OpenCores
URL https://opencores.org/ocsvn/openrisc/openrisc/trunk

Subversion Repositories openrisc

[/] [openrisc/] [trunk/] [gnu-old/] [gcc-4.2.2/] [gcc/] [config/] [mips/] [mips.h] - Blame information for rev 154

Go to most recent revision | Details | Compare with Previous | View Log

Line No. Rev Author Line
1 38 julius
/* Definitions of target machine for GNU compiler.  MIPS version.
2
   Copyright (C) 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
4
   Contributed by A. Lichnewsky (lich@inria.inria.fr).
5
   Changed by Michael Meissner  (meissner@osf.org).
6
   64 bit r4000 support by Ian Lance Taylor (ian@cygnus.com) and
7
   Brendan Eich (brendan@microunity.com).
8
 
9
This file is part of GCC.
10
 
11
GCC is free software; you can redistribute it and/or modify
12
it under the terms of the GNU General Public License as published by
13
the Free Software Foundation; either version 3, or (at your option)
14
any later version.
15
 
16
GCC is distributed in the hope that it will be useful,
17
but WITHOUT ANY WARRANTY; without even the implied warranty of
18
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19
GNU General Public License for more details.
20
 
21
You should have received a copy of the GNU General Public License
22
along with GCC; see the file COPYING3.  If not see
23
<http://www.gnu.org/licenses/>.  */
24
 
25
 
26
/* MIPS external variables defined in mips.c.  */
27
 
28
/* Which processor to schedule for.  Since there is no difference between
29
   a R2000 and R3000 in terms of the scheduler, we collapse them into
30
   just an R3000.  The elements of the enumeration must match exactly
31
   the cpu attribute in the mips.md machine description.  */
32
 
33
enum processor_type {
34
  PROCESSOR_R3000,
35
  PROCESSOR_4KC,
36
  PROCESSOR_4KP,
37
  PROCESSOR_5KC,
38
  PROCESSOR_5KF,
39
  PROCESSOR_20KC,
40
  PROCESSOR_24K,
41
  PROCESSOR_24KX,
42
  PROCESSOR_M4K,
43
  PROCESSOR_R3900,
44
  PROCESSOR_R6000,
45
  PROCESSOR_R4000,
46
  PROCESSOR_R4100,
47
  PROCESSOR_R4111,
48
  PROCESSOR_R4120,
49
  PROCESSOR_R4130,
50
  PROCESSOR_R4300,
51
  PROCESSOR_R4600,
52
  PROCESSOR_R4650,
53
  PROCESSOR_R5000,
54
  PROCESSOR_R5400,
55
  PROCESSOR_R5500,
56
  PROCESSOR_R7000,
57
  PROCESSOR_R8000,
58
  PROCESSOR_R9000,
59
  PROCESSOR_SB1,
60
  PROCESSOR_SB1A,
61
  PROCESSOR_SR71000,
62
  PROCESSOR_MAX
63
};
64
 
65
/* Costs of various operations on the different architectures.  */
66
 
67
struct mips_rtx_cost_data
68
{
69
  unsigned short fp_add;
70
  unsigned short fp_mult_sf;
71
  unsigned short fp_mult_df;
72
  unsigned short fp_div_sf;
73
  unsigned short fp_div_df;
74
  unsigned short int_mult_si;
75
  unsigned short int_mult_di;
76
  unsigned short int_div_si;
77
  unsigned short int_div_di;
78
  unsigned short branch_cost;
79
  unsigned short memory_latency;
80
};
81
 
82
/* Which ABI to use.  ABI_32 (original 32, or o32), ABI_N32 (n32),
83
   ABI_64 (n64) are all defined by SGI.  ABI_O64 is o32 extended
84
   to work on a 64 bit machine.  */
85
 
86
#define ABI_32  0
87
#define ABI_N32 1
88
#define ABI_64  2
89
#define ABI_EABI 3
90
#define ABI_O64  4
91
 
92
/* Information about one recognized processor.  Defined here for the
93
   benefit of TARGET_CPU_CPP_BUILTINS.  */
94
struct mips_cpu_info {
95
  /* The 'canonical' name of the processor as far as GCC is concerned.
96
     It's typically a manufacturer's prefix followed by a numerical
97
     designation.  It should be lower case.  */
98
  const char *name;
99
 
100
  /* The internal processor number that most closely matches this
101
     entry.  Several processors can have the same value, if there's no
102
     difference between them from GCC's point of view.  */
103
  enum processor_type cpu;
104
 
105
  /* The ISA level that the processor implements.  */
106
  int isa;
107
};
108
 
109
#ifndef USED_FOR_TARGET
110
extern char mips_print_operand_punct[256]; /* print_operand punctuation chars */
111
extern const char *current_function_file; /* filename current function is in */
112
extern int num_source_filenames;        /* current .file # */
113
extern int mips_section_threshold;      /* # bytes of data/sdata cutoff */
114
extern int sym_lineno;                  /* sgi next label # for each stmt */
115
extern int set_noreorder;               /* # of nested .set noreorder's  */
116
extern int set_nomacro;                 /* # of nested .set nomacro's  */
117
extern int set_noat;                    /* # of nested .set noat's  */
118
extern int set_volatile;                /* # of nested .set volatile's  */
119
extern int mips_branch_likely;          /* emit 'l' after br (branch likely) */
120
extern int mips_dbx_regno[];            /* Map register # to debug register # */
121
extern bool mips_split_p[];
122
extern GTY(()) rtx cmp_operands[2];
123
extern enum processor_type mips_arch;   /* which cpu to codegen for */
124
extern enum processor_type mips_tune;   /* which cpu to schedule for */
125
extern int mips_isa;                    /* architectural level */
126
extern int mips_abi;                    /* which ABI to use */
127
extern int mips16_hard_float;           /* mips16 without -msoft-float */
128
extern const struct mips_cpu_info mips_cpu_info_table[];
129
extern const struct mips_cpu_info *mips_arch_info;
130
extern const struct mips_cpu_info *mips_tune_info;
131
extern const struct mips_rtx_cost_data *mips_cost;
132
#endif
133
 
134
/* Macros to silence warnings about numbers being signed in traditional
135
   C and unsigned in ISO C when compiled on 32-bit hosts.  */
136
 
137
#define BITMASK_HIGH    (((unsigned long)1) << 31)      /* 0x80000000 */
138
#define BITMASK_UPPER16 ((unsigned long)0xffff << 16)   /* 0xffff0000 */
139
#define BITMASK_LOWER16 ((unsigned long)0xffff)         /* 0x0000ffff */
140
 
141
 
142
/* Run-time compilation parameters selecting different hardware subsets.  */
143
 
144
/* True if the call patterns should be split into a jalr followed by
145
   an instruction to restore $gp.  This is only ever true for SVR4 PIC,
146
   in which $gp is call-clobbered.  It is only safe to split the load
147
   from the call when every use of $gp is explicit.  */
148
 
149
#define TARGET_SPLIT_CALLS \
150
  (TARGET_EXPLICIT_RELOCS && TARGET_ABICALLS && !TARGET_NEWABI)
151
 
152
/* True if we're generating a form of -mabicalls in which we can use
153
   operators like %hi and %lo to refer to locally-binding symbols.
154
   We can only do this for -mno-shared, and only then if we can use
155
   relocation operations instead of assembly macros.  It isn't really
156
   worth using absolute sequences for 64-bit symbols because GOT
157
   accesses are so much shorter.  */
158
 
159
#define TARGET_ABSOLUTE_ABICALLS        \
160
  (TARGET_ABICALLS                      \
161
   && !TARGET_SHARED                    \
162
   && TARGET_EXPLICIT_RELOCS            \
163
   && !ABI_HAS_64BIT_SYMBOLS)
164
 
165
/* True if we can optimize sibling calls.  For simplicity, we only
166
   handle cases in which call_insn_operand will reject invalid
167
   sibcall addresses.  There are two cases in which this isn't true:
168
 
169
      - TARGET_MIPS16.  call_insn_operand accepts constant addresses
170
        but there is no direct jump instruction.  It isn't worth
171
        using sibling calls in this case anyway; they would usually
172
        be longer than normal calls.
173
 
174
      - TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS.  call_insn_operand
175
        accepts global constants, but "jr $25" is the only allowed
176
        sibcall.  */
177
 
178
#define TARGET_SIBCALLS \
179
  (!TARGET_MIPS16 && (!TARGET_ABICALLS || TARGET_EXPLICIT_RELOCS))
180
 
181
/* True if .gpword or .gpdword should be used for switch tables.
182
 
183
   Although GAS does understand .gpdword, the SGI linker mishandles
184
   the relocations GAS generates (R_MIPS_GPREL32 followed by R_MIPS_64).
185
   We therefore disable GP-relative switch tables for n64 on IRIX targets.  */
186
#define TARGET_GPWORD (TARGET_ABICALLS && !(mips_abi == ABI_64 && TARGET_IRIX))
187
 
188
/* Generate mips16 code */
189
#define TARGET_MIPS16           ((target_flags & MASK_MIPS16) != 0)
190
/* Generate mips16e code. Default 16bit ASE for mips32/mips32r2/mips64 */
191
#define GENERATE_MIPS16E        (TARGET_MIPS16 && mips_isa >= 32)
192
 
193
/* Generic ISA defines.  */
194
#define ISA_MIPS1                   (mips_isa == 1)
195
#define ISA_MIPS2                   (mips_isa == 2)
196
#define ISA_MIPS3                   (mips_isa == 3)
197
#define ISA_MIPS4                   (mips_isa == 4)
198
#define ISA_MIPS32                  (mips_isa == 32)
199
#define ISA_MIPS32R2                (mips_isa == 33)
200
#define ISA_MIPS64                  (mips_isa == 64)
201
 
202
/* Architecture target defines.  */
203
#define TARGET_MIPS3900             (mips_arch == PROCESSOR_R3900)
204
#define TARGET_MIPS4000             (mips_arch == PROCESSOR_R4000)
205
#define TARGET_MIPS4120             (mips_arch == PROCESSOR_R4120)
206
#define TARGET_MIPS4130             (mips_arch == PROCESSOR_R4130)
207
#define TARGET_MIPS5400             (mips_arch == PROCESSOR_R5400)
208
#define TARGET_MIPS5500             (mips_arch == PROCESSOR_R5500)
209
#define TARGET_MIPS7000             (mips_arch == PROCESSOR_R7000)
210
#define TARGET_MIPS9000             (mips_arch == PROCESSOR_R9000)
211
#define TARGET_SB1                  (mips_arch == PROCESSOR_SB1         \
212
                                     || mips_arch == PROCESSOR_SB1A)
213
#define TARGET_SR71K                (mips_arch == PROCESSOR_SR71000)
214
 
215
/* Scheduling target defines.  */
216
#define TUNE_MIPS3000               (mips_tune == PROCESSOR_R3000)
217
#define TUNE_MIPS3900               (mips_tune == PROCESSOR_R3900)
218
#define TUNE_MIPS4000               (mips_tune == PROCESSOR_R4000)
219
#define TUNE_MIPS4120               (mips_tune == PROCESSOR_R4120)
220
#define TUNE_MIPS4130               (mips_tune == PROCESSOR_R4130)
221
#define TUNE_MIPS5000               (mips_tune == PROCESSOR_R5000)
222
#define TUNE_MIPS5400               (mips_tune == PROCESSOR_R5400)
223
#define TUNE_MIPS5500               (mips_tune == PROCESSOR_R5500)
224
#define TUNE_MIPS6000               (mips_tune == PROCESSOR_R6000)
225
#define TUNE_MIPS7000               (mips_tune == PROCESSOR_R7000)
226
#define TUNE_MIPS9000               (mips_tune == PROCESSOR_R9000)
227
#define TUNE_SB1                    (mips_tune == PROCESSOR_SB1         \
228
                                     || mips_tune == PROCESSOR_SB1A)
229
 
230
/* True if the pre-reload scheduler should try to create chains of
231
   multiply-add or multiply-subtract instructions.  For example,
232
   suppose we have:
233
 
234
        t1 = a * b
235
        t2 = t1 + c * d
236
        t3 = e * f
237
        t4 = t3 - g * h
238
 
239
   t1 will have a higher priority than t2 and t3 will have a higher
240
   priority than t4.  However, before reload, there is no dependence
241
   between t1 and t3, and they can often have similar priorities.
242
   The scheduler will then tend to prefer:
243
 
244
        t1 = a * b
245
        t3 = e * f
246
        t2 = t1 + c * d
247
        t4 = t3 - g * h
248
 
249
   which stops us from making full use of macc/madd-style instructions.
250
   This sort of situation occurs frequently in Fourier transforms and
251
   in unrolled loops.
252
 
253
   To counter this, the TUNE_MACC_CHAINS code will reorder the ready
254
   queue so that chained multiply-add and multiply-subtract instructions
255
   appear ahead of any other instruction that is likely to clobber lo.
256
   In the example above, if t2 and t3 become ready at the same time,
257
   the code ensures that t2 is scheduled first.
258
 
259
   Multiply-accumulate instructions are a bigger win for some targets
260
   than others, so this macro is defined on an opt-in basis.  */
261
#define TUNE_MACC_CHAINS            (TUNE_MIPS5500              \
262
                                     || TUNE_MIPS4120           \
263
                                     || TUNE_MIPS4130)
264
 
265
#define TARGET_OLDABI               (mips_abi == ABI_32 || mips_abi == ABI_O64)
266
#define TARGET_NEWABI               (mips_abi == ABI_N32 || mips_abi == ABI_64)
267
 
268
/* IRIX specific stuff.  */
269
#define TARGET_IRIX        0
270
#define TARGET_IRIX6       0
271
 
272
/* Define preprocessor macros for the -march and -mtune options.
273
   PREFIX is either _MIPS_ARCH or _MIPS_TUNE, INFO is the selected
274
   processor.  If INFO's canonical name is "foo", define PREFIX to
275
   be "foo", and define an additional macro PREFIX_FOO.  */
276
#define MIPS_CPP_SET_PROCESSOR(PREFIX, INFO)                    \
277
  do                                                            \
278
    {                                                           \
279
      char *macro, *p;                                          \
280
                                                                \
281
      macro = concat ((PREFIX), "_", (INFO)->name, NULL);       \
282
      for (p = macro; *p != 0; p++)                              \
283
        *p = TOUPPER (*p);                                      \
284
                                                                \
285
      builtin_define (macro);                                   \
286
      builtin_define_with_value ((PREFIX), (INFO)->name, 1);    \
287
      free (macro);                                             \
288
    }                                                           \
289
  while (0)
290
 
291
/* Target CPU builtins.  */
292
#define TARGET_CPU_CPP_BUILTINS()                               \
293
  do                                                            \
294
    {                                                           \
295
      /* Everyone but IRIX defines this to mips.  */            \
296
      if (!TARGET_IRIX)                                         \
297
        builtin_assert ("machine=mips");                        \
298
                                                                \
299
      builtin_assert ("cpu=mips");                              \
300
      builtin_define ("__mips__");                              \
301
      builtin_define ("_mips");                                 \
302
                                                                \
303
      /* We do this here because __mips is defined below        \
304
         and so we can't use builtin_define_std.  */            \
305
      if (!flag_iso)                                            \
306
        builtin_define ("mips");                                \
307
                                                                \
308
      if (TARGET_64BIT)                                         \
309
        builtin_define ("__mips64");                            \
310
                                                                \
311
      if (!TARGET_IRIX)                                         \
312
        {                                                       \
313
          /* Treat _R3000 and _R4000 like register-size         \
314
             defines, which is how they've historically         \
315
             been used.  */                                     \
316
          if (TARGET_64BIT)                                     \
317
            {                                                   \
318
              builtin_define_std ("R4000");                     \
319
              builtin_define ("_R4000");                        \
320
            }                                                   \
321
          else                                                  \
322
            {                                                   \
323
              builtin_define_std ("R3000");                     \
324
              builtin_define ("_R3000");                        \
325
            }                                                   \
326
        }                                                       \
327
      if (TARGET_FLOAT64)                                       \
328
        builtin_define ("__mips_fpr=64");                       \
329
      else                                                      \
330
        builtin_define ("__mips_fpr=32");                       \
331
                                                                \
332
      if (TARGET_MIPS16)                                        \
333
        builtin_define ("__mips16");                            \
334
                                                                \
335
      if (TARGET_MIPS3D)                                        \
336
        builtin_define ("__mips3d");                            \
337
                                                                \
338
      if (TARGET_DSP)                                           \
339
        builtin_define ("__mips_dsp");                          \
340
                                                                \
341
      MIPS_CPP_SET_PROCESSOR ("_MIPS_ARCH", mips_arch_info);    \
342
      MIPS_CPP_SET_PROCESSOR ("_MIPS_TUNE", mips_tune_info);    \
343
                                                                \
344
      if (ISA_MIPS1)                                            \
345
        {                                                       \
346
          builtin_define ("__mips=1");                          \
347
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS1");         \
348
        }                                                       \
349
      else if (ISA_MIPS2)                                       \
350
        {                                                       \
351
          builtin_define ("__mips=2");                          \
352
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS2");         \
353
        }                                                       \
354
      else if (ISA_MIPS3)                                       \
355
        {                                                       \
356
          builtin_define ("__mips=3");                          \
357
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS3");         \
358
        }                                                       \
359
      else if (ISA_MIPS4)                                       \
360
        {                                                       \
361
          builtin_define ("__mips=4");                          \
362
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS4");         \
363
        }                                                       \
364
      else if (ISA_MIPS32)                                      \
365
        {                                                       \
366
          builtin_define ("__mips=32");                         \
367
          builtin_define ("__mips_isa_rev=1");                  \
368
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");        \
369
        }                                                       \
370
      else if (ISA_MIPS32R2)                                    \
371
        {                                                       \
372
          builtin_define ("__mips=32");                         \
373
          builtin_define ("__mips_isa_rev=2");                  \
374
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS32");        \
375
        }                                                       \
376
      else if (ISA_MIPS64)                                      \
377
        {                                                       \
378
          builtin_define ("__mips=64");                         \
379
          builtin_define ("__mips_isa_rev=1");                  \
380
          builtin_define ("_MIPS_ISA=_MIPS_ISA_MIPS64");        \
381
        }                                                       \
382
                                                                \
383
      if (TARGET_HARD_FLOAT)                                    \
384
        builtin_define ("__mips_hard_float");                   \
385
      else if (TARGET_SOFT_FLOAT)                               \
386
        builtin_define ("__mips_soft_float");                   \
387
                                                                \
388
      if (TARGET_SINGLE_FLOAT)                                  \
389
        builtin_define ("__mips_single_float");                 \
390
                                                                \
391
      if (TARGET_PAIRED_SINGLE_FLOAT)                           \
392
        builtin_define ("__mips_paired_single_float");          \
393
                                                                \
394
      if (TARGET_BIG_ENDIAN)                                    \
395
        {                                                       \
396
          builtin_define_std ("MIPSEB");                        \
397
          builtin_define ("_MIPSEB");                           \
398
        }                                                       \
399
      else                                                      \
400
        {                                                       \
401
          builtin_define_std ("MIPSEL");                        \
402
          builtin_define ("_MIPSEL");                           \
403
        }                                                       \
404
                                                                \
405
        /* Macros dependent on the C dialect.  */               \
406
      if (preprocessing_asm_p ())                               \
407
        {                                                       \
408
          builtin_define_std ("LANGUAGE_ASSEMBLY");             \
409
          builtin_define ("_LANGUAGE_ASSEMBLY");                \
410
        }                                                       \
411
      else if (c_dialect_cxx ())                                \
412
        {                                                       \
413
          builtin_define ("_LANGUAGE_C_PLUS_PLUS");             \
414
          builtin_define ("__LANGUAGE_C_PLUS_PLUS");            \
415
          builtin_define ("__LANGUAGE_C_PLUS_PLUS__");          \
416
        }                                                       \
417
      else                                                      \
418
        {                                                       \
419
          builtin_define_std ("LANGUAGE_C");                    \
420
          builtin_define ("_LANGUAGE_C");                       \
421
        }                                                       \
422
      if (c_dialect_objc ())                                    \
423
        {                                                       \
424
          builtin_define ("_LANGUAGE_OBJECTIVE_C");             \
425
          builtin_define ("__LANGUAGE_OBJECTIVE_C");            \
426
          /* Bizarre, but needed at least for Irix.  */         \
427
          builtin_define_std ("LANGUAGE_C");                    \
428
          builtin_define ("_LANGUAGE_C");                       \
429
        }                                                       \
430
                                                                \
431
      if (mips_abi == ABI_EABI)                                 \
432
        builtin_define ("__mips_eabi");                         \
433
                                                                \
434
} while (0)
435
 
436
/* Default target_flags if no switches are specified  */
437
 
438
#ifndef TARGET_DEFAULT
439
#define TARGET_DEFAULT 0
440
#endif
441
 
442
#ifndef TARGET_CPU_DEFAULT
443
#define TARGET_CPU_DEFAULT 0
444
#endif
445
 
446
#ifndef TARGET_ENDIAN_DEFAULT
447
#define TARGET_ENDIAN_DEFAULT MASK_BIG_ENDIAN
448
#endif
449
 
450
#ifndef TARGET_FP_EXCEPTIONS_DEFAULT
451
#define TARGET_FP_EXCEPTIONS_DEFAULT MASK_FP_EXCEPTIONS
452
#endif
453
 
454
/* 'from-abi' makes a good default: you get whatever the ABI requires.  */
455
#ifndef MIPS_ISA_DEFAULT
456
#ifndef MIPS_CPU_STRING_DEFAULT
457
#define MIPS_CPU_STRING_DEFAULT "from-abi"
458
#endif
459
#endif
460
 
461
#ifdef IN_LIBGCC2
462
#undef TARGET_64BIT
463
/* Make this compile time constant for libgcc2 */
464
#ifdef __mips64
465
#define TARGET_64BIT            1
466
#else
467
#define TARGET_64BIT            0
468
#endif
469
#endif /* IN_LIBGCC2 */
470
 
471
#define TARGET_LIBGCC_SDATA_SECTION ".sdata"
472
 
473
#ifndef MULTILIB_ENDIAN_DEFAULT
474
#if TARGET_ENDIAN_DEFAULT == 0
475
#define MULTILIB_ENDIAN_DEFAULT "EL"
476
#else
477
#define MULTILIB_ENDIAN_DEFAULT "EB"
478
#endif
479
#endif
480
 
481
#ifndef MULTILIB_ISA_DEFAULT
482
#  if MIPS_ISA_DEFAULT == 1
483
#    define MULTILIB_ISA_DEFAULT "mips1"
484
#  else
485
#    if MIPS_ISA_DEFAULT == 2
486
#      define MULTILIB_ISA_DEFAULT "mips2"
487
#    else
488
#      if MIPS_ISA_DEFAULT == 3
489
#        define MULTILIB_ISA_DEFAULT "mips3"
490
#      else
491
#        if MIPS_ISA_DEFAULT == 4
492
#          define MULTILIB_ISA_DEFAULT "mips4"
493
#        else
494
#          if MIPS_ISA_DEFAULT == 32
495
#            define MULTILIB_ISA_DEFAULT "mips32"
496
#          else
497
#            if MIPS_ISA_DEFAULT == 33
498
#              define MULTILIB_ISA_DEFAULT "mips32r2"
499
#            else
500
#              if MIPS_ISA_DEFAULT == 64
501
#                define MULTILIB_ISA_DEFAULT "mips64"
502
#              else
503
#                define MULTILIB_ISA_DEFAULT "mips1"
504
#              endif
505
#            endif
506
#          endif
507
#        endif
508
#      endif
509
#    endif
510
#  endif
511
#endif
512
 
513
#ifndef MULTILIB_DEFAULTS
514
#define MULTILIB_DEFAULTS \
515
    { MULTILIB_ENDIAN_DEFAULT, MULTILIB_ISA_DEFAULT, MULTILIB_ABI_DEFAULT }
516
#endif
517
 
518
/* We must pass -EL to the linker by default for little endian embedded
519
   targets using linker scripts with a OUTPUT_FORMAT line.  Otherwise, the
520
   linker will default to using big-endian output files.  The OUTPUT_FORMAT
521
   line must be in the linker script, otherwise -EB/-EL will not work.  */
522
 
523
#ifndef ENDIAN_SPEC
524
#if TARGET_ENDIAN_DEFAULT == 0
525
#define ENDIAN_SPEC "%{!EB:%{!meb:-EL}} %{EB|meb:-EB}"
526
#else
527
#define ENDIAN_SPEC "%{!EL:%{!mel:-EB}} %{EL|mel:-EL}"
528
#endif
529
#endif
530
 
531
/* Support for a compile-time default CPU, et cetera.  The rules are:
532
   --with-arch is ignored if -march is specified or a -mips is specified
533
     (other than -mips16).
534
   --with-tune is ignored if -mtune is specified.
535
   --with-abi is ignored if -mabi is specified.
536
   --with-float is ignored if -mhard-float or -msoft-float are
537
     specified.
538
   --with-divide is ignored if -mdivide-traps or -mdivide-breaks are
539
     specified. */
540
#define OPTION_DEFAULT_SPECS \
541
  {"arch", "%{!march=*:%{mips16:-march=%(VALUE)}%{!mips*:-march=%(VALUE)}}" }, \
542
  {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
543
  {"abi", "%{!mabi=*:-mabi=%(VALUE)}" }, \
544
  {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }, \
545
  {"divide", "%{!mdivide-traps:%{!mdivide-breaks:-mdivide-%(VALUE)}}" }
546
 
547
 
548
#define GENERATE_DIVIDE_TRAPS (TARGET_DIVIDE_TRAPS \
549
                               && ISA_HAS_COND_TRAP)
550
 
551
#define GENERATE_BRANCHLIKELY   (TARGET_BRANCHLIKELY                    \
552
                                 && !TARGET_SR71K                       \
553
                                 && !TARGET_MIPS16)
554
 
555
/* Generate three-operand multiply instructions for SImode.  */
556
#define GENERATE_MULT3_SI       ((TARGET_MIPS3900                       \
557
                                  || TARGET_MIPS5400                    \
558
                                  || TARGET_MIPS5500                    \
559
                                  || TARGET_MIPS7000                    \
560
                                  || TARGET_MIPS9000                    \
561
                                  || TARGET_MAD                         \
562
                                  || ISA_MIPS32                         \
563
                                  || ISA_MIPS32R2                       \
564
                                  || ISA_MIPS64)                        \
565
                                 && !TARGET_MIPS16)
566
 
567
/* Generate three-operand multiply instructions for DImode.  */
568
#define GENERATE_MULT3_DI       ((TARGET_MIPS3900)                      \
569
                                 && !TARGET_MIPS16)
570
 
571
/* True if the ABI can only work with 64-bit integer registers.  We
572
   generally allow ad-hoc variations for TARGET_SINGLE_FLOAT, but
573
   otherwise floating-point registers must also be 64-bit.  */
574
#define ABI_NEEDS_64BIT_REGS    (TARGET_NEWABI || mips_abi == ABI_O64)
575
 
576
/* Likewise for 32-bit regs.  */
577
#define ABI_NEEDS_32BIT_REGS    (mips_abi == ABI_32)
578
 
579
/* True if symbols are 64 bits wide.  At present, n64 is the only
580
   ABI for which this is true.  */
581
#define ABI_HAS_64BIT_SYMBOLS   (mips_abi == ABI_64 && !TARGET_SYM32)
582
 
583
/* ISA has instructions for managing 64 bit fp and gp regs (e.g. mips3).  */
584
#define ISA_HAS_64BIT_REGS      (ISA_MIPS3                              \
585
                                 || ISA_MIPS4                           \
586
                                 || ISA_MIPS64)
587
 
588
/* ISA has branch likely instructions (e.g. mips2).  */
589
/* Disable branchlikely for tx39 until compare rewrite.  They haven't
590
   been generated up to this point.  */
591
#define ISA_HAS_BRANCHLIKELY    (!ISA_MIPS1)
592
 
593
/* ISA has the conditional move instructions introduced in mips4.  */
594
#define ISA_HAS_CONDMOVE        ((ISA_MIPS4                             \
595
                                  || ISA_MIPS32                         \
596
                                  || ISA_MIPS32R2                       \
597
                                  || ISA_MIPS64)                        \
598
                                 && !TARGET_MIPS5500                    \
599
                                 && !TARGET_MIPS16)
600
 
601
/* ISA has the mips4 FP condition code instructions: FP-compare to CC,
602
   branch on CC, and move (both FP and non-FP) on CC.  */
603
#define ISA_HAS_8CC             (ISA_MIPS4                              \
604
                                 || ISA_MIPS32                          \
605
                                 || ISA_MIPS32R2                        \
606
                                 || ISA_MIPS64)
607
 
608
/* This is a catch all for other mips4 instructions: indexed load, the
609
   FP madd and msub instructions, and the FP recip and recip sqrt
610
   instructions.  */
611
#define ISA_HAS_FP4             ((ISA_MIPS4                             \
612
                                  || ISA_MIPS64)                        \
613
                                 && !TARGET_MIPS16)
614
 
615
/* ISA has conditional trap instructions.  */
616
#define ISA_HAS_COND_TRAP       (!ISA_MIPS1                             \
617
                                 && !TARGET_MIPS16)
618
 
619
/* ISA has integer multiply-accumulate instructions, madd and msub.  */
620
#define ISA_HAS_MADD_MSUB       ((ISA_MIPS32                            \
621
                                  || ISA_MIPS32R2                       \
622
                                  || ISA_MIPS64                         \
623
                                  ) && !TARGET_MIPS16)
624
 
625
/* ISA has floating-point nmadd and nmsub instructions.  */
626
#define ISA_HAS_NMADD_NMSUB     ((ISA_MIPS4                             \
627
                                  || ISA_MIPS64)                        \
628
                                 && (!TARGET_MIPS5400 || TARGET_MAD)    \
629
                                 && ! TARGET_MIPS16)
630
 
631
/* ISA has count leading zeroes/ones instruction (not implemented).  */
632
#define ISA_HAS_CLZ_CLO         ((ISA_MIPS32                            \
633
                                  || ISA_MIPS32R2                       \
634
                                  || ISA_MIPS64                         \
635
                                 ) && !TARGET_MIPS16)
636
 
637
/* ISA has double-word count leading zeroes/ones instruction (not
638
   implemented).  */
639
#define ISA_HAS_DCLZ_DCLO       (ISA_MIPS64                             \
640
                                 && !TARGET_MIPS16)
641
 
642
/* ISA has three operand multiply instructions that put
643
   the high part in an accumulator: mulhi or mulhiu.  */
644
#define ISA_HAS_MULHI           (TARGET_MIPS5400                        \
645
                                 || TARGET_MIPS5500                     \
646
                                 || TARGET_SR71K                        \
647
                                 )
648
 
649
/* ISA has three operand multiply instructions that
650
   negates the result and puts the result in an accumulator.  */
651
#define ISA_HAS_MULS            (TARGET_MIPS5400                        \
652
                                 || TARGET_MIPS5500                     \
653
                                 || TARGET_SR71K                        \
654
                                 )
655
 
656
/* ISA has three operand multiply instructions that subtracts the
657
   result from a 4th operand and puts the result in an accumulator.  */
658
#define ISA_HAS_MSAC            (TARGET_MIPS5400                        \
659
                                 || TARGET_MIPS5500                     \
660
                                 || TARGET_SR71K                        \
661
                                 )
662
/* ISA has three operand multiply instructions that  the result
663
   from a 4th operand and puts the result in an accumulator.  */
664
#define ISA_HAS_MACC            ((TARGET_MIPS4120 && !TARGET_MIPS16)    \
665
                                 || (TARGET_MIPS4130 && !TARGET_MIPS16) \
666
                                 || TARGET_MIPS5400                     \
667
                                 || TARGET_MIPS5500                     \
668
                                 || TARGET_SR71K                        \
669
                                 )
670
 
671
/* ISA has NEC VR-style MACC, MACCHI, DMACC and DMACCHI instructions.  */
672
#define ISA_HAS_MACCHI          (!TARGET_MIPS16                         \
673
                                 && (TARGET_MIPS4120                    \
674
                                     || TARGET_MIPS4130))
675
 
676
/* ISA has 32-bit rotate right instruction.  */
677
#define ISA_HAS_ROTR_SI         (!TARGET_MIPS16                         \
678
                                 && (ISA_MIPS32R2                       \
679
                                     || TARGET_MIPS5400                 \
680
                                     || TARGET_MIPS5500                 \
681
                                     || TARGET_SR71K                    \
682
                                     ))
683
 
684
/* ISA has 64-bit rotate right instruction.  */
685
#define ISA_HAS_ROTR_DI         (TARGET_64BIT                           \
686
                                 && !TARGET_MIPS16                      \
687
                                 && (TARGET_MIPS5400                    \
688
                                     || TARGET_MIPS5500                 \
689
                                     || TARGET_SR71K                    \
690
                                     ))
691
 
692
/* ISA has data prefetch instructions.  This controls use of 'pref'.  */
693
#define ISA_HAS_PREFETCH        ((ISA_MIPS4                             \
694
                                  || ISA_MIPS32                         \
695
                                  || ISA_MIPS32R2                       \
696
                                  || ISA_MIPS64)                        \
697
                                 && !TARGET_MIPS16)
698
 
699
/* ISA has data indexed prefetch instructions.  This controls use of
700
   'prefx', along with TARGET_HARD_FLOAT and TARGET_DOUBLE_FLOAT.
701
   (prefx is a cop1x instruction, so can only be used if FP is
702
   enabled.)  */
703
#define ISA_HAS_PREFETCHX       ((ISA_MIPS4                             \
704
                                  || ISA_MIPS64)                        \
705
                                 && !TARGET_MIPS16)
706
 
707
/* True if trunc.w.s and trunc.w.d are real (not synthetic)
708
   instructions.  Both require TARGET_HARD_FLOAT, and trunc.w.d
709
   also requires TARGET_DOUBLE_FLOAT.  */
710
#define ISA_HAS_TRUNC_W         (!ISA_MIPS1)
711
 
712
/* ISA includes the MIPS32r2 seb and seh instructions.  */
713
#define ISA_HAS_SEB_SEH         (!TARGET_MIPS16                        \
714
                                 && (ISA_MIPS32R2                      \
715
                                     ))
716
 
717
/* ISA includes the MIPS32/64 rev 2 ext and ins instructions.  */
718
#define ISA_HAS_EXT_INS         (!TARGET_MIPS16                        \
719
                                 && (ISA_MIPS32R2                      \
720
                                     ))
721
 
722
/* True if the result of a load is not available to the next instruction.
723
   A nop will then be needed between instructions like "lw $4,..."
724
   and "addiu $4,$4,1".  */
725
#define ISA_HAS_LOAD_DELAY      (mips_isa == 1                          \
726
                                 && !TARGET_MIPS3900                    \
727
                                 && !TARGET_MIPS16)
728
 
729
/* Likewise mtc1 and mfc1.  */
730
#define ISA_HAS_XFER_DELAY      (mips_isa <= 3)
731
 
732
/* Likewise floating-point comparisons.  */
733
#define ISA_HAS_FCMP_DELAY      (mips_isa <= 3)
734
 
735
/* True if mflo and mfhi can be immediately followed by instructions
736
   which write to the HI and LO registers.
737
 
738
   According to MIPS specifications, MIPS ISAs I, II, and III need
739
   (at least) two instructions between the reads of HI/LO and
740
   instructions which write them, and later ISAs do not.  Contradicting
741
   the MIPS specifications, some MIPS IV processor user manuals (e.g.
742
   the UM for the NEC Vr5000) document needing the instructions between
743
   HI/LO reads and writes, as well.  Therefore, we declare only MIPS32,
744
   MIPS64 and later ISAs to have the interlocks, plus any specific
745
   earlier-ISA CPUs for which CPU documentation declares that the
746
   instructions are really interlocked.  */
747
#define ISA_HAS_HILO_INTERLOCKS (ISA_MIPS32                             \
748
                                 || ISA_MIPS32R2                        \
749
                                 || ISA_MIPS64                          \
750
                                 || TARGET_MIPS5500)
751
 
752
/* Add -G xx support.  */
753
 
754
#undef  SWITCH_TAKES_ARG
755
#define SWITCH_TAKES_ARG(CHAR)                                          \
756
  (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
757
 
758
#define OVERRIDE_OPTIONS override_options ()
759
 
760
#define CONDITIONAL_REGISTER_USAGE mips_conditional_register_usage ()
761
 
762
/* Show we can debug even without a frame pointer.  */
763
#define CAN_DEBUG_WITHOUT_FP
764
 
765
/* Tell collect what flags to pass to nm.  */
766
#ifndef NM_FLAGS
767
#define NM_FLAGS "-Bn"
768
#endif
769
 
770
 
771
#ifndef MIPS_ABI_DEFAULT
772
#define MIPS_ABI_DEFAULT ABI_32
773
#endif
774
 
775
/* Use the most portable ABI flag for the ASM specs.  */
776
 
777
#if MIPS_ABI_DEFAULT == ABI_32
778
#define MULTILIB_ABI_DEFAULT "mabi=32"
779
#endif
780
 
781
#if MIPS_ABI_DEFAULT == ABI_O64
782
#define MULTILIB_ABI_DEFAULT "mabi=o64"
783
#endif
784
 
785
#if MIPS_ABI_DEFAULT == ABI_N32
786
#define MULTILIB_ABI_DEFAULT "mabi=n32"
787
#endif
788
 
789
#if MIPS_ABI_DEFAULT == ABI_64
790
#define MULTILIB_ABI_DEFAULT "mabi=64"
791
#endif
792
 
793
#if MIPS_ABI_DEFAULT == ABI_EABI
794
#define MULTILIB_ABI_DEFAULT "mabi=eabi"
795
#endif
796
 
797
/* SUBTARGET_ASM_OPTIMIZING_SPEC handles passing optimization options
798
   to the assembler.  It may be overridden by subtargets.  */
799
#ifndef SUBTARGET_ASM_OPTIMIZING_SPEC
800
#define SUBTARGET_ASM_OPTIMIZING_SPEC "\
801
%{noasmopt:-O0} \
802
%{!noasmopt:%{O:-O2} %{O1:-O2} %{O2:-O2} %{O3:-O3}}"
803
#endif
804
 
805
/* SUBTARGET_ASM_DEBUGGING_SPEC handles passing debugging options to
806
   the assembler.  It may be overridden by subtargets.
807
 
808
   Beginning with gas 2.13, -mdebug must be passed to correctly handle
809
   COFF debugging info.  */
810
 
811
#ifndef SUBTARGET_ASM_DEBUGGING_SPEC
812
#define SUBTARGET_ASM_DEBUGGING_SPEC "\
813
%{g} %{g0} %{g1} %{g2} %{g3} \
814
%{ggdb:-g} %{ggdb0:-g0} %{ggdb1:-g1} %{ggdb2:-g2} %{ggdb3:-g3} \
815
%{gstabs:-g} %{gstabs0:-g0} %{gstabs1:-g1} %{gstabs2:-g2} %{gstabs3:-g3} \
816
%{gstabs+:-g} %{gstabs+0:-g0} %{gstabs+1:-g1} %{gstabs+2:-g2} %{gstabs+3:-g3} \
817
%{gcoff:-g} %{gcoff0:-g0} %{gcoff1:-g1} %{gcoff2:-g2} %{gcoff3:-g3} \
818
%{gcoff*:-mdebug} %{!gcoff*:-no-mdebug}"
819
#endif
820
 
821
/* SUBTARGET_ASM_SPEC is always passed to the assembler.  It may be
822
   overridden by subtargets.  */
823
 
824
#ifndef SUBTARGET_ASM_SPEC
825
#define SUBTARGET_ASM_SPEC ""
826
#endif
827
 
828
#undef ASM_SPEC
829
#define ASM_SPEC "\
830
%{G*} %(endian_spec) %{mips1} %{mips2} %{mips3} %{mips4} \
831
%{mips32} %{mips32r2} %{mips64} \
832
%{mips16:%{!mno-mips16:-mips16}} %{mno-mips16:-no-mips16} \
833
%{mips3d:-mips3d} \
834
%{mdsp} \
835
%{mfix-vr4120} %{mfix-vr4130} \
836
%(subtarget_asm_optimizing_spec) \
837
%(subtarget_asm_debugging_spec) \
838
%{mabi=*} %{!mabi*: %(asm_abi_default_spec)} \
839
%{mgp32} %{mgp64} %{march=*} %{mxgot:-xgot} \
840
%{mshared} %{mno-shared} \
841
%{msym32} %{mno-sym32} \
842
%{mtune=*} %{v} \
843
%(subtarget_asm_spec)"
844
 
845
/* Extra switches sometimes passed to the linker.  */
846
/* ??? The bestGnum will never be passed to the linker, because the gcc driver
847
  will interpret it as a -b option.  */
848
 
849
#ifndef LINK_SPEC
850
#define LINK_SPEC "\
851
%(endian_spec) \
852
%{G*} %{mips1} %{mips2} %{mips3} %{mips4} %{mips32} %{mips32r2} %{mips64} \
853
%{bestGnum} %{shared} %{non_shared}"
854
#endif  /* LINK_SPEC defined */
855
 
856
 
857
/* Specs for the compiler proper */
858
 
859
/* SUBTARGET_CC1_SPEC is passed to the compiler proper.  It may be
860
   overridden by subtargets.  */
861
#ifndef SUBTARGET_CC1_SPEC
862
#define SUBTARGET_CC1_SPEC ""
863
#endif
864
 
865
/* CC1_SPEC is the set of arguments to pass to the compiler proper.  */
866
 
867
#undef CC1_SPEC
868
#define CC1_SPEC "\
869
%{gline:%{!g:%{!g0:%{!g1:%{!g2: -g1}}}}} \
870
%{G*} %{EB:-meb} %{EL:-mel} %{EB:%{EL:%emay not use both -EB and -EL}} \
871
%{save-temps: } \
872
%(subtarget_cc1_spec)"
873
 
874
/* Preprocessor specs.  */
875
 
876
/* SUBTARGET_CPP_SPEC is passed to the preprocessor.  It may be
877
   overridden by subtargets.  */
878
#ifndef SUBTARGET_CPP_SPEC
879
#define SUBTARGET_CPP_SPEC ""
880
#endif
881
 
882
#define CPP_SPEC "%(subtarget_cpp_spec)"
883
 
884
/* This macro defines names of additional specifications to put in the specs
885
   that can be used in various specifications like CC1_SPEC.  Its definition
886
   is an initializer with a subgrouping for each command option.
887
 
888
   Each subgrouping contains a string constant, that defines the
889
   specification name, and a string constant that used by the GCC driver
890
   program.
891
 
892
   Do not define this macro if it does not need to do anything.  */
893
 
894
#define EXTRA_SPECS                                                     \
895
  { "subtarget_cc1_spec", SUBTARGET_CC1_SPEC },                         \
896
  { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },                         \
897
  { "subtarget_asm_optimizing_spec", SUBTARGET_ASM_OPTIMIZING_SPEC },   \
898
  { "subtarget_asm_debugging_spec", SUBTARGET_ASM_DEBUGGING_SPEC },     \
899
  { "subtarget_asm_spec", SUBTARGET_ASM_SPEC },                         \
900
  { "asm_abi_default_spec", "-" MULTILIB_ABI_DEFAULT },                 \
901
  { "endian_spec", ENDIAN_SPEC },                                       \
902
  SUBTARGET_EXTRA_SPECS
903
 
904
#ifndef SUBTARGET_EXTRA_SPECS
905
#define SUBTARGET_EXTRA_SPECS
906
#endif
907
 
908
#define DBX_DEBUGGING_INFO 1            /* generate stabs (OSF/rose) */
909
#define MIPS_DEBUGGING_INFO 1           /* MIPS specific debugging info */
910
#define DWARF2_DEBUGGING_INFO 1         /* dwarf2 debugging info */
911
 
912
#ifndef PREFERRED_DEBUGGING_TYPE
913
#define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
914
#endif
915
 
916
#define DWARF2_ADDR_SIZE (ABI_HAS_64BIT_SYMBOLS ? 8 : 4)
917
 
918
/* By default, turn on GDB extensions.  */
919
#define DEFAULT_GDB_EXTENSIONS 1
920
 
921
/* Local compiler-generated symbols must have a prefix that the assembler
922
   understands.   By default, this is $, although some targets (e.g.,
923
   NetBSD-ELF) need to override this.  */
924
 
925
#ifndef LOCAL_LABEL_PREFIX
926
#define LOCAL_LABEL_PREFIX      "$"
927
#endif
928
 
929
/* By default on the mips, external symbols do not have an underscore
930
   prepended, but some targets (e.g., NetBSD) require this.  */
931
 
932
#ifndef USER_LABEL_PREFIX
933
#define USER_LABEL_PREFIX       ""
934
#endif
935
 
936
/* On Sun 4, this limit is 2048.  We use 1500 to be safe,
937
   since the length can run past this up to a continuation point.  */
938
#undef DBX_CONTIN_LENGTH
939
#define DBX_CONTIN_LENGTH 1500
940
 
941
/* How to renumber registers for dbx and gdb.  */
942
#define DBX_REGISTER_NUMBER(REGNO) mips_dbx_regno[ (REGNO) ]
943
 
944
/* The mapping from gcc register number to DWARF 2 CFA column number.  */
945
#define DWARF_FRAME_REGNUM(REG) (REG)
946
 
947
/* The DWARF 2 CFA column which tracks the return address.  */
948
#define DWARF_FRAME_RETURN_COLUMN (GP_REG_FIRST + 31)
949
 
950
/* The DWARF 2 CFA column which tracks the return address from a
951
   signal handler context.  */
952
#define SIGNAL_UNWIND_RETURN_COLUMN (FP_REG_LAST + 1)
953
 
954
/* Before the prologue, RA lives in r31.  */
955
#define INCOMING_RETURN_ADDR_RTX  gen_rtx_REG (VOIDmode, GP_REG_FIRST + 31)
956
 
957
/* Describe how we implement __builtin_eh_return.  */
958
#define EH_RETURN_DATA_REGNO(N) \
959
  ((N) < (TARGET_MIPS16 ? 2 : 4) ? (N) + GP_ARG_FIRST : INVALID_REGNUM)
960
 
961
#define EH_RETURN_STACKADJ_RTX  gen_rtx_REG (Pmode, GP_REG_FIRST + 3)
962
 
963
/* Offsets recorded in opcodes are a multiple of this alignment factor.
964
   The default for this in 64-bit mode is 8, which causes problems with
965
   SFmode register saves.  */
966
#define DWARF_CIE_DATA_ALIGNMENT -4
967
 
968
/* Correct the offset of automatic variables and arguments.  Note that
969
   the MIPS debug format wants all automatic variables and arguments
970
   to be in terms of the virtual frame pointer (stack pointer before
971
   any adjustment in the function), while the MIPS 3.0 linker wants
972
   the frame pointer to be the stack pointer after the initial
973
   adjustment.  */
974
 
975
#define DEBUGGER_AUTO_OFFSET(X)                         \
976
  mips_debugger_offset (X, (HOST_WIDE_INT) 0)
977
#define DEBUGGER_ARG_OFFSET(OFFSET, X)                  \
978
  mips_debugger_offset (X, (HOST_WIDE_INT) OFFSET)
979
 
980
/* Target machine storage layout */
981
 
982
#define BITS_BIG_ENDIAN 0
983
#define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
984
#define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
985
 
986
/* Define this to set the endianness to use in libgcc2.c, which can
987
   not depend on target_flags.  */
988
#if !defined(MIPSEL) && !defined(__MIPSEL__)
989
#define LIBGCC2_WORDS_BIG_ENDIAN 1
990
#else
991
#define LIBGCC2_WORDS_BIG_ENDIAN 0
992
#endif
993
 
994
#define MAX_BITS_PER_WORD 64
995
 
996
/* Width of a word, in units (bytes).  */
997
#define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
998
#ifndef IN_LIBGCC2
999
#define MIN_UNITS_PER_WORD 4
1000
#endif
1001
 
1002
/* For MIPS, width of a floating point register.  */
1003
#define UNITS_PER_FPREG (TARGET_FLOAT64 ? 8 : 4)
1004
 
1005
/* If register $f0 holds a floating-point value, $f(0 + FP_INC) is
1006
   the next available register.  */
1007
#define FP_INC (TARGET_FLOAT64 || TARGET_SINGLE_FLOAT ? 1 : 2)
1008
 
1009
/* The largest size of value that can be held in floating-point
1010
   registers and moved with a single instruction.  */
1011
#define UNITS_PER_HWFPVALUE (TARGET_SOFT_FLOAT ? 0 : FP_INC * UNITS_PER_FPREG)
1012
 
1013
/* The largest size of value that can be held in floating-point
1014
   registers.  */
1015
#define UNITS_PER_FPVALUE                       \
1016
  (TARGET_SOFT_FLOAT ? 0                        \
1017
   : TARGET_SINGLE_FLOAT ? UNITS_PER_FPREG      \
1018
   : LONG_DOUBLE_TYPE_SIZE / BITS_PER_UNIT)
1019
 
1020
/* The number of bytes in a double.  */
1021
#define UNITS_PER_DOUBLE (TYPE_PRECISION (double_type_node) / BITS_PER_UNIT)
1022
 
1023
#define UNITS_PER_SIMD_WORD (TARGET_PAIRED_SINGLE_FLOAT ? 8 : UNITS_PER_WORD)
1024
 
1025
/* Set the sizes of the core types.  */
1026
#define SHORT_TYPE_SIZE 16
1027
#define INT_TYPE_SIZE 32
1028
#define LONG_TYPE_SIZE (TARGET_LONG64 ? 64 : 32)
1029
#define LONG_LONG_TYPE_SIZE 64
1030
 
1031
#define FLOAT_TYPE_SIZE 32
1032
#define DOUBLE_TYPE_SIZE 64
1033
#define LONG_DOUBLE_TYPE_SIZE (TARGET_NEWABI ? 128 : 64)
1034
 
1035
/* long double is not a fixed mode, but the idea is that, if we
1036
   support long double, we also want a 128-bit integer type.  */
1037
#define MAX_FIXED_MODE_SIZE LONG_DOUBLE_TYPE_SIZE
1038
 
1039
#ifdef IN_LIBGCC2
1040
#if  (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
1041
  || (defined _ABI64 && _MIPS_SIM == _ABI64)
1042
#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
1043
# else
1044
#  define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
1045
# endif
1046
#endif
1047
 
1048
/* Width in bits of a pointer.  */
1049
#ifndef POINTER_SIZE
1050
#define POINTER_SIZE ((TARGET_LONG64 && TARGET_64BIT) ? 64 : 32)
1051
#endif
1052
 
1053
/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
1054
#define PARM_BOUNDARY BITS_PER_WORD
1055
 
1056
/* Allocation boundary (in *bits*) for the code of a function.  */
1057
#define FUNCTION_BOUNDARY 32
1058
 
1059
/* Alignment of field after `int : 0' in a structure.  */
1060
#define EMPTY_FIELD_BOUNDARY 32
1061
 
1062
/* Every structure's size must be a multiple of this.  */
1063
/* 8 is observed right on a DECstation and on riscos 4.02.  */
1064
#define STRUCTURE_SIZE_BOUNDARY 8
1065
 
1066
/* There is no point aligning anything to a rounder boundary than this.  */
1067
#define BIGGEST_ALIGNMENT LONG_DOUBLE_TYPE_SIZE
1068
 
1069
/* All accesses must be aligned.  */
1070
#define STRICT_ALIGNMENT 1
1071
 
1072
/* Define this if you wish to imitate the way many other C compilers
1073
   handle alignment of bitfields and the structures that contain
1074
   them.
1075
 
1076
   The behavior is that the type written for a bit-field (`int',
1077
   `short', or other integer type) imposes an alignment for the
1078
   entire structure, as if the structure really did contain an
1079
   ordinary field of that type.  In addition, the bit-field is placed
1080
   within the structure so that it would fit within such a field,
1081
   not crossing a boundary for it.
1082
 
1083
   Thus, on most machines, a bit-field whose type is written as `int'
1084
   would not cross a four-byte boundary, and would force four-byte
1085
   alignment for the whole structure.  (The alignment used may not
1086
   be four bytes; it is controlled by the other alignment
1087
   parameters.)
1088
 
1089
   If the macro is defined, its definition should be a C expression;
1090
   a nonzero value for the expression enables this behavior.  */
1091
 
1092
#define PCC_BITFIELD_TYPE_MATTERS 1
1093
 
1094
/* If defined, a C expression to compute the alignment given to a
1095
   constant that is being placed in memory.  CONSTANT is the constant
1096
   and ALIGN is the alignment that the object would ordinarily have.
1097
   The value of this macro is used instead of that alignment to align
1098
   the object.
1099
 
1100
   If this macro is not defined, then ALIGN is used.
1101
 
1102
   The typical use of this macro is to increase alignment for string
1103
   constants to be word aligned so that `strcpy' calls that copy
1104
   constants can be done inline.  */
1105
 
1106
#define CONSTANT_ALIGNMENT(EXP, ALIGN)                                  \
1107
  ((TREE_CODE (EXP) == STRING_CST  || TREE_CODE (EXP) == CONSTRUCTOR)   \
1108
   && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
1109
 
1110
/* If defined, a C expression to compute the alignment for a static
1111
   variable.  TYPE is the data type, and ALIGN is the alignment that
1112
   the object would ordinarily have.  The value of this macro is used
1113
   instead of that alignment to align the object.
1114
 
1115
   If this macro is not defined, then ALIGN is used.
1116
 
1117
   One use of this macro is to increase alignment of medium-size
1118
   data to make it all fit in fewer cache lines.  Another is to
1119
   cause character arrays to be word-aligned so that `strcpy' calls
1120
   that copy constants to character arrays can be done inline.  */
1121
 
1122
#undef DATA_ALIGNMENT
1123
#define DATA_ALIGNMENT(TYPE, ALIGN)                                     \
1124
  ((((ALIGN) < BITS_PER_WORD)                                           \
1125
    && (TREE_CODE (TYPE) == ARRAY_TYPE                                  \
1126
        || TREE_CODE (TYPE) == UNION_TYPE                               \
1127
        || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
1128
 
1129
 
1130
#define PAD_VARARGS_DOWN \
1131
  (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1132
 
1133
/* Define if operations between registers always perform the operation
1134
   on the full register even if a narrower mode is specified.  */
1135
#define WORD_REGISTER_OPERATIONS
1136
 
1137
/* When in 64 bit mode, move insns will sign extend SImode and CCmode
1138
   moves.  All other references are zero extended.  */
1139
#define LOAD_EXTEND_OP(MODE) \
1140
  (TARGET_64BIT && ((MODE) == SImode || (MODE) == CCmode) \
1141
   ? SIGN_EXTEND : ZERO_EXTEND)
1142
 
1143
/* Define this macro if it is advisable to hold scalars in registers
1144
   in a wider mode than that declared by the program.  In such cases,
1145
   the value is constrained to be within the bounds of the declared
1146
   type, but kept valid in the wider mode.  The signedness of the
1147
   extension may differ from that of the type.  */
1148
 
1149
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE)     \
1150
  if (GET_MODE_CLASS (MODE) == MODE_INT         \
1151
      && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
1152
    {                                           \
1153
      if ((MODE) == SImode)                     \
1154
        (UNSIGNEDP) = 0;                        \
1155
      (MODE) = Pmode;                           \
1156
    }
1157
 
1158
/* Define if loading short immediate values into registers sign extends.  */
1159
#define SHORT_IMMEDIATES_SIGN_EXTEND
1160
 
1161
/* The [d]clz instructions have the natural values at 0.  */
1162
 
1163
#define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1164
  ((VALUE) = GET_MODE_BITSIZE (MODE), true)
1165
 
1166
/* Standard register usage.  */
1167
 
1168
/* Number of hardware registers.  We have:
1169
 
1170
   - 32 integer registers
1171
   - 32 floating point registers
1172
   - 8 condition code registers
1173
   - 2 accumulator registers (hi and lo)
1174
   - 32 registers each for coprocessors 0, 2 and 3
1175
   - 3 fake registers:
1176
        - ARG_POINTER_REGNUM
1177
        - FRAME_POINTER_REGNUM
1178
        - FAKE_CALL_REGNO (see the comment above load_callsi for details)
1179
   - 3 dummy entries that were used at various times in the past.
1180
   - 6 DSP accumulator registers (3 hi-lo pairs) for MIPS DSP ASE
1181
   - 6 DSP control registers  */
1182
 
1183
#define FIRST_PSEUDO_REGISTER 188
1184
 
1185
/* By default, fix the kernel registers ($26 and $27), the global
1186
   pointer ($28) and the stack pointer ($29).  This can change
1187
   depending on the command-line options.
1188
 
1189
   Regarding coprocessor registers: without evidence to the contrary,
1190
   it's best to assume that each coprocessor register has a unique
1191
   use.  This can be overridden, in, e.g., override_options() or
1192
   CONDITIONAL_REGISTER_USAGE should the assumption be inappropriate
1193
   for a particular target.  */
1194
 
1195
#define FIXED_REGISTERS                                                 \
1196
{                                                                       \
1197
  1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1198
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0,                       \
1199
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1200
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1201
  0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,                       \
1202
  /* COP0 registers */                                                  \
1203
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1204
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1205
  /* COP2 registers */                                                  \
1206
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1207
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1208
  /* COP3 registers */                                                  \
1209
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1210
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1211
  /* 6 DSP accumulator registers & 6 control registers */               \
1212
  0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1                                    \
1213
}
1214
 
1215
 
1216
/* Set up this array for o32 by default.
1217
 
1218
   Note that we don't mark $31 as a call-clobbered register.  The idea is
1219
   that it's really the call instructions themselves which clobber $31.
1220
   We don't care what the called function does with it afterwards.
1221
 
1222
   This approach makes it easier to implement sibcalls.  Unlike normal
1223
   calls, sibcalls don't clobber $31, so the register reaches the
1224
   called function in tact.  EPILOGUE_USES says that $31 is useful
1225
   to the called function.  */
1226
 
1227
#define CALL_USED_REGISTERS                                             \
1228
{                                                                       \
1229
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1230
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0,                       \
1231
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1232
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1233
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1234
  /* COP0 registers */                                                  \
1235
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1236
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1237
  /* COP2 registers */                                                  \
1238
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1239
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1240
  /* COP3 registers */                                                  \
1241
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1242
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1243
  /* 6 DSP accumulator registers & 6 control registers */               \
1244
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1                                    \
1245
}
1246
 
1247
 
1248
/* Define this since $28, though fixed, is call-saved in many ABIs.  */
1249
 
1250
#define CALL_REALLY_USED_REGISTERS                                      \
1251
{ /* General registers.  */                                             \
1252
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1253
  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,                       \
1254
  /* Floating-point registers.  */                                      \
1255
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1256
  1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1257
  /* Others.  */                                                        \
1258
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                       \
1259
  /* COP0 registers */                                                  \
1260
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1261
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1262
  /* COP2 registers */                                                  \
1263
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1264
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1265
  /* COP3 registers */                                                  \
1266
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1267
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                       \
1268
  /* 6 DSP accumulator registers & 6 control registers */               \
1269
  1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0                                    \
1270
}
1271
 
1272
/* Internal macros to classify a register number as to whether it's a
1273
   general purpose register, a floating point register, a
1274
   multiply/divide register, or a status register.  */
1275
 
1276
#define GP_REG_FIRST 0
1277
#define GP_REG_LAST  31
1278
#define GP_REG_NUM   (GP_REG_LAST - GP_REG_FIRST + 1)
1279
#define GP_DBX_FIRST 0
1280
 
1281
#define FP_REG_FIRST 32
1282
#define FP_REG_LAST  63
1283
#define FP_REG_NUM   (FP_REG_LAST - FP_REG_FIRST + 1)
1284
#define FP_DBX_FIRST ((write_symbols == DBX_DEBUG) ? 38 : 32)
1285
 
1286
#define MD_REG_FIRST 64
1287
#define MD_REG_LAST  65
1288
#define MD_REG_NUM   (MD_REG_LAST - MD_REG_FIRST + 1)
1289
#define MD_DBX_FIRST (FP_DBX_FIRST + FP_REG_NUM)
1290
 
1291
#define ST_REG_FIRST 67
1292
#define ST_REG_LAST  74
1293
#define ST_REG_NUM   (ST_REG_LAST - ST_REG_FIRST + 1)
1294
 
1295
 
1296
/* FIXME: renumber.  */
1297
#define COP0_REG_FIRST 80
1298
#define COP0_REG_LAST 111
1299
#define COP0_REG_NUM (COP0_REG_LAST - COP0_REG_FIRST + 1)
1300
 
1301
#define COP2_REG_FIRST 112
1302
#define COP2_REG_LAST 143
1303
#define COP2_REG_NUM (COP2_REG_LAST - COP2_REG_FIRST + 1)
1304
 
1305
#define COP3_REG_FIRST 144
1306
#define COP3_REG_LAST 175
1307
#define COP3_REG_NUM (COP3_REG_LAST - COP3_REG_FIRST + 1)
1308
/* ALL_COP_REG_NUM assumes that COP0,2,and 3 are numbered consecutively.  */
1309
#define ALL_COP_REG_NUM (COP3_REG_LAST - COP0_REG_FIRST + 1)
1310
 
1311
#define DSP_ACC_REG_FIRST 176
1312
#define DSP_ACC_REG_LAST 181
1313
#define DSP_ACC_REG_NUM (DSP_ACC_REG_LAST - DSP_ACC_REG_FIRST + 1)
1314
 
1315
#define AT_REGNUM       (GP_REG_FIRST + 1)
1316
#define HI_REGNUM       (MD_REG_FIRST + 0)
1317
#define LO_REGNUM       (MD_REG_FIRST + 1)
1318
#define AC1HI_REGNUM    (DSP_ACC_REG_FIRST + 0)
1319
#define AC1LO_REGNUM    (DSP_ACC_REG_FIRST + 1)
1320
#define AC2HI_REGNUM    (DSP_ACC_REG_FIRST + 2)
1321
#define AC2LO_REGNUM    (DSP_ACC_REG_FIRST + 3)
1322
#define AC3HI_REGNUM    (DSP_ACC_REG_FIRST + 4)
1323
#define AC3LO_REGNUM    (DSP_ACC_REG_FIRST + 5)
1324
 
1325
/* FPSW_REGNUM is the single condition code used if !ISA_HAS_8CC.
1326
   If ISA_HAS_8CC, it should not be used, and an arbitrary ST_REG
1327
   should be used instead.  */
1328
#define FPSW_REGNUM     ST_REG_FIRST
1329
 
1330
#define GP_REG_P(REGNO) \
1331
  ((unsigned int) ((int) (REGNO) - GP_REG_FIRST) < GP_REG_NUM)
1332
#define M16_REG_P(REGNO) \
1333
  (((REGNO) >= 2 && (REGNO) <= 7) || (REGNO) == 16 || (REGNO) == 17)
1334
#define FP_REG_P(REGNO)  \
1335
  ((unsigned int) ((int) (REGNO) - FP_REG_FIRST) < FP_REG_NUM)
1336
#define MD_REG_P(REGNO) \
1337
  ((unsigned int) ((int) (REGNO) - MD_REG_FIRST) < MD_REG_NUM)
1338
#define ST_REG_P(REGNO) \
1339
  ((unsigned int) ((int) (REGNO) - ST_REG_FIRST) < ST_REG_NUM)
1340
#define COP0_REG_P(REGNO) \
1341
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < COP0_REG_NUM)
1342
#define COP2_REG_P(REGNO) \
1343
  ((unsigned int) ((int) (REGNO) - COP2_REG_FIRST) < COP2_REG_NUM)
1344
#define COP3_REG_P(REGNO) \
1345
  ((unsigned int) ((int) (REGNO) - COP3_REG_FIRST) < COP3_REG_NUM)
1346
#define ALL_COP_REG_P(REGNO) \
1347
  ((unsigned int) ((int) (REGNO) - COP0_REG_FIRST) < ALL_COP_REG_NUM)
1348
/* Test if REGNO is one of the 6 new DSP accumulators.  */
1349
#define DSP_ACC_REG_P(REGNO) \
1350
  ((unsigned int) ((int) (REGNO) - DSP_ACC_REG_FIRST) < DSP_ACC_REG_NUM)
1351
/* Test if REGNO is hi, lo, or one of the 6 new DSP accumulators.  */
1352
#define ACC_REG_P(REGNO) \
1353
  (MD_REG_P (REGNO) || DSP_ACC_REG_P (REGNO))
1354
/* Test if REGNO is HI or the first register of 3 new DSP accumulator pairs.  */
1355
#define ACC_HI_REG_P(REGNO) \
1356
  ((REGNO) == HI_REGNUM || (REGNO) == AC1HI_REGNUM || (REGNO) == AC2HI_REGNUM \
1357
   || (REGNO) == AC3HI_REGNUM)
1358
 
1359
#define FP_REG_RTX_P(X) (REG_P (X) && FP_REG_P (REGNO (X)))
1360
 
1361
/* True if X is (const (unspec [(const_int 0)] UNSPEC_GP)).  This is used
1362
   to initialize the mips16 gp pseudo register.  */
1363
#define CONST_GP_P(X)                           \
1364
  (GET_CODE (X) == CONST                        \
1365
   && GET_CODE (XEXP (X, 0)) == UNSPEC          \
1366
   && XINT (XEXP (X, 0), 1) == UNSPEC_GP)
1367
 
1368
/* Return coprocessor number from register number.  */
1369
 
1370
#define COPNUM_AS_CHAR_FROM_REGNUM(REGNO)                               \
1371
  (COP0_REG_P (REGNO) ? '0' : COP2_REG_P (REGNO) ? '2'                  \
1372
   : COP3_REG_P (REGNO) ? '3' : '?')
1373
 
1374
 
1375
#define HARD_REGNO_NREGS(REGNO, MODE) mips_hard_regno_nregs (REGNO, MODE)
1376
 
1377
/* To make the code simpler, HARD_REGNO_MODE_OK just references an
1378
   array built in override_options.  Because machmodes.h is not yet
1379
   included before this file is processed, the MODE bound can't be
1380
   expressed here.  */
1381
 
1382
extern char mips_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
1383
 
1384
#define HARD_REGNO_MODE_OK(REGNO, MODE)                                 \
1385
  mips_hard_regno_mode_ok[ (int)(MODE) ][ (REGNO) ]
1386
 
1387
/* Value is 1 if it is a good idea to tie two pseudo registers
1388
   when one has mode MODE1 and one has mode MODE2.
1389
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1390
   for any hard reg, then this must be 0 for correct output.  */
1391
#define MODES_TIEABLE_P(MODE1, MODE2)                                   \
1392
  ((GET_MODE_CLASS (MODE1) == MODE_FLOAT ||                             \
1393
    GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT)                       \
1394
   == (GET_MODE_CLASS (MODE2) == MODE_FLOAT ||                          \
1395
       GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
1396
 
1397
/* Register to use for pushing function arguments.  */
1398
#define STACK_POINTER_REGNUM (GP_REG_FIRST + 29)
1399
 
1400
/* These two registers don't really exist: they get eliminated to either
1401
   the stack or hard frame pointer.  */
1402
#define ARG_POINTER_REGNUM 77
1403
#define FRAME_POINTER_REGNUM 78
1404
 
1405
/* $30 is not available on the mips16, so we use $17 as the frame
1406
   pointer.  */
1407
#define HARD_FRAME_POINTER_REGNUM \
1408
  (TARGET_MIPS16 ? GP_REG_FIRST + 17 : GP_REG_FIRST + 30)
1409
 
1410
/* Value should be nonzero if functions must have frame pointers.
1411
   Zero means the frame pointer need not be set up (and parms
1412
   may be accessed via the stack pointer) in functions that seem suitable.
1413
   This is computed in `reload', in reload1.c.  */
1414
#define FRAME_POINTER_REQUIRED (current_function_calls_alloca)
1415
 
1416
/* Register in which static-chain is passed to a function.  */
1417
#define STATIC_CHAIN_REGNUM (GP_REG_FIRST + 2)
1418
 
1419
/* Registers used as temporaries in prologue/epilogue code.  If we're
1420
   generating mips16 code, these registers must come from the core set
1421
   of 8.  The prologue register mustn't conflict with any incoming
1422
   arguments, the static chain pointer, or the frame pointer.  The
1423
   epilogue temporary mustn't conflict with the return registers, the
1424
   frame pointer, the EH stack adjustment, or the EH data registers.  */
1425
 
1426
#define MIPS_PROLOGUE_TEMP_REGNUM (GP_REG_FIRST + 3)
1427
#define MIPS_EPILOGUE_TEMP_REGNUM (GP_REG_FIRST + (TARGET_MIPS16 ? 6 : 8))
1428
 
1429
#define MIPS_PROLOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_PROLOGUE_TEMP_REGNUM)
1430
#define MIPS_EPILOGUE_TEMP(MODE) gen_rtx_REG (MODE, MIPS_EPILOGUE_TEMP_REGNUM)
1431
 
1432
/* Define this macro if it is as good or better to call a constant
1433
   function address than to call an address kept in a register.  */
1434
#define NO_FUNCTION_CSE 1
1435
 
1436
/* The ABI-defined global pointer.  Sometimes we use a different
1437
   register in leaf functions: see PIC_OFFSET_TABLE_REGNUM.  */
1438
#define GLOBAL_POINTER_REGNUM (GP_REG_FIRST + 28)
1439
 
1440
/* We normally use $28 as the global pointer.  However, when generating
1441
   n32/64 PIC, it is better for leaf functions to use a call-clobbered
1442
   register instead.  They can then avoid saving and restoring $28
1443
   and perhaps avoid using a frame at all.
1444
 
1445
   When a leaf function uses something other than $28, mips_expand_prologue
1446
   will modify pic_offset_table_rtx in place.  Take the register number
1447
   from there after reload.  */
1448
#define PIC_OFFSET_TABLE_REGNUM \
1449
  (reload_completed ? REGNO (pic_offset_table_rtx) : GLOBAL_POINTER_REGNUM)
1450
 
1451
#define PIC_FUNCTION_ADDR_REGNUM (GP_REG_FIRST + 25)
1452
 
1453
/* Define the classes of registers for register constraints in the
1454
   machine description.  Also define ranges of constants.
1455
 
1456
   One of the classes must always be named ALL_REGS and include all hard regs.
1457
   If there is more than one class, another class must be named NO_REGS
1458
   and contain no registers.
1459
 
1460
   The name GENERAL_REGS must be the name of a class (or an alias for
1461
   another name such as ALL_REGS).  This is the class of registers
1462
   that is allowed by "g" or "r" in a register constraint.
1463
   Also, registers outside this class are allocated only when
1464
   instructions express preferences for them.
1465
 
1466
   The classes must be numbered in nondecreasing order; that is,
1467
   a larger-numbered class must never be contained completely
1468
   in a smaller-numbered class.
1469
 
1470
   For any two classes, it is very desirable that there be another
1471
   class that represents their union.  */
1472
 
1473
enum reg_class
1474
{
1475
  NO_REGS,                      /* no registers in set */
1476
  M16_NA_REGS,                  /* mips16 regs not used to pass args */
1477
  M16_REGS,                     /* mips16 directly accessible registers */
1478
  T_REG,                        /* mips16 T register ($24) */
1479
  M16_T_REGS,                   /* mips16 registers plus T register */
1480
  PIC_FN_ADDR_REG,              /* SVR4 PIC function address register */
1481
  V1_REG,                       /* Register $v1 ($3) used for TLS access.  */
1482
  LEA_REGS,                     /* Every GPR except $25 */
1483
  GR_REGS,                      /* integer registers */
1484
  FP_REGS,                      /* floating point registers */
1485
  HI_REG,                       /* hi register */
1486
  LO_REG,                       /* lo register */
1487
  MD_REGS,                      /* multiply/divide registers (hi/lo) */
1488
  COP0_REGS,                    /* generic coprocessor classes */
1489
  COP2_REGS,
1490
  COP3_REGS,
1491
  HI_AND_GR_REGS,               /* union classes */
1492
  LO_AND_GR_REGS,
1493
  HI_AND_FP_REGS,
1494
  COP0_AND_GR_REGS,
1495
  COP2_AND_GR_REGS,
1496
  COP3_AND_GR_REGS,
1497
  ALL_COP_REGS,
1498
  ALL_COP_AND_GR_REGS,
1499
  ST_REGS,                      /* status registers (fp status) */
1500
  DSP_ACC_REGS,                 /* DSP accumulator registers */
1501
  ACC_REGS,                     /* Hi/Lo and DSP accumulator registers */
1502
  ALL_REGS,                     /* all registers */
1503
  LIM_REG_CLASSES               /* max value + 1 */
1504
};
1505
 
1506
#define N_REG_CLASSES (int) LIM_REG_CLASSES
1507
 
1508
#define GENERAL_REGS GR_REGS
1509
 
1510
/* An initializer containing the names of the register classes as C
1511
   string constants.  These names are used in writing some of the
1512
   debugging dumps.  */
1513
 
1514
#define REG_CLASS_NAMES                                                 \
1515
{                                                                       \
1516
  "NO_REGS",                                                            \
1517
  "M16_NA_REGS",                                                        \
1518
  "M16_REGS",                                                           \
1519
  "T_REG",                                                              \
1520
  "M16_T_REGS",                                                         \
1521
  "PIC_FN_ADDR_REG",                                                    \
1522
  "V1_REG",                                                             \
1523
  "LEA_REGS",                                                           \
1524
  "GR_REGS",                                                            \
1525
  "FP_REGS",                                                            \
1526
  "HI_REG",                                                             \
1527
  "LO_REG",                                                             \
1528
  "MD_REGS",                                                            \
1529
  /* coprocessor registers */                                           \
1530
  "COP0_REGS",                                                          \
1531
  "COP2_REGS",                                                          \
1532
  "COP3_REGS",                                                          \
1533
  "HI_AND_GR_REGS",                                                     \
1534
  "LO_AND_GR_REGS",                                                     \
1535
  "HI_AND_FP_REGS",                                                     \
1536
  "COP0_AND_GR_REGS",                                                   \
1537
  "COP2_AND_GR_REGS",                                                   \
1538
  "COP3_AND_GR_REGS",                                                   \
1539
  "ALL_COP_REGS",                                                       \
1540
  "ALL_COP_AND_GR_REGS",                                                \
1541
  "ST_REGS",                                                            \
1542
  "DSP_ACC_REGS",                                                       \
1543
  "ACC_REGS",                                                           \
1544
  "ALL_REGS"                                                            \
1545
}
1546
 
1547
/* An initializer containing the contents of the register classes,
1548
   as integers which are bit masks.  The Nth integer specifies the
1549
   contents of class N.  The way the integer MASK is interpreted is
1550
   that register R is in the class if `MASK & (1 << R)' is 1.
1551
 
1552
   When the machine has more than 32 registers, an integer does not
1553
   suffice.  Then the integers are replaced by sub-initializers,
1554
   braced groupings containing several integers.  Each
1555
   sub-initializer must be suitable as an initializer for the type
1556
   `HARD_REG_SET' which is defined in `hard-reg-set.h'.  */
1557
 
1558
#define REG_CLASS_CONTENTS                                                                              \
1559
{                                                                                                       \
1560
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* no registers */      \
1561
  { 0x0003000c, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 nonarg regs */\
1562
  { 0x000300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 registers */  \
1563
  { 0x01000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 T register */ \
1564
  { 0x010300fc, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* mips16 and T regs */ \
1565
  { 0x02000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* SVR4 PIC function address register */ \
1566
  { 0x00000008, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* only $v1 */ \
1567
  { 0xfdffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* Every other GPR except $25 */   \
1568
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* integer registers */ \
1569
  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 },   /* floating registers*/ \
1570
  { 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },   /* hi register */       \
1571
  { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },   /* lo register */       \
1572
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x00000000 },   /* mul/div registers */ \
1573
  { 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },   /* cop0 registers */    \
1574
  { 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },   /* cop2 registers */    \
1575
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },   /* cop3 registers */    \
1576
  { 0xffffffff, 0x00000000, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },   /* union classes */     \
1577
  { 0xffffffff, 0x00000000, 0x00000002, 0x00000000, 0x00000000, 0x00000000 },                           \
1578
  { 0x00000000, 0xffffffff, 0x00000001, 0x00000000, 0x00000000, 0x00000000 },                           \
1579
  { 0xffffffff, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000, 0x00000000 },                           \
1580
  { 0xffffffff, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff, 0x00000000 },                           \
1581
  { 0xffffffff, 0x00000000, 0x00000000, 0x00000000, 0xffff0000, 0x0000ffff },                           \
1582
  { 0x00000000, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1583
  { 0xffffffff, 0x00000000, 0xffff0000, 0xffffffff, 0xffffffff, 0x0000ffff },                           \
1584
  { 0x00000000, 0x00000000, 0x000007f8, 0x00000000, 0x00000000, 0x00000000 },   /* status registers */  \
1585
  { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x003f0000 },   /* dsp accumulator registers */ \
1586
  { 0x00000000, 0x00000000, 0x00000003, 0x00000000, 0x00000000, 0x003f0000 },   /* hi/lo and dsp accumulator registers */       \
1587
  { 0xffffffff, 0xffffffff, 0xffff07ff, 0xffffffff, 0xffffffff, 0x0fffffff }    /* all registers */     \
1588
}
1589
 
1590
 
1591
/* A C expression whose value is a register class containing hard
1592
   register REGNO.  In general there is more that one such class;
1593
   choose a class which is "minimal", meaning that no smaller class
1594
   also contains the register.  */
1595
 
1596
extern const enum reg_class mips_regno_to_class[];
1597
 
1598
#define REGNO_REG_CLASS(REGNO) mips_regno_to_class[ (REGNO) ]
1599
 
1600
/* A macro whose definition is the name of the class to which a
1601
   valid base register must belong.  A base register is one used in
1602
   an address which is the register value plus a displacement.  */
1603
 
1604
#define BASE_REG_CLASS  (TARGET_MIPS16 ? M16_REGS : GR_REGS)
1605
 
1606
/* A macro whose definition is the name of the class to which a
1607
   valid index register must belong.  An index register is one used
1608
   in an address where its value is either multiplied by a scale
1609
   factor or added to another register (as well as added to a
1610
   displacement).  */
1611
 
1612
#define INDEX_REG_CLASS NO_REGS
1613
 
1614
/* When SMALL_REGISTER_CLASSES is nonzero, the compiler allows
1615
   registers explicitly used in the rtl to be used as spill registers
1616
   but prevents the compiler from extending the lifetime of these
1617
   registers.  */
1618
 
1619
#define SMALL_REGISTER_CLASSES (TARGET_MIPS16)
1620
 
1621
/* This macro is used later on in the file.  */
1622
#define GR_REG_CLASS_P(CLASS)                                           \
1623
  ((CLASS) == GR_REGS || (CLASS) == M16_REGS || (CLASS) == T_REG        \
1624
   || (CLASS) == M16_T_REGS || (CLASS) == M16_NA_REGS                   \
1625
   || (CLASS) == V1_REG                                                 \
1626
   || (CLASS) == PIC_FN_ADDR_REG || (CLASS) == LEA_REGS)
1627
 
1628
/* This macro is also used later on in the file.  */
1629
#define COP_REG_CLASS_P(CLASS)                                          \
1630
  ((CLASS)  == COP0_REGS || (CLASS) == COP2_REGS || (CLASS) == COP3_REGS)
1631
 
1632
/* REG_ALLOC_ORDER is to order in which to allocate registers.  This
1633
   is the default value (allocate the registers in numeric order).  We
1634
   define it just so that we can override it for the mips16 target in
1635
   ORDER_REGS_FOR_LOCAL_ALLOC.  */
1636
 
1637
#define REG_ALLOC_ORDER                                                 \
1638
{  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,       \
1639
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,       \
1640
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,       \
1641
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,       \
1642
  64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,       \
1643
  80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,       \
1644
  96, 97, 98, 99, 100,101,102,103,104,105,106,107,108,109,110,111,      \
1645
  112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,      \
1646
  128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,      \
1647
  144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,      \
1648
  160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,      \
1649
  176,177,178,179,180,181,182,183,184,185,186,187                       \
1650
}
1651
 
1652
/* ORDER_REGS_FOR_LOCAL_ALLOC is a macro which permits reg_alloc_order
1653
   to be rearranged based on a particular function.  On the mips16, we
1654
   want to allocate $24 (T_REG) before other registers for
1655
   instructions for which it is possible.  */
1656
 
1657
#define ORDER_REGS_FOR_LOCAL_ALLOC mips_order_regs_for_local_alloc ()
1658
 
1659
/* True if VALUE is an unsigned 6-bit number.  */
1660
 
1661
#define UIMM6_OPERAND(VALUE) \
1662
  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0x3f) == 0)
1663
 
1664
/* True if VALUE is a signed 10-bit number.  */
1665
 
1666
#define IMM10_OPERAND(VALUE) \
1667
  ((unsigned HOST_WIDE_INT) (VALUE) + 0x200 < 0x400)
1668
 
1669
/* True if VALUE is a signed 16-bit number.  */
1670
 
1671
#define SMALL_OPERAND(VALUE) \
1672
  ((unsigned HOST_WIDE_INT) (VALUE) + 0x8000 < 0x10000)
1673
 
1674
/* True if VALUE is an unsigned 16-bit number.  */
1675
 
1676
#define SMALL_OPERAND_UNSIGNED(VALUE) \
1677
  (((VALUE) & ~(unsigned HOST_WIDE_INT) 0xffff) == 0)
1678
 
1679
/* True if VALUE can be loaded into a register using LUI.  */
1680
 
1681
#define LUI_OPERAND(VALUE)                                      \
1682
  (((VALUE) | 0x7fff0000) == 0x7fff0000                         \
1683
   || ((VALUE) | 0x7fff0000) + 0x10000 == 0)
1684
 
1685
/* Return a value X with the low 16 bits clear, and such that
1686
   VALUE - X is a signed 16-bit value.  */
1687
 
1688
#define CONST_HIGH_PART(VALUE) \
1689
  (((VALUE) + 0x8000) & ~(unsigned HOST_WIDE_INT) 0xffff)
1690
 
1691
#define CONST_LOW_PART(VALUE) \
1692
  ((VALUE) - CONST_HIGH_PART (VALUE))
1693
 
1694
#define SMALL_INT(X) SMALL_OPERAND (INTVAL (X))
1695
#define SMALL_INT_UNSIGNED(X) SMALL_OPERAND_UNSIGNED (INTVAL (X))
1696
#define LUI_INT(X) LUI_OPERAND (INTVAL (X))
1697
 
1698
#define PREFERRED_RELOAD_CLASS(X,CLASS)                                 \
1699
  mips_preferred_reload_class (X, CLASS)
1700
 
1701
/* Certain machines have the property that some registers cannot be
1702
   copied to some other registers without using memory.  Define this
1703
   macro on those machines to be a C expression that is nonzero if
1704
   objects of mode MODE in registers of CLASS1 can only be copied to
1705
   registers of class CLASS2 by storing a register of CLASS1 into
1706
   memory and loading that memory location into a register of CLASS2.
1707
 
1708
   Do not define this macro if its value would always be zero.  */
1709
#if 0
1710
#define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE)                   \
1711
  ((!TARGET_DEBUG_H_MODE                                                \
1712
    && GET_MODE_CLASS (MODE) == MODE_INT                                \
1713
    && ((CLASS1 == FP_REGS && GR_REG_CLASS_P (CLASS2))                  \
1714
        || (GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)))             \
1715
   || (TARGET_FLOAT64 && !TARGET_64BIT && (MODE) == DFmode              \
1716
       && ((GR_REG_CLASS_P (CLASS1) && CLASS2 == FP_REGS)               \
1717
           || (GR_REG_CLASS_P (CLASS2) && CLASS1 == FP_REGS))))
1718
#endif
1719
/* The HI and LO registers can only be reloaded via the general
1720
   registers.  Condition code registers can only be loaded to the
1721
   general registers, and from the floating point registers.  */
1722
 
1723
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X)                    \
1724
  mips_secondary_reload_class (CLASS, MODE, X, 1)
1725
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X)                   \
1726
  mips_secondary_reload_class (CLASS, MODE, X, 0)
1727
 
1728
/* Return the maximum number of consecutive registers
1729
   needed to represent mode MODE in a register of class CLASS.  */
1730
 
1731
#define CLASS_MAX_NREGS(CLASS, MODE) mips_class_max_nregs (CLASS, MODE)
1732
 
1733
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1734
  mips_cannot_change_mode_class (FROM, TO, CLASS)
1735
 
1736
/* Stack layout; function entry, exit and calling.  */
1737
 
1738
#define STACK_GROWS_DOWNWARD
1739
 
1740
/* The offset of the first local variable from the beginning of the frame.
1741
   See compute_frame_size for details about the frame layout.
1742
 
1743
   ??? If flag_profile_values is true, and we are generating 32-bit code, then
1744
   we assume that we will need 16 bytes of argument space.  This is because
1745
   the value profiling code may emit calls to cmpdi2 in leaf functions.
1746
   Without this hack, the local variables will start at sp+8 and the gp save
1747
   area will be at sp+16, and thus they will overlap.  compute_frame_size is
1748
   OK because it uses STARTING_FRAME_OFFSET to compute cprestore_size, which
1749
   will end up as 24 instead of 8.  This won't be needed if profiling code is
1750
   inserted before virtual register instantiation.  */
1751
 
1752
#define STARTING_FRAME_OFFSET                                           \
1753
  ((flag_profile_values && ! TARGET_64BIT                               \
1754
    ? MAX (REG_PARM_STACK_SPACE(NULL), current_function_outgoing_args_size) \
1755
    : current_function_outgoing_args_size)                              \
1756
   + (TARGET_ABICALLS && !TARGET_NEWABI                                 \
1757
      ? MIPS_STACK_ALIGN (UNITS_PER_WORD) : 0))
1758
 
1759
#define RETURN_ADDR_RTX mips_return_addr
1760
 
1761
/* Since the mips16 ISA mode is encoded in the least-significant bit
1762
   of the address, mask it off return addresses for purposes of
1763
   finding exception handling regions.  */
1764
 
1765
#define MASK_RETURN_ADDR GEN_INT (-2)
1766
 
1767
 
1768
/* Similarly, don't use the least-significant bit to tell pointers to
1769
   code from vtable index.  */
1770
 
1771
#define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
1772
 
1773
/* The eliminations to $17 are only used for mips16 code.  See the
1774
   definition of HARD_FRAME_POINTER_REGNUM.  */
1775
 
1776
#define ELIMINABLE_REGS                                                 \
1777
{{ ARG_POINTER_REGNUM,   STACK_POINTER_REGNUM},                         \
1778
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 30},                            \
1779
 { ARG_POINTER_REGNUM,   GP_REG_FIRST + 17},                            \
1780
 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},                         \
1781
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 30},                            \
1782
 { FRAME_POINTER_REGNUM, GP_REG_FIRST + 17}}
1783
 
1784
/* We can always eliminate to the hard frame pointer.  We can eliminate
1785
   to the stack pointer unless a frame pointer is needed.
1786
 
1787
   In mips16 mode, we need a frame pointer for a large frame; otherwise,
1788
   reload may be unable to compute the address of a local variable,
1789
   since there is no way to add a large constant to the stack pointer
1790
   without using a temporary register.  */
1791
#define CAN_ELIMINATE(FROM, TO)                                         \
1792
  ((TO) == HARD_FRAME_POINTER_REGNUM                                    \
1793
   || ((TO) == STACK_POINTER_REGNUM && !frame_pointer_needed            \
1794
       && (!TARGET_MIPS16                                               \
1795
           || compute_frame_size (get_frame_size ()) < 32768)))
1796
 
1797
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1798
  (OFFSET) = mips_initial_elimination_offset ((FROM), (TO))
1799
 
1800
/* Allocate stack space for arguments at the beginning of each function.  */
1801
#define ACCUMULATE_OUTGOING_ARGS 1
1802
 
1803
/* The argument pointer always points to the first argument.  */
1804
#define FIRST_PARM_OFFSET(FNDECL) 0
1805
 
1806
/* o32 and o64 reserve stack space for all argument registers.  */
1807
#define REG_PARM_STACK_SPACE(FNDECL)                    \
1808
  (TARGET_OLDABI                                        \
1809
   ? (MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD)           \
1810
   : 0)
1811
 
1812
/* Define this if it is the responsibility of the caller to
1813
   allocate the area reserved for arguments passed in registers.
1814
   If `ACCUMULATE_OUTGOING_ARGS' is also defined, the only effect
1815
   of this macro is to determine whether the space is included in
1816
   `current_function_outgoing_args_size'.  */
1817
#define OUTGOING_REG_PARM_STACK_SPACE
1818
 
1819
#define STACK_BOUNDARY (TARGET_NEWABI ? 128 : 64)
1820
 
1821
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1822
 
1823
/* Symbolic macros for the registers used to return integer and floating
1824
   point values.  */
1825
 
1826
#define GP_RETURN (GP_REG_FIRST + 2)
1827
#define FP_RETURN ((TARGET_SOFT_FLOAT) ? GP_RETURN : (FP_REG_FIRST + 0))
1828
 
1829
#define MAX_ARGS_IN_REGISTERS (TARGET_OLDABI ? 4 : 8)
1830
 
1831
/* Symbolic macros for the first/last argument registers.  */
1832
 
1833
#define GP_ARG_FIRST (GP_REG_FIRST + 4)
1834
#define GP_ARG_LAST  (GP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1835
#define FP_ARG_FIRST (FP_REG_FIRST + 12)
1836
#define FP_ARG_LAST  (FP_ARG_FIRST + MAX_ARGS_IN_REGISTERS - 1)
1837
 
1838
#define LIBCALL_VALUE(MODE) \
1839
  mips_function_value (NULL_TREE, NULL, (MODE))
1840
 
1841
#define FUNCTION_VALUE(VALTYPE, FUNC) \
1842
  mips_function_value ((VALTYPE), (FUNC), VOIDmode)
1843
 
1844
/* 1 if N is a possible register number for a function value.
1845
   On the MIPS, R2 R3 and F0 F2 are the only register thus used.
1846
   Currently, R2 and F0 are only implemented here (C has no complex type)  */
1847
 
1848
#define FUNCTION_VALUE_REGNO_P(N) ((N) == GP_RETURN || (N) == FP_RETURN \
1849
  || (LONG_DOUBLE_TYPE_SIZE == 128 && FP_RETURN != GP_RETURN \
1850
      && (N) == FP_RETURN + 2))
1851
 
1852
/* 1 if N is a possible register number for function argument passing.
1853
   We have no FP argument registers when soft-float.  When FP registers
1854
   are 32 bits, we can't directly reference the odd numbered ones.  */
1855
 
1856
#define FUNCTION_ARG_REGNO_P(N)                                 \
1857
  ((IN_RANGE((N), GP_ARG_FIRST, GP_ARG_LAST)                    \
1858
    || (IN_RANGE((N), FP_ARG_FIRST, FP_ARG_LAST)))              \
1859
   && !fixed_regs[N])
1860
 
1861
/* This structure has to cope with two different argument allocation
1862
   schemes.  Most MIPS ABIs view the arguments as a structure, of which
1863
   the first N words go in registers and the rest go on the stack.  If I
1864
   < N, the Ith word might go in Ith integer argument register or in a
1865
   floating-point register.  For these ABIs, we only need to remember
1866
   the offset of the current argument into the structure.
1867
 
1868
   The EABI instead allocates the integer and floating-point arguments
1869
   separately.  The first N words of FP arguments go in FP registers,
1870
   the rest go on the stack.  Likewise, the first N words of the other
1871
   arguments go in integer registers, and the rest go on the stack.  We
1872
   need to maintain three counts: the number of integer registers used,
1873
   the number of floating-point registers used, and the number of words
1874
   passed on the stack.
1875
 
1876
   We could keep separate information for the two ABIs (a word count for
1877
   the standard ABIs, and three separate counts for the EABI).  But it
1878
   seems simpler to view the standard ABIs as forms of EABI that do not
1879
   allocate floating-point registers.
1880
 
1881
   So for the standard ABIs, the first N words are allocated to integer
1882
   registers, and function_arg decides on an argument-by-argument basis
1883
   whether that argument should really go in an integer register, or in
1884
   a floating-point one.  */
1885
 
1886
typedef struct mips_args {
1887
  /* Always true for varargs functions.  Otherwise true if at least
1888
     one argument has been passed in an integer register.  */
1889
  int gp_reg_found;
1890
 
1891
  /* The number of arguments seen so far.  */
1892
  unsigned int arg_number;
1893
 
1894
  /* The number of integer registers used so far.  For all ABIs except
1895
     EABI, this is the number of words that have been added to the
1896
     argument structure, limited to MAX_ARGS_IN_REGISTERS.  */
1897
  unsigned int num_gprs;
1898
 
1899
  /* For EABI, the number of floating-point registers used so far.  */
1900
  unsigned int num_fprs;
1901
 
1902
  /* The number of words passed on the stack.  */
1903
  unsigned int stack_words;
1904
 
1905
  /* On the mips16, we need to keep track of which floating point
1906
     arguments were passed in general registers, but would have been
1907
     passed in the FP regs if this were a 32 bit function, so that we
1908
     can move them to the FP regs if we wind up calling a 32 bit
1909
     function.  We record this information in fp_code, encoded in base
1910
     four.  A zero digit means no floating point argument, a one digit
1911
     means an SFmode argument, and a two digit means a DFmode argument,
1912
     and a three digit is not used.  The low order digit is the first
1913
     argument.  Thus 6 == 1 * 4 + 2 means a DFmode argument followed by
1914
     an SFmode argument.  ??? A more sophisticated approach will be
1915
     needed if MIPS_ABI != ABI_32.  */
1916
  int fp_code;
1917
 
1918
  /* True if the function has a prototype.  */
1919
  int prototype;
1920
} CUMULATIVE_ARGS;
1921
 
1922
/* Initialize a variable CUM of type CUMULATIVE_ARGS
1923
   for a call to a function whose data type is FNTYPE.
1924
   For a library call, FNTYPE is 0.  */
1925
 
1926
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1927
  init_cumulative_args (&CUM, FNTYPE, LIBNAME)                          \
1928
 
1929
/* Update the data in CUM to advance over an argument
1930
   of mode MODE and data type TYPE.
1931
   (TYPE is null for libcalls where that information may not be available.)  */
1932
 
1933
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)                    \
1934
  function_arg_advance (&CUM, MODE, TYPE, NAMED)
1935
 
1936
/* Determine where to put an argument to a function.
1937
   Value is zero to push the argument on the stack,
1938
   or a hard register in which to store the argument.
1939
 
1940
   MODE is the argument's machine mode.
1941
   TYPE is the data type of the argument (as a tree).
1942
    This is null for libcalls where that information may
1943
    not be available.
1944
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
1945
    the preceding args and about the function being called.
1946
   NAMED is nonzero if this argument is a named parameter
1947
    (otherwise it is an extra parameter matching an ellipsis).  */
1948
 
1949
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1950
  function_arg( &CUM, MODE, TYPE, NAMED)
1951
 
1952
#define FUNCTION_ARG_BOUNDARY function_arg_boundary
1953
 
1954
#define FUNCTION_ARG_PADDING(MODE, TYPE)                \
1955
  (mips_pad_arg_upward (MODE, TYPE) ? upward : downward)
1956
 
1957
#define BLOCK_REG_PADDING(MODE, TYPE, FIRST)            \
1958
  (mips_pad_reg_upward (MODE, TYPE) ? upward : downward)
1959
 
1960
/* True if using EABI and varargs can be passed in floating-point
1961
   registers.  Under these conditions, we need a more complex form
1962
   of va_list, which tracks GPR, FPR and stack arguments separately.  */
1963
#define EABI_FLOAT_VARARGS_P \
1964
        (mips_abi == ABI_EABI && UNITS_PER_FPVALUE >= UNITS_PER_DOUBLE)
1965
 
1966
 
1967
/* Say that the epilogue uses the return address register.  Note that
1968
   in the case of sibcalls, the values "used by the epilogue" are
1969
   considered live at the start of the called function.  */
1970
#define EPILOGUE_USES(REGNO) ((REGNO) == 31)
1971
 
1972
/* Treat LOC as a byte offset from the stack pointer and round it up
1973
   to the next fully-aligned offset.  */
1974
#define MIPS_STACK_ALIGN(LOC) \
1975
  (TARGET_NEWABI ? ((LOC) + 15) & -16 : ((LOC) + 7) & -8)
1976
 
1977
 
1978
/* Implement `va_start' for varargs and stdarg.  */
1979
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1980
  mips_va_start (valist, nextarg)
1981
 
1982
/* Output assembler code to FILE to increment profiler label # LABELNO
1983
   for profiling a function entry.  */
1984
 
1985
#define FUNCTION_PROFILER(FILE, LABELNO)                                \
1986
{                                                                       \
1987
  if (TARGET_MIPS16)                                                    \
1988
    sorry ("mips16 function profiling");                                \
1989
  fprintf (FILE, "\t.set\tnoat\n");                                     \
1990
  fprintf (FILE, "\tmove\t%s,%s\t\t# save current return address\n",    \
1991
           reg_names[GP_REG_FIRST + 1], reg_names[GP_REG_FIRST + 31]);  \
1992
  if (!TARGET_NEWABI)                                                   \
1993
    {                                                                   \
1994
      fprintf (FILE,                                                    \
1995
               "\t%s\t%s,%s,%d\t\t# _mcount pops 2 words from  stack\n", \
1996
               TARGET_64BIT ? "dsubu" : "subu",                         \
1997
               reg_names[STACK_POINTER_REGNUM],                         \
1998
               reg_names[STACK_POINTER_REGNUM],                         \
1999
               Pmode == DImode ? 16 : 8);                               \
2000
    }                                                                   \
2001
  fprintf (FILE, "\tjal\t_mcount\n");                                   \
2002
  fprintf (FILE, "\t.set\tat\n");                                       \
2003
}
2004
 
2005
/* No mips port has ever used the profiler counter word, so don't emit it
2006
   or the label for it.  */
2007
 
2008
#define NO_PROFILE_COUNTERS 1
2009
 
2010
/* Define this macro if the code for function profiling should come
2011
   before the function prologue.  Normally, the profiling code comes
2012
   after.  */
2013
 
2014
/* #define PROFILE_BEFORE_PROLOGUE */
2015
 
2016
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
2017
   the stack pointer does not matter.  The value is tested only in
2018
   functions that have frame pointers.
2019
   No definition is equivalent to always zero.  */
2020
 
2021
#define EXIT_IGNORE_STACK 1
2022
 
2023
 
2024
/* A C statement to output, on the stream FILE, assembler code for a
2025
   block of data that contains the constant parts of a trampoline.
2026
   This code should not include a label--the label is taken care of
2027
   automatically.  */
2028
 
2029
#define TRAMPOLINE_TEMPLATE(STREAM)                                     \
2030
{                                                                       \
2031
  if (ptr_mode == DImode)                                               \
2032
    fprintf (STREAM, "\t.word\t0x03e0082d\t\t# dmove   $1,$31\n");      \
2033
  else                                                                  \
2034
    fprintf (STREAM, "\t.word\t0x03e00821\t\t# move   $1,$31\n");       \
2035
  fprintf (STREAM, "\t.word\t0x04110001\t\t# bgezal $0,.+8\n");         \
2036
  fprintf (STREAM, "\t.word\t0x00000000\t\t# nop\n");                   \
2037
  if (ptr_mode == DImode)                                               \
2038
    {                                                                   \
2039
      fprintf (STREAM, "\t.word\t0xdfe30014\t\t# ld     $3,20($31)\n"); \
2040
      fprintf (STREAM, "\t.word\t0xdfe2001c\t\t# ld     $2,28($31)\n"); \
2041
      fprintf (STREAM, "\t.word\t0x0060c82d\t\t# dmove  $25,$3\n");     \
2042
    }                                                                   \
2043
  else                                                                  \
2044
    {                                                                   \
2045
      fprintf (STREAM, "\t.word\t0x8fe30014\t\t# lw     $3,20($31)\n"); \
2046
      fprintf (STREAM, "\t.word\t0x8fe20018\t\t# lw     $2,24($31)\n"); \
2047
      fprintf (STREAM, "\t.word\t0x0060c821\t\t# move   $25,$3\n");     \
2048
    }                                                                   \
2049
  fprintf (STREAM, "\t.word\t0x00600008\t\t# jr     $3\n");             \
2050
  if (ptr_mode == DImode)                                               \
2051
    {                                                                   \
2052
      fprintf (STREAM, "\t.word\t0x0020f82d\t\t# dmove   $31,$1\n");    \
2053
      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <function address>\n"); \
2054
      fprintf (STREAM, "\t.dword\t0x00000000\t\t# <static chain value>\n"); \
2055
    }                                                                   \
2056
  else                                                                  \
2057
    {                                                                   \
2058
      fprintf (STREAM, "\t.word\t0x0020f821\t\t# move   $31,$1\n");     \
2059
      fprintf (STREAM, "\t.word\t0x00000000\t\t# <function address>\n"); \
2060
      fprintf (STREAM, "\t.word\t0x00000000\t\t# <static chain value>\n"); \
2061
    }                                                                   \
2062
}
2063
 
2064
/* A C expression for the size in bytes of the trampoline, as an
2065
   integer.  */
2066
 
2067
#define TRAMPOLINE_SIZE (32 + GET_MODE_SIZE (ptr_mode) * 2)
2068
 
2069
/* Alignment required for trampolines, in bits.  */
2070
 
2071
#define TRAMPOLINE_ALIGNMENT GET_MODE_BITSIZE (ptr_mode)
2072
 
2073
/* INITIALIZE_TRAMPOLINE calls this library function to flush
2074
   program and data caches.  */
2075
 
2076
#ifndef CACHE_FLUSH_FUNC
2077
#define CACHE_FLUSH_FUNC "_flush_cache"
2078
#endif
2079
 
2080
/* A C statement to initialize the variable parts of a trampoline.
2081
   ADDR is an RTX for the address of the trampoline; FNADDR is an
2082
   RTX for the address of the nested function; STATIC_CHAIN is an
2083
   RTX for the static chain value that should be passed to the
2084
   function when it is called.  */
2085
 
2086
#define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN)                            \
2087
{                                                                           \
2088
  rtx func_addr, chain_addr;                                                \
2089
                                                                            \
2090
  func_addr = plus_constant (ADDR, 32);                                     \
2091
  chain_addr = plus_constant (func_addr, GET_MODE_SIZE (ptr_mode));         \
2092
  emit_move_insn (gen_rtx_MEM (ptr_mode, func_addr), FUNC);                 \
2093
  emit_move_insn (gen_rtx_MEM (ptr_mode, chain_addr), CHAIN);               \
2094
                                                                            \
2095
  /* Flush both caches.  We need to flush the data cache in case            \
2096
     the system has a write-back cache.  */                                 \
2097
  /* ??? Should check the return value for errors.  */                      \
2098
  if (mips_cache_flush_func && mips_cache_flush_func[0])             \
2099
    emit_library_call (gen_rtx_SYMBOL_REF (Pmode, mips_cache_flush_func),   \
2100
                       0, VOIDmode, 3, ADDR, Pmode,                          \
2101
                       GEN_INT (TRAMPOLINE_SIZE), TYPE_MODE (integer_type_node),\
2102
                       GEN_INT (3), TYPE_MODE (integer_type_node));         \
2103
}
2104
 
2105
/* Addressing modes, and classification of registers for them.  */
2106
 
2107
#define REGNO_OK_FOR_INDEX_P(REGNO) 0
2108
#define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
2109
  mips_regno_mode_ok_for_base_p (REGNO, MODE, 1)
2110
 
2111
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2112
   and check its validity for a certain class.
2113
   We have two alternate definitions for each of them.
2114
   The usual definition accepts all pseudo regs; the other rejects them all.
2115
   The symbol REG_OK_STRICT causes the latter definition to be used.
2116
 
2117
   Most source files want to accept pseudo regs in the hope that
2118
   they will get allocated to the class that the insn wants them to be in.
2119
   Some source files that are used after register allocation
2120
   need to be strict.  */
2121
 
2122
#ifndef REG_OK_STRICT
2123
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2124
  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 0)
2125
#else
2126
#define REG_MODE_OK_FOR_BASE_P(X, MODE) \
2127
  mips_regno_mode_ok_for_base_p (REGNO (X), MODE, 1)
2128
#endif
2129
 
2130
#define REG_OK_FOR_INDEX_P(X) 0
2131
 
2132
 
2133
/* Maximum number of registers that can appear in a valid memory address.  */
2134
 
2135
#define MAX_REGS_PER_ADDRESS 1
2136
 
2137
#ifdef REG_OK_STRICT
2138
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2139
{                                               \
2140
  if (mips_legitimate_address_p (MODE, X, 1))   \
2141
    goto ADDR;                                  \
2142
}
2143
#else
2144
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2145
{                                               \
2146
  if (mips_legitimate_address_p (MODE, X, 0))    \
2147
    goto ADDR;                                  \
2148
}
2149
#endif
2150
 
2151
/* Check for constness inline but use mips_legitimate_address_p
2152
   to check whether a constant really is an address.  */
2153
 
2154
#define CONSTANT_ADDRESS_P(X) \
2155
  (CONSTANT_P (X) && mips_legitimate_address_p (SImode, X, 0))
2156
 
2157
#define LEGITIMATE_CONSTANT_P(X) (mips_const_insns (X) > 0)
2158
 
2159
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN)                     \
2160
  do {                                                          \
2161
    if (mips_legitimize_address (&(X), MODE))                   \
2162
      goto WIN;                                                 \
2163
  } while (0)
2164
 
2165
 
2166
/* A C statement or compound statement with a conditional `goto
2167
   LABEL;' executed if memory address X (an RTX) can have different
2168
   meanings depending on the machine mode of the memory reference it
2169
   is used for.
2170
 
2171
   Autoincrement and autodecrement addresses typically have
2172
   mode-dependent effects because the amount of the increment or
2173
   decrement is the size of the operand being addressed.  Some
2174
   machines have other mode-dependent addresses.  Many RISC machines
2175
   have no mode-dependent addresses.
2176
 
2177
   You may assume that ADDR is a valid address for the machine.  */
2178
 
2179
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
2180
 
2181
/* This handles the magic '..CURRENT_FUNCTION' symbol, which means
2182
   'the start of the function that this code is output in'.  */
2183
 
2184
#define ASM_OUTPUT_LABELREF(FILE,NAME)  \
2185
  if (strcmp (NAME, "..CURRENT_FUNCTION") == 0)                          \
2186
    asm_fprintf ((FILE), "%U%s",                                        \
2187
                 XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));   \
2188
  else                                                                  \
2189
    asm_fprintf ((FILE), "%U%s", (NAME))
2190
 
2191
/* Flag to mark a function decl symbol that requires a long call.  */
2192
#define SYMBOL_FLAG_LONG_CALL   (SYMBOL_FLAG_MACH_DEP << 0)
2193
#define SYMBOL_REF_LONG_CALL_P(X)                                       \
2194
  ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_LONG_CALL) != 0)
2195
 
2196
/* Specify the machine mode that this machine uses
2197
   for the index in the tablejump instruction.
2198
   ??? Using HImode in mips16 mode can cause overflow.  */
2199
#define CASE_VECTOR_MODE \
2200
  (TARGET_MIPS16 ? HImode : ptr_mode)
2201
 
2202
/* Define as C expression which evaluates to nonzero if the tablejump
2203
   instruction expects the table to contain offsets from the address of the
2204
   table.
2205
   Do not define this if the table should contain absolute addresses.  */
2206
#define CASE_VECTOR_PC_RELATIVE (TARGET_MIPS16)
2207
 
2208
/* Define this as 1 if `char' should by default be signed; else as 0.  */
2209
#ifndef DEFAULT_SIGNED_CHAR
2210
#define DEFAULT_SIGNED_CHAR 1
2211
#endif
2212
 
2213
/* Max number of bytes we can move from memory to memory
2214
   in one reasonably fast instruction.  */
2215
#define MOVE_MAX (TARGET_64BIT ? 8 : 4)
2216
#define MAX_MOVE_MAX 8
2217
 
2218
/* Define this macro as a C expression which is nonzero if
2219
   accessing less than a word of memory (i.e. a `char' or a
2220
   `short') is no faster than accessing a word of memory, i.e., if
2221
   such access require more than one instruction or if there is no
2222
   difference in cost between byte and (aligned) word loads.
2223
 
2224
   On RISC machines, it tends to generate better code to define
2225
   this as 1, since it avoids making a QI or HI mode register.  */
2226
#define SLOW_BYTE_ACCESS 1
2227
 
2228
/* Define this to be nonzero if shift instructions ignore all but the low-order
2229
   few bits.  */
2230
#define SHIFT_COUNT_TRUNCATED 1
2231
 
2232
/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2233
   is done just by pretending it is already truncated.  */
2234
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) \
2235
  (TARGET_64BIT ? ((INPREC) <= 32 || (OUTPREC) > 32) : 1)
2236
 
2237
 
2238
/* Specify the machine mode that pointers have.
2239
   After generation of rtl, the compiler makes no further distinction
2240
   between pointers and any other objects of this machine mode.  */
2241
 
2242
#ifndef Pmode
2243
#define Pmode (TARGET_64BIT && TARGET_LONG64 ? DImode : SImode)
2244
#endif
2245
 
2246
/* Give call MEMs SImode since it is the "most permissive" mode
2247
   for both 32-bit and 64-bit targets.  */
2248
 
2249
#define FUNCTION_MODE SImode
2250
 
2251
 
2252
/* The cost of loading values from the constant pool.  It should be
2253
   larger than the cost of any constant we want to synthesize in-line.  */
2254
 
2255
#define CONSTANT_POOL_COST COSTS_N_INSNS (8)
2256
 
2257
/* A C expression for the cost of moving data from a register in
2258
   class FROM to one in class TO.  The classes are expressed using
2259
   the enumeration values such as `GENERAL_REGS'.  A value of 2 is
2260
   the default; other values are interpreted relative to that.
2261
 
2262
   It is not required that the cost always equal 2 when FROM is the
2263
   same as TO; on some machines it is expensive to move between
2264
   registers if they are not general registers.
2265
 
2266
   If reload sees an insn consisting of a single `set' between two
2267
   hard registers, and if `REGISTER_MOVE_COST' applied to their
2268
   classes returns a value of 2, reload does not check to ensure
2269
   that the constraints of the insn are met.  Setting a cost of
2270
   other than 2 will allow reload to verify that the constraints are
2271
   met.  You should do this if the `movM' pattern's constraints do
2272
   not allow such copying.  */
2273
 
2274
#define REGISTER_MOVE_COST(MODE, FROM, TO)                              \
2275
  mips_register_move_cost (MODE, FROM, TO)
2276
 
2277
#define MEMORY_MOVE_COST(MODE,CLASS,TO_P) \
2278
  (mips_cost->memory_latency                    \
2279
   + memory_move_secondary_cost ((MODE), (CLASS), (TO_P)))
2280
 
2281
/* Define if copies to/from condition code registers should be avoided.
2282
 
2283
   This is needed for the MIPS because reload_outcc is not complete;
2284
   it needs to handle cases where the source is a general or another
2285
   condition code register.  */
2286
#define AVOID_CCMODE_COPIES
2287
 
2288
/* A C expression for the cost of a branch instruction.  A value of
2289
   1 is the default; other values are interpreted relative to that.  */
2290
 
2291
#define BRANCH_COST mips_cost->branch_cost
2292
#define LOGICAL_OP_NON_SHORT_CIRCUIT 0
2293
 
2294
/* If defined, modifies the length assigned to instruction INSN as a
2295
   function of the context in which it is used.  LENGTH is an lvalue
2296
   that contains the initially computed length of the insn and should
2297
   be updated with the correct length of the insn.  */
2298
#define ADJUST_INSN_LENGTH(INSN, LENGTH) \
2299
  ((LENGTH) = mips_adjust_insn_length ((INSN), (LENGTH)))
2300
 
2301
/* Return the asm template for a non-MIPS16 conditional branch instruction.
2302
   OPCODE is the opcode's mnemonic and OPERANDS is the asm template for
2303
   its operands.  */
2304
#define MIPS_BRANCH(OPCODE, OPERANDS) \
2305
  "%*" OPCODE "%?\t" OPERANDS "%/"
2306
 
2307
/* Return the asm template for a call.  INSN is the instruction's mnemonic
2308
   ("j" or "jal"), OPERANDS are its operands, and OPNO is the operand number
2309
   of the target.
2310
 
2311
   When generating -mabicalls without explicit relocation operators,
2312
   all calls should use assembly macros.  Otherwise, all indirect
2313
   calls should use "jr" or "jalr"; we will arrange to restore $gp
2314
   afterwards if necessary.  Finally, we can only generate direct
2315
   calls for -mabicalls by temporarily switching to non-PIC mode.  */
2316
#define MIPS_CALL(INSN, OPERANDS, OPNO)                         \
2317
  (TARGET_ABICALLS && !TARGET_EXPLICIT_RELOCS                   \
2318
   ? "%*" INSN "\t%" #OPNO "%/"                                 \
2319
   : REG_P (OPERANDS[OPNO])                                     \
2320
   ? "%*" INSN "r\t%" #OPNO "%/"                                \
2321
   : TARGET_ABICALLS                                            \
2322
   ? (".option\tpic0\n\t"                                       \
2323
      "%*" INSN "\t%" #OPNO "%/\n\t"                            \
2324
      ".option\tpic2")                                          \
2325
   : "%*" INSN "\t%" #OPNO "%/")
2326
 
2327
/* Control the assembler format that we output.  */
2328
 
2329
/* Output to assembler file text saying following lines
2330
   may contain character constants, extra white space, comments, etc.  */
2331
 
2332
#ifndef ASM_APP_ON
2333
#define ASM_APP_ON " #APP\n"
2334
#endif
2335
 
2336
/* Output to assembler file text saying following lines
2337
   no longer contain unusual constructs.  */
2338
 
2339
#ifndef ASM_APP_OFF
2340
#define ASM_APP_OFF " #NO_APP\n"
2341
#endif
2342
 
2343
#define REGISTER_NAMES                                                     \
2344
{ "$0",   "$1",   "$2",   "$3",   "$4",   "$5",   "$6",   "$7",            \
2345
  "$8",   "$9",   "$10",  "$11",  "$12",  "$13",  "$14",  "$15",           \
2346
  "$16",  "$17",  "$18",  "$19",  "$20",  "$21",  "$22",  "$23",           \
2347
  "$24",  "$25",  "$26",  "$27",  "$28",  "$sp",  "$fp",  "$31",           \
2348
  "$f0",  "$f1",  "$f2",  "$f3",  "$f4",  "$f5",  "$f6",  "$f7",           \
2349
  "$f8",  "$f9",  "$f10", "$f11", "$f12", "$f13", "$f14", "$f15",          \
2350
  "$f16", "$f17", "$f18", "$f19", "$f20", "$f21", "$f22", "$f23",          \
2351
  "$f24", "$f25", "$f26", "$f27", "$f28", "$f29", "$f30", "$f31",          \
2352
  "hi",   "lo",   "",     "$fcc0","$fcc1","$fcc2","$fcc3","$fcc4",         \
2353
  "$fcc5","$fcc6","$fcc7","", "", "$arg", "$frame", "$fakec",              \
2354
  "$c0r0", "$c0r1", "$c0r2", "$c0r3", "$c0r4", "$c0r5", "$c0r6", "$c0r7",  \
2355
  "$c0r8", "$c0r9", "$c0r10","$c0r11","$c0r12","$c0r13","$c0r14","$c0r15", \
2356
  "$c0r16","$c0r17","$c0r18","$c0r19","$c0r20","$c0r21","$c0r22","$c0r23", \
2357
  "$c0r24","$c0r25","$c0r26","$c0r27","$c0r28","$c0r29","$c0r30","$c0r31", \
2358
  "$c2r0", "$c2r1", "$c2r2", "$c2r3", "$c2r4", "$c2r5", "$c2r6", "$c2r7",  \
2359
  "$c2r8", "$c2r9", "$c2r10","$c2r11","$c2r12","$c2r13","$c2r14","$c2r15", \
2360
  "$c2r16","$c2r17","$c2r18","$c2r19","$c2r20","$c2r21","$c2r22","$c2r23", \
2361
  "$c2r24","$c2r25","$c2r26","$c2r27","$c2r28","$c2r29","$c2r30","$c2r31", \
2362
  "$c3r0", "$c3r1", "$c3r2", "$c3r3", "$c3r4", "$c3r5", "$c3r6", "$c3r7",  \
2363
  "$c3r8", "$c3r9", "$c3r10","$c3r11","$c3r12","$c3r13","$c3r14","$c3r15", \
2364
  "$c3r16","$c3r17","$c3r18","$c3r19","$c3r20","$c3r21","$c3r22","$c3r23", \
2365
  "$c3r24","$c3r25","$c3r26","$c3r27","$c3r28","$c3r29","$c3r30","$c3r31", \
2366
  "$ac1hi","$ac1lo","$ac2hi","$ac2lo","$ac3hi","$ac3lo","$dsp_po","$dsp_sc", \
2367
  "$dsp_ca","$dsp_ou","$dsp_cc","$dsp_ef" }
2368
 
2369
/* List the "software" names for each register.  Also list the numerical
2370
   names for $fp and $sp.  */
2371
 
2372
#define ADDITIONAL_REGISTER_NAMES                                       \
2373
{                                                                       \
2374
  { "$29",      29 + GP_REG_FIRST },                                    \
2375
  { "$30",      30 + GP_REG_FIRST },                                    \
2376
  { "at",        1 + GP_REG_FIRST },                                    \
2377
  { "v0",        2 + GP_REG_FIRST },                                    \
2378
  { "v1",        3 + GP_REG_FIRST },                                    \
2379
  { "a0",        4 + GP_REG_FIRST },                                    \
2380
  { "a1",        5 + GP_REG_FIRST },                                    \
2381
  { "a2",        6 + GP_REG_FIRST },                                    \
2382
  { "a3",        7 + GP_REG_FIRST },                                    \
2383
  { "t0",        8 + GP_REG_FIRST },                                    \
2384
  { "t1",        9 + GP_REG_FIRST },                                    \
2385
  { "t2",       10 + GP_REG_FIRST },                                    \
2386
  { "t3",       11 + GP_REG_FIRST },                                    \
2387
  { "t4",       12 + GP_REG_FIRST },                                    \
2388
  { "t5",       13 + GP_REG_FIRST },                                    \
2389
  { "t6",       14 + GP_REG_FIRST },                                    \
2390
  { "t7",       15 + GP_REG_FIRST },                                    \
2391
  { "s0",       16 + GP_REG_FIRST },                                    \
2392
  { "s1",       17 + GP_REG_FIRST },                                    \
2393
  { "s2",       18 + GP_REG_FIRST },                                    \
2394
  { "s3",       19 + GP_REG_FIRST },                                    \
2395
  { "s4",       20 + GP_REG_FIRST },                                    \
2396
  { "s5",       21 + GP_REG_FIRST },                                    \
2397
  { "s6",       22 + GP_REG_FIRST },                                    \
2398
  { "s7",       23 + GP_REG_FIRST },                                    \
2399
  { "t8",       24 + GP_REG_FIRST },                                    \
2400
  { "t9",       25 + GP_REG_FIRST },                                    \
2401
  { "k0",       26 + GP_REG_FIRST },                                    \
2402
  { "k1",       27 + GP_REG_FIRST },                                    \
2403
  { "gp",       28 + GP_REG_FIRST },                                    \
2404
  { "sp",       29 + GP_REG_FIRST },                                    \
2405
  { "fp",       30 + GP_REG_FIRST },                                    \
2406
  { "ra",       31 + GP_REG_FIRST },                                    \
2407
  ALL_COP_ADDITIONAL_REGISTER_NAMES                                     \
2408
}
2409
 
2410
/* This is meant to be redefined in the host dependent files.  It is a
2411
   set of alternative names and regnums for mips coprocessors.  */
2412
 
2413
#define ALL_COP_ADDITIONAL_REGISTER_NAMES
2414
 
2415
/* A C compound statement to output to stdio stream STREAM the
2416
   assembler syntax for an instruction operand X.  X is an RTL
2417
   expression.
2418
 
2419
   CODE is a value that can be used to specify one of several ways
2420
   of printing the operand.  It is used when identical operands
2421
   must be printed differently depending on the context.  CODE
2422
   comes from the `%' specification that was used to request
2423
   printing of the operand.  If the specification was just `%DIGIT'
2424
   then CODE is 0; if the specification was `%LTR DIGIT' then CODE
2425
   is the ASCII code for LTR.
2426
 
2427
   If X is a register, this macro should print the register's name.
2428
   The names can be found in an array `reg_names' whose type is
2429
   `char *[]'.  `reg_names' is initialized from `REGISTER_NAMES'.
2430
 
2431
   When the machine description has a specification `%PUNCT' (a `%'
2432
   followed by a punctuation character), this macro is called with
2433
   a null pointer for X and the punctuation character for CODE.
2434
 
2435
   See mips.c for the MIPS specific codes.  */
2436
 
2437
#define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2438
 
2439
/* A C expression which evaluates to true if CODE is a valid
2440
   punctuation character for use in the `PRINT_OPERAND' macro.  If
2441
   `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no
2442
   punctuation characters (except for the standard one, `%') are
2443
   used in this way.  */
2444
 
2445
#define PRINT_OPERAND_PUNCT_VALID_P(CODE) mips_print_operand_punct[CODE]
2446
 
2447
/* A C compound statement to output to stdio stream STREAM the
2448
   assembler syntax for an instruction operand that is a memory
2449
   reference whose address is ADDR.  ADDR is an RTL expression.  */
2450
 
2451
#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2452
 
2453
 
2454
/* A C statement, to be executed after all slot-filler instructions
2455
   have been output.  If necessary, call `dbr_sequence_length' to
2456
   determine the number of slots filled in a sequence (zero if not
2457
   currently outputting a sequence), to decide how many no-ops to
2458
   output, or whatever.
2459
 
2460
   Don't define this macro if it has nothing to do, but it is
2461
   helpful in reading assembly output if the extent of the delay
2462
   sequence is made explicit (e.g. with white space).
2463
 
2464
   Note that output routines for instructions with delay slots must
2465
   be prepared to deal with not being output as part of a sequence
2466
   (i.e.  when the scheduling pass is not run, or when no slot
2467
   fillers could be found.)  The variable `final_sequence' is null
2468
   when not processing a sequence, otherwise it contains the
2469
   `sequence' rtx being output.  */
2470
 
2471
#define DBR_OUTPUT_SEQEND(STREAM)                                       \
2472
do                                                                      \
2473
  {                                                                     \
2474
    if (set_nomacro > 0 && --set_nomacro == 0)                            \
2475
      fputs ("\t.set\tmacro\n", STREAM);                                \
2476
                                                                        \
2477
    if (set_noreorder > 0 && --set_noreorder == 0)                        \
2478
      fputs ("\t.set\treorder\n", STREAM);                              \
2479
                                                                        \
2480
    fputs ("\n", STREAM);                                               \
2481
  }                                                                     \
2482
while (0)
2483
 
2484
 
2485
/* How to tell the debugger about changes of source files.  */
2486
#define ASM_OUTPUT_SOURCE_FILENAME(STREAM, NAME)                        \
2487
  mips_output_filename (STREAM, NAME)
2488
 
2489
/* mips-tfile does not understand .stabd directives.  */
2490
#define DBX_OUTPUT_SOURCE_LINE(STREAM, LINE, COUNTER) do {      \
2491
  dbxout_begin_stabn_sline (LINE);                              \
2492
  dbxout_stab_value_internal_label ("LM", &COUNTER);            \
2493
} while (0)
2494
 
2495
/* Use .loc directives for SDB line numbers.  */
2496
#define SDB_OUTPUT_SOURCE_LINE(STREAM, LINE)                    \
2497
  fprintf (STREAM, "\t.loc\t%d %d\n", num_source_filenames, LINE)
2498
 
2499
/* The MIPS implementation uses some labels for its own purpose.  The
2500
   following lists what labels are created, and are all formed by the
2501
   pattern $L[a-z].*.  The machine independent portion of GCC creates
2502
   labels matching:  $L[A-Z][0-9]+ and $L[0-9]+.
2503
 
2504
        LM[0-9]+        Silicon Graphics/ECOFF stabs label before each stmt.
2505
        $Lb[0-9]+       Begin blocks for MIPS debug support
2506
        $Lc[0-9]+       Label for use in s<xx> operation.
2507
        $Le[0-9]+       End blocks for MIPS debug support  */
2508
 
2509
#undef ASM_DECLARE_OBJECT_NAME
2510
#define ASM_DECLARE_OBJECT_NAME(STREAM, NAME, DECL) \
2511
  mips_declare_object (STREAM, NAME, "", ":\n", 0)
2512
 
2513
/* Globalizing directive for a label.  */
2514
#define GLOBAL_ASM_OP "\t.globl\t"
2515
 
2516
/* This says how to define a global common symbol.  */
2517
 
2518
#define ASM_OUTPUT_ALIGNED_DECL_COMMON mips_output_aligned_decl_common
2519
 
2520
/* This says how to define a local common symbol (i.e., not visible to
2521
   linker).  */
2522
 
2523
#ifndef ASM_OUTPUT_ALIGNED_LOCAL
2524
#define ASM_OUTPUT_ALIGNED_LOCAL(STREAM, NAME, SIZE, ALIGN) \
2525
  mips_declare_common_object (STREAM, NAME, "\n\t.lcomm\t", SIZE, ALIGN, false)
2526
#endif
2527
 
2528
/* This says how to output an external.  It would be possible not to
2529
   output anything and let undefined symbol become external. However
2530
   the assembler uses length information on externals to allocate in
2531
   data/sdata bss/sbss, thereby saving exec time.  */
2532
 
2533
#define ASM_OUTPUT_EXTERNAL(STREAM,DECL,NAME) \
2534
  mips_output_external(STREAM,DECL,NAME)
2535
 
2536
/* This is how to declare a function name.  The actual work of
2537
   emitting the label is moved to function_prologue, so that we can
2538
   get the line number correctly emitted before the .ent directive,
2539
   and after any .file directives.  Define as empty so that the function
2540
   is not declared before the .ent directive elsewhere.  */
2541
 
2542
#undef ASM_DECLARE_FUNCTION_NAME
2543
#define ASM_DECLARE_FUNCTION_NAME(STREAM,NAME,DECL)
2544
 
2545
#ifndef FUNCTION_NAME_ALREADY_DECLARED
2546
#define FUNCTION_NAME_ALREADY_DECLARED 0
2547
#endif
2548
 
2549
/* This is how to store into the string LABEL
2550
   the symbol_ref name of an internal numbered label where
2551
   PREFIX is the class of label and NUM is the number within the class.
2552
   This is suitable for output with `assemble_name'.  */
2553
 
2554
#undef ASM_GENERATE_INTERNAL_LABEL
2555
#define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM)                   \
2556
  sprintf ((LABEL), "*%s%s%ld", (LOCAL_LABEL_PREFIX), (PREFIX), (long)(NUM))
2557
 
2558
/* This is how to output an element of a case-vector that is absolute.  */
2559
 
2560
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)                          \
2561
  fprintf (STREAM, "\t%s\t%sL%d\n",                                     \
2562
           ptr_mode == DImode ? ".dword" : ".word",                     \
2563
           LOCAL_LABEL_PREFIX,                                          \
2564
           VALUE)
2565
 
2566
/* This is how to output an element of a case-vector.  We can make the
2567
   entries PC-relative in MIPS16 code and GP-relative when .gp(d)word
2568
   is supported.  */
2569
 
2570
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL)              \
2571
do {                                                                    \
2572
  if (TARGET_MIPS16)                                                    \
2573
    fprintf (STREAM, "\t.half\t%sL%d-%sL%d\n",                          \
2574
             LOCAL_LABEL_PREFIX, VALUE, LOCAL_LABEL_PREFIX, REL);       \
2575
  else if (TARGET_GPWORD)                                               \
2576
    fprintf (STREAM, "\t%s\t%sL%d\n",                                   \
2577
             ptr_mode == DImode ? ".gpdword" : ".gpword",               \
2578
             LOCAL_LABEL_PREFIX, VALUE);                                \
2579
  else                                                                  \
2580
    fprintf (STREAM, "\t%s\t%sL%d\n",                                   \
2581
             ptr_mode == DImode ? ".dword" : ".word",                   \
2582
             LOCAL_LABEL_PREFIX, VALUE);                                \
2583
} while (0)
2584
 
2585
/* When generating MIPS16 code, we want the jump table to be in the text
2586
   section so that we can load its address using a PC-relative addition.  */
2587
#define JUMP_TABLES_IN_TEXT_SECTION TARGET_MIPS16
2588
 
2589
/* This is how to output an assembler line
2590
   that says to advance the location counter
2591
   to a multiple of 2**LOG bytes.  */
2592
 
2593
#define ASM_OUTPUT_ALIGN(STREAM,LOG)                                    \
2594
  fprintf (STREAM, "\t.align\t%d\n", (LOG))
2595
 
2596
/* This is how to output an assembler line to advance the location
2597
   counter by SIZE bytes.  */
2598
 
2599
#undef ASM_OUTPUT_SKIP
2600
#define ASM_OUTPUT_SKIP(STREAM,SIZE)                                    \
2601
  fprintf (STREAM, "\t.space\t"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
2602
 
2603
/* This is how to output a string.  */
2604
#undef ASM_OUTPUT_ASCII
2605
#define ASM_OUTPUT_ASCII(STREAM, STRING, LEN)                           \
2606
  mips_output_ascii (STREAM, STRING, LEN, "\t.ascii\t")
2607
 
2608
/* Output #ident as a in the read-only data section.  */
2609
#undef  ASM_OUTPUT_IDENT
2610
#define ASM_OUTPUT_IDENT(FILE, STRING)                                  \
2611
{                                                                       \
2612
  const char *p = STRING;                                               \
2613
  int size = strlen (p) + 1;                                            \
2614
  switch_to_section (readonly_data_section);                            \
2615
  assemble_string (p, size);                                            \
2616
}
2617
 
2618
/* Default to -G 8 */
2619
#ifndef MIPS_DEFAULT_GVALUE
2620
#define MIPS_DEFAULT_GVALUE 8
2621
#endif
2622
 
2623
/* Define the strings to put out for each section in the object file.  */
2624
#define TEXT_SECTION_ASM_OP     "\t.text"       /* instructions */
2625
#define DATA_SECTION_ASM_OP     "\t.data"       /* large data */
2626
 
2627
#undef READONLY_DATA_SECTION_ASM_OP
2628
#define READONLY_DATA_SECTION_ASM_OP    "\t.rdata"      /* read-only data */
2629
 
2630
#define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)                               \
2631
do                                                                      \
2632
  {                                                                     \
2633
    fprintf (STREAM, "\t%s\t%s,%s,8\n\t%s\t%s,0(%s)\n",                 \
2634
             TARGET_64BIT ? "dsubu" : "subu",                           \
2635
             reg_names[STACK_POINTER_REGNUM],                           \
2636
             reg_names[STACK_POINTER_REGNUM],                           \
2637
             TARGET_64BIT ? "sd" : "sw",                                \
2638
             reg_names[REGNO],                                          \
2639
             reg_names[STACK_POINTER_REGNUM]);                          \
2640
  }                                                                     \
2641
while (0)
2642
 
2643
#define ASM_OUTPUT_REG_POP(STREAM,REGNO)                                \
2644
do                                                                      \
2645
  {                                                                     \
2646
    if (! set_noreorder)                                                \
2647
      fprintf (STREAM, "\t.set\tnoreorder\n");                          \
2648
                                                                        \
2649
    fprintf (STREAM, "\t%s\t%s,0(%s)\n\t%s\t%s,%s,8\n",                 \
2650
             TARGET_64BIT ? "ld" : "lw",                                \
2651
             reg_names[REGNO],                                          \
2652
             reg_names[STACK_POINTER_REGNUM],                           \
2653
             TARGET_64BIT ? "daddu" : "addu",                           \
2654
             reg_names[STACK_POINTER_REGNUM],                           \
2655
             reg_names[STACK_POINTER_REGNUM]);                          \
2656
                                                                        \
2657
    if (! set_noreorder)                                                \
2658
      fprintf (STREAM, "\t.set\treorder\n");                            \
2659
  }                                                                     \
2660
while (0)
2661
 
2662
/* How to start an assembler comment.
2663
   The leading space is important (the mips native assembler requires it).  */
2664
#ifndef ASM_COMMENT_START
2665
#define ASM_COMMENT_START " #"
2666
#endif
2667
 
2668
/* Default definitions for size_t and ptrdiff_t.  We must override the
2669
   definitions from ../svr4.h on mips-*-linux-gnu.  */
2670
 
2671
#undef SIZE_TYPE
2672
#define SIZE_TYPE (POINTER_SIZE == 64 ? "long unsigned int" : "unsigned int")
2673
 
2674
#undef PTRDIFF_TYPE
2675
#define PTRDIFF_TYPE (POINTER_SIZE == 64 ? "long int" : "int")
2676
 
2677
#ifndef __mips16
2678
/* Since the bits of the _init and _fini function is spread across
2679
   many object files, each potentially with its own GP, we must assume
2680
   we need to load our GP.  We don't preserve $gp or $ra, since each
2681
   init/fini chunk is supposed to initialize $gp, and crti/crtn
2682
   already take care of preserving $ra and, when appropriate, $gp.  */
2683
#if (defined _ABIO32 && _MIPS_SIM == _ABIO32)
2684
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
2685
   asm (SECTION_OP "\n\
2686
        .set noreorder\n\
2687
        bal 1f\n\
2688
        nop\n\
2689
1:      .cpload $31\n\
2690
        .set reorder\n\
2691
        jal " USER_LABEL_PREFIX #FUNC "\n\
2692
        " TEXT_SECTION_ASM_OP);
2693
#endif /* Switch to #elif when we're no longer limited by K&R C.  */
2694
#if (defined _ABIN32 && _MIPS_SIM == _ABIN32) \
2695
   || (defined _ABI64 && _MIPS_SIM == _ABI64)
2696
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC)      \
2697
   asm (SECTION_OP "\n\
2698
        .set noreorder\n\
2699
        bal 1f\n\
2700
        nop\n\
2701
1:      .set reorder\n\
2702
        .cpsetup $31, $2, 1b\n\
2703
        jal " USER_LABEL_PREFIX #FUNC "\n\
2704
        " TEXT_SECTION_ASM_OP);
2705
#endif
2706
#endif
2707
 
2708
#ifndef HAVE_AS_TLS
2709
#define HAVE_AS_TLS 0
2710
#endif

powered by: WebSVN 2.1.0

© copyright 1999-2025 OpenCores.org, equivalent to Oliscience, all rights reserved. OpenCores®, registered trademark.