OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [basic-block.h] - Blame information for rev 816

Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Define control and data flow tables, and regsets.
2
   Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3
   2007 Free Software Foundation, Inc.
4
 
5
This file is part of GCC.
6
 
7
GCC is free software; you can redistribute it and/or modify it under
8
the terms of the GNU General Public License as published by the Free
9
Software Foundation; either version 3, or (at your option) any later
10
version.
11
 
12
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13
WARRANTY; without even the implied warranty of MERCHANTABILITY or
14
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15
for more details.
16
 
17
You should have received a copy of the GNU General Public License
18
along with GCC; see the file COPYING3.  If not see
19
<http://www.gnu.org/licenses/>.  */
20
 
21
#ifndef GCC_BASIC_BLOCK_H
22
#define GCC_BASIC_BLOCK_H
23
 
24
#include "bitmap.h"
25
#include "sbitmap.h"
26
#include "varray.h"
27
#include "partition.h"
28
#include "hard-reg-set.h"
29
#include "predict.h"
30
#include "vec.h"
31
#include "function.h"
32
 
33
/* Head of register set linked list.  */
34
typedef bitmap_head regset_head;
35
 
36
/* A pointer to a regset_head.  */
37
typedef bitmap regset;
38
 
39
/* Allocate a register set with oballoc.  */
40
#define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
41
 
42
/* Do any cleanup needed on a regset when it is no longer used.  */
43
#define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
44
 
45
/* Initialize a new regset.  */
46
#define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
47
 
48
/* Clear a register set by freeing up the linked list.  */
49
#define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
50
 
51
/* Copy a register set to another register set.  */
52
#define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
53
 
54
/* Compare two register sets.  */
55
#define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
56
 
57
/* `and' a register set with a second register set.  */
58
#define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
59
 
60
/* `and' the complement of a register set with a register set.  */
61
#define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
62
 
63
/* Inclusive or a register set with a second register set.  */
64
#define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
65
 
66
/* Exclusive or a register set with a second register set.  */
67
#define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
68
 
69
/* Or into TO the register set FROM1 `and'ed with the complement of FROM2.  */
70
#define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71
  bitmap_ior_and_compl_into (TO, FROM1, FROM2)
72
 
73
/* Clear a single register in a register set.  */
74
#define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
75
 
76
/* Set a single register in a register set.  */
77
#define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
78
 
79
/* Return true if a register is set in a register set.  */
80
#define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
81
 
82
/* Copy the hard registers in a register set to the hard register set.  */
83
extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
84
#define REG_SET_TO_HARD_REG_SET(TO, FROM)                               \
85
do {                                                                    \
86
  CLEAR_HARD_REG_SET (TO);                                              \
87
  reg_set_to_hard_reg_set (&TO, FROM);                                  \
88
} while (0)
89
 
90
typedef bitmap_iterator reg_set_iterator;
91
 
92
/* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93
   register number and executing CODE for all registers that are set.  */
94
#define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI)     \
95
  EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
96
 
97
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98
   REGNUM to the register number and executing CODE for all registers that are
99
   set in the first regset and not set in the second.  */
100
#define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101
  EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
102
 
103
/* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104
   REGNUM to the register number and executing CODE for all registers that are
105
   set in both regsets.  */
106
#define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107
  EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
108
 
109
/* Type we use to hold basic block counters.  Should be at least
110
   64bit.  Although a counter cannot be negative, we use a signed
111
   type, because erroneous negative counts can be generated when the
112
   flow graph is manipulated by various optimizations.  A signed type
113
   makes those easy to detect.  */
114
typedef HOST_WIDEST_INT gcov_type;
115
 
116
/* Control flow edge information.  */
117
struct edge_def GTY(())
118
{
119
  /* The two blocks at the ends of the edge.  */
120
  struct basic_block_def *src;
121
  struct basic_block_def *dest;
122
 
123
  /* Instructions queued on the edge.  */
124
  union edge_def_insns {
125
    rtx GTY ((tag ("0"))) r;
126
    tree GTY ((tag ("1"))) t;
127
  } GTY ((desc ("ir_type ()"))) insns;
128
 
129
  /* Auxiliary info specific to a pass.  */
130
  PTR GTY ((skip (""))) aux;
131
 
132
  /* Location of any goto implicit in the edge, during tree-ssa.  */
133
  source_locus goto_locus;
134
 
135
  int flags;                    /* see EDGE_* below  */
136
  int probability;              /* biased by REG_BR_PROB_BASE */
137
  gcov_type count;              /* Expected number of executions calculated
138
                                   in profile.c  */
139
 
140
  /* The index number corresponding to this edge in the edge vector
141
     dest->preds.  */
142
  unsigned int dest_idx;
143
};
144
 
145
typedef struct edge_def *edge;
146
DEF_VEC_P(edge);
147
DEF_VEC_ALLOC_P(edge,gc);
148
 
149
#define EDGE_FALLTHRU           1       /* 'Straight line' flow */
150
#define EDGE_ABNORMAL           2       /* Strange flow, like computed
151
                                           label, or eh */
152
#define EDGE_ABNORMAL_CALL      4       /* Call with abnormal exit
153
                                           like an exception, or sibcall */
154
#define EDGE_EH                 8       /* Exception throw */
155
#define EDGE_FAKE               16      /* Not a real edge (profile.c) */
156
#define EDGE_DFS_BACK           32      /* A backwards edge */
157
#define EDGE_CAN_FALLTHRU       64      /* Candidate for straight line
158
                                           flow.  */
159
#define EDGE_IRREDUCIBLE_LOOP   128     /* Part of irreducible loop.  */
160
#define EDGE_SIBCALL            256     /* Edge from sibcall to exit.  */
161
#define EDGE_LOOP_EXIT          512     /* Exit of a loop.  */
162
#define EDGE_TRUE_VALUE         1024    /* Edge taken when controlling
163
                                           predicate is nonzero.  */
164
#define EDGE_FALSE_VALUE        2048    /* Edge taken when controlling
165
                                           predicate is zero.  */
166
#define EDGE_EXECUTABLE         4096    /* Edge is executable.  Only
167
                                           valid during SSA-CCP.  */
168
#define EDGE_CROSSING           8192    /* Edge crosses between hot
169
                                           and cold sections, when we
170
                                           do partitioning.  */
171
#define EDGE_ALL_FLAGS         16383
172
 
173
#define EDGE_COMPLEX    (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
174
 
175
/* Counter summary from the last set of coverage counts read by
176
   profile.c.  */
177
extern const struct gcov_ctr_summary *profile_info;
178
 
179
/* Declared in cfgloop.h.  */
180
struct loop;
181
struct loops;
182
 
183
/* Declared in tree-flow.h.  */
184
struct edge_prediction;
185
struct rtl_bb_info;
186
 
187
/* A basic block is a sequence of instructions with only entry and
188
   only one exit.  If any one of the instructions are executed, they
189
   will all be executed, and in sequence from first to last.
190
 
191
   There may be COND_EXEC instructions in the basic block.  The
192
   COND_EXEC *instructions* will be executed -- but if the condition
193
   is false the conditionally executed *expressions* will of course
194
   not be executed.  We don't consider the conditionally executed
195
   expression (which might have side-effects) to be in a separate
196
   basic block because the program counter will always be at the same
197
   location after the COND_EXEC instruction, regardless of whether the
198
   condition is true or not.
199
 
200
   Basic blocks need not start with a label nor end with a jump insn.
201
   For example, a previous basic block may just "conditionally fall"
202
   into the succeeding basic block, and the last basic block need not
203
   end with a jump insn.  Block 0 is a descendant of the entry block.
204
 
205
   A basic block beginning with two labels cannot have notes between
206
   the labels.
207
 
208
   Data for jump tables are stored in jump_insns that occur in no
209
   basic block even though these insns can follow or precede insns in
210
   basic blocks.  */
211
 
212
/* Basic block information indexed by block number.  */
213
struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
214
{
215
  /* Pointers to the first and last trees of the block.  */
216
  tree stmt_list;
217
 
218
  /* The edges into and out of the block.  */
219
  VEC(edge,gc) *preds;
220
  VEC(edge,gc) *succs;
221
 
222
  /* Auxiliary info specific to a pass.  */
223
  PTR GTY ((skip (""))) aux;
224
 
225
  /* Innermost loop containing the block.  */
226
  struct loop * GTY ((skip (""))) loop_father;
227
 
228
  /* The dominance and postdominance information node.  */
229
  struct et_node * GTY ((skip (""))) dom[2];
230
 
231
  /* Previous and next blocks in the chain.  */
232
  struct basic_block_def *prev_bb;
233
  struct basic_block_def *next_bb;
234
 
235
  union basic_block_il_dependent {
236
      struct rtl_bb_info * GTY ((tag ("1"))) rtl;
237
    } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
238
 
239
  /* Chain of PHI nodes for this block.  */
240
  tree phi_nodes;
241
 
242
  /* A list of predictions.  */
243
  struct edge_prediction *predictions;
244
 
245
  /* Expected number of executions: calculated in profile.c.  */
246
  gcov_type count;
247
 
248
  /* The index of this block.  */
249
  int index;
250
 
251
  /* The loop depth of this block.  */
252
  int loop_depth;
253
 
254
  /* Expected frequency.  Normalized to be in range 0 to BB_FREQ_MAX.  */
255
  int frequency;
256
 
257
  /* Various flags.  See BB_* below.  */
258
  int flags;
259
};
260
 
261
struct rtl_bb_info GTY(())
262
{
263
  /* The first and last insns of the block.  */
264
  rtx head_;
265
  rtx end_;
266
 
267
  /* The registers that are live on entry to this block.  */
268
  bitmap GTY ((skip (""))) global_live_at_start;
269
 
270
  /* The registers that are live on exit from this block.  */
271
  bitmap GTY ((skip (""))) global_live_at_end;
272
 
273
  /* In CFGlayout mode points to insn notes/jumptables to be placed just before
274
     and after the block.   */
275
  rtx header;
276
  rtx footer;
277
 
278
  /* This field is used by the bb-reorder and tracer passes.  */
279
  int visited;
280
};
281
 
282
typedef struct basic_block_def *basic_block;
283
 
284
DEF_VEC_P(basic_block);
285
DEF_VEC_ALLOC_P(basic_block,gc);
286
DEF_VEC_ALLOC_P(basic_block,heap);
287
 
288
#define BB_FREQ_MAX 10000
289
 
290
/* Masks for basic_block.flags.
291
 
292
   BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
293
   the compilation, so they are never cleared.
294
 
295
   All other flags may be cleared by clear_bb_flags().  It is generally
296
   a bad idea to rely on any flags being up-to-date.  */
297
 
298
enum bb_flags
299
{
300
 
301
  /* Set if insns in BB have are modified.  Used for updating liveness info.  */
302
  BB_DIRTY = 1,
303
 
304
  /* Only set on blocks that have just been created by create_bb.  */
305
  BB_NEW = 2,
306
 
307
  /* Set by find_unreachable_blocks.  Do not rely on this being set in any
308
     pass.  */
309
  BB_REACHABLE = 4,
310
 
311
  /* Set for blocks in an irreducible loop by loop analysis.  */
312
  BB_IRREDUCIBLE_LOOP = 8,
313
 
314
  /* Set on blocks that may actually not be single-entry single-exit block.  */
315
  BB_SUPERBLOCK = 16,
316
 
317
  /* Set on basic blocks that the scheduler should not touch.  This is used
318
     by SMS to prevent other schedulers from messing with the loop schedule.  */
319
  BB_DISABLE_SCHEDULE = 32,
320
 
321
  /* Set on blocks that should be put in a hot section.  */
322
  BB_HOT_PARTITION = 64,
323
 
324
  /* Set on blocks that should be put in a cold section.  */
325
  BB_COLD_PARTITION = 128,
326
 
327
  /* Set on block that was duplicated.  */
328
  BB_DUPLICATED = 256,
329
 
330
  /* Set on blocks that are in RTL format.  */
331
  BB_RTL = 1024,
332
 
333
  /* Set on blocks that are forwarder blocks.
334
     Only used in cfgcleanup.c.  */
335
  BB_FORWARDER_BLOCK = 2048,
336
 
337
  /* Set on blocks that cannot be threaded through.
338
     Only used in cfgcleanup.c.  */
339
  BB_NONTHREADABLE_BLOCK = 4096
340
};
341
 
342
/* Dummy flag for convenience in the hot/cold partitioning code.  */
343
#define BB_UNPARTITIONED        0
344
 
345
/* Partitions, to be used when partitioning hot and cold basic blocks into
346
   separate sections.  */
347
#define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
348
#define BB_SET_PARTITION(bb, part) do {                                 \
349
  basic_block bb_ = (bb);                                               \
350
  bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION))    \
351
                | (part));                                              \
352
} while (0)
353
 
354
#define BB_COPY_PARTITION(dstbb, srcbb) \
355
  BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
356
 
357
/* A structure to group all the per-function control flow graph data.
358
   The x_* prefixing is necessary because otherwise references to the
359
   fields of this struct are interpreted as the defines for backward
360
   source compatibility following the definition of this struct.  */
361
struct control_flow_graph GTY(())
362
{
363
  /* Block pointers for the exit and entry of a function.
364
     These are always the head and tail of the basic block list.  */
365
  basic_block x_entry_block_ptr;
366
  basic_block x_exit_block_ptr;
367
 
368
  /* Index by basic block number, get basic block struct info.  */
369
  VEC(basic_block,gc) *x_basic_block_info;
370
 
371
  /* Number of basic blocks in this flow graph.  */
372
  int x_n_basic_blocks;
373
 
374
  /* Number of edges in this flow graph.  */
375
  int x_n_edges;
376
 
377
  /* The first free basic block number.  */
378
  int x_last_basic_block;
379
 
380
  /* Mapping of labels to their associated blocks.  At present
381
     only used for the tree CFG.  */
382
  VEC(basic_block,gc) *x_label_to_block_map;
383
 
384
  enum profile_status {
385
    PROFILE_ABSENT,
386
    PROFILE_GUESSED,
387
    PROFILE_READ
388
  } x_profile_status;
389
};
390
 
391
/* Defines for accessing the fields of the CFG structure for function FN.  */
392
#define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN)     ((FN)->cfg->x_entry_block_ptr)
393
#define EXIT_BLOCK_PTR_FOR_FUNCTION(FN)      ((FN)->cfg->x_exit_block_ptr)
394
#define basic_block_info_for_function(FN)    ((FN)->cfg->x_basic_block_info)
395
#define n_basic_blocks_for_function(FN)      ((FN)->cfg->x_n_basic_blocks)
396
#define n_edges_for_function(FN)             ((FN)->cfg->x_n_edges)
397
#define last_basic_block_for_function(FN)    ((FN)->cfg->x_last_basic_block)
398
#define label_to_block_map_for_function(FN)  ((FN)->cfg->x_label_to_block_map)
399
 
400
#define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
401
  (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
402
 
403
/* Defines for textual backward source compatibility.  */
404
#define ENTRY_BLOCK_PTR         (cfun->cfg->x_entry_block_ptr)
405
#define EXIT_BLOCK_PTR          (cfun->cfg->x_exit_block_ptr)
406
#define basic_block_info        (cfun->cfg->x_basic_block_info)
407
#define n_basic_blocks          (cfun->cfg->x_n_basic_blocks)
408
#define n_edges                 (cfun->cfg->x_n_edges)
409
#define last_basic_block        (cfun->cfg->x_last_basic_block)
410
#define label_to_block_map      (cfun->cfg->x_label_to_block_map)
411
#define profile_status          (cfun->cfg->x_profile_status)
412
 
413
#define BASIC_BLOCK(N)          (VEC_index (basic_block, basic_block_info, (N)))
414
#define SET_BASIC_BLOCK(N,BB)   (VEC_replace (basic_block, basic_block_info, (N), (BB)))
415
 
416
/* For iterating over basic blocks.  */
417
#define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
418
  for (BB = FROM; BB != TO; BB = BB->DIR)
419
 
420
#define FOR_EACH_BB_FN(BB, FN) \
421
  FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
422
 
423
#define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
424
 
425
#define FOR_EACH_BB_REVERSE_FN(BB, FN) \
426
  FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
427
 
428
#define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
429
 
430
/* For iterating over insns in basic block.  */
431
#define FOR_BB_INSNS(BB, INSN)                  \
432
  for ((INSN) = BB_HEAD (BB);                   \
433
       (INSN) && (INSN) != NEXT_INSN (BB_END (BB));     \
434
       (INSN) = NEXT_INSN (INSN))
435
 
436
#define FOR_BB_INSNS_REVERSE(BB, INSN)          \
437
  for ((INSN) = BB_END (BB);                    \
438
       (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB));    \
439
       (INSN) = PREV_INSN (INSN))
440
 
441
/* Cycles through _all_ basic blocks, even the fake ones (entry and
442
   exit block).  */
443
 
444
#define FOR_ALL_BB(BB) \
445
  for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
446
 
447
#define FOR_ALL_BB_FN(BB, FN) \
448
  for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
449
 
450
extern bitmap_obstack reg_obstack;
451
 
452
/* Indexed by n, gives number of basic block that  (REG n) is used in.
453
   If the value is REG_BLOCK_GLOBAL (-2),
454
   it means (REG n) is used in more than one basic block.
455
   REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
456
   This information remains valid for the rest of the compilation
457
   of the current function; it is used to control register allocation.  */
458
 
459
#define REG_BLOCK_UNKNOWN -1
460
#define REG_BLOCK_GLOBAL -2
461
 
462
#define REG_BASIC_BLOCK(N)                              \
463
  (VEC_index (reg_info_p, reg_n_info, N)->basic_block)
464
 
465
/* Stuff for recording basic block info.  */
466
 
467
#define BB_HEAD(B)      (B)->il.rtl->head_
468
#define BB_END(B)       (B)->il.rtl->end_
469
 
470
/* Special block numbers [markers] for entry and exit.  */
471
#define ENTRY_BLOCK (0)
472
#define EXIT_BLOCK (1)
473
 
474
/* The two blocks that are always in the cfg.  */
475
#define NUM_FIXED_BLOCKS (2)
476
 
477
 
478
#define BLOCK_NUM(INSN)       (BLOCK_FOR_INSN (INSN)->index + 0)
479
#define set_block_for_insn(INSN, BB)  (BLOCK_FOR_INSN (INSN) = BB)
480
 
481
extern void compute_bb_for_insn (void);
482
extern unsigned int free_bb_for_insn (void);
483
extern void update_bb_for_insn (basic_block);
484
 
485
extern void free_basic_block_vars (void);
486
 
487
extern void insert_insn_on_edge (rtx, edge);
488
 
489
extern void commit_edge_insertions (void);
490
extern void commit_edge_insertions_watch_calls (void);
491
 
492
extern void remove_fake_edges (void);
493
extern void remove_fake_exit_edges (void);
494
extern void add_noreturn_fake_exit_edges (void);
495
extern void connect_infinite_loops_to_exit (void);
496
extern edge unchecked_make_edge (basic_block, basic_block, int);
497
extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
498
extern edge make_edge (basic_block, basic_block, int);
499
extern edge make_single_succ_edge (basic_block, basic_block, int);
500
extern void remove_edge (edge);
501
extern void redirect_edge_succ (edge, basic_block);
502
extern edge redirect_edge_succ_nodup (edge, basic_block);
503
extern void redirect_edge_pred (edge, basic_block);
504
extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
505
extern void clear_bb_flags (void);
506
extern int post_order_compute (int *, bool);
507
extern int pre_and_rev_post_order_compute (int *, int *, bool);
508
extern int dfs_enumerate_from (basic_block, int,
509
                               bool (*)(basic_block, void *),
510
                               basic_block *, int, void *);
511
extern void compute_dominance_frontiers (bitmap *);
512
extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
513
extern void dump_edge_info (FILE *, edge, int);
514
extern void brief_dump_cfg (FILE *);
515
extern void clear_edges (void);
516
extern rtx first_insn_after_basic_block_note (basic_block);
517
extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
518
extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
519
                                             gcov_type);
520
 
521
/* Structure to group all of the information to process IF-THEN and
522
   IF-THEN-ELSE blocks for the conditional execution support.  This
523
   needs to be in a public file in case the IFCVT macros call
524
   functions passing the ce_if_block data structure.  */
525
 
526
typedef struct ce_if_block
527
{
528
  basic_block test_bb;                  /* First test block.  */
529
  basic_block then_bb;                  /* THEN block.  */
530
  basic_block else_bb;                  /* ELSE block or NULL.  */
531
  basic_block join_bb;                  /* Join THEN/ELSE blocks.  */
532
  basic_block last_test_bb;             /* Last bb to hold && or || tests.  */
533
  int num_multiple_test_blocks;         /* # of && and || basic blocks.  */
534
  int num_and_and_blocks;               /* # of && blocks.  */
535
  int num_or_or_blocks;                 /* # of || blocks.  */
536
  int num_multiple_test_insns;          /* # of insns in && and || blocks.  */
537
  int and_and_p;                        /* Complex test is &&.  */
538
  int num_then_insns;                   /* # of insns in THEN block.  */
539
  int num_else_insns;                   /* # of insns in ELSE block.  */
540
  int pass;                             /* Pass number.  */
541
 
542
#ifdef IFCVT_EXTRA_FIELDS
543
  IFCVT_EXTRA_FIELDS                    /* Any machine dependent fields.  */
544
#endif
545
 
546
} ce_if_block_t;
547
 
548
/* This structure maintains an edge list vector.  */
549
struct edge_list
550
{
551
  int num_blocks;
552
  int num_edges;
553
  edge *index_to_edge;
554
};
555
 
556
/* The base value for branch probability notes and edge probabilities.  */
557
#define REG_BR_PROB_BASE  10000
558
 
559
/* This is the value which indicates no edge is present.  */
560
#define EDGE_INDEX_NO_EDGE      -1
561
 
562
/* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
563
   if there is no edge between the 2 basic blocks.  */
564
#define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
565
 
566
/* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
567
   block which is either the pred or succ end of the indexed edge.  */
568
#define INDEX_EDGE_PRED_BB(el, index)   ((el)->index_to_edge[(index)]->src)
569
#define INDEX_EDGE_SUCC_BB(el, index)   ((el)->index_to_edge[(index)]->dest)
570
 
571
/* INDEX_EDGE returns a pointer to the edge.  */
572
#define INDEX_EDGE(el, index)           ((el)->index_to_edge[(index)])
573
 
574
/* Number of edges in the compressed edge list.  */
575
#define NUM_EDGES(el)                   ((el)->num_edges)
576
 
577
/* BB is assumed to contain conditional jump.  Return the fallthru edge.  */
578
#define FALLTHRU_EDGE(bb)               (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
579
                                         ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
580
 
581
/* BB is assumed to contain conditional jump.  Return the branch edge.  */
582
#define BRANCH_EDGE(bb)                 (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
583
                                         ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
584
 
585
/* Return expected execution frequency of the edge E.  */
586
#define EDGE_FREQUENCY(e)               (((e)->src->frequency \
587
                                          * (e)->probability \
588
                                          + REG_BR_PROB_BASE / 2) \
589
                                         / REG_BR_PROB_BASE)
590
 
591
/* Return nonzero if edge is critical.  */
592
#define EDGE_CRITICAL_P(e)              (EDGE_COUNT ((e)->src->succs) >= 2 \
593
                                         && EDGE_COUNT ((e)->dest->preds) >= 2)
594
 
595
#define EDGE_COUNT(ev)                  VEC_length (edge, (ev))
596
#define EDGE_I(ev,i)                    VEC_index  (edge, (ev), (i))
597
#define EDGE_PRED(bb,i)                 VEC_index  (edge, (bb)->preds, (i))
598
#define EDGE_SUCC(bb,i)                 VEC_index  (edge, (bb)->succs, (i))
599
 
600
/* Returns true if BB has precisely one successor.  */
601
 
602
static inline bool
603
single_succ_p (basic_block bb)
604
{
605
  return EDGE_COUNT (bb->succs) == 1;
606
}
607
 
608
/* Returns true if BB has precisely one predecessor.  */
609
 
610
static inline bool
611
single_pred_p (basic_block bb)
612
{
613
  return EDGE_COUNT (bb->preds) == 1;
614
}
615
 
616
/* Returns the single successor edge of basic block BB.  Aborts if
617
   BB does not have exactly one successor.  */
618
 
619
static inline edge
620
single_succ_edge (basic_block bb)
621
{
622
  gcc_assert (single_succ_p (bb));
623
  return EDGE_SUCC (bb, 0);
624
}
625
 
626
/* Returns the single predecessor edge of basic block BB.  Aborts
627
   if BB does not have exactly one predecessor.  */
628
 
629
static inline edge
630
single_pred_edge (basic_block bb)
631
{
632
  gcc_assert (single_pred_p (bb));
633
  return EDGE_PRED (bb, 0);
634
}
635
 
636
/* Returns the single successor block of basic block BB.  Aborts
637
   if BB does not have exactly one successor.  */
638
 
639
static inline basic_block
640
single_succ (basic_block bb)
641
{
642
  return single_succ_edge (bb)->dest;
643
}
644
 
645
/* Returns the single predecessor block of basic block BB.  Aborts
646
   if BB does not have exactly one predecessor.*/
647
 
648
static inline basic_block
649
single_pred (basic_block bb)
650
{
651
  return single_pred_edge (bb)->src;
652
}
653
 
654
/* Iterator object for edges.  */
655
 
656
typedef struct {
657
  unsigned index;
658
  VEC(edge,gc) **container;
659
} edge_iterator;
660
 
661
static inline VEC(edge,gc) *
662
ei_container (edge_iterator i)
663
{
664
  gcc_assert (i.container);
665
  return *i.container;
666
}
667
 
668
#define ei_start(iter) ei_start_1 (&(iter))
669
#define ei_last(iter) ei_last_1 (&(iter))
670
 
671
/* Return an iterator pointing to the start of an edge vector.  */
672
static inline edge_iterator
673
ei_start_1 (VEC(edge,gc) **ev)
674
{
675
  edge_iterator i;
676
 
677
  i.index = 0;
678
  i.container = ev;
679
 
680
  return i;
681
}
682
 
683
/* Return an iterator pointing to the last element of an edge
684
   vector.  */
685
static inline edge_iterator
686
ei_last_1 (VEC(edge,gc) **ev)
687
{
688
  edge_iterator i;
689
 
690
  i.index = EDGE_COUNT (*ev) - 1;
691
  i.container = ev;
692
 
693
  return i;
694
}
695
 
696
/* Is the iterator `i' at the end of the sequence?  */
697
static inline bool
698
ei_end_p (edge_iterator i)
699
{
700
  return (i.index == EDGE_COUNT (ei_container (i)));
701
}
702
 
703
/* Is the iterator `i' at one position before the end of the
704
   sequence?  */
705
static inline bool
706
ei_one_before_end_p (edge_iterator i)
707
{
708
  return (i.index + 1 == EDGE_COUNT (ei_container (i)));
709
}
710
 
711
/* Advance the iterator to the next element.  */
712
static inline void
713
ei_next (edge_iterator *i)
714
{
715
  gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
716
  i->index++;
717
}
718
 
719
/* Move the iterator to the previous element.  */
720
static inline void
721
ei_prev (edge_iterator *i)
722
{
723
  gcc_assert (i->index > 0);
724
  i->index--;
725
}
726
 
727
/* Return the edge pointed to by the iterator `i'.  */
728
static inline edge
729
ei_edge (edge_iterator i)
730
{
731
  return EDGE_I (ei_container (i), i.index);
732
}
733
 
734
/* Return an edge pointed to by the iterator.  Do it safely so that
735
   NULL is returned when the iterator is pointing at the end of the
736
   sequence.  */
737
static inline edge
738
ei_safe_edge (edge_iterator i)
739
{
740
  return !ei_end_p (i) ? ei_edge (i) : NULL;
741
}
742
 
743
/* Return 1 if we should continue to iterate.  Return 0 otherwise.
744
   *Edge P is set to the next edge if we are to continue to iterate
745
   and NULL otherwise.  */
746
 
747
static inline bool
748
ei_cond (edge_iterator ei, edge *p)
749
{
750
  if (!ei_end_p (ei))
751
    {
752
      *p = ei_edge (ei);
753
      return 1;
754
    }
755
  else
756
    {
757
      *p = NULL;
758
      return 0;
759
    }
760
}
761
 
762
/* This macro serves as a convenient way to iterate each edge in a
763
   vector of predecessor or successor edges.  It must not be used when
764
   an element might be removed during the traversal, otherwise
765
   elements will be missed.  Instead, use a for-loop like that shown
766
   in the following pseudo-code:
767
 
768
   FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
769
     {
770
        IF (e != taken_edge)
771
          remove_edge (e);
772
        ELSE
773
          ei_next (&ei);
774
     }
775
*/
776
 
777
#define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC)       \
778
  for ((ITER) = ei_start ((EDGE_VEC));          \
779
       ei_cond ((ITER), &(EDGE));               \
780
       ei_next (&(ITER)))
781
 
782
struct edge_list * create_edge_list (void);
783
void free_edge_list (struct edge_list *);
784
void print_edge_list (FILE *, struct edge_list *);
785
void verify_edge_list (FILE *, struct edge_list *);
786
int find_edge_index (struct edge_list *, basic_block, basic_block);
787
edge find_edge (basic_block, basic_block);
788
 
789
 
790
enum update_life_extent
791
{
792
  UPDATE_LIFE_LOCAL = 0,
793
  UPDATE_LIFE_GLOBAL = 1,
794
  UPDATE_LIFE_GLOBAL_RM_NOTES = 2
795
};
796
 
797
/* Flags for life_analysis and update_life_info.  */
798
 
799
#define PROP_DEATH_NOTES        1       /* Create DEAD and UNUSED notes.  */
800
#define PROP_LOG_LINKS          2       /* Create LOG_LINKS.  */
801
#define PROP_REG_INFO           4       /* Update regs_ever_live et al.  */
802
#define PROP_KILL_DEAD_CODE     8       /* Remove dead code.  */
803
#define PROP_SCAN_DEAD_CODE     16      /* Scan for dead code.  */
804
#define PROP_ALLOW_CFG_CHANGES  32      /* Allow the CFG to be changed
805
                                           by dead code removal.  */
806
#define PROP_AUTOINC            64      /* Create autoinc mem references.  */
807
#define PROP_SCAN_DEAD_STORES   128     /* Scan for dead code.  */
808
#define PROP_ASM_SCAN           256     /* Internal flag used within flow.c
809
                                           to flag analysis of asms.  */
810
#define PROP_DEAD_INSN          1024    /* Internal flag used within flow.c
811
                                           to flag analysis of dead insn.  */
812
#define PROP_POST_REGSTACK      2048    /* We run after reg-stack and need
813
                                           to preserve REG_DEAD notes for
814
                                           stack regs.  */
815
#define PROP_FINAL              (PROP_DEATH_NOTES | PROP_LOG_LINKS  \
816
                                 | PROP_REG_INFO | PROP_KILL_DEAD_CODE  \
817
                                 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
818
                                 | PROP_ALLOW_CFG_CHANGES \
819
                                 | PROP_SCAN_DEAD_STORES)
820
#define PROP_POSTRELOAD         (PROP_DEATH_NOTES  \
821
                                 | PROP_KILL_DEAD_CODE  \
822
                                 | PROP_SCAN_DEAD_CODE \
823
                                 | PROP_SCAN_DEAD_STORES)
824
 
825
#define CLEANUP_EXPENSIVE       1       /* Do relatively expensive optimizations
826
                                           except for edge forwarding */
827
#define CLEANUP_CROSSJUMP       2       /* Do crossjumping.  */
828
#define CLEANUP_POST_REGSTACK   4       /* We run after reg-stack and need
829
                                           to care REG_DEAD notes.  */
830
#define CLEANUP_UPDATE_LIFE     8       /* Keep life information up to date.  */
831
#define CLEANUP_THREADING       16      /* Do jump threading.  */
832
#define CLEANUP_NO_INSN_DEL     32      /* Do not try to delete trivially dead
833
                                           insns.  */
834
#define CLEANUP_CFGLAYOUT       64      /* Do cleanup in cfglayout mode.  */
835
#define CLEANUP_LOG_LINKS       128     /* Update log links.  */
836
 
837
/* The following are ORed in on top of the CLEANUP* flags in calls to
838
   struct_equiv_block_eq.  */
839
#define STRUCT_EQUIV_START      256      /* Initializes the search range.  */
840
#define STRUCT_EQUIV_RERUN      512     /* Rerun to find register use in
841
                                           found equivalence.  */
842
#define STRUCT_EQUIV_FINAL      1024    /* Make any changes necessary to get
843
                                           actual equivalence.  */
844
#define STRUCT_EQUIV_NEED_FULL_BLOCK 2048 /* struct_equiv_block_eq is required
845
                                             to match only full blocks  */
846
#define STRUCT_EQUIV_MATCH_JUMPS 4096   /* Also include the jumps at the end of the block in the comparison.  */
847
 
848
extern void life_analysis (int);
849
extern int update_life_info (sbitmap, enum update_life_extent, int);
850
extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
851
extern int count_or_remove_death_notes (sbitmap, int);
852
extern int propagate_block (basic_block, regset, regset, regset, int);
853
 
854
struct propagate_block_info;
855
extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
856
extern struct propagate_block_info *init_propagate_block_info
857
 (basic_block, regset, regset, regset, int);
858
extern void free_propagate_block_info (struct propagate_block_info *);
859
 
860
/* In lcm.c */
861
extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
862
                                       sbitmap *, sbitmap *, sbitmap **,
863
                                       sbitmap **);
864
extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
865
                                           sbitmap *, sbitmap *,
866
                                           sbitmap *, sbitmap **,
867
                                           sbitmap **);
868
extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
869
 
870
/* In predict.c */
871
extern void expected_value_to_br_prob (void);
872
extern bool maybe_hot_bb_p (basic_block);
873
extern bool probably_cold_bb_p (basic_block);
874
extern bool probably_never_executed_bb_p (basic_block);
875
extern bool tree_predicted_by_p (basic_block, enum br_predictor);
876
extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
877
extern void tree_predict_edge (edge, enum br_predictor, int);
878
extern void rtl_predict_edge (edge, enum br_predictor, int);
879
extern void predict_edge_def (edge, enum br_predictor, enum prediction);
880
extern void guess_outgoing_edge_probabilities (basic_block);
881
extern void remove_predictions_associated_with_edge (edge);
882
extern bool edge_probability_reliable_p (edge);
883
extern bool br_prob_note_reliable_p (rtx);
884
 
885
/* In flow.c */
886
extern void init_flow (void);
887
extern void debug_bb (basic_block);
888
extern basic_block debug_bb_n (int);
889
extern void dump_regset (regset, FILE *);
890
extern void debug_regset (regset);
891
extern void allocate_reg_life_data (void);
892
extern void expunge_block (basic_block);
893
extern void link_block (basic_block, basic_block);
894
extern void unlink_block (basic_block);
895
extern void compact_blocks (void);
896
extern basic_block alloc_block (void);
897
extern void find_unreachable_blocks (void);
898
extern int delete_noop_moves (void);
899
extern basic_block force_nonfallthru (edge);
900
extern rtx block_label (basic_block);
901
extern bool forwarder_block_p (basic_block);
902
extern bool purge_all_dead_edges (void);
903
extern bool purge_dead_edges (basic_block);
904
extern void find_many_sub_basic_blocks (sbitmap);
905
extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
906
extern bool can_fallthru (basic_block, basic_block);
907
extern bool could_fall_through (basic_block, basic_block);
908
extern void flow_nodes_print (const char *, const sbitmap, FILE *);
909
extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
910
extern void alloc_aux_for_block (basic_block, int);
911
extern void alloc_aux_for_blocks (int);
912
extern void clear_aux_for_blocks (void);
913
extern void free_aux_for_blocks (void);
914
extern void alloc_aux_for_edge (edge, int);
915
extern void alloc_aux_for_edges (int);
916
extern void clear_aux_for_edges (void);
917
extern void free_aux_for_edges (void);
918
extern void find_basic_blocks (rtx);
919
extern bool cleanup_cfg (int);
920
extern bool delete_unreachable_blocks (void);
921
extern bool merge_seq_blocks (void);
922
 
923
typedef struct conflict_graph_def *conflict_graph;
924
 
925
/* Callback function when enumerating conflicts.  The arguments are
926
   the smaller and larger regno in the conflict.  Returns zero if
927
   enumeration is to continue, nonzero to halt enumeration.  */
928
typedef int (*conflict_graph_enum_fn) (int, int, void *);
929
 
930
 
931
/* Prototypes of operations on conflict graphs.  */
932
 
933
extern conflict_graph conflict_graph_new
934
 (int);
935
extern void conflict_graph_delete (conflict_graph);
936
extern int conflict_graph_add (conflict_graph, int, int);
937
extern int conflict_graph_conflict_p (conflict_graph, int, int);
938
extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
939
                                 void *);
940
extern void conflict_graph_merge_regs (conflict_graph, int, int);
941
extern void conflict_graph_print (conflict_graph, FILE*);
942
extern bool mark_dfs_back_edges (void);
943
extern void set_edge_can_fallthru_flag (void);
944
extern void update_br_prob_note (basic_block);
945
extern void fixup_abnormal_edges (void);
946
extern bool inside_basic_block_p (rtx);
947
extern bool control_flow_insn_p (rtx);
948
extern rtx get_last_bb_insn (basic_block);
949
 
950
/* In bb-reorder.c */
951
extern void reorder_basic_blocks (unsigned int);
952
 
953
/* In dominance.c */
954
 
955
enum cdi_direction
956
{
957
  CDI_DOMINATORS,
958
  CDI_POST_DOMINATORS
959
};
960
 
961
enum dom_state
962
{
963
  DOM_NONE,             /* Not computed at all.  */
964
  DOM_NO_FAST_QUERY,    /* The data is OK, but the fast query data are not usable.  */
965
  DOM_OK                /* Everything is ok.  */
966
};
967
 
968
extern enum dom_state dom_computed[2];
969
 
970
extern bool dom_info_available_p (enum cdi_direction);
971
extern void calculate_dominance_info (enum cdi_direction);
972
extern void free_dominance_info (enum cdi_direction);
973
extern basic_block nearest_common_dominator (enum cdi_direction,
974
                                             basic_block, basic_block);
975
extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
976
                                                     bitmap);
977
extern void set_immediate_dominator (enum cdi_direction, basic_block,
978
                                     basic_block);
979
extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
980
extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
981
extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
982
extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
983
                                         unsigned, basic_block *);
984
extern void add_to_dominance_info (enum cdi_direction, basic_block);
985
extern void delete_from_dominance_info (enum cdi_direction, basic_block);
986
basic_block recount_dominator (enum cdi_direction, basic_block);
987
extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
988
                                           basic_block);
989
extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
990
extern void verify_dominators (enum cdi_direction);
991
extern basic_block first_dom_son (enum cdi_direction, basic_block);
992
extern basic_block next_dom_son (enum cdi_direction, basic_block);
993
unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
994
unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
995
 
996
extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
997
extern void break_superblocks (void);
998
extern void check_bb_profile (basic_block, FILE *);
999
extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
1000
extern void init_rtl_bb_info (basic_block);
1001
 
1002
extern void initialize_original_copy_tables (void);
1003
extern void free_original_copy_tables (void);
1004
extern void set_bb_original (basic_block, basic_block);
1005
extern basic_block get_bb_original (basic_block);
1006
extern void set_bb_copy (basic_block, basic_block);
1007
extern basic_block get_bb_copy (basic_block);
1008
 
1009
extern rtx insert_insn_end_bb_new (rtx, basic_block);
1010
 
1011
#include "cfghooks.h"
1012
 
1013
/* In struct-equiv.c */
1014
 
1015
/* Constants used to size arrays in struct equiv_info (currently only one).
1016
   When these limits are exceeded, struct_equiv returns zero.
1017
   The maximum number of pseudo registers that are different in the two blocks,
1018
   but appear in equivalent places and are dead at the end (or where one of
1019
   a pair is dead at the end).  */
1020
#define STRUCT_EQUIV_MAX_LOCAL 16
1021
/* The maximum number of references to an input register that struct_equiv
1022
   can handle.  */
1023
 
1024
/* Structure used to track state during struct_equiv that can be rolled
1025
   back when we find we can't match an insn, or if we want to match part
1026
   of it in a different way.
1027
   This information pertains to the pair of partial blocks that has been
1028
   matched so far.  Since this pair is structurally equivalent, this is
1029
   conceptually just one partial block expressed in two potentially
1030
   different ways.  */
1031
struct struct_equiv_checkpoint
1032
{
1033
  int ninsns;       /* Insns are matched so far.  */
1034
  int local_count;  /* Number of block-local registers.  */
1035
  int input_count;  /* Number of inputs to the block.  */
1036
 
1037
  /* X_START and Y_START are the first insns (in insn stream order)
1038
     of the partial blocks that have been considered for matching so far.
1039
     Since we are scanning backwards, they are also the instructions that
1040
     are currently considered - or the last ones that have been considered -
1041
     for matching (Unless we tracked back to these because a preceding
1042
     instruction failed to match).  */
1043
  rtx x_start, y_start;
1044
 
1045
  /*  INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1046
      during the current pass; we keep X_INPUT / Y_INPUT around between passes
1047
      so that we can match REG_EQUAL / REG_EQUIV notes referring to these.  */
1048
  bool input_valid;
1049
 
1050
  /* Some information would be expensive to exactly checkpoint, so we
1051
     merely increment VERSION any time information about local
1052
     registers, inputs and/or register liveness changes.  When backtracking,
1053
     it is decremented for changes that can be undone, and if a discrepancy
1054
     remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1055
     that a new pass should be made over the entire block match to get
1056
     accurate register information.  */
1057
  int version;
1058
};
1059
 
1060
/* A struct equiv_info is used to pass information to struct_equiv and
1061
   to gather state while two basic blocks are checked for structural
1062
   equivalence.  */
1063
 
1064
struct equiv_info
1065
{
1066
  /* Fields set up by the caller to struct_equiv_block_eq */
1067
 
1068
  basic_block x_block, y_block;  /* The two blocks being matched.  */
1069
 
1070
  /* MODE carries the mode bits from cleanup_cfg if we are called from
1071
     try_crossjump_to_edge, and additionally it carries the
1072
     STRUCT_EQUIV_* bits described above.  */
1073
  int mode;
1074
 
1075
  /* INPUT_COST is the cost that adding an extra input to the matched blocks
1076
     is supposed to have, and is taken into account when considering if the
1077
     matched sequence should be extended backwards.  input_cost < 0 means
1078
     don't accept any inputs at all.  */
1079
  int input_cost;
1080
 
1081
 
1082
  /* Fields to track state inside of struct_equiv_block_eq.  Some of these
1083
     are also outputs.  */
1084
 
1085
  /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1086
     is used as an input parameter, i.e. where different registers are used
1087
     as sources.  This is only used for a register that is live at the end
1088
     of the blocks, or in some identical code at the end of the blocks;
1089
     Inputs that are dead at the end go into X_LOCAL / Y_LOCAL.  */
1090
  rtx x_input, y_input;
1091
  /* When a previous pass has identified a valid input, INPUT_REG is set
1092
     by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1093
     for the input.  */
1094
  rtx input_reg;
1095
 
1096
  /* COMMON_LIVE keeps track of the registers which are currently live
1097
     (as we scan backwards from the end) and have the same numbers in both
1098
     blocks.  N.B. a register that is in common_live is unsuitable to become
1099
     a local reg.  */
1100
  regset common_live;
1101
  /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1102
     local to one of the blocks; these registers must not be accepted as
1103
     identical when encountered in both blocks.  */
1104
  regset x_local_live, y_local_live;
1105
 
1106
  /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1107
     being used, to avoid having to backtrack in the next pass, so that we
1108
     get accurate life info for this insn then.  For each such insn,
1109
     the bit with the number corresponding to the CUR.NINSNS value at the
1110
     time of scanning is set.  */
1111
  bitmap equiv_used;
1112
 
1113
  /* Current state that can be saved & restored easily.  */
1114
  struct struct_equiv_checkpoint cur;
1115
  /* BEST_MATCH is used to store the best match so far, weighing the
1116
     cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1117
     CUR.INPUT_COUNT * INPUT_COST of setting up the inputs.  */
1118
  struct struct_equiv_checkpoint best_match;
1119
  /* If a checkpoint restore failed, or an input conflict newly arises,
1120
     NEED_RERUN is set.  This has to be tested by the caller to re-run
1121
     the comparison if the match appears otherwise sound.  The state kept in
1122
     x_start, y_start, equiv_used and check_input_conflict ensures that
1123
     we won't loop indefinitely.  */
1124
  bool need_rerun;
1125
  /* If there is indication of an input conflict at the end,
1126
     CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1127
     for each insn in the next pass.  This is needed so that we won't discard
1128
     a partial match if there is a longer match that has to be abandoned due
1129
     to an input conflict.  */
1130
  bool check_input_conflict;
1131
  /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1132
     have passed a point where there were multiple dying inputs.  This helps
1133
     us decide if we should set check_input_conflict for the next pass.  */
1134
  bool had_input_conflict;
1135
 
1136
  /* LIVE_UPDATE controls if we want to change any life info at all.  We
1137
     set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1138
     pass so that we don't introduce new registers just for the note; if we
1139
     can't match the notes without the current register information, we drop
1140
     them.  */
1141
  bool live_update;
1142
 
1143
  /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1144
     that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1145
     to the next free entry.  */
1146
  rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1147
  /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1148
     was a source operand (including STRICT_LOW_PART) for the last invocation
1149
     of struct_equiv mentioning it, zero if it was a destination-only operand.
1150
     Since we are scanning backwards, this means the register is input/local
1151
     for the (partial) block scanned so far.  */
1152
  bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1153
 
1154
 
1155
  /* Additional fields that are computed for the convenience of the caller.  */
1156
 
1157
  /* DYING_INPUTS is set to the number of local registers that turn out
1158
     to be inputs to the (possibly partial) block.  */
1159
  int dying_inputs;
1160
  /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1161
     that are being compared.  A final jump insn will not be included.  */
1162
  rtx x_end, y_end;
1163
 
1164
  /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1165
     Y_LABEL in Y_BLOCK.  */
1166
  rtx x_label, y_label;
1167
 
1168
};
1169
 
1170
extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1171
extern int struct_equiv_block_eq (int, struct equiv_info *);
1172
extern bool struct_equiv_init (int, struct equiv_info *);
1173
extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1174
 
1175
/* In cfgrtl.c */
1176
extern bool condjump_equiv_p (struct equiv_info *, bool);
1177
 
1178
/* Return true when one of the predecessor edges of BB is marked with EDGE_EH.  */
1179
static inline bool bb_has_eh_pred (basic_block bb)
1180
{
1181
  edge e;
1182
  edge_iterator ei;
1183
 
1184
  FOR_EACH_EDGE (e, ei, bb->preds)
1185
    {
1186
      if (e->flags & EDGE_EH)
1187
        return true;
1188
    }
1189
  return false;
1190
}
1191
 
1192
#endif /* GCC_BASIC_BLOCK_H */

powered by: WebSVN 2.1.0

© copyright 1999-2024 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.