OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [binutils-2.18.50/] [gas/] [config/] [tc-xtensa.h] - Blame information for rev 156

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* tc-xtensa.h -- Header file for tc-xtensa.c.
2
   Copyright (C) 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
3
 
4
   This file is part of GAS, the GNU Assembler.
5
 
6
   GAS is free software; you can redistribute it and/or modify
7
   it under the terms of the GNU General Public License as published by
8
   the Free Software Foundation; either version 3, or (at your option)
9
   any later version.
10
 
11
   GAS is distributed in the hope that it will be useful,
12
   but WITHOUT ANY WARRANTY; without even the implied warranty of
13
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
   GNU General Public License for more details.
15
 
16
   You should have received a copy of the GNU General Public License
17
   along with GAS; see the file COPYING.  If not, write to the Free
18
   Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19
   02110-1301, USA.  */
20
 
21
#ifndef TC_XTENSA
22
#define TC_XTENSA 1
23
 
24
struct fix;
25
 
26
#ifndef OBJ_ELF
27
#error Xtensa support requires ELF object format
28
#endif
29
 
30
#include "xtensa-isa.h"
31
#include "xtensa-config.h"
32
 
33
#define TARGET_BYTES_BIG_ENDIAN XCHAL_HAVE_BE
34
 
35
 
36
/* Maximum number of opcode slots in a VLIW instruction.  */
37
#define MAX_SLOTS 15
38
 
39
 
40
/* For all xtensa relax states except RELAX_DESIRE_ALIGN and
41
   RELAX_DESIRE_ALIGN_IF_TARGET, the amount a frag might grow is stored
42
   in the fr_var field.  For the two exceptions, fr_var is a float value
43
   that records the frequency with which the following instruction is
44
   executed as a branch target.  The aligner uses this information to
45
   tell which targets are most important to be aligned.  */
46
 
47
enum xtensa_relax_statesE
48
{
49
  RELAX_XTENSA_NONE,
50
 
51
  RELAX_ALIGN_NEXT_OPCODE,
52
  /* Use the first opcode of the next fragment to determine the
53
     alignment requirements.  This is ONLY used for LOOPs currently.  */
54
 
55
  RELAX_CHECK_ALIGN_NEXT_OPCODE,
56
  /* The next non-empty frag contains a loop instruction.  Check to see
57
     if it is correctly aligned, but do not align it.  */
58
 
59
  RELAX_DESIRE_ALIGN_IF_TARGET,
60
  /* These are placed in front of labels and converted to either
61
     RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before
62
     relaxation begins.  */
63
 
64
  RELAX_ADD_NOP_IF_A0_B_RETW,
65
  /* These are placed in front of conditional branches.  Before
66
     relaxation begins, they are turned into either NOPs for branches
67
     immediately followed by RETW or RETW.N or rs_fills of 0.  This is
68
     used to avoid a hardware bug in some early versions of the
69
     processor.  */
70
 
71
  RELAX_ADD_NOP_IF_PRE_LOOP_END,
72
  /* These are placed after JX instructions.  Before relaxation begins,
73
     they are turned into either NOPs, if the JX is one instruction
74
     before a loop end label, or rs_fills of 0.  This is used to avoid a
75
     hardware interlock issue prior to Xtensa version T1040.  */
76
 
77
  RELAX_ADD_NOP_IF_SHORT_LOOP,
78
  /* These are placed after LOOP instructions and turned into NOPs when:
79
     (1) there are less than 3 instructions in the loop; we place 2 of
80
     these in a row to add up to 2 NOPS in short loops; or (2) the
81
     instructions in the loop do not include a branch or jump.
82
     Otherwise they are turned into rs_fills of 0 before relaxation
83
     begins.  This is used to avoid hardware bug PR3830.  */
84
 
85
  RELAX_ADD_NOP_IF_CLOSE_LOOP_END,
86
  /* These are placed after LOOP instructions and turned into NOPs if
87
     there are less than 12 bytes to the end of some other loop's end.
88
     Otherwise they are turned into rs_fills of 0 before relaxation
89
     begins.  This is used to avoid hardware bug PR3830.  */
90
 
91
  RELAX_DESIRE_ALIGN,
92
  /* The next fragment would like its first instruction to NOT cross an
93
     instruction fetch boundary.  */
94
 
95
  RELAX_MAYBE_DESIRE_ALIGN,
96
  /* The next fragment might like its first instruction to NOT cross an
97
     instruction fetch boundary.  These are placed after a branch that
98
     might be relaxed.  If the branch is relaxed, then this frag will be
99
     a branch target and this frag will be changed to RELAX_DESIRE_ALIGN
100
     frag.  */
101
 
102
  RELAX_LOOP_END,
103
  /* This will be turned into a NOP or NOP.N if the previous instruction
104
     is expanded to negate a loop.  */
105
 
106
  RELAX_LOOP_END_ADD_NOP,
107
  /* When the code density option is available, this will generate a
108
     NOP.N marked RELAX_NARROW.  Otherwise, it will create an rs_fill
109
     fragment with a NOP in it.  Once a frag has been converted to
110
     RELAX_LOOP_END_ADD_NOP, it should never be changed back to
111
     RELAX_LOOP_END.  */
112
 
113
  RELAX_LITERAL,
114
  /* Another fragment could generate an expansion here but has not yet.  */
115
 
116
  RELAX_LITERAL_NR,
117
  /* Expansion has been generated by an instruction that generates a
118
     literal.  However, the stretch has NOT been reported yet in this
119
     fragment.  */
120
 
121
  RELAX_LITERAL_FINAL,
122
  /* Expansion has been generated by an instruction that generates a
123
     literal.  */
124
 
125
  RELAX_LITERAL_POOL_BEGIN,
126
  RELAX_LITERAL_POOL_END,
127
  /* Technically these are not relaxations at all but mark a location
128
     to store literals later.  Note that fr_var stores the frchain for
129
     BEGIN frags and fr_var stores now_seg for END frags.  */
130
 
131
  RELAX_NARROW,
132
  /* The last instruction in this fragment (at->fr_opcode) can be
133
     freely replaced with a single wider instruction if a future
134
     alignment desires or needs it.  */
135
 
136
  RELAX_IMMED,
137
  /* The last instruction in this fragment (at->fr_opcode) contains
138
     an immediate or symbol.  If the value does not fit, relax the
139
     opcode using expansions from the relax table.  */
140
 
141
  RELAX_IMMED_STEP1,
142
  /* The last instruction in this fragment (at->fr_opcode) contains a
143
     literal.  It has already been expanded 1 step.  */
144
 
145
  RELAX_IMMED_STEP2,
146
  /* The last instruction in this fragment (at->fr_opcode) contains a
147
     literal.  It has already been expanded 2 steps.  */
148
 
149
  RELAX_IMMED_STEP3,
150
  /* The last instruction in this fragment (at->fr_opcode) contains a
151
     literal.  It has already been expanded 3 steps.  */
152
 
153
  RELAX_SLOTS,
154
  /* There are instructions within the last VLIW instruction that need
155
     relaxation.  Find the relaxation based on the slot info in
156
     xtensa_frag_type.  Relaxations that deal with particular opcodes
157
     are slot-based (e.g., converting a MOVI to an L32R).  Relaxations
158
     that deal with entire instructions, such as alignment, are not
159
     slot-based.  */
160
 
161
  RELAX_FILL_NOP,
162
  /* This marks the location of a pipeline stall.  We can fill these guys
163
     in for alignment of any size.  */
164
 
165
  RELAX_UNREACHABLE,
166
  /* This marks the location as unreachable.  The assembler may widen or
167
     narrow this area to meet alignment requirements of nearby
168
     instructions.  */
169
 
170
  RELAX_MAYBE_UNREACHABLE,
171
  /* This marks the location as possibly unreachable.  These are placed
172
     after a branch that may be relaxed into a branch and jump. If the
173
     branch is relaxed, then this frag will be converted to a
174
     RELAX_UNREACHABLE frag.  */
175
 
176
  RELAX_ORG,
177
  /* This marks the location as having previously been an rs_org frag.
178
     rs_org frags are converted to fill-zero frags immediately after
179
     relaxation.  However, we need to remember where they were so we can
180
     prevent the linker from changing the size of any frag between the
181
     section start and the org frag.  */
182
 
183
  RELAX_NONE
184
};
185
 
186
/* This is used as a stopper to bound the number of steps that
187
   can be taken.  */
188
#define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP3 - RELAX_IMMED)
189
 
190
struct xtensa_frag_type
191
{
192
  /* Info about the current state of assembly, e.g., transform,
193
     absolute_literals, etc.  These need to be passed to the backend and
194
     then to the object file.
195
 
196
     When is_assembly_state_set is false, the frag inherits some of the
197
     state settings from the previous frag in this segment.  Because it
198
     is not possible to intercept all fragment closures (frag_more and
199
     frag_append_1_char can close a frag), we use a pass after initial
200
     assembly to fill in the assembly states.  */
201
 
202
  unsigned int is_assembly_state_set : 1;
203
  unsigned int is_no_density : 1;
204
  unsigned int is_no_transform : 1;
205
  unsigned int use_longcalls : 1;
206
  unsigned int use_absolute_literals : 1;
207
 
208
  /* Inhibits relaxation of machine-dependent alignment frags the
209
     first time through a relaxation....  */
210
  unsigned int relax_seen : 1;
211
 
212
  /* Information that is needed in the object file and set when known.  */
213
  unsigned int is_literal : 1;
214
  unsigned int is_loop_target : 1;
215
  unsigned int is_branch_target : 1;
216
  unsigned int is_insn : 1;
217
  unsigned int is_unreachable : 1;
218
 
219
  unsigned int is_specific_opcode : 1; /* also implies no_transform */
220
 
221
  unsigned int is_align : 1;
222
  unsigned int is_text_align : 1;
223
  unsigned int alignment : 5;
224
 
225
  /* A frag with this bit set is the first in a loop that actually
226
     contains an instruction.  */
227
  unsigned int is_first_loop_insn : 1;
228
 
229
  /* A frag with this bit set is a branch that we are using to
230
     align branch targets as if it were a normal narrow instruction.  */
231
  unsigned int is_aligning_branch : 1;
232
 
233
  /* For text fragments that can generate literals at relax time, this
234
     variable points to the frag where the literal will be stored.  For
235
     literal frags, this variable points to the nearest literal pool
236
     location frag.  This literal frag will be moved to after this
237
     location.  For RELAX_LITERAL_POOL_BEGIN frags, this field points
238
     to the frag immediately before the corresponding RELAX_LITERAL_POOL_END
239
     frag, to make moving frags for this literal pool efficient.  */
240
  fragS *literal_frag;
241
 
242
  /* The destination segment for literal frags.  (Note that this is only
243
     valid after xtensa_move_literals.)  This field is also used for
244
     LITERAL_POOL_END frags.  */
245
  segT lit_seg;
246
 
247
  /* Frag chain for LITERAL_POOL_BEGIN frags.  */
248
  struct frchain *lit_frchain;
249
 
250
  /* For the relaxation scheme, some literal fragments can have their
251
     expansions modified by an instruction that relaxes.  */
252
  int text_expansion[MAX_SLOTS];
253
  int literal_expansion[MAX_SLOTS];
254
  int unreported_expansion;
255
 
256
  /* For text fragments that can generate literals at relax time:  */
257
  fragS *literal_frags[MAX_SLOTS];
258
  enum xtensa_relax_statesE slot_subtypes[MAX_SLOTS];
259
  symbolS *slot_symbols[MAX_SLOTS];
260
  offsetT slot_offsets[MAX_SLOTS];
261
 
262
  /* The global aligner needs to walk backward through the list of
263
     frags.  This field is only valid after xtensa_end.  */
264
  fragS *fr_prev;
265
};
266
 
267
 
268
/* For VLIW support, we need to know what slot a fixup applies to.  */
269
typedef struct xtensa_fix_data_struct
270
{
271
  int slot;
272
  symbolS *X_add_symbol;
273
  offsetT X_add_number;
274
} xtensa_fix_data;
275
 
276
 
277
/* Structure to record xtensa-specific symbol information.  */
278
typedef struct xtensa_symfield_type
279
{
280
  unsigned int is_loop_target : 1;
281
  unsigned int is_branch_target : 1;
282
  symbolS *next_expr_symbol;
283
} xtensa_symfield_type;
284
 
285
 
286
/* Structure for saving information about a block of property data
287
   for frags that have the same flags.   The forward reference is
288
   in this header file.  The actual definition is in tc-xtensa.c.  */
289
struct xtensa_block_info_struct;
290
typedef struct xtensa_block_info_struct xtensa_block_info;
291
 
292
 
293
/* Property section types.  */
294
typedef enum
295
{
296
  xt_literal_sec,
297
  xt_prop_sec,
298
  max_xt_sec
299
} xt_section_type;
300
 
301
typedef struct xtensa_segment_info_struct
302
{
303
  fragS *literal_pool_loc;
304
  xtensa_block_info *blocks[max_xt_sec];
305
} xtensa_segment_info;
306
 
307
 
308
extern const char *xtensa_target_format (void);
309
extern void xtensa_init_fix_data (struct fix *);
310
extern void xtensa_frag_init (fragS *);
311
extern int xtensa_force_relocation (struct fix *);
312
extern int xtensa_validate_fix_sub (struct fix *);
313
extern void xtensa_frob_label (struct symbol *);
314
extern void xtensa_end (void);
315
extern void xtensa_post_relax_hook (void);
316
extern void xtensa_file_arch_init (bfd *);
317
extern void xtensa_flush_pending_output (void);
318
extern bfd_boolean xtensa_fix_adjustable (struct fix *);
319
extern void xtensa_symbol_new_hook (symbolS *);
320
extern long xtensa_relax_frag (fragS *, long, int *);
321
extern void xtensa_elf_section_change_hook (void);
322
extern int xtensa_unrecognized_line (int);
323
extern bfd_boolean xtensa_check_inside_bundle (void);
324
extern void xtensa_handle_align (fragS *);
325
extern char *xtensa_section_rename (char *);
326
 
327
#define TARGET_FORMAT                   xtensa_target_format ()
328
#define TARGET_ARCH                     bfd_arch_xtensa
329
#define TC_SEGMENT_INFO_TYPE            xtensa_segment_info
330
#define TC_SYMFIELD_TYPE                struct xtensa_symfield_type
331
#define TC_FIX_TYPE                     xtensa_fix_data
332
#define TC_INIT_FIX_DATA(x)             xtensa_init_fix_data (x)
333
#define TC_FRAG_TYPE                    struct xtensa_frag_type
334
#define TC_FRAG_INIT(frag)              xtensa_frag_init (frag)
335
#define TC_FORCE_RELOCATION(fix)        xtensa_force_relocation (fix)
336
#define TC_FORCE_RELOCATION_SUB_SAME(fix, seg) \
337
  (! SEG_NORMAL (seg) || xtensa_force_relocation (fix))
338
#define TC_VALIDATE_FIX_SUB(fix)        xtensa_validate_fix_sub (fix)
339
#define NO_PSEUDO_DOT                   xtensa_check_inside_bundle ()
340
#define tc_canonicalize_symbol_name(s)  xtensa_section_rename (s)
341
#define tc_canonicalize_section_name(s) xtensa_section_rename (s)
342
#define tc_init_after_args()            xtensa_file_arch_init (stdoutput)
343
#define tc_fix_adjustable(fix)          xtensa_fix_adjustable (fix)
344
#define tc_frob_label(sym)              xtensa_frob_label (sym)
345
#define tc_unrecognized_line(ch)        xtensa_unrecognized_line (ch)
346
#define tc_symbol_new_hook(sym)         xtensa_symbol_new_hook (sym)
347
#define md_do_align(a,b,c,d,e)          xtensa_flush_pending_output ()
348
#define md_elf_section_change_hook      xtensa_elf_section_change_hook
349
#define md_end                          xtensa_end
350
#define md_flush_pending_output()       xtensa_flush_pending_output ()
351
#define md_operand(x)
352
#define TEXT_SECTION_NAME               xtensa_section_rename (".text")
353
#define DATA_SECTION_NAME               xtensa_section_rename (".data")
354
#define BSS_SECTION_NAME                xtensa_section_rename (".bss")
355
#define HANDLE_ALIGN(fragP)             xtensa_handle_align (fragP)
356
#define MAX_MEM_FOR_RS_ALIGN_CODE       1
357
 
358
 
359
/* The renumber_section function must be mapped over all the sections
360
   after calling xtensa_post_relax_hook.  That function is static in
361
   write.c so it cannot be called from xtensa_post_relax_hook itself.  */
362
 
363
#define md_post_relax_hook \
364
  do \
365
    { \
366
      int i = 0; \
367
      xtensa_post_relax_hook (); \
368
      bfd_map_over_sections (stdoutput, renumber_sections, &i); \
369
    } \
370
  while (0)
371
 
372
 
373
/* Because xtensa relaxation can insert a new literal into the middle of
374
   fragment and thus require re-running the relaxation pass on the
375
   section, we need an explicit flag here.  We explicitly use the name
376
   "stretched" here to avoid changing the source code in write.c.  */
377
 
378
#define md_relax_frag(segment, fragP, stretch) \
379
  xtensa_relax_frag (fragP, stretch, &stretched)
380
 
381
/* Only allow call frame debug info optimization when linker relaxation is
382
   not enabled as otherwise we could generate the DWARF directives without
383
   the relocs necessary to patch them up.  */
384
#define md_allow_eh_opt (linkrelax == 0)
385
 
386
#define LOCAL_LABELS_FB 1
387
#define WORKING_DOT_WORD 1
388
#define DOUBLESLASH_LINE_COMMENTS
389
#define TC_HANDLES_FX_DONE
390
#define TC_FINALIZE_SYMS_BEFORE_SIZE_SEG 0
391
#define TC_LINKRELAX_FIXUP(SEG) 0
392
#define MD_APPLY_SYM_VALUE(FIX) 0
393
#define SUB_SEGMENT_ALIGN(SEG, FRCHAIN) 0
394
 
395
/* Use line number format that is amenable to linker relaxation.  */
396
#define DWARF2_USE_FIXED_ADVANCE_PC (linkrelax != 0)
397
 
398
 
399
/* Resource reservation info functions.  */
400
 
401
/* Returns the number of copies of a particular unit.  */
402
typedef int (*unit_num_copies_func) (void *, xtensa_funcUnit);
403
 
404
/* Returns the number of units the opcode uses.  */
405
typedef int (*opcode_num_units_func) (void *, xtensa_opcode);
406
 
407
/* Given an opcode and an index into the opcode's funcUnit list,
408
   returns the unit used for the index.  */
409
typedef int (*opcode_funcUnit_use_unit_func) (void *, xtensa_opcode, int);
410
 
411
/* Given an opcode and an index into the opcode's funcUnit list,
412
   returns the cycle during which the unit is used.  */
413
typedef int (*opcode_funcUnit_use_stage_func) (void *, xtensa_opcode, int);
414
 
415
/* The above typedefs parameterize the resource_table so that the
416
   optional scheduler doesn't need its own resource reservation system.
417
 
418
   For simple resource checking, which is all that happens normally,
419
   the functions will be as follows (with some wrapping to make the
420
   interface more convenient):
421
 
422
   unit_num_copies_func = xtensa_funcUnit_num_copies
423
   opcode_num_units_func = xtensa_opcode_num_funcUnit_uses
424
   opcode_funcUnit_use_unit_func = xtensa_opcode_funcUnit_use->unit
425
   opcode_funcUnit_use_stage_func = xtensa_opcode_funcUnit_use->stage
426
 
427
   Of course the optional scheduler has its own reservation table
428
   and functions.  */
429
 
430
int opcode_funcUnit_use_unit (void *, xtensa_opcode, int);
431
int opcode_funcUnit_use_stage (void *, xtensa_opcode, int);
432
 
433
typedef struct
434
{
435
  void *data;
436
  int cycles;
437
  int allocated_cycles;
438
  int num_units;
439
  unit_num_copies_func unit_num_copies;
440
  opcode_num_units_func opcode_num_units;
441
  opcode_funcUnit_use_unit_func opcode_unit_use;
442
  opcode_funcUnit_use_stage_func opcode_unit_stage;
443
  unsigned char **units;
444
} resource_table;
445
 
446
resource_table *new_resource_table
447
  (void *, int, int, unit_num_copies_func, opcode_num_units_func,
448
   opcode_funcUnit_use_unit_func, opcode_funcUnit_use_stage_func);
449
void resize_resource_table (resource_table *, int);
450
void clear_resource_table (resource_table *);
451
bfd_boolean resources_available (resource_table *, xtensa_opcode, int);
452
void reserve_resources (resource_table *, xtensa_opcode, int);
453
void release_resources (resource_table *, xtensa_opcode, int);
454
 
455
#endif /* TC_XTENSA */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.