1 |
38 |
julius |
/* 32 and 64-bit millicode, original author Hewlett-Packard
|
2 |
|
|
adapted for gcc by Paul Bame
|
3 |
|
|
and Alan Modra .
|
4 |
|
|
|
5 |
|
|
Copyright 2001, 2002, 2003, 2007 Free Software Foundation, Inc.
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
10 |
|
|
the terms of the GNU General Public License as published by the Free
|
11 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
12 |
|
|
version.
|
13 |
|
|
|
14 |
|
|
In addition to the permissions in the GNU General Public License, the
|
15 |
|
|
Free Software Foundation gives you unlimited permission to link the
|
16 |
|
|
compiled version of this file into combinations with other programs,
|
17 |
|
|
and to distribute those combinations without any restriction coming
|
18 |
|
|
from the use of this file. (The General Public License restrictions
|
19 |
|
|
do apply in other respects; for example, they cover modification of
|
20 |
|
|
the file, and distribution when not linked into a combine
|
21 |
|
|
executable.)
|
22 |
|
|
|
23 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
24 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
25 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
26 |
|
|
for more details.
|
27 |
|
|
|
28 |
|
|
You should have received a copy of the GNU General Public License
|
29 |
|
|
along with GCC; see the file COPYING3. If not see
|
30 |
|
|
. */
|
31 |
|
|
|
32 |
|
|
#ifdef pa64
|
33 |
|
|
.level 2.0w
|
34 |
|
|
#endif
|
35 |
|
|
|
36 |
|
|
/* Hardware General Registers. */
|
37 |
|
|
r0: .reg %r0
|
38 |
|
|
r1: .reg %r1
|
39 |
|
|
r2: .reg %r2
|
40 |
|
|
r3: .reg %r3
|
41 |
|
|
r4: .reg %r4
|
42 |
|
|
r5: .reg %r5
|
43 |
|
|
r6: .reg %r6
|
44 |
|
|
r7: .reg %r7
|
45 |
|
|
r8: .reg %r8
|
46 |
|
|
r9: .reg %r9
|
47 |
|
|
r10: .reg %r10
|
48 |
|
|
r11: .reg %r11
|
49 |
|
|
r12: .reg %r12
|
50 |
|
|
r13: .reg %r13
|
51 |
|
|
r14: .reg %r14
|
52 |
|
|
r15: .reg %r15
|
53 |
|
|
r16: .reg %r16
|
54 |
|
|
r17: .reg %r17
|
55 |
|
|
r18: .reg %r18
|
56 |
|
|
r19: .reg %r19
|
57 |
|
|
r20: .reg %r20
|
58 |
|
|
r21: .reg %r21
|
59 |
|
|
r22: .reg %r22
|
60 |
|
|
r23: .reg %r23
|
61 |
|
|
r24: .reg %r24
|
62 |
|
|
r25: .reg %r25
|
63 |
|
|
r26: .reg %r26
|
64 |
|
|
r27: .reg %r27
|
65 |
|
|
r28: .reg %r28
|
66 |
|
|
r29: .reg %r29
|
67 |
|
|
r30: .reg %r30
|
68 |
|
|
r31: .reg %r31
|
69 |
|
|
|
70 |
|
|
/* Hardware Space Registers. */
|
71 |
|
|
sr0: .reg %sr0
|
72 |
|
|
sr1: .reg %sr1
|
73 |
|
|
sr2: .reg %sr2
|
74 |
|
|
sr3: .reg %sr3
|
75 |
|
|
sr4: .reg %sr4
|
76 |
|
|
sr5: .reg %sr5
|
77 |
|
|
sr6: .reg %sr6
|
78 |
|
|
sr7: .reg %sr7
|
79 |
|
|
|
80 |
|
|
/* Hardware Floating Point Registers. */
|
81 |
|
|
fr0: .reg %fr0
|
82 |
|
|
fr1: .reg %fr1
|
83 |
|
|
fr2: .reg %fr2
|
84 |
|
|
fr3: .reg %fr3
|
85 |
|
|
fr4: .reg %fr4
|
86 |
|
|
fr5: .reg %fr5
|
87 |
|
|
fr6: .reg %fr6
|
88 |
|
|
fr7: .reg %fr7
|
89 |
|
|
fr8: .reg %fr8
|
90 |
|
|
fr9: .reg %fr9
|
91 |
|
|
fr10: .reg %fr10
|
92 |
|
|
fr11: .reg %fr11
|
93 |
|
|
fr12: .reg %fr12
|
94 |
|
|
fr13: .reg %fr13
|
95 |
|
|
fr14: .reg %fr14
|
96 |
|
|
fr15: .reg %fr15
|
97 |
|
|
|
98 |
|
|
/* Hardware Control Registers. */
|
99 |
|
|
cr11: .reg %cr11
|
100 |
|
|
sar: .reg %cr11 /* Shift Amount Register */
|
101 |
|
|
|
102 |
|
|
/* Software Architecture General Registers. */
|
103 |
|
|
rp: .reg r2 /* return pointer */
|
104 |
|
|
#ifdef pa64
|
105 |
|
|
mrp: .reg r2 /* millicode return pointer */
|
106 |
|
|
#else
|
107 |
|
|
mrp: .reg r31 /* millicode return pointer */
|
108 |
|
|
#endif
|
109 |
|
|
ret0: .reg r28 /* return value */
|
110 |
|
|
ret1: .reg r29 /* return value (high part of double) */
|
111 |
|
|
sp: .reg r30 /* stack pointer */
|
112 |
|
|
dp: .reg r27 /* data pointer */
|
113 |
|
|
arg0: .reg r26 /* argument */
|
114 |
|
|
arg1: .reg r25 /* argument or high part of double argument */
|
115 |
|
|
arg2: .reg r24 /* argument */
|
116 |
|
|
arg3: .reg r23 /* argument or high part of double argument */
|
117 |
|
|
|
118 |
|
|
/* Software Architecture Space Registers. */
|
119 |
|
|
/* sr0 ; return link from BLE */
|
120 |
|
|
sret: .reg sr1 /* return value */
|
121 |
|
|
sarg: .reg sr1 /* argument */
|
122 |
|
|
/* sr4 ; PC SPACE tracker */
|
123 |
|
|
/* sr5 ; process private data */
|
124 |
|
|
|
125 |
|
|
/* Frame Offsets (millicode convention!) Used when calling other
|
126 |
|
|
millicode routines. Stack unwinding is dependent upon these
|
127 |
|
|
definitions. */
|
128 |
|
|
r31_slot: .equ -20 /* "current RP" slot */
|
129 |
|
|
sr0_slot: .equ -16 /* "static link" slot */
|
130 |
|
|
#if defined(pa64)
|
131 |
|
|
mrp_slot: .equ -16 /* "current RP" slot */
|
132 |
|
|
psp_slot: .equ -8 /* "previous SP" slot */
|
133 |
|
|
#else
|
134 |
|
|
mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */
|
135 |
|
|
#endif
|
136 |
|
|
|
137 |
|
|
|
138 |
|
|
#define DEFINE(name,value)name: .EQU value
|
139 |
|
|
#define RDEFINE(name,value)name: .REG value
|
140 |
|
|
#ifdef milliext
|
141 |
|
|
#define MILLI_BE(lbl) BE lbl(sr7,r0)
|
142 |
|
|
#define MILLI_BEN(lbl) BE,n lbl(sr7,r0)
|
143 |
|
|
#define MILLI_BLE(lbl) BLE lbl(sr7,r0)
|
144 |
|
|
#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0)
|
145 |
|
|
#define MILLIRETN BE,n 0(sr0,mrp)
|
146 |
|
|
#define MILLIRET BE 0(sr0,mrp)
|
147 |
|
|
#define MILLI_RETN BE,n 0(sr0,mrp)
|
148 |
|
|
#define MILLI_RET BE 0(sr0,mrp)
|
149 |
|
|
#else
|
150 |
|
|
#define MILLI_BE(lbl) B lbl
|
151 |
|
|
#define MILLI_BEN(lbl) B,n lbl
|
152 |
|
|
#define MILLI_BLE(lbl) BL lbl,mrp
|
153 |
|
|
#define MILLI_BLEN(lbl) BL,n lbl,mrp
|
154 |
|
|
#define MILLIRETN BV,n 0(mrp)
|
155 |
|
|
#define MILLIRET BV 0(mrp)
|
156 |
|
|
#define MILLI_RETN BV,n 0(mrp)
|
157 |
|
|
#define MILLI_RET BV 0(mrp)
|
158 |
|
|
#endif
|
159 |
|
|
|
160 |
|
|
#ifdef __STDC__
|
161 |
|
|
#define CAT(a,b) a##b
|
162 |
|
|
#else
|
163 |
|
|
#define CAT(a,b) a/**/b
|
164 |
|
|
#endif
|
165 |
|
|
|
166 |
|
|
#ifdef ELF
|
167 |
|
|
#define SUBSPA_MILLI .section .text
|
168 |
|
|
#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16
|
169 |
|
|
#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16
|
170 |
|
|
#define ATTR_MILLI
|
171 |
|
|
#define SUBSPA_DATA .section .data
|
172 |
|
|
#define ATTR_DATA
|
173 |
|
|
#define GLOBAL $global$
|
174 |
|
|
#define GSYM(sym) !sym:
|
175 |
|
|
#define LSYM(sym) !CAT(.L,sym:)
|
176 |
|
|
#define LREF(sym) CAT(.L,sym)
|
177 |
|
|
|
178 |
|
|
#else
|
179 |
|
|
|
180 |
|
|
#ifdef coff
|
181 |
|
|
/* This used to be .milli but since link32 places different named
|
182 |
|
|
sections in different segments millicode ends up a long ways away
|
183 |
|
|
from .text (1meg?). This way they will be a lot closer.
|
184 |
|
|
|
185 |
|
|
The SUBSPA_MILLI_* specify locality sets for certain millicode
|
186 |
|
|
modules in order to ensure that modules that call one another are
|
187 |
|
|
placed close together. Without locality sets this is unlikely to
|
188 |
|
|
happen because of the Dynamite linker library search algorithm. We
|
189 |
|
|
want these modules close together so that short calls always reach
|
190 |
|
|
(we don't want to require long calls or use long call stubs). */
|
191 |
|
|
|
192 |
|
|
#define SUBSPA_MILLI .subspa .text
|
193 |
|
|
#define SUBSPA_MILLI_DIV .subspa .text$dv,align=16
|
194 |
|
|
#define SUBSPA_MILLI_MUL .subspa .text$mu,align=16
|
195 |
|
|
#define ATTR_MILLI .attr code,read,execute
|
196 |
|
|
#define SUBSPA_DATA .subspa .data
|
197 |
|
|
#define ATTR_DATA .attr init_data,read,write
|
198 |
|
|
#define GLOBAL _gp
|
199 |
|
|
#else
|
200 |
|
|
#define SUBSPA_MILLI .subspa $MILLICODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,SORT=8
|
201 |
|
|
#define SUBSPA_MILLI_DIV SUBSPA_MILLI
|
202 |
|
|
#define SUBSPA_MILLI_MUL SUBSPA_MILLI
|
203 |
|
|
#define ATTR_MILLI
|
204 |
|
|
#define SUBSPA_DATA .subspa $BSS$,quad=1,align=8,access=0x1f,sort=80,zero
|
205 |
|
|
#define ATTR_DATA
|
206 |
|
|
#define GLOBAL $global$
|
207 |
|
|
#endif
|
208 |
|
|
#define SPACE_DATA .space $PRIVATE$,spnum=1,sort=16
|
209 |
|
|
|
210 |
|
|
#define GSYM(sym) !sym
|
211 |
|
|
#define LSYM(sym) !CAT(L$,sym)
|
212 |
|
|
#define LREF(sym) CAT(L$,sym)
|
213 |
|
|
#endif
|
214 |
|
|
|
215 |
|
|
#ifdef L_dyncall
|
216 |
|
|
SUBSPA_MILLI
|
217 |
|
|
ATTR_DATA
|
218 |
|
|
GSYM($$dyncall)
|
219 |
|
|
.export $$dyncall,millicode
|
220 |
|
|
.proc
|
221 |
|
|
.callinfo millicode
|
222 |
|
|
.entry
|
223 |
|
|
bb,>=,n %r22,30,LREF(1) ; branch if not plabel address
|
224 |
|
|
depi 0,31,2,%r22 ; clear the two least significant bits
|
225 |
|
|
ldw 4(%r22),%r19 ; load new LTP value
|
226 |
|
|
ldw 0(%r22),%r22 ; load address of target
|
227 |
|
|
LSYM(1)
|
228 |
|
|
#ifdef LINUX
|
229 |
|
|
bv %r0(%r22) ; branch to the real target
|
230 |
|
|
#else
|
231 |
|
|
ldsid (%sr0,%r22),%r1 ; get the "space ident" selected by r22
|
232 |
|
|
mtsp %r1,%sr0 ; move that space identifier into sr0
|
233 |
|
|
be 0(%sr0,%r22) ; branch to the real target
|
234 |
|
|
#endif
|
235 |
|
|
stw %r2,-24(%r30) ; save return address into frame marker
|
236 |
|
|
.exit
|
237 |
|
|
.procend
|
238 |
|
|
#endif
|
239 |
|
|
|
240 |
|
|
#ifdef L_divI
|
241 |
|
|
/* ROUTINES: $$divI, $$divoI
|
242 |
|
|
|
243 |
|
|
Single precision divide for signed binary integers.
|
244 |
|
|
|
245 |
|
|
The quotient is truncated towards zero.
|
246 |
|
|
The sign of the quotient is the XOR of the signs of the dividend and
|
247 |
|
|
divisor.
|
248 |
|
|
Divide by zero is trapped.
|
249 |
|
|
Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI.
|
250 |
|
|
|
251 |
|
|
INPUT REGISTERS:
|
252 |
|
|
. arg0 == dividend
|
253 |
|
|
. arg1 == divisor
|
254 |
|
|
. mrp == return pc
|
255 |
|
|
. sr0 == return space when called externally
|
256 |
|
|
|
257 |
|
|
OUTPUT REGISTERS:
|
258 |
|
|
. arg0 = undefined
|
259 |
|
|
. arg1 = undefined
|
260 |
|
|
. ret1 = quotient
|
261 |
|
|
|
262 |
|
|
OTHER REGISTERS AFFECTED:
|
263 |
|
|
. r1 = undefined
|
264 |
|
|
|
265 |
|
|
SIDE EFFECTS:
|
266 |
|
|
. Causes a trap under the following conditions:
|
267 |
|
|
. divisor is zero (traps with ADDIT,= 0,25,0)
|
268 |
|
|
. dividend==-2**31 and divisor==-1 and routine is $$divoI
|
269 |
|
|
. (traps with ADDO 26,25,0)
|
270 |
|
|
. Changes memory at the following places:
|
271 |
|
|
. NONE
|
272 |
|
|
|
273 |
|
|
PERMISSIBLE CONTEXT:
|
274 |
|
|
. Unwindable.
|
275 |
|
|
. Suitable for internal or external millicode.
|
276 |
|
|
. Assumes the special millicode register conventions.
|
277 |
|
|
|
278 |
|
|
DISCUSSION:
|
279 |
|
|
. Branchs to other millicode routines using BE
|
280 |
|
|
. $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15
|
281 |
|
|
.
|
282 |
|
|
. For selected divisors, calls a divide by constant routine written by
|
283 |
|
|
. Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13.
|
284 |
|
|
.
|
285 |
|
|
. The only overflow case is -2**31 divided by -1.
|
286 |
|
|
. Both routines return -2**31 but only $$divoI traps. */
|
287 |
|
|
|
288 |
|
|
RDEFINE(temp,r1)
|
289 |
|
|
RDEFINE(retreg,ret1) /* r29 */
|
290 |
|
|
RDEFINE(temp1,arg0)
|
291 |
|
|
SUBSPA_MILLI_DIV
|
292 |
|
|
ATTR_MILLI
|
293 |
|
|
.import $$divI_2,millicode
|
294 |
|
|
.import $$divI_3,millicode
|
295 |
|
|
.import $$divI_4,millicode
|
296 |
|
|
.import $$divI_5,millicode
|
297 |
|
|
.import $$divI_6,millicode
|
298 |
|
|
.import $$divI_7,millicode
|
299 |
|
|
.import $$divI_8,millicode
|
300 |
|
|
.import $$divI_9,millicode
|
301 |
|
|
.import $$divI_10,millicode
|
302 |
|
|
.import $$divI_12,millicode
|
303 |
|
|
.import $$divI_14,millicode
|
304 |
|
|
.import $$divI_15,millicode
|
305 |
|
|
.export $$divI,millicode
|
306 |
|
|
.export $$divoI,millicode
|
307 |
|
|
.proc
|
308 |
|
|
.callinfo millicode
|
309 |
|
|
.entry
|
310 |
|
|
GSYM($$divoI)
|
311 |
|
|
comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */
|
312 |
|
|
GSYM($$divI)
|
313 |
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
314 |
|
|
and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */
|
315 |
|
|
addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */
|
316 |
|
|
b,n LREF(neg_denom)
|
317 |
|
|
LSYM(pow2)
|
318 |
|
|
addi,>= 0,arg0,retreg /* if numerator is negative, add the */
|
319 |
|
|
add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */
|
320 |
|
|
extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
|
321 |
|
|
extrs retreg,15,16,retreg /* retreg = retreg >> 16 */
|
322 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
|
323 |
|
|
ldi 0xcc,temp1 /* setup 0xcc in temp1 */
|
324 |
|
|
extru,= arg1,23,8,temp /* test denominator with 0xff00 */
|
325 |
|
|
extrs retreg,23,24,retreg /* retreg = retreg >> 8 */
|
326 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
|
327 |
|
|
ldi 0xaa,temp /* setup 0xaa in temp */
|
328 |
|
|
extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
|
329 |
|
|
extrs retreg,27,28,retreg /* retreg = retreg >> 4 */
|
330 |
|
|
and,= arg1,temp1,r0 /* test denominator with 0xcc */
|
331 |
|
|
extrs retreg,29,30,retreg /* retreg = retreg >> 2 */
|
332 |
|
|
and,= arg1,temp,r0 /* test denominator with 0xaa */
|
333 |
|
|
extrs retreg,30,31,retreg /* retreg = retreg >> 1 */
|
334 |
|
|
MILLIRETN
|
335 |
|
|
LSYM(neg_denom)
|
336 |
|
|
addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */
|
337 |
|
|
b,n LREF(regular_seq)
|
338 |
|
|
sub r0,arg1,temp /* make denominator positive */
|
339 |
|
|
comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */
|
340 |
|
|
ldo -1(temp),retreg /* is there at most one bit set ? */
|
341 |
|
|
and,= temp,retreg,r0 /* if so, the denominator is power of 2 */
|
342 |
|
|
b,n LREF(regular_seq)
|
343 |
|
|
sub r0,arg0,retreg /* negate numerator */
|
344 |
|
|
comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */
|
345 |
|
|
copy retreg,arg0 /* set up arg0, arg1 and temp */
|
346 |
|
|
copy temp,arg1 /* before branching to pow2 */
|
347 |
|
|
b LREF(pow2)
|
348 |
|
|
ldo -1(arg1),temp
|
349 |
|
|
LSYM(regular_seq)
|
350 |
|
|
comib,>>=,n 15,arg1,LREF(small_divisor)
|
351 |
|
|
add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
|
352 |
|
|
LSYM(normal)
|
353 |
|
|
subi 0,retreg,retreg /* make it positive */
|
354 |
|
|
sub 0,arg1,temp /* clear carry, */
|
355 |
|
|
/* negate the divisor */
|
356 |
|
|
ds 0,temp,0 /* set V-bit to the comple- */
|
357 |
|
|
/* ment of the divisor sign */
|
358 |
|
|
add retreg,retreg,retreg /* shift msb bit into carry */
|
359 |
|
|
ds r0,arg1,temp /* 1st divide step, if no carry */
|
360 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
361 |
|
|
ds temp,arg1,temp /* 2nd divide step */
|
362 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
363 |
|
|
ds temp,arg1,temp /* 3rd divide step */
|
364 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
365 |
|
|
ds temp,arg1,temp /* 4th divide step */
|
366 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
367 |
|
|
ds temp,arg1,temp /* 5th divide step */
|
368 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
369 |
|
|
ds temp,arg1,temp /* 6th divide step */
|
370 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
371 |
|
|
ds temp,arg1,temp /* 7th divide step */
|
372 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
373 |
|
|
ds temp,arg1,temp /* 8th divide step */
|
374 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
375 |
|
|
ds temp,arg1,temp /* 9th divide step */
|
376 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
377 |
|
|
ds temp,arg1,temp /* 10th divide step */
|
378 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
379 |
|
|
ds temp,arg1,temp /* 11th divide step */
|
380 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
381 |
|
|
ds temp,arg1,temp /* 12th divide step */
|
382 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
383 |
|
|
ds temp,arg1,temp /* 13th divide step */
|
384 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
385 |
|
|
ds temp,arg1,temp /* 14th divide step */
|
386 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
387 |
|
|
ds temp,arg1,temp /* 15th divide step */
|
388 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
389 |
|
|
ds temp,arg1,temp /* 16th divide step */
|
390 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
391 |
|
|
ds temp,arg1,temp /* 17th divide step */
|
392 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
393 |
|
|
ds temp,arg1,temp /* 18th divide step */
|
394 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
395 |
|
|
ds temp,arg1,temp /* 19th divide step */
|
396 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
397 |
|
|
ds temp,arg1,temp /* 20th divide step */
|
398 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
399 |
|
|
ds temp,arg1,temp /* 21st divide step */
|
400 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
401 |
|
|
ds temp,arg1,temp /* 22nd divide step */
|
402 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
403 |
|
|
ds temp,arg1,temp /* 23rd divide step */
|
404 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
405 |
|
|
ds temp,arg1,temp /* 24th divide step */
|
406 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
407 |
|
|
ds temp,arg1,temp /* 25th divide step */
|
408 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
409 |
|
|
ds temp,arg1,temp /* 26th divide step */
|
410 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
411 |
|
|
ds temp,arg1,temp /* 27th divide step */
|
412 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
413 |
|
|
ds temp,arg1,temp /* 28th divide step */
|
414 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
415 |
|
|
ds temp,arg1,temp /* 29th divide step */
|
416 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
417 |
|
|
ds temp,arg1,temp /* 30th divide step */
|
418 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
419 |
|
|
ds temp,arg1,temp /* 31st divide step */
|
420 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
421 |
|
|
ds temp,arg1,temp /* 32nd divide step, */
|
422 |
|
|
addc retreg,retreg,retreg /* shift last retreg bit into retreg */
|
423 |
|
|
xor,>= arg0,arg1,0 /* get correct sign of quotient */
|
424 |
|
|
sub 0,retreg,retreg /* based on operand signs */
|
425 |
|
|
MILLIRETN
|
426 |
|
|
nop
|
427 |
|
|
|
428 |
|
|
LSYM(small_divisor)
|
429 |
|
|
|
430 |
|
|
#if defined(pa64)
|
431 |
|
|
/* Clear the upper 32 bits of the arg1 register. We are working with */
|
432 |
|
|
/* small divisors (and 32 bit integers) We must not be mislead */
|
433 |
|
|
/* by "1" bits left in the upper 32 bits. */
|
434 |
|
|
depd %r0,31,32,%r25
|
435 |
|
|
#endif
|
436 |
|
|
blr,n arg1,r0
|
437 |
|
|
nop
|
438 |
|
|
/* table for divisor == 0,1, ... ,15 */
|
439 |
|
|
addit,= 0,arg1,r0 /* trap if divisor == 0 */
|
440 |
|
|
nop
|
441 |
|
|
MILLIRET /* divisor == 1 */
|
442 |
|
|
copy arg0,retreg
|
443 |
|
|
MILLI_BEN($$divI_2) /* divisor == 2 */
|
444 |
|
|
nop
|
445 |
|
|
MILLI_BEN($$divI_3) /* divisor == 3 */
|
446 |
|
|
nop
|
447 |
|
|
MILLI_BEN($$divI_4) /* divisor == 4 */
|
448 |
|
|
nop
|
449 |
|
|
MILLI_BEN($$divI_5) /* divisor == 5 */
|
450 |
|
|
nop
|
451 |
|
|
MILLI_BEN($$divI_6) /* divisor == 6 */
|
452 |
|
|
nop
|
453 |
|
|
MILLI_BEN($$divI_7) /* divisor == 7 */
|
454 |
|
|
nop
|
455 |
|
|
MILLI_BEN($$divI_8) /* divisor == 8 */
|
456 |
|
|
nop
|
457 |
|
|
MILLI_BEN($$divI_9) /* divisor == 9 */
|
458 |
|
|
nop
|
459 |
|
|
MILLI_BEN($$divI_10) /* divisor == 10 */
|
460 |
|
|
nop
|
461 |
|
|
b LREF(normal) /* divisor == 11 */
|
462 |
|
|
add,>= 0,arg0,retreg
|
463 |
|
|
MILLI_BEN($$divI_12) /* divisor == 12 */
|
464 |
|
|
nop
|
465 |
|
|
b LREF(normal) /* divisor == 13 */
|
466 |
|
|
add,>= 0,arg0,retreg
|
467 |
|
|
MILLI_BEN($$divI_14) /* divisor == 14 */
|
468 |
|
|
nop
|
469 |
|
|
MILLI_BEN($$divI_15) /* divisor == 15 */
|
470 |
|
|
nop
|
471 |
|
|
|
472 |
|
|
LSYM(negative1)
|
473 |
|
|
sub 0,arg0,retreg /* result is negation of dividend */
|
474 |
|
|
MILLIRET
|
475 |
|
|
addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */
|
476 |
|
|
.exit
|
477 |
|
|
.procend
|
478 |
|
|
.end
|
479 |
|
|
#endif
|
480 |
|
|
|
481 |
|
|
#ifdef L_divU
|
482 |
|
|
/* ROUTINE: $$divU
|
483 |
|
|
.
|
484 |
|
|
. Single precision divide for unsigned integers.
|
485 |
|
|
.
|
486 |
|
|
. Quotient is truncated towards zero.
|
487 |
|
|
. Traps on divide by zero.
|
488 |
|
|
|
489 |
|
|
INPUT REGISTERS:
|
490 |
|
|
. arg0 == dividend
|
491 |
|
|
. arg1 == divisor
|
492 |
|
|
. mrp == return pc
|
493 |
|
|
. sr0 == return space when called externally
|
494 |
|
|
|
495 |
|
|
OUTPUT REGISTERS:
|
496 |
|
|
. arg0 = undefined
|
497 |
|
|
. arg1 = undefined
|
498 |
|
|
. ret1 = quotient
|
499 |
|
|
|
500 |
|
|
OTHER REGISTERS AFFECTED:
|
501 |
|
|
. r1 = undefined
|
502 |
|
|
|
503 |
|
|
SIDE EFFECTS:
|
504 |
|
|
. Causes a trap under the following conditions:
|
505 |
|
|
. divisor is zero
|
506 |
|
|
. Changes memory at the following places:
|
507 |
|
|
. NONE
|
508 |
|
|
|
509 |
|
|
PERMISSIBLE CONTEXT:
|
510 |
|
|
. Unwindable.
|
511 |
|
|
. Does not create a stack frame.
|
512 |
|
|
. Suitable for internal or external millicode.
|
513 |
|
|
. Assumes the special millicode register conventions.
|
514 |
|
|
|
515 |
|
|
DISCUSSION:
|
516 |
|
|
. Branchs to other millicode routines using BE:
|
517 |
|
|
. $$divU_# for 3,5,6,7,9,10,12,14,15
|
518 |
|
|
.
|
519 |
|
|
. For selected small divisors calls the special divide by constant
|
520 |
|
|
. routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */
|
521 |
|
|
|
522 |
|
|
RDEFINE(temp,r1)
|
523 |
|
|
RDEFINE(retreg,ret1) /* r29 */
|
524 |
|
|
RDEFINE(temp1,arg0)
|
525 |
|
|
SUBSPA_MILLI_DIV
|
526 |
|
|
ATTR_MILLI
|
527 |
|
|
.export $$divU,millicode
|
528 |
|
|
.import $$divU_3,millicode
|
529 |
|
|
.import $$divU_5,millicode
|
530 |
|
|
.import $$divU_6,millicode
|
531 |
|
|
.import $$divU_7,millicode
|
532 |
|
|
.import $$divU_9,millicode
|
533 |
|
|
.import $$divU_10,millicode
|
534 |
|
|
.import $$divU_12,millicode
|
535 |
|
|
.import $$divU_14,millicode
|
536 |
|
|
.import $$divU_15,millicode
|
537 |
|
|
.proc
|
538 |
|
|
.callinfo millicode
|
539 |
|
|
.entry
|
540 |
|
|
GSYM($$divU)
|
541 |
|
|
/* The subtract is not nullified since it does no harm and can be used
|
542 |
|
|
by the two cases that branch back to "normal". */
|
543 |
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
544 |
|
|
and,= arg1,temp,r0 /* if so, denominator is power of 2 */
|
545 |
|
|
b LREF(regular_seq)
|
546 |
|
|
addit,= 0,arg1,0 /* trap for zero dvr */
|
547 |
|
|
copy arg0,retreg
|
548 |
|
|
extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */
|
549 |
|
|
extru retreg,15,16,retreg /* retreg = retreg >> 16 */
|
550 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */
|
551 |
|
|
ldi 0xcc,temp1 /* setup 0xcc in temp1 */
|
552 |
|
|
extru,= arg1,23,8,temp /* test denominator with 0xff00 */
|
553 |
|
|
extru retreg,23,24,retreg /* retreg = retreg >> 8 */
|
554 |
|
|
or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */
|
555 |
|
|
ldi 0xaa,temp /* setup 0xaa in temp */
|
556 |
|
|
extru,= arg1,27,4,r0 /* test denominator with 0xf0 */
|
557 |
|
|
extru retreg,27,28,retreg /* retreg = retreg >> 4 */
|
558 |
|
|
and,= arg1,temp1,r0 /* test denominator with 0xcc */
|
559 |
|
|
extru retreg,29,30,retreg /* retreg = retreg >> 2 */
|
560 |
|
|
and,= arg1,temp,r0 /* test denominator with 0xaa */
|
561 |
|
|
extru retreg,30,31,retreg /* retreg = retreg >> 1 */
|
562 |
|
|
MILLIRETN
|
563 |
|
|
nop
|
564 |
|
|
LSYM(regular_seq)
|
565 |
|
|
comib,>= 15,arg1,LREF(special_divisor)
|
566 |
|
|
subi 0,arg1,temp /* clear carry, negate the divisor */
|
567 |
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
568 |
|
|
LSYM(normal)
|
569 |
|
|
add arg0,arg0,retreg /* shift msb bit into carry */
|
570 |
|
|
ds r0,arg1,temp /* 1st divide step, if no carry */
|
571 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
572 |
|
|
ds temp,arg1,temp /* 2nd divide step */
|
573 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
574 |
|
|
ds temp,arg1,temp /* 3rd divide step */
|
575 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
576 |
|
|
ds temp,arg1,temp /* 4th divide step */
|
577 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
578 |
|
|
ds temp,arg1,temp /* 5th divide step */
|
579 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
580 |
|
|
ds temp,arg1,temp /* 6th divide step */
|
581 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
582 |
|
|
ds temp,arg1,temp /* 7th divide step */
|
583 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
584 |
|
|
ds temp,arg1,temp /* 8th divide step */
|
585 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
586 |
|
|
ds temp,arg1,temp /* 9th divide step */
|
587 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
588 |
|
|
ds temp,arg1,temp /* 10th divide step */
|
589 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
590 |
|
|
ds temp,arg1,temp /* 11th divide step */
|
591 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
592 |
|
|
ds temp,arg1,temp /* 12th divide step */
|
593 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
594 |
|
|
ds temp,arg1,temp /* 13th divide step */
|
595 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
596 |
|
|
ds temp,arg1,temp /* 14th divide step */
|
597 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
598 |
|
|
ds temp,arg1,temp /* 15th divide step */
|
599 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
600 |
|
|
ds temp,arg1,temp /* 16th divide step */
|
601 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
602 |
|
|
ds temp,arg1,temp /* 17th divide step */
|
603 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
604 |
|
|
ds temp,arg1,temp /* 18th divide step */
|
605 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
606 |
|
|
ds temp,arg1,temp /* 19th divide step */
|
607 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
608 |
|
|
ds temp,arg1,temp /* 20th divide step */
|
609 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
610 |
|
|
ds temp,arg1,temp /* 21st divide step */
|
611 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
612 |
|
|
ds temp,arg1,temp /* 22nd divide step */
|
613 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
614 |
|
|
ds temp,arg1,temp /* 23rd divide step */
|
615 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
616 |
|
|
ds temp,arg1,temp /* 24th divide step */
|
617 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
618 |
|
|
ds temp,arg1,temp /* 25th divide step */
|
619 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
620 |
|
|
ds temp,arg1,temp /* 26th divide step */
|
621 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
622 |
|
|
ds temp,arg1,temp /* 27th divide step */
|
623 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
624 |
|
|
ds temp,arg1,temp /* 28th divide step */
|
625 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
626 |
|
|
ds temp,arg1,temp /* 29th divide step */
|
627 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
628 |
|
|
ds temp,arg1,temp /* 30th divide step */
|
629 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
630 |
|
|
ds temp,arg1,temp /* 31st divide step */
|
631 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
632 |
|
|
ds temp,arg1,temp /* 32nd divide step, */
|
633 |
|
|
MILLIRET
|
634 |
|
|
addc retreg,retreg,retreg /* shift last retreg bit into retreg */
|
635 |
|
|
|
636 |
|
|
/* Handle the cases where divisor is a small constant or has high bit on. */
|
637 |
|
|
LSYM(special_divisor)
|
638 |
|
|
/* blr arg1,r0 */
|
639 |
|
|
/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */
|
640 |
|
|
|
641 |
|
|
/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from
|
642 |
|
|
generating such a blr, comib sequence. A problem in nullification. So I
|
643 |
|
|
rewrote this code. */
|
644 |
|
|
|
645 |
|
|
#if defined(pa64)
|
646 |
|
|
/* Clear the upper 32 bits of the arg1 register. We are working with
|
647 |
|
|
small divisors (and 32 bit unsigned integers) We must not be mislead
|
648 |
|
|
by "1" bits left in the upper 32 bits. */
|
649 |
|
|
depd %r0,31,32,%r25
|
650 |
|
|
#endif
|
651 |
|
|
comib,> 0,arg1,LREF(big_divisor)
|
652 |
|
|
nop
|
653 |
|
|
blr arg1,r0
|
654 |
|
|
nop
|
655 |
|
|
|
656 |
|
|
LSYM(zero_divisor) /* this label is here to provide external visibility */
|
657 |
|
|
addit,= 0,arg1,0 /* trap for zero dvr */
|
658 |
|
|
nop
|
659 |
|
|
MILLIRET /* divisor == 1 */
|
660 |
|
|
copy arg0,retreg
|
661 |
|
|
MILLIRET /* divisor == 2 */
|
662 |
|
|
extru arg0,30,31,retreg
|
663 |
|
|
MILLI_BEN($$divU_3) /* divisor == 3 */
|
664 |
|
|
nop
|
665 |
|
|
MILLIRET /* divisor == 4 */
|
666 |
|
|
extru arg0,29,30,retreg
|
667 |
|
|
MILLI_BEN($$divU_5) /* divisor == 5 */
|
668 |
|
|
nop
|
669 |
|
|
MILLI_BEN($$divU_6) /* divisor == 6 */
|
670 |
|
|
nop
|
671 |
|
|
MILLI_BEN($$divU_7) /* divisor == 7 */
|
672 |
|
|
nop
|
673 |
|
|
MILLIRET /* divisor == 8 */
|
674 |
|
|
extru arg0,28,29,retreg
|
675 |
|
|
MILLI_BEN($$divU_9) /* divisor == 9 */
|
676 |
|
|
nop
|
677 |
|
|
MILLI_BEN($$divU_10) /* divisor == 10 */
|
678 |
|
|
nop
|
679 |
|
|
b LREF(normal) /* divisor == 11 */
|
680 |
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
681 |
|
|
MILLI_BEN($$divU_12) /* divisor == 12 */
|
682 |
|
|
nop
|
683 |
|
|
b LREF(normal) /* divisor == 13 */
|
684 |
|
|
ds r0,temp,r0 /* set V-bit to 1 */
|
685 |
|
|
MILLI_BEN($$divU_14) /* divisor == 14 */
|
686 |
|
|
nop
|
687 |
|
|
MILLI_BEN($$divU_15) /* divisor == 15 */
|
688 |
|
|
nop
|
689 |
|
|
|
690 |
|
|
/* Handle the case where the high bit is on in the divisor.
|
691 |
|
|
Compute: if( dividend>=divisor) quotient=1; else quotient=0;
|
692 |
|
|
Note: dividend>==divisor iff dividend-divisor does not borrow
|
693 |
|
|
and not borrow iff carry. */
|
694 |
|
|
LSYM(big_divisor)
|
695 |
|
|
sub arg0,arg1,r0
|
696 |
|
|
MILLIRET
|
697 |
|
|
addc r0,r0,retreg
|
698 |
|
|
.exit
|
699 |
|
|
.procend
|
700 |
|
|
.end
|
701 |
|
|
#endif
|
702 |
|
|
|
703 |
|
|
#ifdef L_remI
|
704 |
|
|
/* ROUTINE: $$remI
|
705 |
|
|
|
706 |
|
|
DESCRIPTION:
|
707 |
|
|
. $$remI returns the remainder of the division of two signed 32-bit
|
708 |
|
|
. integers. The sign of the remainder is the same as the sign of
|
709 |
|
|
. the dividend.
|
710 |
|
|
|
711 |
|
|
|
712 |
|
|
INPUT REGISTERS:
|
713 |
|
|
. arg0 == dividend
|
714 |
|
|
. arg1 == divisor
|
715 |
|
|
. mrp == return pc
|
716 |
|
|
. sr0 == return space when called externally
|
717 |
|
|
|
718 |
|
|
OUTPUT REGISTERS:
|
719 |
|
|
. arg0 = destroyed
|
720 |
|
|
. arg1 = destroyed
|
721 |
|
|
. ret1 = remainder
|
722 |
|
|
|
723 |
|
|
OTHER REGISTERS AFFECTED:
|
724 |
|
|
. r1 = undefined
|
725 |
|
|
|
726 |
|
|
SIDE EFFECTS:
|
727 |
|
|
. Causes a trap under the following conditions: DIVIDE BY ZERO
|
728 |
|
|
. Changes memory at the following places: NONE
|
729 |
|
|
|
730 |
|
|
PERMISSIBLE CONTEXT:
|
731 |
|
|
. Unwindable
|
732 |
|
|
. Does not create a stack frame
|
733 |
|
|
. Is usable for internal or external microcode
|
734 |
|
|
|
735 |
|
|
DISCUSSION:
|
736 |
|
|
. Calls other millicode routines via mrp: NONE
|
737 |
|
|
. Calls other millicode routines: NONE */
|
738 |
|
|
|
739 |
|
|
RDEFINE(tmp,r1)
|
740 |
|
|
RDEFINE(retreg,ret1)
|
741 |
|
|
|
742 |
|
|
SUBSPA_MILLI
|
743 |
|
|
ATTR_MILLI
|
744 |
|
|
.proc
|
745 |
|
|
.callinfo millicode
|
746 |
|
|
.entry
|
747 |
|
|
GSYM($$remI)
|
748 |
|
|
GSYM($$remoI)
|
749 |
|
|
.export $$remI,MILLICODE
|
750 |
|
|
.export $$remoI,MILLICODE
|
751 |
|
|
ldo -1(arg1),tmp /* is there at most one bit set ? */
|
752 |
|
|
and,<> arg1,tmp,r0 /* if not, don't use power of 2 */
|
753 |
|
|
addi,> 0,arg1,r0 /* if denominator > 0, use power */
|
754 |
|
|
/* of 2 */
|
755 |
|
|
b,n LREF(neg_denom)
|
756 |
|
|
LSYM(pow2)
|
757 |
|
|
comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */
|
758 |
|
|
and arg0,tmp,retreg /* get the result */
|
759 |
|
|
MILLIRETN
|
760 |
|
|
LSYM(neg_num)
|
761 |
|
|
subi 0,arg0,arg0 /* negate numerator */
|
762 |
|
|
and arg0,tmp,retreg /* get the result */
|
763 |
|
|
subi 0,retreg,retreg /* negate result */
|
764 |
|
|
MILLIRETN
|
765 |
|
|
LSYM(neg_denom)
|
766 |
|
|
addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */
|
767 |
|
|
/* of 2 */
|
768 |
|
|
b,n LREF(regular_seq)
|
769 |
|
|
sub r0,arg1,tmp /* make denominator positive */
|
770 |
|
|
comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */
|
771 |
|
|
ldo -1(tmp),retreg /* is there at most one bit set ? */
|
772 |
|
|
and,= tmp,retreg,r0 /* if not, go to regular_seq */
|
773 |
|
|
b,n LREF(regular_seq)
|
774 |
|
|
comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */
|
775 |
|
|
and arg0,retreg,retreg
|
776 |
|
|
MILLIRETN
|
777 |
|
|
LSYM(neg_num_2)
|
778 |
|
|
subi 0,arg0,tmp /* test against 0x80000000 */
|
779 |
|
|
and tmp,retreg,retreg
|
780 |
|
|
subi 0,retreg,retreg
|
781 |
|
|
MILLIRETN
|
782 |
|
|
LSYM(regular_seq)
|
783 |
|
|
addit,= 0,arg1,0 /* trap if div by zero */
|
784 |
|
|
add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */
|
785 |
|
|
sub 0,retreg,retreg /* make it positive */
|
786 |
|
|
sub 0,arg1, tmp /* clear carry, */
|
787 |
|
|
/* negate the divisor */
|
788 |
|
|
ds 0, tmp,0 /* set V-bit to the comple- */
|
789 |
|
|
/* ment of the divisor sign */
|
790 |
|
|
or 0,0, tmp /* clear tmp */
|
791 |
|
|
add retreg,retreg,retreg /* shift msb bit into carry */
|
792 |
|
|
ds tmp,arg1, tmp /* 1st divide step, if no carry */
|
793 |
|
|
/* out, msb of quotient = 0 */
|
794 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
795 |
|
|
LSYM(t1)
|
796 |
|
|
ds tmp,arg1, tmp /* 2nd divide step */
|
797 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
798 |
|
|
ds tmp,arg1, tmp /* 3rd divide step */
|
799 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
800 |
|
|
ds tmp,arg1, tmp /* 4th divide step */
|
801 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
802 |
|
|
ds tmp,arg1, tmp /* 5th divide step */
|
803 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
804 |
|
|
ds tmp,arg1, tmp /* 6th divide step */
|
805 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
806 |
|
|
ds tmp,arg1, tmp /* 7th divide step */
|
807 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
808 |
|
|
ds tmp,arg1, tmp /* 8th divide step */
|
809 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
810 |
|
|
ds tmp,arg1, tmp /* 9th divide step */
|
811 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
812 |
|
|
ds tmp,arg1, tmp /* 10th divide step */
|
813 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
814 |
|
|
ds tmp,arg1, tmp /* 11th divide step */
|
815 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
816 |
|
|
ds tmp,arg1, tmp /* 12th divide step */
|
817 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
818 |
|
|
ds tmp,arg1, tmp /* 13th divide step */
|
819 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
820 |
|
|
ds tmp,arg1, tmp /* 14th divide step */
|
821 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
822 |
|
|
ds tmp,arg1, tmp /* 15th divide step */
|
823 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
824 |
|
|
ds tmp,arg1, tmp /* 16th divide step */
|
825 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
826 |
|
|
ds tmp,arg1, tmp /* 17th divide step */
|
827 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
828 |
|
|
ds tmp,arg1, tmp /* 18th divide step */
|
829 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
830 |
|
|
ds tmp,arg1, tmp /* 19th divide step */
|
831 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
832 |
|
|
ds tmp,arg1, tmp /* 20th divide step */
|
833 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
834 |
|
|
ds tmp,arg1, tmp /* 21st divide step */
|
835 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
836 |
|
|
ds tmp,arg1, tmp /* 22nd divide step */
|
837 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
838 |
|
|
ds tmp,arg1, tmp /* 23rd divide step */
|
839 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
840 |
|
|
ds tmp,arg1, tmp /* 24th divide step */
|
841 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
842 |
|
|
ds tmp,arg1, tmp /* 25th divide step */
|
843 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
844 |
|
|
ds tmp,arg1, tmp /* 26th divide step */
|
845 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
846 |
|
|
ds tmp,arg1, tmp /* 27th divide step */
|
847 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
848 |
|
|
ds tmp,arg1, tmp /* 28th divide step */
|
849 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
850 |
|
|
ds tmp,arg1, tmp /* 29th divide step */
|
851 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
852 |
|
|
ds tmp,arg1, tmp /* 30th divide step */
|
853 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
854 |
|
|
ds tmp,arg1, tmp /* 31st divide step */
|
855 |
|
|
addc retreg,retreg,retreg /* shift retreg with/into carry */
|
856 |
|
|
ds tmp,arg1, tmp /* 32nd divide step, */
|
857 |
|
|
addc retreg,retreg,retreg /* shift last bit into retreg */
|
858 |
|
|
movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */
|
859 |
|
|
add,< arg1,0,0 /* if arg1 > 0, add arg1 */
|
860 |
|
|
add,tr tmp,arg1,retreg /* for correcting remainder tmp */
|
861 |
|
|
sub tmp,arg1,retreg /* else add absolute value arg1 */
|
862 |
|
|
LSYM(finish)
|
863 |
|
|
add,>= arg0,0,0 /* set sign of remainder */
|
864 |
|
|
sub 0,retreg,retreg /* to sign of dividend */
|
865 |
|
|
MILLIRET
|
866 |
|
|
nop
|
867 |
|
|
.exit
|
868 |
|
|
.procend
|
869 |
|
|
#ifdef milliext
|
870 |
|
|
.origin 0x00000200
|
871 |
|
|
#endif
|
872 |
|
|
.end
|
873 |
|
|
#endif
|
874 |
|
|
|
875 |
|
|
#ifdef L_remU
|
876 |
|
|
/* ROUTINE: $$remU
|
877 |
|
|
. Single precision divide for remainder with unsigned binary integers.
|
878 |
|
|
.
|
879 |
|
|
. The remainder must be dividend-(dividend/divisor)*divisor.
|
880 |
|
|
. Divide by zero is trapped.
|
881 |
|
|
|
882 |
|
|
INPUT REGISTERS:
|
883 |
|
|
. arg0 == dividend
|
884 |
|
|
. arg1 == divisor
|
885 |
|
|
. mrp == return pc
|
886 |
|
|
. sr0 == return space when called externally
|
887 |
|
|
|
888 |
|
|
OUTPUT REGISTERS:
|
889 |
|
|
. arg0 = undefined
|
890 |
|
|
. arg1 = undefined
|
891 |
|
|
. ret1 = remainder
|
892 |
|
|
|
893 |
|
|
OTHER REGISTERS AFFECTED:
|
894 |
|
|
. r1 = undefined
|
895 |
|
|
|
896 |
|
|
SIDE EFFECTS:
|
897 |
|
|
. Causes a trap under the following conditions: DIVIDE BY ZERO
|
898 |
|
|
. Changes memory at the following places: NONE
|
899 |
|
|
|
900 |
|
|
PERMISSIBLE CONTEXT:
|
901 |
|
|
. Unwindable.
|
902 |
|
|
. Does not create a stack frame.
|
903 |
|
|
. Suitable for internal or external millicode.
|
904 |
|
|
. Assumes the special millicode register conventions.
|
905 |
|
|
|
906 |
|
|
DISCUSSION:
|
907 |
|
|
. Calls other millicode routines using mrp: NONE
|
908 |
|
|
. Calls other millicode routines: NONE */
|
909 |
|
|
|
910 |
|
|
|
911 |
|
|
RDEFINE(temp,r1)
|
912 |
|
|
RDEFINE(rmndr,ret1) /* r29 */
|
913 |
|
|
SUBSPA_MILLI
|
914 |
|
|
ATTR_MILLI
|
915 |
|
|
.export $$remU,millicode
|
916 |
|
|
.proc
|
917 |
|
|
.callinfo millicode
|
918 |
|
|
.entry
|
919 |
|
|
GSYM($$remU)
|
920 |
|
|
ldo -1(arg1),temp /* is there at most one bit set ? */
|
921 |
|
|
and,= arg1,temp,r0 /* if not, don't use power of 2 */
|
922 |
|
|
b LREF(regular_seq)
|
923 |
|
|
addit,= 0,arg1,r0 /* trap on div by zero */
|
924 |
|
|
and arg0,temp,rmndr /* get the result for power of 2 */
|
925 |
|
|
MILLIRETN
|
926 |
|
|
LSYM(regular_seq)
|
927 |
|
|
comib,>=,n 0,arg1,LREF(special_case)
|
928 |
|
|
subi 0,arg1,rmndr /* clear carry, negate the divisor */
|
929 |
|
|
ds r0,rmndr,r0 /* set V-bit to 1 */
|
930 |
|
|
add arg0,arg0,temp /* shift msb bit into carry */
|
931 |
|
|
ds r0,arg1,rmndr /* 1st divide step, if no carry */
|
932 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
933 |
|
|
ds rmndr,arg1,rmndr /* 2nd divide step */
|
934 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
935 |
|
|
ds rmndr,arg1,rmndr /* 3rd divide step */
|
936 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
937 |
|
|
ds rmndr,arg1,rmndr /* 4th divide step */
|
938 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
939 |
|
|
ds rmndr,arg1,rmndr /* 5th divide step */
|
940 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
941 |
|
|
ds rmndr,arg1,rmndr /* 6th divide step */
|
942 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
943 |
|
|
ds rmndr,arg1,rmndr /* 7th divide step */
|
944 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
945 |
|
|
ds rmndr,arg1,rmndr /* 8th divide step */
|
946 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
947 |
|
|
ds rmndr,arg1,rmndr /* 9th divide step */
|
948 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
949 |
|
|
ds rmndr,arg1,rmndr /* 10th divide step */
|
950 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
951 |
|
|
ds rmndr,arg1,rmndr /* 11th divide step */
|
952 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
953 |
|
|
ds rmndr,arg1,rmndr /* 12th divide step */
|
954 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
955 |
|
|
ds rmndr,arg1,rmndr /* 13th divide step */
|
956 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
957 |
|
|
ds rmndr,arg1,rmndr /* 14th divide step */
|
958 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
959 |
|
|
ds rmndr,arg1,rmndr /* 15th divide step */
|
960 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
961 |
|
|
ds rmndr,arg1,rmndr /* 16th divide step */
|
962 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
963 |
|
|
ds rmndr,arg1,rmndr /* 17th divide step */
|
964 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
965 |
|
|
ds rmndr,arg1,rmndr /* 18th divide step */
|
966 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
967 |
|
|
ds rmndr,arg1,rmndr /* 19th divide step */
|
968 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
969 |
|
|
ds rmndr,arg1,rmndr /* 20th divide step */
|
970 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
971 |
|
|
ds rmndr,arg1,rmndr /* 21st divide step */
|
972 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
973 |
|
|
ds rmndr,arg1,rmndr /* 22nd divide step */
|
974 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
975 |
|
|
ds rmndr,arg1,rmndr /* 23rd divide step */
|
976 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
977 |
|
|
ds rmndr,arg1,rmndr /* 24th divide step */
|
978 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
979 |
|
|
ds rmndr,arg1,rmndr /* 25th divide step */
|
980 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
981 |
|
|
ds rmndr,arg1,rmndr /* 26th divide step */
|
982 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
983 |
|
|
ds rmndr,arg1,rmndr /* 27th divide step */
|
984 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
985 |
|
|
ds rmndr,arg1,rmndr /* 28th divide step */
|
986 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
987 |
|
|
ds rmndr,arg1,rmndr /* 29th divide step */
|
988 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
989 |
|
|
ds rmndr,arg1,rmndr /* 30th divide step */
|
990 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
991 |
|
|
ds rmndr,arg1,rmndr /* 31st divide step */
|
992 |
|
|
addc temp,temp,temp /* shift temp with/into carry */
|
993 |
|
|
ds rmndr,arg1,rmndr /* 32nd divide step, */
|
994 |
|
|
comiclr,<= 0,rmndr,r0
|
995 |
|
|
add rmndr,arg1,rmndr /* correction */
|
996 |
|
|
MILLIRETN
|
997 |
|
|
nop
|
998 |
|
|
|
999 |
|
|
/* Putting >= on the last DS and deleting COMICLR does not work! */
|
1000 |
|
|
LSYM(special_case)
|
1001 |
|
|
sub,>>= arg0,arg1,rmndr
|
1002 |
|
|
copy arg0,rmndr
|
1003 |
|
|
MILLIRETN
|
1004 |
|
|
nop
|
1005 |
|
|
.exit
|
1006 |
|
|
.procend
|
1007 |
|
|
.end
|
1008 |
|
|
#endif
|
1009 |
|
|
|
1010 |
|
|
#ifdef L_div_const
|
1011 |
|
|
/* ROUTINE: $$divI_2
|
1012 |
|
|
. $$divI_3 $$divU_3
|
1013 |
|
|
. $$divI_4
|
1014 |
|
|
. $$divI_5 $$divU_5
|
1015 |
|
|
. $$divI_6 $$divU_6
|
1016 |
|
|
. $$divI_7 $$divU_7
|
1017 |
|
|
. $$divI_8
|
1018 |
|
|
. $$divI_9 $$divU_9
|
1019 |
|
|
. $$divI_10 $$divU_10
|
1020 |
|
|
.
|
1021 |
|
|
. $$divI_12 $$divU_12
|
1022 |
|
|
.
|
1023 |
|
|
. $$divI_14 $$divU_14
|
1024 |
|
|
. $$divI_15 $$divU_15
|
1025 |
|
|
. $$divI_16
|
1026 |
|
|
. $$divI_17 $$divU_17
|
1027 |
|
|
.
|
1028 |
|
|
. Divide by selected constants for single precision binary integers.
|
1029 |
|
|
|
1030 |
|
|
INPUT REGISTERS:
|
1031 |
|
|
. arg0 == dividend
|
1032 |
|
|
. mrp == return pc
|
1033 |
|
|
. sr0 == return space when called externally
|
1034 |
|
|
|
1035 |
|
|
OUTPUT REGISTERS:
|
1036 |
|
|
. arg0 = undefined
|
1037 |
|
|
. arg1 = undefined
|
1038 |
|
|
. ret1 = quotient
|
1039 |
|
|
|
1040 |
|
|
OTHER REGISTERS AFFECTED:
|
1041 |
|
|
. r1 = undefined
|
1042 |
|
|
|
1043 |
|
|
SIDE EFFECTS:
|
1044 |
|
|
. Causes a trap under the following conditions: NONE
|
1045 |
|
|
. Changes memory at the following places: NONE
|
1046 |
|
|
|
1047 |
|
|
PERMISSIBLE CONTEXT:
|
1048 |
|
|
. Unwindable.
|
1049 |
|
|
. Does not create a stack frame.
|
1050 |
|
|
. Suitable for internal or external millicode.
|
1051 |
|
|
. Assumes the special millicode register conventions.
|
1052 |
|
|
|
1053 |
|
|
DISCUSSION:
|
1054 |
|
|
. Calls other millicode routines using mrp: NONE
|
1055 |
|
|
. Calls other millicode routines: NONE */
|
1056 |
|
|
|
1057 |
|
|
|
1058 |
|
|
/* TRUNCATED DIVISION BY SMALL INTEGERS
|
1059 |
|
|
|
1060 |
|
|
We are interested in q(x) = floor(x/y), where x >= 0 and y > 0
|
1061 |
|
|
(with y fixed).
|
1062 |
|
|
|
1063 |
|
|
Let a = floor(z/y), for some choice of z. Note that z will be
|
1064 |
|
|
chosen so that division by z is cheap.
|
1065 |
|
|
|
1066 |
|
|
Let r be the remainder(z/y). In other words, r = z - ay.
|
1067 |
|
|
|
1068 |
|
|
Now, our method is to choose a value for b such that
|
1069 |
|
|
|
1070 |
|
|
q'(x) = floor((ax+b)/z)
|
1071 |
|
|
|
1072 |
|
|
is equal to q(x) over as large a range of x as possible. If the
|
1073 |
|
|
two are equal over a sufficiently large range, and if it is easy to
|
1074 |
|
|
form the product (ax), and it is easy to divide by z, then we can
|
1075 |
|
|
perform the division much faster than the general division algorithm.
|
1076 |
|
|
|
1077 |
|
|
So, we want the following to be true:
|
1078 |
|
|
|
1079 |
|
|
. For x in the following range:
|
1080 |
|
|
.
|
1081 |
|
|
. ky <= x < (k+1)y
|
1082 |
|
|
.
|
1083 |
|
|
. implies that
|
1084 |
|
|
.
|
1085 |
|
|
. k <= (ax+b)/z < (k+1)
|
1086 |
|
|
|
1087 |
|
|
We want to determine b such that this is true for all k in the
|
1088 |
|
|
range {0..K} for some maximum K.
|
1089 |
|
|
|
1090 |
|
|
Since (ax+b) is an increasing function of x, we can take each
|
1091 |
|
|
bound separately to determine the "best" value for b.
|
1092 |
|
|
|
1093 |
|
|
(ax+b)/z < (k+1) implies
|
1094 |
|
|
|
1095 |
|
|
(a((k+1)y-1)+b < (k+1)z implies
|
1096 |
|
|
|
1097 |
|
|
b < a + (k+1)(z-ay) implies
|
1098 |
|
|
|
1099 |
|
|
b < a + (k+1)r
|
1100 |
|
|
|
1101 |
|
|
This needs to be true for all k in the range {0..K}. In
|
1102 |
|
|
particular, it is true for k = 0 and this leads to a maximum
|
1103 |
|
|
acceptable value for b.
|
1104 |
|
|
|
1105 |
|
|
b < a+r or b <= a+r-1
|
1106 |
|
|
|
1107 |
|
|
Taking the other bound, we have
|
1108 |
|
|
|
1109 |
|
|
k <= (ax+b)/z implies
|
1110 |
|
|
|
1111 |
|
|
k <= (aky+b)/z implies
|
1112 |
|
|
|
1113 |
|
|
k(z-ay) <= b implies
|
1114 |
|
|
|
1115 |
|
|
kr <= b
|
1116 |
|
|
|
1117 |
|
|
Clearly, the largest range for k will be achieved by maximizing b,
|
1118 |
|
|
when r is not zero. When r is zero, then the simplest choice for b
|
1119 |
|
|
is 0. When r is not 0, set
|
1120 |
|
|
|
1121 |
|
|
. b = a+r-1
|
1122 |
|
|
|
1123 |
|
|
Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y)
|
1124 |
|
|
for all x in the range:
|
1125 |
|
|
|
1126 |
|
|
. 0 <= x < (K+1)y
|
1127 |
|
|
|
1128 |
|
|
We need to determine what K is. Of our two bounds,
|
1129 |
|
|
|
1130 |
|
|
. b < a+(k+1)r is satisfied for all k >= 0, by construction.
|
1131 |
|
|
|
1132 |
|
|
The other bound is
|
1133 |
|
|
|
1134 |
|
|
. kr <= b
|
1135 |
|
|
|
1136 |
|
|
This is always true if r = 0. If r is not 0 (the usual case), then
|
1137 |
|
|
K = floor((a+r-1)/r), is the maximum value for k.
|
1138 |
|
|
|
1139 |
|
|
Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct
|
1140 |
|
|
answer for q(x) = floor(x/y) when x is in the range
|
1141 |
|
|
|
1142 |
|
|
(0,(K+1)y-1) K = floor((a+r-1)/r)
|
1143 |
|
|
|
1144 |
|
|
To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that
|
1145 |
|
|
the formula for q'(x) yields the correct value of q(x) for all x
|
1146 |
|
|
representable by a single word in HPPA.
|
1147 |
|
|
|
1148 |
|
|
We are also constrained in that computing the product (ax), adding
|
1149 |
|
|
b, and dividing by z must all be done quickly, otherwise we will be
|
1150 |
|
|
better off going through the general algorithm using the DS
|
1151 |
|
|
instruction, which uses approximately 70 cycles.
|
1152 |
|
|
|
1153 |
|
|
For each y, there is a choice of z which satisfies the constraints
|
1154 |
|
|
for (K+1)y >= 2**32. We may not, however, be able to satisfy the
|
1155 |
|
|
timing constraints for arbitrary y. It seems that z being equal to
|
1156 |
|
|
a power of 2 or a power of 2 minus 1 is as good as we can do, since
|
1157 |
|
|
it minimizes the time to do division by z. We want the choice of z
|
1158 |
|
|
to also result in a value for (a) that minimizes the computation of
|
1159 |
|
|
the product (ax). This is best achieved if (a) has a regular bit
|
1160 |
|
|
pattern (so the multiplication can be done with shifts and adds).
|
1161 |
|
|
The value of (a) also needs to be less than 2**32 so the product is
|
1162 |
|
|
always guaranteed to fit in 2 words.
|
1163 |
|
|
|
1164 |
|
|
In actual practice, the following should be done:
|
1165 |
|
|
|
1166 |
|
|
1) For negative x, you should take the absolute value and remember
|
1167 |
|
|
. the fact so that the result can be negated. This obviously does
|
1168 |
|
|
. not apply in the unsigned case.
|
1169 |
|
|
2) For even y, you should factor out the power of 2 that divides y
|
1170 |
|
|
. and divide x by it. You can then proceed by dividing by the
|
1171 |
|
|
. odd factor of y.
|
1172 |
|
|
|
1173 |
|
|
Here is a table of some odd values of y, and corresponding choices
|
1174 |
|
|
for z which are "good".
|
1175 |
|
|
|
1176 |
|
|
y z r a (hex) max x (hex)
|
1177 |
|
|
|
1178 |
|
|
3 2**32 1 55555555 100000001
|
1179 |
|
|
5 2**32 1 33333333 100000003
|
1180 |
|
|
7 2**24-1 0 249249 (infinite)
|
1181 |
|
|
9 2**24-1 0 1c71c7 (infinite)
|
1182 |
|
|
11 2**20-1 0 1745d (infinite)
|
1183 |
|
|
13 2**24-1 0 13b13b (infinite)
|
1184 |
|
|
15 2**32 1 11111111 10000000d
|
1185 |
|
|
17 2**32 1 f0f0f0f 10000000f
|
1186 |
|
|
|
1187 |
|
|
If r is 1, then b = a+r-1 = a. This simplifies the computation
|
1188 |
|
|
of (ax+b), since you can compute (x+1)(a) instead. If r is 0,
|
1189 |
|
|
then b = 0 is ok to use which simplifies (ax+b).
|
1190 |
|
|
|
1191 |
|
|
The bit patterns for 55555555, 33333333, and 11111111 are obviously
|
1192 |
|
|
very regular. The bit patterns for the other values of a above are:
|
1193 |
|
|
|
1194 |
|
|
y (hex) (binary)
|
1195 |
|
|
|
1196 |
|
|
7 249249 001001001001001001001001 << regular >>
|
1197 |
|
|
9 1c71c7 000111000111000111000111 << regular >>
|
1198 |
|
|
11 1745d 000000010111010001011101 << irregular >>
|
1199 |
|
|
13 13b13b 000100111011000100111011 << irregular >>
|
1200 |
|
|
|
1201 |
|
|
The bit patterns for (a) corresponding to (y) of 11 and 13 may be
|
1202 |
|
|
too irregular to warrant using this method.
|
1203 |
|
|
|
1204 |
|
|
When z is a power of 2 minus 1, then the division by z is slightly
|
1205 |
|
|
more complicated, involving an iterative solution.
|
1206 |
|
|
|
1207 |
|
|
The code presented here solves division by 1 through 17, except for
|
1208 |
|
|
11 and 13. There are algorithms for both signed and unsigned
|
1209 |
|
|
quantities given.
|
1210 |
|
|
|
1211 |
|
|
TIMINGS (cycles)
|
1212 |
|
|
|
1213 |
|
|
divisor positive negative unsigned
|
1214 |
|
|
|
1215 |
|
|
. 1 2 2 2
|
1216 |
|
|
. 2 4 4 2
|
1217 |
|
|
. 3 19 21 19
|
1218 |
|
|
. 4 4 4 2
|
1219 |
|
|
. 5 18 22 19
|
1220 |
|
|
. 6 19 22 19
|
1221 |
|
|
. 8 4 4 2
|
1222 |
|
|
. 10 18 19 17
|
1223 |
|
|
. 12 18 20 18
|
1224 |
|
|
. 15 16 18 16
|
1225 |
|
|
. 16 4 4 2
|
1226 |
|
|
. 17 16 18 16
|
1227 |
|
|
|
1228 |
|
|
Now, the algorithm for 7, 9, and 14 is an iterative one. That is,
|
1229 |
|
|
a loop body is executed until the tentative quotient is 0. The
|
1230 |
|
|
number of times the loop body is executed varies depending on the
|
1231 |
|
|
dividend, but is never more than two times. If the dividend is
|
1232 |
|
|
less than the divisor, then the loop body is not executed at all.
|
1233 |
|
|
Each iteration adds 4 cycles to the timings.
|
1234 |
|
|
|
1235 |
|
|
divisor positive negative unsigned
|
1236 |
|
|
|
1237 |
|
|
. 7 19+4n 20+4n 20+4n n = number of iterations
|
1238 |
|
|
. 9 21+4n 22+4n 21+4n
|
1239 |
|
|
. 14 21+4n 22+4n 20+4n
|
1240 |
|
|
|
1241 |
|
|
To give an idea of how the number of iterations varies, here is a
|
1242 |
|
|
table of dividend versus number of iterations when dividing by 7.
|
1243 |
|
|
|
1244 |
|
|
smallest largest required
|
1245 |
|
|
dividend dividend iterations
|
1246 |
|
|
|
1247 |
|
|
. 0 6 0
|
1248 |
|
|
. 7 0x6ffffff 1
|
1249 |
|
|
0x1000006 0xffffffff 2
|
1250 |
|
|
|
1251 |
|
|
There is some overlap in the range of numbers requiring 1 and 2
|
1252 |
|
|
iterations. */
|
1253 |
|
|
|
1254 |
|
|
RDEFINE(t2,r1)
|
1255 |
|
|
RDEFINE(x2,arg0) /* r26 */
|
1256 |
|
|
RDEFINE(t1,arg1) /* r25 */
|
1257 |
|
|
RDEFINE(x1,ret1) /* r29 */
|
1258 |
|
|
|
1259 |
|
|
SUBSPA_MILLI_DIV
|
1260 |
|
|
ATTR_MILLI
|
1261 |
|
|
|
1262 |
|
|
.proc
|
1263 |
|
|
.callinfo millicode
|
1264 |
|
|
.entry
|
1265 |
|
|
/* NONE of these routines require a stack frame
|
1266 |
|
|
ALL of these routines are unwindable from millicode */
|
1267 |
|
|
|
1268 |
|
|
GSYM($$divide_by_constant)
|
1269 |
|
|
.export $$divide_by_constant,millicode
|
1270 |
|
|
/* Provides a "nice" label for the code covered by the unwind descriptor
|
1271 |
|
|
for things like gprof. */
|
1272 |
|
|
|
1273 |
|
|
/* DIVISION BY 2 (shift by 1) */
|
1274 |
|
|
GSYM($$divI_2)
|
1275 |
|
|
.export $$divI_2,millicode
|
1276 |
|
|
comclr,>= arg0,0,0
|
1277 |
|
|
addi 1,arg0,arg0
|
1278 |
|
|
MILLIRET
|
1279 |
|
|
extrs arg0,30,31,ret1
|
1280 |
|
|
|
1281 |
|
|
|
1282 |
|
|
/* DIVISION BY 4 (shift by 2) */
|
1283 |
|
|
GSYM($$divI_4)
|
1284 |
|
|
.export $$divI_4,millicode
|
1285 |
|
|
comclr,>= arg0,0,0
|
1286 |
|
|
addi 3,arg0,arg0
|
1287 |
|
|
MILLIRET
|
1288 |
|
|
extrs arg0,29,30,ret1
|
1289 |
|
|
|
1290 |
|
|
|
1291 |
|
|
/* DIVISION BY 8 (shift by 3) */
|
1292 |
|
|
GSYM($$divI_8)
|
1293 |
|
|
.export $$divI_8,millicode
|
1294 |
|
|
comclr,>= arg0,0,0
|
1295 |
|
|
addi 7,arg0,arg0
|
1296 |
|
|
MILLIRET
|
1297 |
|
|
extrs arg0,28,29,ret1
|
1298 |
|
|
|
1299 |
|
|
/* DIVISION BY 16 (shift by 4) */
|
1300 |
|
|
GSYM($$divI_16)
|
1301 |
|
|
.export $$divI_16,millicode
|
1302 |
|
|
comclr,>= arg0,0,0
|
1303 |
|
|
addi 15,arg0,arg0
|
1304 |
|
|
MILLIRET
|
1305 |
|
|
extrs arg0,27,28,ret1
|
1306 |
|
|
|
1307 |
|
|
/****************************************************************************
|
1308 |
|
|
*
|
1309 |
|
|
* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these
|
1310 |
|
|
*
|
1311 |
|
|
* includes 3,5,15,17 and also 6,10,12
|
1312 |
|
|
*
|
1313 |
|
|
****************************************************************************/
|
1314 |
|
|
|
1315 |
|
|
/* DIVISION BY 3 (use z = 2**32; a = 55555555) */
|
1316 |
|
|
|
1317 |
|
|
GSYM($$divI_3)
|
1318 |
|
|
.export $$divI_3,millicode
|
1319 |
|
|
comb,<,N x2,0,LREF(neg3)
|
1320 |
|
|
|
1321 |
|
|
addi 1,x2,x2 /* this cannot overflow */
|
1322 |
|
|
extru x2,1,2,x1 /* multiply by 5 to get started */
|
1323 |
|
|
sh2add x2,x2,x2
|
1324 |
|
|
b LREF(pos)
|
1325 |
|
|
addc x1,0,x1
|
1326 |
|
|
|
1327 |
|
|
LSYM(neg3)
|
1328 |
|
|
subi 1,x2,x2 /* this cannot overflow */
|
1329 |
|
|
extru x2,1,2,x1 /* multiply by 5 to get started */
|
1330 |
|
|
sh2add x2,x2,x2
|
1331 |
|
|
b LREF(neg)
|
1332 |
|
|
addc x1,0,x1
|
1333 |
|
|
|
1334 |
|
|
GSYM($$divU_3)
|
1335 |
|
|
.export $$divU_3,millicode
|
1336 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
1337 |
|
|
addc 0,0,x1
|
1338 |
|
|
shd x1,x2,30,t1 /* multiply by 5 to get started */
|
1339 |
|
|
sh2add x2,x2,x2
|
1340 |
|
|
b LREF(pos)
|
1341 |
|
|
addc x1,t1,x1
|
1342 |
|
|
|
1343 |
|
|
/* DIVISION BY 5 (use z = 2**32; a = 33333333) */
|
1344 |
|
|
|
1345 |
|
|
GSYM($$divI_5)
|
1346 |
|
|
.export $$divI_5,millicode
|
1347 |
|
|
comb,<,N x2,0,LREF(neg5)
|
1348 |
|
|
|
1349 |
|
|
addi 3,x2,t1 /* this cannot overflow */
|
1350 |
|
|
sh1add x2,t1,x2 /* multiply by 3 to get started */
|
1351 |
|
|
b LREF(pos)
|
1352 |
|
|
addc 0,0,x1
|
1353 |
|
|
|
1354 |
|
|
LSYM(neg5)
|
1355 |
|
|
sub 0,x2,x2 /* negate x2 */
|
1356 |
|
|
addi 1,x2,x2 /* this cannot overflow */
|
1357 |
|
|
shd 0,x2,31,x1 /* get top bit (can be 1) */
|
1358 |
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
1359 |
|
|
b LREF(neg)
|
1360 |
|
|
addc x1,0,x1
|
1361 |
|
|
|
1362 |
|
|
GSYM($$divU_5)
|
1363 |
|
|
.export $$divU_5,millicode
|
1364 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
1365 |
|
|
addc 0,0,x1
|
1366 |
|
|
shd x1,x2,31,t1 /* multiply by 3 to get started */
|
1367 |
|
|
sh1add x2,x2,x2
|
1368 |
|
|
b LREF(pos)
|
1369 |
|
|
addc t1,x1,x1
|
1370 |
|
|
|
1371 |
|
|
/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */
|
1372 |
|
|
GSYM($$divI_6)
|
1373 |
|
|
.export $$divI_6,millicode
|
1374 |
|
|
comb,<,N x2,0,LREF(neg6)
|
1375 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
1376 |
|
|
addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */
|
1377 |
|
|
sh2add x2,t1,x2 /* multiply by 5 to get started */
|
1378 |
|
|
b LREF(pos)
|
1379 |
|
|
addc 0,0,x1
|
1380 |
|
|
|
1381 |
|
|
LSYM(neg6)
|
1382 |
|
|
subi 2,x2,x2 /* negate, divide by 2, and add 1 */
|
1383 |
|
|
/* negation and adding 1 are done */
|
1384 |
|
|
/* at the same time by the SUBI */
|
1385 |
|
|
extru x2,30,31,x2
|
1386 |
|
|
shd 0,x2,30,x1
|
1387 |
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
1388 |
|
|
b LREF(neg)
|
1389 |
|
|
addc x1,0,x1
|
1390 |
|
|
|
1391 |
|
|
GSYM($$divU_6)
|
1392 |
|
|
.export $$divU_6,millicode
|
1393 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
1394 |
|
|
addi 1,x2,x2 /* cannot carry */
|
1395 |
|
|
shd 0,x2,30,x1 /* multiply by 5 to get started */
|
1396 |
|
|
sh2add x2,x2,x2
|
1397 |
|
|
b LREF(pos)
|
1398 |
|
|
addc x1,0,x1
|
1399 |
|
|
|
1400 |
|
|
/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */
|
1401 |
|
|
GSYM($$divU_10)
|
1402 |
|
|
.export $$divU_10,millicode
|
1403 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
1404 |
|
|
addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */
|
1405 |
|
|
sh1add x2,t1,x2 /* multiply by 3 to get started */
|
1406 |
|
|
addc 0,0,x1
|
1407 |
|
|
LSYM(pos)
|
1408 |
|
|
shd x1,x2,28,t1 /* multiply by 0x11 */
|
1409 |
|
|
shd x2,0,28,t2
|
1410 |
|
|
add x2,t2,x2
|
1411 |
|
|
addc x1,t1,x1
|
1412 |
|
|
LSYM(pos_for_17)
|
1413 |
|
|
shd x1,x2,24,t1 /* multiply by 0x101 */
|
1414 |
|
|
shd x2,0,24,t2
|
1415 |
|
|
add x2,t2,x2
|
1416 |
|
|
addc x1,t1,x1
|
1417 |
|
|
|
1418 |
|
|
shd x1,x2,16,t1 /* multiply by 0x10001 */
|
1419 |
|
|
shd x2,0,16,t2
|
1420 |
|
|
add x2,t2,x2
|
1421 |
|
|
MILLIRET
|
1422 |
|
|
addc x1,t1,x1
|
1423 |
|
|
|
1424 |
|
|
GSYM($$divI_10)
|
1425 |
|
|
.export $$divI_10,millicode
|
1426 |
|
|
comb,< x2,0,LREF(neg10)
|
1427 |
|
|
copy 0,x1
|
1428 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
1429 |
|
|
addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */
|
1430 |
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
1431 |
|
|
|
1432 |
|
|
LSYM(neg10)
|
1433 |
|
|
subi 2,x2,x2 /* negate, divide by 2, and add 1 */
|
1434 |
|
|
/* negation and adding 1 are done */
|
1435 |
|
|
/* at the same time by the SUBI */
|
1436 |
|
|
extru x2,30,31,x2
|
1437 |
|
|
sh1add x2,x2,x2 /* multiply by 3 to get started */
|
1438 |
|
|
LSYM(neg)
|
1439 |
|
|
shd x1,x2,28,t1 /* multiply by 0x11 */
|
1440 |
|
|
shd x2,0,28,t2
|
1441 |
|
|
add x2,t2,x2
|
1442 |
|
|
addc x1,t1,x1
|
1443 |
|
|
LSYM(neg_for_17)
|
1444 |
|
|
shd x1,x2,24,t1 /* multiply by 0x101 */
|
1445 |
|
|
shd x2,0,24,t2
|
1446 |
|
|
add x2,t2,x2
|
1447 |
|
|
addc x1,t1,x1
|
1448 |
|
|
|
1449 |
|
|
shd x1,x2,16,t1 /* multiply by 0x10001 */
|
1450 |
|
|
shd x2,0,16,t2
|
1451 |
|
|
add x2,t2,x2
|
1452 |
|
|
addc x1,t1,x1
|
1453 |
|
|
MILLIRET
|
1454 |
|
|
sub 0,x1,x1
|
1455 |
|
|
|
1456 |
|
|
/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */
|
1457 |
|
|
GSYM($$divI_12)
|
1458 |
|
|
.export $$divI_12,millicode
|
1459 |
|
|
comb,< x2,0,LREF(neg12)
|
1460 |
|
|
copy 0,x1
|
1461 |
|
|
extru x2,29,30,x2 /* divide by 4 */
|
1462 |
|
|
addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */
|
1463 |
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
1464 |
|
|
|
1465 |
|
|
LSYM(neg12)
|
1466 |
|
|
subi 4,x2,x2 /* negate, divide by 4, and add 1 */
|
1467 |
|
|
/* negation and adding 1 are done */
|
1468 |
|
|
/* at the same time by the SUBI */
|
1469 |
|
|
extru x2,29,30,x2
|
1470 |
|
|
b LREF(neg)
|
1471 |
|
|
sh2add x2,x2,x2 /* multiply by 5 to get started */
|
1472 |
|
|
|
1473 |
|
|
GSYM($$divU_12)
|
1474 |
|
|
.export $$divU_12,millicode
|
1475 |
|
|
extru x2,29,30,x2 /* divide by 4 */
|
1476 |
|
|
addi 5,x2,t1 /* cannot carry */
|
1477 |
|
|
sh2add x2,t1,x2 /* multiply by 5 to get started */
|
1478 |
|
|
b LREF(pos)
|
1479 |
|
|
addc 0,0,x1
|
1480 |
|
|
|
1481 |
|
|
/* DIVISION BY 15 (use z = 2**32; a = 11111111) */
|
1482 |
|
|
GSYM($$divI_15)
|
1483 |
|
|
.export $$divI_15,millicode
|
1484 |
|
|
comb,< x2,0,LREF(neg15)
|
1485 |
|
|
copy 0,x1
|
1486 |
|
|
addib,tr 1,x2,LREF(pos)+4
|
1487 |
|
|
shd x1,x2,28,t1
|
1488 |
|
|
|
1489 |
|
|
LSYM(neg15)
|
1490 |
|
|
b LREF(neg)
|
1491 |
|
|
subi 1,x2,x2
|
1492 |
|
|
|
1493 |
|
|
GSYM($$divU_15)
|
1494 |
|
|
.export $$divU_15,millicode
|
1495 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
1496 |
|
|
b LREF(pos)
|
1497 |
|
|
addc 0,0,x1
|
1498 |
|
|
|
1499 |
|
|
/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */
|
1500 |
|
|
GSYM($$divI_17)
|
1501 |
|
|
.export $$divI_17,millicode
|
1502 |
|
|
comb,<,n x2,0,LREF(neg17)
|
1503 |
|
|
addi 1,x2,x2 /* this cannot overflow */
|
1504 |
|
|
shd 0,x2,28,t1 /* multiply by 0xf to get started */
|
1505 |
|
|
shd x2,0,28,t2
|
1506 |
|
|
sub t2,x2,x2
|
1507 |
|
|
b LREF(pos_for_17)
|
1508 |
|
|
subb t1,0,x1
|
1509 |
|
|
|
1510 |
|
|
LSYM(neg17)
|
1511 |
|
|
subi 1,x2,x2 /* this cannot overflow */
|
1512 |
|
|
shd 0,x2,28,t1 /* multiply by 0xf to get started */
|
1513 |
|
|
shd x2,0,28,t2
|
1514 |
|
|
sub t2,x2,x2
|
1515 |
|
|
b LREF(neg_for_17)
|
1516 |
|
|
subb t1,0,x1
|
1517 |
|
|
|
1518 |
|
|
GSYM($$divU_17)
|
1519 |
|
|
.export $$divU_17,millicode
|
1520 |
|
|
addi 1,x2,x2 /* this CAN overflow */
|
1521 |
|
|
addc 0,0,x1
|
1522 |
|
|
shd x1,x2,28,t1 /* multiply by 0xf to get started */
|
1523 |
|
|
LSYM(u17)
|
1524 |
|
|
shd x2,0,28,t2
|
1525 |
|
|
sub t2,x2,x2
|
1526 |
|
|
b LREF(pos_for_17)
|
1527 |
|
|
subb t1,x1,x1
|
1528 |
|
|
|
1529 |
|
|
|
1530 |
|
|
/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these
|
1531 |
|
|
includes 7,9 and also 14
|
1532 |
|
|
|
1533 |
|
|
|
1534 |
|
|
z = 2**24-1
|
1535 |
|
|
r = z mod x = 0
|
1536 |
|
|
|
1537 |
|
|
so choose b = 0
|
1538 |
|
|
|
1539 |
|
|
Also, in order to divide by z = 2**24-1, we approximate by dividing
|
1540 |
|
|
by (z+1) = 2**24 (which is easy), and then correcting.
|
1541 |
|
|
|
1542 |
|
|
(ax) = (z+1)q' + r
|
1543 |
|
|
. = zq' + (q'+r)
|
1544 |
|
|
|
1545 |
|
|
So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1)
|
1546 |
|
|
Then the true remainder of (ax)/z is (q'+r). Repeat the process
|
1547 |
|
|
with this new remainder, adding the tentative quotients together,
|
1548 |
|
|
until a tentative quotient is 0 (and then we are done). There is
|
1549 |
|
|
one last correction to be done. It is possible that (q'+r) = z.
|
1550 |
|
|
If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But,
|
1551 |
|
|
in fact, we need to add 1 more to the quotient. Now, it turns
|
1552 |
|
|
out that this happens if and only if the original value x is
|
1553 |
|
|
an exact multiple of y. So, to avoid a three instruction test at
|
1554 |
|
|
the end, instead use 1 instruction to add 1 to x at the beginning. */
|
1555 |
|
|
|
1556 |
|
|
/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */
|
1557 |
|
|
GSYM($$divI_7)
|
1558 |
|
|
.export $$divI_7,millicode
|
1559 |
|
|
comb,<,n x2,0,LREF(neg7)
|
1560 |
|
|
LSYM(7)
|
1561 |
|
|
addi 1,x2,x2 /* cannot overflow */
|
1562 |
|
|
shd 0,x2,29,x1
|
1563 |
|
|
sh3add x2,x2,x2
|
1564 |
|
|
addc x1,0,x1
|
1565 |
|
|
LSYM(pos7)
|
1566 |
|
|
shd x1,x2,26,t1
|
1567 |
|
|
shd x2,0,26,t2
|
1568 |
|
|
add x2,t2,x2
|
1569 |
|
|
addc x1,t1,x1
|
1570 |
|
|
|
1571 |
|
|
shd x1,x2,20,t1
|
1572 |
|
|
shd x2,0,20,t2
|
1573 |
|
|
add x2,t2,x2
|
1574 |
|
|
addc x1,t1,t1
|
1575 |
|
|
|
1576 |
|
|
/* computed . Now divide it by (2**24 - 1) */
|
1577 |
|
|
|
1578 |
|
|
copy 0,x1
|
1579 |
|
|
shd,= t1,x2,24,t1 /* tentative quotient */
|
1580 |
|
|
LSYM(1)
|
1581 |
|
|
addb,tr t1,x1,LREF(2) /* add to previous quotient */
|
1582 |
|
|
extru x2,31,24,x2 /* new remainder (unadjusted) */
|
1583 |
|
|
|
1584 |
|
|
MILLIRETN
|
1585 |
|
|
|
1586 |
|
|
LSYM(2)
|
1587 |
|
|
addb,tr t1,x2,LREF(1) /* adjust remainder */
|
1588 |
|
|
extru,= x2,7,8,t1 /* new quotient */
|
1589 |
|
|
|
1590 |
|
|
LSYM(neg7)
|
1591 |
|
|
subi 1,x2,x2 /* negate x2 and add 1 */
|
1592 |
|
|
LSYM(8)
|
1593 |
|
|
shd 0,x2,29,x1
|
1594 |
|
|
sh3add x2,x2,x2
|
1595 |
|
|
addc x1,0,x1
|
1596 |
|
|
|
1597 |
|
|
LSYM(neg7_shift)
|
1598 |
|
|
shd x1,x2,26,t1
|
1599 |
|
|
shd x2,0,26,t2
|
1600 |
|
|
add x2,t2,x2
|
1601 |
|
|
addc x1,t1,x1
|
1602 |
|
|
|
1603 |
|
|
shd x1,x2,20,t1
|
1604 |
|
|
shd x2,0,20,t2
|
1605 |
|
|
add x2,t2,x2
|
1606 |
|
|
addc x1,t1,t1
|
1607 |
|
|
|
1608 |
|
|
/* computed . Now divide it by (2**24 - 1) */
|
1609 |
|
|
|
1610 |
|
|
copy 0,x1
|
1611 |
|
|
shd,= t1,x2,24,t1 /* tentative quotient */
|
1612 |
|
|
LSYM(3)
|
1613 |
|
|
addb,tr t1,x1,LREF(4) /* add to previous quotient */
|
1614 |
|
|
extru x2,31,24,x2 /* new remainder (unadjusted) */
|
1615 |
|
|
|
1616 |
|
|
MILLIRET
|
1617 |
|
|
sub 0,x1,x1 /* negate result */
|
1618 |
|
|
|
1619 |
|
|
LSYM(4)
|
1620 |
|
|
addb,tr t1,x2,LREF(3) /* adjust remainder */
|
1621 |
|
|
extru,= x2,7,8,t1 /* new quotient */
|
1622 |
|
|
|
1623 |
|
|
GSYM($$divU_7)
|
1624 |
|
|
.export $$divU_7,millicode
|
1625 |
|
|
addi 1,x2,x2 /* can carry */
|
1626 |
|
|
addc 0,0,x1
|
1627 |
|
|
shd x1,x2,29,t1
|
1628 |
|
|
sh3add x2,x2,x2
|
1629 |
|
|
b LREF(pos7)
|
1630 |
|
|
addc t1,x1,x1
|
1631 |
|
|
|
1632 |
|
|
/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */
|
1633 |
|
|
GSYM($$divI_9)
|
1634 |
|
|
.export $$divI_9,millicode
|
1635 |
|
|
comb,<,n x2,0,LREF(neg9)
|
1636 |
|
|
addi 1,x2,x2 /* cannot overflow */
|
1637 |
|
|
shd 0,x2,29,t1
|
1638 |
|
|
shd x2,0,29,t2
|
1639 |
|
|
sub t2,x2,x2
|
1640 |
|
|
b LREF(pos7)
|
1641 |
|
|
subb t1,0,x1
|
1642 |
|
|
|
1643 |
|
|
LSYM(neg9)
|
1644 |
|
|
subi 1,x2,x2 /* negate and add 1 */
|
1645 |
|
|
shd 0,x2,29,t1
|
1646 |
|
|
shd x2,0,29,t2
|
1647 |
|
|
sub t2,x2,x2
|
1648 |
|
|
b LREF(neg7_shift)
|
1649 |
|
|
subb t1,0,x1
|
1650 |
|
|
|
1651 |
|
|
GSYM($$divU_9)
|
1652 |
|
|
.export $$divU_9,millicode
|
1653 |
|
|
addi 1,x2,x2 /* can carry */
|
1654 |
|
|
addc 0,0,x1
|
1655 |
|
|
shd x1,x2,29,t1
|
1656 |
|
|
shd x2,0,29,t2
|
1657 |
|
|
sub t2,x2,x2
|
1658 |
|
|
b LREF(pos7)
|
1659 |
|
|
subb t1,x1,x1
|
1660 |
|
|
|
1661 |
|
|
/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */
|
1662 |
|
|
GSYM($$divI_14)
|
1663 |
|
|
.export $$divI_14,millicode
|
1664 |
|
|
comb,<,n x2,0,LREF(neg14)
|
1665 |
|
|
GSYM($$divU_14)
|
1666 |
|
|
.export $$divU_14,millicode
|
1667 |
|
|
b LREF(7) /* go to 7 case */
|
1668 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
1669 |
|
|
|
1670 |
|
|
LSYM(neg14)
|
1671 |
|
|
subi 2,x2,x2 /* negate (and add 2) */
|
1672 |
|
|
b LREF(8)
|
1673 |
|
|
extru x2,30,31,x2 /* divide by 2 */
|
1674 |
|
|
.exit
|
1675 |
|
|
.procend
|
1676 |
|
|
.end
|
1677 |
|
|
#endif
|
1678 |
|
|
|
1679 |
|
|
#ifdef L_mulI
|
1680 |
|
|
/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */
|
1681 |
|
|
/******************************************************************************
|
1682 |
|
|
This routine is used on PA2.0 processors when gcc -mno-fpregs is used
|
1683 |
|
|
|
1684 |
|
|
ROUTINE: $$mulI
|
1685 |
|
|
|
1686 |
|
|
|
1687 |
|
|
DESCRIPTION:
|
1688 |
|
|
|
1689 |
|
|
$$mulI multiplies two single word integers, giving a single
|
1690 |
|
|
word result.
|
1691 |
|
|
|
1692 |
|
|
|
1693 |
|
|
INPUT REGISTERS:
|
1694 |
|
|
|
1695 |
|
|
arg0 = Operand 1
|
1696 |
|
|
arg1 = Operand 2
|
1697 |
|
|
r31 == return pc
|
1698 |
|
|
sr0 == return space when called externally
|
1699 |
|
|
|
1700 |
|
|
|
1701 |
|
|
OUTPUT REGISTERS:
|
1702 |
|
|
|
1703 |
|
|
arg0 = undefined
|
1704 |
|
|
arg1 = undefined
|
1705 |
|
|
ret1 = result
|
1706 |
|
|
|
1707 |
|
|
OTHER REGISTERS AFFECTED:
|
1708 |
|
|
|
1709 |
|
|
r1 = undefined
|
1710 |
|
|
|
1711 |
|
|
SIDE EFFECTS:
|
1712 |
|
|
|
1713 |
|
|
Causes a trap under the following conditions: NONE
|
1714 |
|
|
Changes memory at the following places: NONE
|
1715 |
|
|
|
1716 |
|
|
PERMISSIBLE CONTEXT:
|
1717 |
|
|
|
1718 |
|
|
Unwindable
|
1719 |
|
|
Does not create a stack frame
|
1720 |
|
|
Is usable for internal or external microcode
|
1721 |
|
|
|
1722 |
|
|
DISCUSSION:
|
1723 |
|
|
|
1724 |
|
|
Calls other millicode routines via mrp: NONE
|
1725 |
|
|
Calls other millicode routines: NONE
|
1726 |
|
|
|
1727 |
|
|
***************************************************************************/
|
1728 |
|
|
|
1729 |
|
|
|
1730 |
|
|
#define a0 %arg0
|
1731 |
|
|
#define a1 %arg1
|
1732 |
|
|
#define t0 %r1
|
1733 |
|
|
#define r %ret1
|
1734 |
|
|
|
1735 |
|
|
#define a0__128a0 zdep a0,24,25,a0
|
1736 |
|
|
#define a0__256a0 zdep a0,23,24,a0
|
1737 |
|
|
#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0)
|
1738 |
|
|
#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1)
|
1739 |
|
|
#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2)
|
1740 |
|
|
#define b_n_ret_t0 b,n LREF(ret_t0)
|
1741 |
|
|
#define b_e_shift b LREF(e_shift)
|
1742 |
|
|
#define b_e_t0ma0 b LREF(e_t0ma0)
|
1743 |
|
|
#define b_e_t0 b LREF(e_t0)
|
1744 |
|
|
#define b_e_t0a0 b LREF(e_t0a0)
|
1745 |
|
|
#define b_e_t02a0 b LREF(e_t02a0)
|
1746 |
|
|
#define b_e_t04a0 b LREF(e_t04a0)
|
1747 |
|
|
#define b_e_2t0 b LREF(e_2t0)
|
1748 |
|
|
#define b_e_2t0a0 b LREF(e_2t0a0)
|
1749 |
|
|
#define b_e_2t04a0 b LREF(e2t04a0)
|
1750 |
|
|
#define b_e_3t0 b LREF(e_3t0)
|
1751 |
|
|
#define b_e_4t0 b LREF(e_4t0)
|
1752 |
|
|
#define b_e_4t0a0 b LREF(e_4t0a0)
|
1753 |
|
|
#define b_e_4t08a0 b LREF(e4t08a0)
|
1754 |
|
|
#define b_e_5t0 b LREF(e_5t0)
|
1755 |
|
|
#define b_e_8t0 b LREF(e_8t0)
|
1756 |
|
|
#define b_e_8t0a0 b LREF(e_8t0a0)
|
1757 |
|
|
#define r__r_a0 add r,a0,r
|
1758 |
|
|
#define r__r_2a0 sh1add a0,r,r
|
1759 |
|
|
#define r__r_4a0 sh2add a0,r,r
|
1760 |
|
|
#define r__r_8a0 sh3add a0,r,r
|
1761 |
|
|
#define r__r_t0 add r,t0,r
|
1762 |
|
|
#define r__r_2t0 sh1add t0,r,r
|
1763 |
|
|
#define r__r_4t0 sh2add t0,r,r
|
1764 |
|
|
#define r__r_8t0 sh3add t0,r,r
|
1765 |
|
|
#define t0__3a0 sh1add a0,a0,t0
|
1766 |
|
|
#define t0__4a0 sh2add a0,0,t0
|
1767 |
|
|
#define t0__5a0 sh2add a0,a0,t0
|
1768 |
|
|
#define t0__8a0 sh3add a0,0,t0
|
1769 |
|
|
#define t0__9a0 sh3add a0,a0,t0
|
1770 |
|
|
#define t0__16a0 zdep a0,27,28,t0
|
1771 |
|
|
#define t0__32a0 zdep a0,26,27,t0
|
1772 |
|
|
#define t0__64a0 zdep a0,25,26,t0
|
1773 |
|
|
#define t0__128a0 zdep a0,24,25,t0
|
1774 |
|
|
#define t0__t0ma0 sub t0,a0,t0
|
1775 |
|
|
#define t0__t0_a0 add t0,a0,t0
|
1776 |
|
|
#define t0__t0_2a0 sh1add a0,t0,t0
|
1777 |
|
|
#define t0__t0_4a0 sh2add a0,t0,t0
|
1778 |
|
|
#define t0__t0_8a0 sh3add a0,t0,t0
|
1779 |
|
|
#define t0__2t0_a0 sh1add t0,a0,t0
|
1780 |
|
|
#define t0__3t0 sh1add t0,t0,t0
|
1781 |
|
|
#define t0__4t0 sh2add t0,0,t0
|
1782 |
|
|
#define t0__4t0_a0 sh2add t0,a0,t0
|
1783 |
|
|
#define t0__5t0 sh2add t0,t0,t0
|
1784 |
|
|
#define t0__8t0 sh3add t0,0,t0
|
1785 |
|
|
#define t0__8t0_a0 sh3add t0,a0,t0
|
1786 |
|
|
#define t0__9t0 sh3add t0,t0,t0
|
1787 |
|
|
#define t0__16t0 zdep t0,27,28,t0
|
1788 |
|
|
#define t0__32t0 zdep t0,26,27,t0
|
1789 |
|
|
#define t0__256a0 zdep a0,23,24,t0
|
1790 |
|
|
|
1791 |
|
|
|
1792 |
|
|
SUBSPA_MILLI
|
1793 |
|
|
ATTR_MILLI
|
1794 |
|
|
.align 16
|
1795 |
|
|
.proc
|
1796 |
|
|
.callinfo millicode
|
1797 |
|
|
.export $$mulI,millicode
|
1798 |
|
|
GSYM($$mulI)
|
1799 |
|
|
combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */
|
1800 |
|
|
copy 0,r /* zero out the result */
|
1801 |
|
|
xor a0,a1,a0 /* swap a0 & a1 using the */
|
1802 |
|
|
xor a0,a1,a1 /* old xor trick */
|
1803 |
|
|
xor a0,a1,a0
|
1804 |
|
|
LSYM(l4)
|
1805 |
|
|
combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */
|
1806 |
|
|
zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
|
1807 |
|
|
sub,> 0,a1,t0 /* otherwise negate both and */
|
1808 |
|
|
combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */
|
1809 |
|
|
sub 0,a0,a1
|
1810 |
|
|
movb,tr,n t0,a0,LREF(l2) /* 10th inst. */
|
1811 |
|
|
|
1812 |
|
|
LSYM(l0) r__r_t0 /* add in this partial product */
|
1813 |
|
|
LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */
|
1814 |
|
|
LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */
|
1815 |
|
|
LSYM(l3) blr t0,0 /* case on these 8 bits ****** */
|
1816 |
|
|
extru a1,23,24,a1 /* a1 >>= 8 ****************** */
|
1817 |
|
|
|
1818 |
|
|
/*16 insts before this. */
|
1819 |
|
|
/* a0 <<= 8 ************************** */
|
1820 |
|
|
LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop
|
1821 |
|
|
LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop
|
1822 |
|
|
LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop
|
1823 |
|
|
LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0
|
1824 |
|
|
LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop
|
1825 |
|
|
LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0
|
1826 |
|
|
LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
1827 |
|
|
LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0
|
1828 |
|
|
LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop
|
1829 |
|
|
LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0
|
1830 |
|
|
LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
1831 |
|
|
LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
|
1832 |
|
|
LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
1833 |
|
|
LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0
|
1834 |
|
|
LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
1835 |
|
|
LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0
|
1836 |
|
|
LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
1837 |
|
|
LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0
|
1838 |
|
|
LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN
|
1839 |
|
|
LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0
|
1840 |
|
|
LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
1841 |
|
|
LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
1842 |
|
|
LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
1843 |
|
|
LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1844 |
|
|
LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
1845 |
|
|
LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
|
1846 |
|
|
LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
1847 |
|
|
LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0
|
1848 |
|
|
LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
1849 |
|
|
LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
1850 |
|
|
LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
|
1851 |
|
|
LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
1852 |
|
|
LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
1853 |
|
|
LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
1854 |
|
|
LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
1855 |
|
|
LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0
|
1856 |
|
|
LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN
|
1857 |
|
|
LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0
|
1858 |
|
|
LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0
|
1859 |
|
|
LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1860 |
|
|
LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
1861 |
|
|
LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
|
1862 |
|
|
LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
1863 |
|
|
LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1864 |
|
|
LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
1865 |
|
|
LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0
|
1866 |
|
|
LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0
|
1867 |
|
|
LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0
|
1868 |
|
|
LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0
|
1869 |
|
|
LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0
|
1870 |
|
|
LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
|
1871 |
|
|
LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0
|
1872 |
|
|
LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
1873 |
|
|
LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
1874 |
|
|
LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0
|
1875 |
|
|
LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0
|
1876 |
|
|
LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
1877 |
|
|
LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0
|
1878 |
|
|
LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
1879 |
|
|
LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0
|
1880 |
|
|
LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
1881 |
|
|
LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
1882 |
|
|
LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
1883 |
|
|
LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
1884 |
|
|
LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
1885 |
|
|
LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0
|
1886 |
|
|
LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
1887 |
|
|
LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1888 |
|
|
LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
1889 |
|
|
LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
1890 |
|
|
LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0
|
1891 |
|
|
LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0
|
1892 |
|
|
LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN
|
1893 |
|
|
LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0
|
1894 |
|
|
LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0
|
1895 |
|
|
LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1896 |
|
|
LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0
|
1897 |
|
|
LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0
|
1898 |
|
|
LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
1899 |
|
|
LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
|
1900 |
|
|
LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0
|
1901 |
|
|
LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0
|
1902 |
|
|
LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
|
1903 |
|
|
LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1904 |
|
|
LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
1905 |
|
|
LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
|
1906 |
|
|
LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
1907 |
|
|
LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0
|
1908 |
|
|
LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
1909 |
|
|
LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
1910 |
|
|
LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0
|
1911 |
|
|
LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0
|
1912 |
|
|
LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
1913 |
|
|
LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0
|
1914 |
|
|
LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0
|
1915 |
|
|
LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0
|
1916 |
|
|
LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
1917 |
|
|
LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
1918 |
|
|
LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0
|
1919 |
|
|
LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
|
1920 |
|
|
LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
|
1921 |
|
|
LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
1922 |
|
|
LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
|
1923 |
|
|
LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0
|
1924 |
|
|
LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
|
1925 |
|
|
LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
1926 |
|
|
LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
1927 |
|
|
LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0
|
1928 |
|
|
LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0
|
1929 |
|
|
LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0
|
1930 |
|
|
LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0
|
1931 |
|
|
LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0
|
1932 |
|
|
LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0
|
1933 |
|
|
LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0
|
1934 |
|
|
LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0
|
1935 |
|
|
LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0
|
1936 |
|
|
LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0
|
1937 |
|
|
LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
|
1938 |
|
|
LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0
|
1939 |
|
|
LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0
|
1940 |
|
|
LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
1941 |
|
|
LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
1942 |
|
|
LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
1943 |
|
|
LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
1944 |
|
|
LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
|
1945 |
|
|
LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
|
1946 |
|
|
LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
1947 |
|
|
LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
1948 |
|
|
LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN
|
1949 |
|
|
LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0
|
1950 |
|
|
LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0
|
1951 |
|
|
LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1952 |
|
|
LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
1953 |
|
|
LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
1954 |
|
|
LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
1955 |
|
|
LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0
|
1956 |
|
|
LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
1957 |
|
|
LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
1958 |
|
|
LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
1959 |
|
|
LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0
|
1960 |
|
|
LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0
|
1961 |
|
|
LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0
|
1962 |
|
|
LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0
|
1963 |
|
|
LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0
|
1964 |
|
|
LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0
|
1965 |
|
|
LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0
|
1966 |
|
|
LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0
|
1967 |
|
|
LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0
|
1968 |
|
|
LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0
|
1969 |
|
|
LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0
|
1970 |
|
|
LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
1971 |
|
|
LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
|
1972 |
|
|
LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0
|
1973 |
|
|
LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0
|
1974 |
|
|
LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0
|
1975 |
|
|
LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0
|
1976 |
|
|
LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
1977 |
|
|
LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0
|
1978 |
|
|
LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0
|
1979 |
|
|
LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0
|
1980 |
|
|
LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0
|
1981 |
|
|
LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
1982 |
|
|
LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0
|
1983 |
|
|
LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0
|
1984 |
|
|
LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0
|
1985 |
|
|
LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
1986 |
|
|
LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0
|
1987 |
|
|
LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0
|
1988 |
|
|
LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0
|
1989 |
|
|
LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0
|
1990 |
|
|
LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0
|
1991 |
|
|
LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0
|
1992 |
|
|
LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0
|
1993 |
|
|
LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0
|
1994 |
|
|
LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0
|
1995 |
|
|
LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0
|
1996 |
|
|
LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0
|
1997 |
|
|
LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0
|
1998 |
|
|
LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0
|
1999 |
|
|
LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0
|
2000 |
|
|
LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0
|
2001 |
|
|
LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0
|
2002 |
|
|
LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0
|
2003 |
|
|
LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0
|
2004 |
|
|
LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0
|
2005 |
|
|
LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0
|
2006 |
|
|
LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0
|
2007 |
|
|
LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0
|
2008 |
|
|
LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0
|
2009 |
|
|
LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0
|
2010 |
|
|
LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0
|
2011 |
|
|
LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0
|
2012 |
|
|
LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
2013 |
|
|
LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
2014 |
|
|
LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
2015 |
|
|
LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
2016 |
|
|
LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0
|
2017 |
|
|
LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0
|
2018 |
|
|
LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0
|
2019 |
|
|
LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
|
2020 |
|
|
LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0
|
2021 |
|
|
LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0
|
2022 |
|
|
LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0
|
2023 |
|
|
LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0
|
2024 |
|
|
LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
|
2025 |
|
|
LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0
|
2026 |
|
|
LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0
|
2027 |
|
|
LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
|
2028 |
|
|
LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0
|
2029 |
|
|
LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0
|
2030 |
|
|
LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0
|
2031 |
|
|
LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0
|
2032 |
|
|
LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0
|
2033 |
|
|
LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0
|
2034 |
|
|
LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0
|
2035 |
|
|
LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0
|
2036 |
|
|
LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0
|
2037 |
|
|
LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0
|
2038 |
|
|
LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0
|
2039 |
|
|
LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0
|
2040 |
|
|
LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0
|
2041 |
|
|
LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0
|
2042 |
|
|
LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0
|
2043 |
|
|
LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0
|
2044 |
|
|
LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0
|
2045 |
|
|
LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0
|
2046 |
|
|
LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0
|
2047 |
|
|
LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0
|
2048 |
|
|
LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0
|
2049 |
|
|
LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0
|
2050 |
|
|
LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0
|
2051 |
|
|
LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0
|
2052 |
|
|
LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0
|
2053 |
|
|
LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0
|
2054 |
|
|
LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0
|
2055 |
|
|
LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0
|
2056 |
|
|
LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0
|
2057 |
|
|
LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0
|
2058 |
|
|
LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0
|
2059 |
|
|
LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0
|
2060 |
|
|
LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0
|
2061 |
|
|
LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0
|
2062 |
|
|
LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0
|
2063 |
|
|
LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0
|
2064 |
|
|
LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0
|
2065 |
|
|
LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0
|
2066 |
|
|
LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0
|
2067 |
|
|
LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0
|
2068 |
|
|
LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0
|
2069 |
|
|
LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0
|
2070 |
|
|
LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0
|
2071 |
|
|
LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0
|
2072 |
|
|
LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0
|
2073 |
|
|
LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0
|
2074 |
|
|
LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0
|
2075 |
|
|
LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0
|
2076 |
|
|
/*1040 insts before this. */
|
2077 |
|
|
LSYM(ret_t0) MILLIRET
|
2078 |
|
|
LSYM(e_t0) r__r_t0
|
2079 |
|
|
LSYM(e_shift) a1_ne_0_b_l2
|
2080 |
|
|
a0__256a0 /* a0 <<= 8 *********** */
|
2081 |
|
|
MILLIRETN
|
2082 |
|
|
LSYM(e_t0ma0) a1_ne_0_b_l0
|
2083 |
|
|
t0__t0ma0
|
2084 |
|
|
MILLIRET
|
2085 |
|
|
r__r_t0
|
2086 |
|
|
LSYM(e_t0a0) a1_ne_0_b_l0
|
2087 |
|
|
t0__t0_a0
|
2088 |
|
|
MILLIRET
|
2089 |
|
|
r__r_t0
|
2090 |
|
|
LSYM(e_t02a0) a1_ne_0_b_l0
|
2091 |
|
|
t0__t0_2a0
|
2092 |
|
|
MILLIRET
|
2093 |
|
|
r__r_t0
|
2094 |
|
|
LSYM(e_t04a0) a1_ne_0_b_l0
|
2095 |
|
|
t0__t0_4a0
|
2096 |
|
|
MILLIRET
|
2097 |
|
|
r__r_t0
|
2098 |
|
|
LSYM(e_2t0) a1_ne_0_b_l1
|
2099 |
|
|
r__r_2t0
|
2100 |
|
|
MILLIRETN
|
2101 |
|
|
LSYM(e_2t0a0) a1_ne_0_b_l0
|
2102 |
|
|
t0__2t0_a0
|
2103 |
|
|
MILLIRET
|
2104 |
|
|
r__r_t0
|
2105 |
|
|
LSYM(e2t04a0) t0__t0_2a0
|
2106 |
|
|
a1_ne_0_b_l1
|
2107 |
|
|
r__r_2t0
|
2108 |
|
|
MILLIRETN
|
2109 |
|
|
LSYM(e_3t0) a1_ne_0_b_l0
|
2110 |
|
|
t0__3t0
|
2111 |
|
|
MILLIRET
|
2112 |
|
|
r__r_t0
|
2113 |
|
|
LSYM(e_4t0) a1_ne_0_b_l1
|
2114 |
|
|
r__r_4t0
|
2115 |
|
|
MILLIRETN
|
2116 |
|
|
LSYM(e_4t0a0) a1_ne_0_b_l0
|
2117 |
|
|
t0__4t0_a0
|
2118 |
|
|
MILLIRET
|
2119 |
|
|
r__r_t0
|
2120 |
|
|
LSYM(e4t08a0) t0__t0_2a0
|
2121 |
|
|
a1_ne_0_b_l1
|
2122 |
|
|
r__r_4t0
|
2123 |
|
|
MILLIRETN
|
2124 |
|
|
LSYM(e_5t0) a1_ne_0_b_l0
|
2125 |
|
|
t0__5t0
|
2126 |
|
|
MILLIRET
|
2127 |
|
|
r__r_t0
|
2128 |
|
|
LSYM(e_8t0) a1_ne_0_b_l1
|
2129 |
|
|
r__r_8t0
|
2130 |
|
|
MILLIRETN
|
2131 |
|
|
LSYM(e_8t0a0) a1_ne_0_b_l0
|
2132 |
|
|
t0__8t0_a0
|
2133 |
|
|
MILLIRET
|
2134 |
|
|
r__r_t0
|
2135 |
|
|
|
2136 |
|
|
.procend
|
2137 |
|
|
.end
|
2138 |
|
|
#endif
|