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2554
              break;
2555
 
2556
            }
2557
        }
2558
    }
2559
 
2560
  return TRUE;
2561
}
2562
 
2563
/* Support for core dump NOTE sections.  */
2564
 
2565
static bfd_boolean
2566
elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2567
{
2568
  int offset;
2569
  size_t size;
2570
 
2571
  switch (note->descsz)
2572
    {
2573
      default:
2574
        return FALSE;
2575
 
2576
      case 760:         /* Linux/hppa */
2577
        /* pr_cursig */
2578
        elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2579
 
2580
        /* pr_pid */
2581
        elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2582
 
2583
        /* pr_reg */
2584
        offset = 112;
2585
        size = 640;
2586
 
2587
        break;
2588
    }
2589
 
2590
  /* Make a ".reg/999" section.  */
2591
  return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2592
                                          size, note->descpos + offset);
2593
}
2594
 
2595
static bfd_boolean
2596
elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2597
{
2598
  char * command;
2599
  int n;
2600
 
2601
  switch (note->descsz)
2602
    {
2603
    default:
2604
      return FALSE;
2605
 
2606
    case 136:           /* Linux/hppa elf_prpsinfo.  */
2607
      elf_tdata (abfd)->core_program
2608
        = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2609
      elf_tdata (abfd)->core_command
2610
        = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2611
    }
2612
 
2613
  /* Note that for some reason, a spurious space is tacked
2614
     onto the end of the args in some (at least one anyway)
2615
     implementations, so strip it off if it exists.  */
2616
  command = elf_tdata (abfd)->core_command;
2617
  n = strlen (command);
2618
 
2619
  if (0 < n && command[n - 1] == ' ')
2620
    command[n - 1] = '\0';
2621
 
2622
  return TRUE;
2623
}
2624
 
2625
/* Return the number of additional phdrs we will need.
2626
 
2627
   The generic ELF code only creates PT_PHDRs for executables.  The HP
2628
   dynamic linker requires PT_PHDRs for dynamic libraries too.
2629
 
2630
   This routine indicates that the backend needs one additional program
2631
   header for that case.
2632
 
2633
   Note we do not have access to the link info structure here, so we have
2634
   to guess whether or not we are building a shared library based on the
2635
   existence of a .interp section.  */
2636
 
2637
static int
2638
elf64_hppa_additional_program_headers (bfd *abfd,
2639
                                       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2640
{
2641
  asection *s;
2642
 
2643
  /* If we are creating a shared library, then we have to create a
2644
     PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2645
  s = bfd_get_section_by_name (abfd, ".interp");
2646
  if (! s)
2647
    return 1;
2648
  return 0;
2649
}
2650
 
2651
/* Allocate and initialize any program headers required by this
2652
   specific backend.
2653
 
2654
   The generic ELF code only creates PT_PHDRs for executables.  The HP
2655
   dynamic linker requires PT_PHDRs for dynamic libraries too.
2656
 
2657
   This allocates the PT_PHDR and initializes it in a manner suitable
2658
   for the HP linker.
2659
 
2660
   Note we do not have access to the link info structure here, so we have
2661
   to guess whether or not we are building a shared library based on the
2662
   existence of a .interp section.  */
2663
 
2664
static bfd_boolean
2665
elf64_hppa_modify_segment_map (bfd *abfd,
2666
                               struct bfd_link_info *info ATTRIBUTE_UNUSED)
2667
{
2668
  struct elf_segment_map *m;
2669
  asection *s;
2670
 
2671
  s = bfd_get_section_by_name (abfd, ".interp");
2672
  if (! s)
2673
    {
2674
      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2675
        if (m->p_type == PT_PHDR)
2676
          break;
2677
      if (m == NULL)
2678
        {
2679
          m = ((struct elf_segment_map *)
2680
               bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2681
          if (m == NULL)
2682
            return FALSE;
2683
 
2684
          m->p_type = PT_PHDR;
2685
          m->p_flags = PF_R | PF_X;
2686
          m->p_flags_valid = 1;
2687
          m->p_paddr_valid = 1;
2688
          m->includes_phdrs = 1;
2689
 
2690
          m->next = elf_tdata (abfd)->segment_map;
2691
          elf_tdata (abfd)->segment_map = m;
2692
        }
2693
    }
2694
 
2695
  for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2696
    if (m->p_type == PT_LOAD)
2697
      {
2698
        unsigned int i;
2699
 
2700
        for (i = 0; i < m->count; i++)
2701
          {
2702
            /* The code "hint" is not really a hint.  It is a requirement
2703
               for certain versions of the HP dynamic linker.  Worse yet,
2704
               it must be set even if the shared library does not have
2705
               any code in its "text" segment (thus the check for .hash
2706
               to catch this situation).  */
2707
            if (m->sections[i]->flags & SEC_CODE
2708
                || (strcmp (m->sections[i]->name, ".hash") == 0))
2709
              m->p_flags |= (PF_X | PF_HP_CODE);
2710
          }
2711
      }
2712
 
2713
  return TRUE;
2714
}
2715
 
2716
/* Called when writing out an object file to decide the type of a
2717
   symbol.  */
2718
static int
2719
elf64_hppa_elf_get_symbol_type (elf_sym, type)
2720
     Elf_Internal_Sym *elf_sym;
2721
     int type;
2722
{
2723
  if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2724
    return STT_PARISC_MILLI;
2725
  else
2726
    return type;
2727
}
2728
 
2729
/* Support HP specific sections for core files.  */
2730
static bfd_boolean
2731
elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2732
                              const char *typename)
2733
{
2734
  if (hdr->p_type == PT_HP_CORE_KERNEL)
2735
    {
2736
      asection *sect;
2737
 
2738
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2739
        return FALSE;
2740
 
2741
      sect = bfd_make_section_anyway (abfd, ".kernel");
2742
      if (sect == NULL)
2743
        return FALSE;
2744
      sect->size = hdr->p_filesz;
2745
      sect->filepos = hdr->p_offset;
2746
      sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2747
      return TRUE;
2748
    }
2749
 
2750
  if (hdr->p_type == PT_HP_CORE_PROC)
2751
    {
2752
      int sig;
2753
 
2754
      if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2755
        return FALSE;
2756
      if (bfd_bread (&sig, 4, abfd) != 4)
2757
        return FALSE;
2758
 
2759
      elf_tdata (abfd)->core_signal = sig;
2760
 
2761
      if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2762
        return FALSE;
2763
 
2764
      /* GDB uses the ".reg" section to read register contents.  */
2765
      return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2766
                                              hdr->p_offset);
2767
    }
2768
 
2769
  if (hdr->p_type == PT_HP_CORE_LOADABLE
2770
      || hdr->p_type == PT_HP_CORE_STACK
2771
      || hdr->p_type == PT_HP_CORE_MMF)
2772
    hdr->p_type = PT_LOAD;
2773
 
2774
  return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2775
}
2776
 
2777
static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2778
{
2779
  { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2780
  { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2781
  { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2782
  { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2783
  { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2784
  { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2785
  { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2786
  { NULL,                    0,  0, 0,            0 }
2787
};
2788
 
2789
/* The hash bucket size is the standard one, namely 4.  */
2790
 
2791
const struct elf_size_info hppa64_elf_size_info =
2792
{
2793
  sizeof (Elf64_External_Ehdr),
2794
  sizeof (Elf64_External_Phdr),
2795
  sizeof (Elf64_External_Shdr),
2796
  sizeof (Elf64_External_Rel),
2797
  sizeof (Elf64_External_Rela),
2798
  sizeof (Elf64_External_Sym),
2799
  sizeof (Elf64_External_Dyn),
2800
  sizeof (Elf_External_Note),
2801
  4,
2802
  1,
2803
  64, 3,
2804
  ELFCLASS64, EV_CURRENT,
2805
  bfd_elf64_write_out_phdrs,
2806
  bfd_elf64_write_shdrs_and_ehdr,
2807
  bfd_elf64_checksum_contents,
2808
  bfd_elf64_write_relocs,
2809
  bfd_elf64_swap_symbol_in,
2810
  bfd_elf64_swap_symbol_out,
2811
  bfd_elf64_slurp_reloc_table,
2812
  bfd_elf64_slurp_symbol_table,
2813
  bfd_elf64_swap_dyn_in,
2814
  bfd_elf64_swap_dyn_out,
2815
  bfd_elf64_swap_reloc_in,
2816
  bfd_elf64_swap_reloc_out,
2817
  bfd_elf64_swap_reloca_in,
2818
  bfd_elf64_swap_reloca_out
2819
};
2820
 
2821
#define TARGET_BIG_SYM                  bfd_elf64_hppa_vec
2822
#define TARGET_BIG_NAME                 "elf64-hppa"
2823
#define ELF_ARCH                        bfd_arch_hppa
2824
#define ELF_MACHINE_CODE                EM_PARISC
2825
/* This is not strictly correct.  The maximum page size for PA2.0 is
2826
   64M.  But everything still uses 4k.  */
2827
#define ELF_MAXPAGESIZE                 0x1000
2828
#define ELF_OSABI                       ELFOSABI_HPUX
2829
 
2830
#define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2831
#define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
2832
#define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
2833
#define elf_info_to_howto               elf_hppa_info_to_howto
2834
#define elf_info_to_howto_rel           elf_hppa_info_to_howto_rel
2835
 
2836
#define elf_backend_section_from_shdr   elf64_hppa_section_from_shdr
2837
#define elf_backend_object_p            elf64_hppa_object_p
2838
#define elf_backend_final_write_processing \
2839
                                        elf_hppa_final_write_processing
2840
#define elf_backend_fake_sections       elf_hppa_fake_sections
2841
#define elf_backend_add_symbol_hook     elf_hppa_add_symbol_hook
2842
 
2843
#define elf_backend_relocate_section    elf_hppa_relocate_section
2844
 
2845
#define bfd_elf64_bfd_final_link        elf_hppa_final_link
2846
 
2847
#define elf_backend_create_dynamic_sections \
2848
                                        elf64_hppa_create_dynamic_sections
2849
#define elf_backend_post_process_headers        elf64_hppa_post_process_headers
2850
 
2851
#define elf_backend_omit_section_dynsym \
2852
  ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2853
#define elf_backend_adjust_dynamic_symbol \
2854
                                        elf64_hppa_adjust_dynamic_symbol
2855
 
2856
#define elf_backend_size_dynamic_sections \
2857
                                        elf64_hppa_size_dynamic_sections
2858
 
2859
#define elf_backend_finish_dynamic_symbol \
2860
                                        elf64_hppa_finish_dynamic_symbol
2861
#define elf_backend_finish_dynamic_sections \
2862
                                        elf64_hppa_finish_dynamic_sections
2863
#define elf_backend_grok_prstatus       elf64_hppa_grok_prstatus
2864
#define elf_backend_grok_psinfo         elf64_hppa_grok_psinfo
2865
 
2866
/* Stuff for the BFD linker: */
2867
#define bfd_elf64_bfd_link_hash_table_create \
2868
        elf64_hppa_hash_table_create
2869
 
2870
#define elf_backend_check_relocs \
2871
        elf64_hppa_check_relocs
2872
 
2873
#define elf_backend_size_info \
2874
  hppa64_elf_size_info
2875
 
2876
#define elf_backend_additional_program_headers \
2877
        elf64_hppa_additional_program_headers
2878
 
2879
#define elf_backend_modify_segment_map \
2880
        elf64_hppa_modify_segment_map
2881
 
2882
#define elf_backend_link_output_symbol_hook \
2883
        elf64_hppa_link_output_symbol_hook
2884
 
2885
#define elf_backend_want_got_plt        0
2886
#define elf_backend_plt_readonly        0
2887
#define elf_backend_want_plt_sym        0
2888
#define elf_backend_got_header_size     0
2889
#define elf_backend_type_change_ok      TRUE
2890
#define elf_backend_get_symbol_type     elf64_hppa_elf_get_symbol_type
2891
#define elf_backend_reloc_type_class    elf64_hppa_reloc_type_class
2892
#define elf_backend_rela_normal         1
2893
#define elf_backend_special_sections    elf64_hppa_special_sections
2894
#define elf_backend_action_discarded    elf_hppa_action_discarded
2895
#define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
2896
 
2897
#define elf64_bed                       elf64_hppa_hpux_bed
2898
 
2899
#include "elf64-target.h"
2900
 
2901
#undef TARGET_BIG_SYM
2902
#define TARGET_BIG_SYM                  bfd_elf64_hppa_linux_vec
2903
#undef TARGET_BIG_NAME
2904
#define TARGET_BIG_NAME                 "elf64-hppa-linux"
2905
#undef ELF_OSABI
2906
#define ELF_OSABI                       ELFOSABI_LINUX
2907
#undef elf_backend_post_process_headers
2908
#define elf_backend_post_process_headers _bfd_elf_set_osabi
2909
#undef elf64_bed
2910
#define elf64_bed                       elf64_hppa_linux_bed
2911
 
2912
#include "elf64-target.h"

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.