OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [config/] [arm/] [arm926ejs.md] - Blame information for rev 868

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
;; ARM 926EJ-S Pipeline Description
2
;; Copyright (C) 2003, 2007 Free Software Foundation, Inc.
3
;; Written by CodeSourcery, LLC.
4
;;
5
;; This file is part of GCC.
6
;;
7
;; GCC is free software; you can redistribute it and/or modify it
8
;; under the terms of the GNU General Public License as published by
9
;; the Free Software Foundation; either version 3, or (at your option)
10
;; any later version.
11
;;
12
;; GCC is distributed in the hope that it will be useful, but
13
;; WITHOUT ANY WARRANTY; without even the implied warranty of
14
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
;; General Public License for more details.
16
;;
17
;; You should have received a copy of the GNU General Public License
18
;; along with GCC; see the file COPYING3.  If not see
19
;; .  */
20
 
21
;; These descriptions are based on the information contained in the
22
;; ARM926EJ-S Technical Reference Manual, Copyright (c) 2002 ARM
23
;; Limited.
24
;;
25
 
26
;; This automaton provides a pipeline description for the ARM
27
;; 926EJ-S core.
28
;;
29
;; The model given here assumes that the condition for all conditional
30
;; instructions is "true", i.e., that all of the instructions are
31
;; actually executed.
32
 
33
(define_automaton "arm926ejs")
34
 
35
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
36
;; Pipelines
37
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
38
 
39
;; There is a single pipeline
40
;;
41
;;   The ALU pipeline has fetch, decode, execute, memory, and
42
;;   write stages. We only need to model the execute, memory and write
43
;;   stages.
44
 
45
(define_cpu_unit "e,m,w" "arm926ejs")
46
 
47
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
48
;; ALU Instructions
49
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
50
 
51
;; ALU instructions require three cycles to execute, and use the ALU
52
;; pipeline in each of the three stages.  The results are available
53
;; after the execute stage stage has finished.
54
;;
55
;; If the destination register is the PC, the pipelines are stalled
56
;; for several cycles.  That case is not modeled here.
57
 
58
;; ALU operations with no shifted operand
59
(define_insn_reservation "9_alu_op" 1
60
 (and (eq_attr "tune" "arm926ejs")
61
      (eq_attr "type" "alu,alu_shift"))
62
 "e,m,w")
63
 
64
;; ALU operations with a shift-by-register operand
65
;; These really stall in the decoder, in order to read
66
;; the shift value in a second cycle. Pretend we take two cycles in
67
;; the execute stage.
68
(define_insn_reservation "9_alu_shift_reg_op" 2
69
 (and (eq_attr "tune" "arm926ejs")
70
      (eq_attr "type" "alu_shift_reg"))
71
 "e*2,m,w")
72
 
73
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
74
;; Multiplication Instructions
75
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
76
 
77
;; Multiplication instructions loop in the execute stage until the
78
;; instruction has been passed through the multiplier array enough
79
;; times. Multiply operations occur in both the execute and memory
80
;; stages of the pipeline
81
 
82
(define_insn_reservation "9_mult1" 3
83
 (and (eq_attr "tune" "arm926ejs")
84
      (eq_attr "insn" "smlalxy,mul,mla"))
85
 "e*2,m,w")
86
 
87
(define_insn_reservation "9_mult2" 4
88
 (and (eq_attr "tune" "arm926ejs")
89
      (eq_attr "insn" "muls,mlas"))
90
 "e*3,m,w")
91
 
92
(define_insn_reservation "9_mult3" 4
93
 (and (eq_attr "tune" "arm926ejs")
94
      (eq_attr "insn" "umull,umlal,smull,smlal"))
95
 "e*3,m,w")
96
 
97
(define_insn_reservation "9_mult4" 5
98
 (and (eq_attr "tune" "arm926ejs")
99
      (eq_attr "insn" "umulls,umlals,smulls,smlals"))
100
 "e*4,m,w")
101
 
102
(define_insn_reservation "9_mult5" 2
103
 (and (eq_attr "tune" "arm926ejs")
104
      (eq_attr "insn" "smulxy,smlaxy,smlawx"))
105
 "e,m,w")
106
 
107
(define_insn_reservation "9_mult6" 3
108
 (and (eq_attr "tune" "arm926ejs")
109
      (eq_attr "insn" "smlalxy"))
110
 "e*2,m,w")
111
 
112
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
113
;; Load/Store Instructions
114
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
115
 
116
;; The models for load/store instructions do not accurately describe
117
;; the difference between operations with a base register writeback
118
;; (such as "ldm!").  These models assume that all memory references
119
;; hit in dcache.
120
 
121
;; Loads with a shifted offset take 3 cycles, and are (a) probably the
122
;; most common and (b) the pessimistic assumption will lead to fewer stalls.
123
(define_insn_reservation "9_load1_op" 3
124
 (and (eq_attr "tune" "arm926ejs")
125
      (eq_attr "type" "load1,load_byte"))
126
 "e*2,m,w")
127
 
128
(define_insn_reservation "9_store1_op" 0
129
 (and (eq_attr "tune" "arm926ejs")
130
      (eq_attr "type" "store1"))
131
 "e,m,w")
132
 
133
;; multiple word loads and stores
134
(define_insn_reservation "9_load2_op" 3
135
 (and (eq_attr "tune" "arm926ejs")
136
      (eq_attr "type" "load2"))
137
 "e,m*2,w")
138
 
139
(define_insn_reservation "9_load3_op" 4
140
 (and (eq_attr "tune" "arm926ejs")
141
      (eq_attr "type" "load3"))
142
 "e,m*3,w")
143
 
144
(define_insn_reservation "9_load4_op" 5
145
 (and (eq_attr "tune" "arm926ejs")
146
      (eq_attr "type" "load4"))
147
 "e,m*4,w")
148
 
149
(define_insn_reservation "9_store2_op" 0
150
 (and (eq_attr "tune" "arm926ejs")
151
      (eq_attr "type" "store2"))
152
 "e,m*2,w")
153
 
154
(define_insn_reservation "9_store3_op" 0
155
 (and (eq_attr "tune" "arm926ejs")
156
      (eq_attr "type" "store3"))
157
 "e,m*3,w")
158
 
159
(define_insn_reservation "9_store4_op" 0
160
 (and (eq_attr "tune" "arm926ejs")
161
      (eq_attr "type" "store4"))
162
 "e,m*4,w")
163
 
164
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
165
;; Branch and Call Instructions
166
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
167
 
168
;; Branch instructions are difficult to model accurately.  The ARM
169
;; core can predict most branches.  If the branch is predicted
170
;; correctly, and predicted early enough, the branch can be completely
171
;; eliminated from the instruction stream.  Some branches can
172
;; therefore appear to require zero cycles to execute.  We assume that
173
;; all branches are predicted correctly, and that the latency is
174
;; therefore the minimum value.
175
 
176
(define_insn_reservation "9_branch_op" 0
177
 (and (eq_attr "tune" "arm926ejs")
178
      (eq_attr "type" "branch"))
179
 "nothing")
180
 
181
;; The latency for a call is not predictable.  Therefore, we use 32 as
182
;; roughly equivalent to positive infinity.
183
 
184
(define_insn_reservation "9_call_op" 32
185
 (and (eq_attr "tune" "arm926ejs")
186
      (eq_attr "type" "call"))
187
 "nothing")

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.