1 |
38 |
julius |
/* Subroutines for insn-output.c for HPPA.
|
2 |
|
|
Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
|
3 |
|
|
2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.c
|
5 |
|
|
|
6 |
|
|
This file is part of GCC.
|
7 |
|
|
|
8 |
|
|
GCC is free software; you can redistribute it and/or modify
|
9 |
|
|
it under the terms of the GNU General Public License as published by
|
10 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
11 |
|
|
any later version.
|
12 |
|
|
|
13 |
|
|
GCC is distributed in the hope that it will be useful,
|
14 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
|
|
GNU General Public License for more details.
|
17 |
|
|
|
18 |
|
|
You should have received a copy of the GNU General Public License
|
19 |
|
|
along with GCC; see the file COPYING3. If not see
|
20 |
|
|
<http://www.gnu.org/licenses/>. */
|
21 |
|
|
|
22 |
|
|
#include "config.h"
|
23 |
|
|
#include "system.h"
|
24 |
|
|
#include "coretypes.h"
|
25 |
|
|
#include "tm.h"
|
26 |
|
|
#include "rtl.h"
|
27 |
|
|
#include "regs.h"
|
28 |
|
|
#include "hard-reg-set.h"
|
29 |
|
|
#include "real.h"
|
30 |
|
|
#include "insn-config.h"
|
31 |
|
|
#include "conditions.h"
|
32 |
|
|
#include "insn-attr.h"
|
33 |
|
|
#include "flags.h"
|
34 |
|
|
#include "tree.h"
|
35 |
|
|
#include "output.h"
|
36 |
|
|
#include "except.h"
|
37 |
|
|
#include "expr.h"
|
38 |
|
|
#include "optabs.h"
|
39 |
|
|
#include "reload.h"
|
40 |
|
|
#include "integrate.h"
|
41 |
|
|
#include "function.h"
|
42 |
|
|
#include "toplev.h"
|
43 |
|
|
#include "ggc.h"
|
44 |
|
|
#include "recog.h"
|
45 |
|
|
#include "predict.h"
|
46 |
|
|
#include "tm_p.h"
|
47 |
|
|
#include "target.h"
|
48 |
|
|
#include "target-def.h"
|
49 |
|
|
|
50 |
|
|
/* Return nonzero if there is a bypass for the output of
|
51 |
|
|
OUT_INSN and the fp store IN_INSN. */
|
52 |
|
|
int
|
53 |
|
|
hppa_fpstore_bypass_p (rtx out_insn, rtx in_insn)
|
54 |
|
|
{
|
55 |
|
|
enum machine_mode store_mode;
|
56 |
|
|
enum machine_mode other_mode;
|
57 |
|
|
rtx set;
|
58 |
|
|
|
59 |
|
|
if (recog_memoized (in_insn) < 0
|
60 |
|
|
|| get_attr_type (in_insn) != TYPE_FPSTORE
|
61 |
|
|
|| recog_memoized (out_insn) < 0)
|
62 |
|
|
return 0;
|
63 |
|
|
|
64 |
|
|
store_mode = GET_MODE (SET_SRC (PATTERN (in_insn)));
|
65 |
|
|
|
66 |
|
|
set = single_set (out_insn);
|
67 |
|
|
if (!set)
|
68 |
|
|
return 0;
|
69 |
|
|
|
70 |
|
|
other_mode = GET_MODE (SET_SRC (set));
|
71 |
|
|
|
72 |
|
|
return (GET_MODE_SIZE (store_mode) == GET_MODE_SIZE (other_mode));
|
73 |
|
|
}
|
74 |
|
|
|
75 |
|
|
|
76 |
|
|
#ifndef DO_FRAME_NOTES
|
77 |
|
|
#ifdef INCOMING_RETURN_ADDR_RTX
|
78 |
|
|
#define DO_FRAME_NOTES 1
|
79 |
|
|
#else
|
80 |
|
|
#define DO_FRAME_NOTES 0
|
81 |
|
|
#endif
|
82 |
|
|
#endif
|
83 |
|
|
|
84 |
|
|
static void copy_reg_pointer (rtx, rtx);
|
85 |
|
|
static void fix_range (const char *);
|
86 |
|
|
static bool pa_handle_option (size_t, const char *, int);
|
87 |
|
|
static int hppa_address_cost (rtx);
|
88 |
|
|
static bool hppa_rtx_costs (rtx, int, int, int *);
|
89 |
|
|
static inline rtx force_mode (enum machine_mode, rtx);
|
90 |
|
|
static void pa_reorg (void);
|
91 |
|
|
static void pa_combine_instructions (void);
|
92 |
|
|
static int pa_can_combine_p (rtx, rtx, rtx, int, rtx, rtx, rtx);
|
93 |
|
|
static int forward_branch_p (rtx);
|
94 |
|
|
static void compute_zdepwi_operands (unsigned HOST_WIDE_INT, unsigned *);
|
95 |
|
|
static int compute_movmem_length (rtx);
|
96 |
|
|
static int compute_clrmem_length (rtx);
|
97 |
|
|
static bool pa_assemble_integer (rtx, unsigned int, int);
|
98 |
|
|
static void remove_useless_addtr_insns (int);
|
99 |
|
|
static void store_reg (int, HOST_WIDE_INT, int);
|
100 |
|
|
static void store_reg_modify (int, int, HOST_WIDE_INT);
|
101 |
|
|
static void load_reg (int, HOST_WIDE_INT, int);
|
102 |
|
|
static void set_reg_plus_d (int, int, HOST_WIDE_INT, int);
|
103 |
|
|
static void pa_output_function_prologue (FILE *, HOST_WIDE_INT);
|
104 |
|
|
static void update_total_code_bytes (int);
|
105 |
|
|
static void pa_output_function_epilogue (FILE *, HOST_WIDE_INT);
|
106 |
|
|
static int pa_adjust_cost (rtx, rtx, rtx, int);
|
107 |
|
|
static int pa_adjust_priority (rtx, int);
|
108 |
|
|
static int pa_issue_rate (void);
|
109 |
|
|
static void pa_som_asm_init_sections (void) ATTRIBUTE_UNUSED;
|
110 |
|
|
static section *pa_select_section (tree, int, unsigned HOST_WIDE_INT)
|
111 |
|
|
ATTRIBUTE_UNUSED;
|
112 |
|
|
static void pa_encode_section_info (tree, rtx, int);
|
113 |
|
|
static const char *pa_strip_name_encoding (const char *);
|
114 |
|
|
static bool pa_function_ok_for_sibcall (tree, tree);
|
115 |
|
|
static void pa_globalize_label (FILE *, const char *)
|
116 |
|
|
ATTRIBUTE_UNUSED;
|
117 |
|
|
static void pa_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
|
118 |
|
|
HOST_WIDE_INT, tree);
|
119 |
|
|
#if !defined(USE_COLLECT2)
|
120 |
|
|
static void pa_asm_out_constructor (rtx, int);
|
121 |
|
|
static void pa_asm_out_destructor (rtx, int);
|
122 |
|
|
#endif
|
123 |
|
|
static void pa_init_builtins (void);
|
124 |
|
|
static rtx hppa_builtin_saveregs (void);
|
125 |
|
|
static tree hppa_gimplify_va_arg_expr (tree, tree, tree *, tree *);
|
126 |
|
|
static bool pa_scalar_mode_supported_p (enum machine_mode);
|
127 |
|
|
static bool pa_commutative_p (rtx x, int outer_code);
|
128 |
|
|
static void copy_fp_args (rtx) ATTRIBUTE_UNUSED;
|
129 |
|
|
static int length_fp_args (rtx) ATTRIBUTE_UNUSED;
|
130 |
|
|
static inline void pa_file_start_level (void) ATTRIBUTE_UNUSED;
|
131 |
|
|
static inline void pa_file_start_space (int) ATTRIBUTE_UNUSED;
|
132 |
|
|
static inline void pa_file_start_file (int) ATTRIBUTE_UNUSED;
|
133 |
|
|
static inline void pa_file_start_mcount (const char*) ATTRIBUTE_UNUSED;
|
134 |
|
|
static void pa_elf_file_start (void) ATTRIBUTE_UNUSED;
|
135 |
|
|
static void pa_som_file_start (void) ATTRIBUTE_UNUSED;
|
136 |
|
|
static void pa_linux_file_start (void) ATTRIBUTE_UNUSED;
|
137 |
|
|
static void pa_hpux64_gas_file_start (void) ATTRIBUTE_UNUSED;
|
138 |
|
|
static void pa_hpux64_hpas_file_start (void) ATTRIBUTE_UNUSED;
|
139 |
|
|
static void output_deferred_plabels (void);
|
140 |
|
|
static void output_deferred_profile_counters (void) ATTRIBUTE_UNUSED;
|
141 |
|
|
#ifdef ASM_OUTPUT_EXTERNAL_REAL
|
142 |
|
|
static void pa_hpux_file_end (void);
|
143 |
|
|
#endif
|
144 |
|
|
#ifdef HPUX_LONG_DOUBLE_LIBRARY
|
145 |
|
|
static void pa_hpux_init_libfuncs (void);
|
146 |
|
|
#endif
|
147 |
|
|
static rtx pa_struct_value_rtx (tree, int);
|
148 |
|
|
static bool pa_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
|
149 |
|
|
tree, bool);
|
150 |
|
|
static int pa_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
|
151 |
|
|
tree, bool);
|
152 |
|
|
static struct machine_function * pa_init_machine_status (void);
|
153 |
|
|
static enum reg_class pa_secondary_reload (bool, rtx, enum reg_class,
|
154 |
|
|
enum machine_mode,
|
155 |
|
|
secondary_reload_info *);
|
156 |
|
|
|
157 |
|
|
|
158 |
|
|
/* The following extra sections are only used for SOM. */
|
159 |
|
|
static GTY(()) section *som_readonly_data_section;
|
160 |
|
|
static GTY(()) section *som_one_only_readonly_data_section;
|
161 |
|
|
static GTY(()) section *som_one_only_data_section;
|
162 |
|
|
|
163 |
|
|
/* Save the operands last given to a compare for use when we
|
164 |
|
|
generate a scc or bcc insn. */
|
165 |
|
|
rtx hppa_compare_op0, hppa_compare_op1;
|
166 |
|
|
enum cmp_type hppa_branch_type;
|
167 |
|
|
|
168 |
|
|
/* Which cpu we are scheduling for. */
|
169 |
|
|
enum processor_type pa_cpu = TARGET_SCHED_DEFAULT;
|
170 |
|
|
|
171 |
|
|
/* The UNIX standard to use for predefines and linking. */
|
172 |
|
|
int flag_pa_unix = TARGET_HPUX_11_11 ? 1998 : TARGET_HPUX_10_10 ? 1995 : 1993;
|
173 |
|
|
|
174 |
|
|
/* Counts for the number of callee-saved general and floating point
|
175 |
|
|
registers which were saved by the current function's prologue. */
|
176 |
|
|
static int gr_saved, fr_saved;
|
177 |
|
|
|
178 |
|
|
static rtx find_addr_reg (rtx);
|
179 |
|
|
|
180 |
|
|
/* Keep track of the number of bytes we have output in the CODE subspace
|
181 |
|
|
during this compilation so we'll know when to emit inline long-calls. */
|
182 |
|
|
unsigned long total_code_bytes;
|
183 |
|
|
|
184 |
|
|
/* The last address of the previous function plus the number of bytes in
|
185 |
|
|
associated thunks that have been output. This is used to determine if
|
186 |
|
|
a thunk can use an IA-relative branch to reach its target function. */
|
187 |
|
|
static int last_address;
|
188 |
|
|
|
189 |
|
|
/* Variables to handle plabels that we discover are necessary at assembly
|
190 |
|
|
output time. They are output after the current function. */
|
191 |
|
|
struct deferred_plabel GTY(())
|
192 |
|
|
{
|
193 |
|
|
rtx internal_label;
|
194 |
|
|
rtx symbol;
|
195 |
|
|
};
|
196 |
|
|
static GTY((length ("n_deferred_plabels"))) struct deferred_plabel *
|
197 |
|
|
deferred_plabels;
|
198 |
|
|
static size_t n_deferred_plabels = 0;
|
199 |
|
|
|
200 |
|
|
|
201 |
|
|
/* Initialize the GCC target structure. */
|
202 |
|
|
|
203 |
|
|
#undef TARGET_ASM_ALIGNED_HI_OP
|
204 |
|
|
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
|
205 |
|
|
#undef TARGET_ASM_ALIGNED_SI_OP
|
206 |
|
|
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
|
207 |
|
|
#undef TARGET_ASM_ALIGNED_DI_OP
|
208 |
|
|
#define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
|
209 |
|
|
#undef TARGET_ASM_UNALIGNED_HI_OP
|
210 |
|
|
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
|
211 |
|
|
#undef TARGET_ASM_UNALIGNED_SI_OP
|
212 |
|
|
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
|
213 |
|
|
#undef TARGET_ASM_UNALIGNED_DI_OP
|
214 |
|
|
#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
|
215 |
|
|
#undef TARGET_ASM_INTEGER
|
216 |
|
|
#define TARGET_ASM_INTEGER pa_assemble_integer
|
217 |
|
|
|
218 |
|
|
#undef TARGET_ASM_FUNCTION_PROLOGUE
|
219 |
|
|
#define TARGET_ASM_FUNCTION_PROLOGUE pa_output_function_prologue
|
220 |
|
|
#undef TARGET_ASM_FUNCTION_EPILOGUE
|
221 |
|
|
#define TARGET_ASM_FUNCTION_EPILOGUE pa_output_function_epilogue
|
222 |
|
|
|
223 |
|
|
#undef TARGET_SCHED_ADJUST_COST
|
224 |
|
|
#define TARGET_SCHED_ADJUST_COST pa_adjust_cost
|
225 |
|
|
#undef TARGET_SCHED_ADJUST_PRIORITY
|
226 |
|
|
#define TARGET_SCHED_ADJUST_PRIORITY pa_adjust_priority
|
227 |
|
|
#undef TARGET_SCHED_ISSUE_RATE
|
228 |
|
|
#define TARGET_SCHED_ISSUE_RATE pa_issue_rate
|
229 |
|
|
|
230 |
|
|
#undef TARGET_ENCODE_SECTION_INFO
|
231 |
|
|
#define TARGET_ENCODE_SECTION_INFO pa_encode_section_info
|
232 |
|
|
#undef TARGET_STRIP_NAME_ENCODING
|
233 |
|
|
#define TARGET_STRIP_NAME_ENCODING pa_strip_name_encoding
|
234 |
|
|
|
235 |
|
|
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
236 |
|
|
#define TARGET_FUNCTION_OK_FOR_SIBCALL pa_function_ok_for_sibcall
|
237 |
|
|
|
238 |
|
|
#undef TARGET_COMMUTATIVE_P
|
239 |
|
|
#define TARGET_COMMUTATIVE_P pa_commutative_p
|
240 |
|
|
|
241 |
|
|
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
242 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK pa_asm_output_mi_thunk
|
243 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
244 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
|
245 |
|
|
|
246 |
|
|
#undef TARGET_ASM_FILE_END
|
247 |
|
|
#ifdef ASM_OUTPUT_EXTERNAL_REAL
|
248 |
|
|
#define TARGET_ASM_FILE_END pa_hpux_file_end
|
249 |
|
|
#else
|
250 |
|
|
#define TARGET_ASM_FILE_END output_deferred_plabels
|
251 |
|
|
#endif
|
252 |
|
|
|
253 |
|
|
#if !defined(USE_COLLECT2)
|
254 |
|
|
#undef TARGET_ASM_CONSTRUCTOR
|
255 |
|
|
#define TARGET_ASM_CONSTRUCTOR pa_asm_out_constructor
|
256 |
|
|
#undef TARGET_ASM_DESTRUCTOR
|
257 |
|
|
#define TARGET_ASM_DESTRUCTOR pa_asm_out_destructor
|
258 |
|
|
#endif
|
259 |
|
|
|
260 |
|
|
#undef TARGET_DEFAULT_TARGET_FLAGS
|
261 |
|
|
#define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | TARGET_CPU_DEFAULT)
|
262 |
|
|
#undef TARGET_HANDLE_OPTION
|
263 |
|
|
#define TARGET_HANDLE_OPTION pa_handle_option
|
264 |
|
|
|
265 |
|
|
#undef TARGET_INIT_BUILTINS
|
266 |
|
|
#define TARGET_INIT_BUILTINS pa_init_builtins
|
267 |
|
|
|
268 |
|
|
#undef TARGET_RTX_COSTS
|
269 |
|
|
#define TARGET_RTX_COSTS hppa_rtx_costs
|
270 |
|
|
#undef TARGET_ADDRESS_COST
|
271 |
|
|
#define TARGET_ADDRESS_COST hppa_address_cost
|
272 |
|
|
|
273 |
|
|
#undef TARGET_MACHINE_DEPENDENT_REORG
|
274 |
|
|
#define TARGET_MACHINE_DEPENDENT_REORG pa_reorg
|
275 |
|
|
|
276 |
|
|
#ifdef HPUX_LONG_DOUBLE_LIBRARY
|
277 |
|
|
#undef TARGET_INIT_LIBFUNCS
|
278 |
|
|
#define TARGET_INIT_LIBFUNCS pa_hpux_init_libfuncs
|
279 |
|
|
#endif
|
280 |
|
|
|
281 |
|
|
#undef TARGET_PROMOTE_FUNCTION_RETURN
|
282 |
|
|
#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
|
283 |
|
|
#undef TARGET_PROMOTE_PROTOTYPES
|
284 |
|
|
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
|
285 |
|
|
|
286 |
|
|
#undef TARGET_STRUCT_VALUE_RTX
|
287 |
|
|
#define TARGET_STRUCT_VALUE_RTX pa_struct_value_rtx
|
288 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
289 |
|
|
#define TARGET_RETURN_IN_MEMORY pa_return_in_memory
|
290 |
|
|
#undef TARGET_MUST_PASS_IN_STACK
|
291 |
|
|
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
|
292 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
293 |
|
|
#define TARGET_PASS_BY_REFERENCE pa_pass_by_reference
|
294 |
|
|
#undef TARGET_CALLEE_COPIES
|
295 |
|
|
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_mode_tree_bool_true
|
296 |
|
|
#undef TARGET_ARG_PARTIAL_BYTES
|
297 |
|
|
#define TARGET_ARG_PARTIAL_BYTES pa_arg_partial_bytes
|
298 |
|
|
|
299 |
|
|
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
|
300 |
|
|
#define TARGET_EXPAND_BUILTIN_SAVEREGS hppa_builtin_saveregs
|
301 |
|
|
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
|
302 |
|
|
#define TARGET_GIMPLIFY_VA_ARG_EXPR hppa_gimplify_va_arg_expr
|
303 |
|
|
|
304 |
|
|
#undef TARGET_SCALAR_MODE_SUPPORTED_P
|
305 |
|
|
#define TARGET_SCALAR_MODE_SUPPORTED_P pa_scalar_mode_supported_p
|
306 |
|
|
|
307 |
|
|
#undef TARGET_CANNOT_FORCE_CONST_MEM
|
308 |
|
|
#define TARGET_CANNOT_FORCE_CONST_MEM pa_tls_referenced_p
|
309 |
|
|
|
310 |
|
|
#undef TARGET_SECONDARY_RELOAD
|
311 |
|
|
#define TARGET_SECONDARY_RELOAD pa_secondary_reload
|
312 |
|
|
|
313 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
314 |
|
|
|
315 |
|
|
/* Parse the -mfixed-range= option string. */
|
316 |
|
|
|
317 |
|
|
static void
|
318 |
|
|
fix_range (const char *const_str)
|
319 |
|
|
{
|
320 |
|
|
int i, first, last;
|
321 |
|
|
char *str, *dash, *comma;
|
322 |
|
|
|
323 |
|
|
/* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
|
324 |
|
|
REG2 are either register names or register numbers. The effect
|
325 |
|
|
of this option is to mark the registers in the range from REG1 to
|
326 |
|
|
REG2 as ``fixed'' so they won't be used by the compiler. This is
|
327 |
|
|
used, e.g., to ensure that kernel mode code doesn't use fr4-fr31. */
|
328 |
|
|
|
329 |
|
|
i = strlen (const_str);
|
330 |
|
|
str = (char *) alloca (i + 1);
|
331 |
|
|
memcpy (str, const_str, i + 1);
|
332 |
|
|
|
333 |
|
|
while (1)
|
334 |
|
|
{
|
335 |
|
|
dash = strchr (str, '-');
|
336 |
|
|
if (!dash)
|
337 |
|
|
{
|
338 |
|
|
warning (0, "value of -mfixed-range must have form REG1-REG2");
|
339 |
|
|
return;
|
340 |
|
|
}
|
341 |
|
|
*dash = '\0';
|
342 |
|
|
|
343 |
|
|
comma = strchr (dash + 1, ',');
|
344 |
|
|
if (comma)
|
345 |
|
|
*comma = '\0';
|
346 |
|
|
|
347 |
|
|
first = decode_reg_name (str);
|
348 |
|
|
if (first < 0)
|
349 |
|
|
{
|
350 |
|
|
warning (0, "unknown register name: %s", str);
|
351 |
|
|
return;
|
352 |
|
|
}
|
353 |
|
|
|
354 |
|
|
last = decode_reg_name (dash + 1);
|
355 |
|
|
if (last < 0)
|
356 |
|
|
{
|
357 |
|
|
warning (0, "unknown register name: %s", dash + 1);
|
358 |
|
|
return;
|
359 |
|
|
}
|
360 |
|
|
|
361 |
|
|
*dash = '-';
|
362 |
|
|
|
363 |
|
|
if (first > last)
|
364 |
|
|
{
|
365 |
|
|
warning (0, "%s-%s is an empty range", str, dash + 1);
|
366 |
|
|
return;
|
367 |
|
|
}
|
368 |
|
|
|
369 |
|
|
for (i = first; i <= last; ++i)
|
370 |
|
|
fixed_regs[i] = call_used_regs[i] = 1;
|
371 |
|
|
|
372 |
|
|
if (!comma)
|
373 |
|
|
break;
|
374 |
|
|
|
375 |
|
|
*comma = ',';
|
376 |
|
|
str = comma + 1;
|
377 |
|
|
}
|
378 |
|
|
|
379 |
|
|
/* Check if all floating point registers have been fixed. */
|
380 |
|
|
for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
|
381 |
|
|
if (!fixed_regs[i])
|
382 |
|
|
break;
|
383 |
|
|
|
384 |
|
|
if (i > FP_REG_LAST)
|
385 |
|
|
target_flags |= MASK_DISABLE_FPREGS;
|
386 |
|
|
}
|
387 |
|
|
|
388 |
|
|
/* Implement TARGET_HANDLE_OPTION. */
|
389 |
|
|
|
390 |
|
|
static bool
|
391 |
|
|
pa_handle_option (size_t code, const char *arg, int value ATTRIBUTE_UNUSED)
|
392 |
|
|
{
|
393 |
|
|
switch (code)
|
394 |
|
|
{
|
395 |
|
|
case OPT_mnosnake:
|
396 |
|
|
case OPT_mpa_risc_1_0:
|
397 |
|
|
case OPT_march_1_0:
|
398 |
|
|
target_flags &= ~(MASK_PA_11 | MASK_PA_20);
|
399 |
|
|
return true;
|
400 |
|
|
|
401 |
|
|
case OPT_msnake:
|
402 |
|
|
case OPT_mpa_risc_1_1:
|
403 |
|
|
case OPT_march_1_1:
|
404 |
|
|
target_flags &= ~MASK_PA_20;
|
405 |
|
|
target_flags |= MASK_PA_11;
|
406 |
|
|
return true;
|
407 |
|
|
|
408 |
|
|
case OPT_mpa_risc_2_0:
|
409 |
|
|
case OPT_march_2_0:
|
410 |
|
|
target_flags |= MASK_PA_11 | MASK_PA_20;
|
411 |
|
|
return true;
|
412 |
|
|
|
413 |
|
|
case OPT_mschedule_:
|
414 |
|
|
if (strcmp (arg, "8000") == 0)
|
415 |
|
|
pa_cpu = PROCESSOR_8000;
|
416 |
|
|
else if (strcmp (arg, "7100") == 0)
|
417 |
|
|
pa_cpu = PROCESSOR_7100;
|
418 |
|
|
else if (strcmp (arg, "700") == 0)
|
419 |
|
|
pa_cpu = PROCESSOR_700;
|
420 |
|
|
else if (strcmp (arg, "7100LC") == 0)
|
421 |
|
|
pa_cpu = PROCESSOR_7100LC;
|
422 |
|
|
else if (strcmp (arg, "7200") == 0)
|
423 |
|
|
pa_cpu = PROCESSOR_7200;
|
424 |
|
|
else if (strcmp (arg, "7300") == 0)
|
425 |
|
|
pa_cpu = PROCESSOR_7300;
|
426 |
|
|
else
|
427 |
|
|
return false;
|
428 |
|
|
return true;
|
429 |
|
|
|
430 |
|
|
case OPT_mfixed_range_:
|
431 |
|
|
fix_range (arg);
|
432 |
|
|
return true;
|
433 |
|
|
|
434 |
|
|
#if TARGET_HPUX
|
435 |
|
|
case OPT_munix_93:
|
436 |
|
|
flag_pa_unix = 1993;
|
437 |
|
|
return true;
|
438 |
|
|
#endif
|
439 |
|
|
|
440 |
|
|
#if TARGET_HPUX_10_10
|
441 |
|
|
case OPT_munix_95:
|
442 |
|
|
flag_pa_unix = 1995;
|
443 |
|
|
return true;
|
444 |
|
|
#endif
|
445 |
|
|
|
446 |
|
|
#if TARGET_HPUX_11_11
|
447 |
|
|
case OPT_munix_98:
|
448 |
|
|
flag_pa_unix = 1998;
|
449 |
|
|
return true;
|
450 |
|
|
#endif
|
451 |
|
|
|
452 |
|
|
default:
|
453 |
|
|
return true;
|
454 |
|
|
}
|
455 |
|
|
}
|
456 |
|
|
|
457 |
|
|
void
|
458 |
|
|
override_options (void)
|
459 |
|
|
{
|
460 |
|
|
/* Unconditional branches in the delay slot are not compatible with dwarf2
|
461 |
|
|
call frame information. There is no benefit in using this optimization
|
462 |
|
|
on PA8000 and later processors. */
|
463 |
|
|
if (pa_cpu >= PROCESSOR_8000
|
464 |
|
|
|| (! USING_SJLJ_EXCEPTIONS && flag_exceptions)
|
465 |
|
|
|| flag_unwind_tables)
|
466 |
|
|
target_flags &= ~MASK_JUMP_IN_DELAY;
|
467 |
|
|
|
468 |
|
|
if (flag_pic && TARGET_PORTABLE_RUNTIME)
|
469 |
|
|
{
|
470 |
|
|
warning (0, "PIC code generation is not supported in the portable runtime model");
|
471 |
|
|
}
|
472 |
|
|
|
473 |
|
|
if (flag_pic && TARGET_FAST_INDIRECT_CALLS)
|
474 |
|
|
{
|
475 |
|
|
warning (0, "PIC code generation is not compatible with fast indirect calls");
|
476 |
|
|
}
|
477 |
|
|
|
478 |
|
|
if (! TARGET_GAS && write_symbols != NO_DEBUG)
|
479 |
|
|
{
|
480 |
|
|
warning (0, "-g is only supported when using GAS on this processor,");
|
481 |
|
|
warning (0, "-g option disabled");
|
482 |
|
|
write_symbols = NO_DEBUG;
|
483 |
|
|
}
|
484 |
|
|
|
485 |
|
|
/* We only support the "big PIC" model now. And we always generate PIC
|
486 |
|
|
code when in 64bit mode. */
|
487 |
|
|
if (flag_pic == 1 || TARGET_64BIT)
|
488 |
|
|
flag_pic = 2;
|
489 |
|
|
|
490 |
|
|
/* We can't guarantee that .dword is available for 32-bit targets. */
|
491 |
|
|
if (UNITS_PER_WORD == 4)
|
492 |
|
|
targetm.asm_out.aligned_op.di = NULL;
|
493 |
|
|
|
494 |
|
|
/* The unaligned ops are only available when using GAS. */
|
495 |
|
|
if (!TARGET_GAS)
|
496 |
|
|
{
|
497 |
|
|
targetm.asm_out.unaligned_op.hi = NULL;
|
498 |
|
|
targetm.asm_out.unaligned_op.si = NULL;
|
499 |
|
|
targetm.asm_out.unaligned_op.di = NULL;
|
500 |
|
|
}
|
501 |
|
|
|
502 |
|
|
init_machine_status = pa_init_machine_status;
|
503 |
|
|
}
|
504 |
|
|
|
505 |
|
|
static void
|
506 |
|
|
pa_init_builtins (void)
|
507 |
|
|
{
|
508 |
|
|
#ifdef DONT_HAVE_FPUTC_UNLOCKED
|
509 |
|
|
built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED] =
|
510 |
|
|
built_in_decls[(int) BUILT_IN_PUTC_UNLOCKED];
|
511 |
|
|
implicit_built_in_decls[(int) BUILT_IN_FPUTC_UNLOCKED]
|
512 |
|
|
= implicit_built_in_decls[(int) BUILT_IN_PUTC_UNLOCKED];
|
513 |
|
|
#endif
|
514 |
|
|
}
|
515 |
|
|
|
516 |
|
|
/* Function to init struct machine_function.
|
517 |
|
|
This will be called, via a pointer variable,
|
518 |
|
|
from push_function_context. */
|
519 |
|
|
|
520 |
|
|
static struct machine_function *
|
521 |
|
|
pa_init_machine_status (void)
|
522 |
|
|
{
|
523 |
|
|
return ggc_alloc_cleared (sizeof (machine_function));
|
524 |
|
|
}
|
525 |
|
|
|
526 |
|
|
/* If FROM is a probable pointer register, mark TO as a probable
|
527 |
|
|
pointer register with the same pointer alignment as FROM. */
|
528 |
|
|
|
529 |
|
|
static void
|
530 |
|
|
copy_reg_pointer (rtx to, rtx from)
|
531 |
|
|
{
|
532 |
|
|
if (REG_POINTER (from))
|
533 |
|
|
mark_reg_pointer (to, REGNO_POINTER_ALIGN (REGNO (from)));
|
534 |
|
|
}
|
535 |
|
|
|
536 |
|
|
/* Return 1 if X contains a symbolic expression. We know these
|
537 |
|
|
expressions will have one of a few well defined forms, so
|
538 |
|
|
we need only check those forms. */
|
539 |
|
|
int
|
540 |
|
|
symbolic_expression_p (rtx x)
|
541 |
|
|
{
|
542 |
|
|
|
543 |
|
|
/* Strip off any HIGH. */
|
544 |
|
|
if (GET_CODE (x) == HIGH)
|
545 |
|
|
x = XEXP (x, 0);
|
546 |
|
|
|
547 |
|
|
return (symbolic_operand (x, VOIDmode));
|
548 |
|
|
}
|
549 |
|
|
|
550 |
|
|
/* Accept any constant that can be moved in one instruction into a
|
551 |
|
|
general register. */
|
552 |
|
|
int
|
553 |
|
|
cint_ok_for_move (HOST_WIDE_INT intval)
|
554 |
|
|
{
|
555 |
|
|
/* OK if ldo, ldil, or zdepi, can be used. */
|
556 |
|
|
return (CONST_OK_FOR_LETTER_P (intval, 'J')
|
557 |
|
|
|| CONST_OK_FOR_LETTER_P (intval, 'N')
|
558 |
|
|
|| CONST_OK_FOR_LETTER_P (intval, 'K'));
|
559 |
|
|
}
|
560 |
|
|
|
561 |
|
|
/* Return truth value of whether OP can be used as an operand in a
|
562 |
|
|
adddi3 insn. */
|
563 |
|
|
int
|
564 |
|
|
adddi3_operand (rtx op, enum machine_mode mode)
|
565 |
|
|
{
|
566 |
|
|
return (register_operand (op, mode)
|
567 |
|
|
|| (GET_CODE (op) == CONST_INT
|
568 |
|
|
&& (TARGET_64BIT ? INT_14_BITS (op) : INT_11_BITS (op))));
|
569 |
|
|
}
|
570 |
|
|
|
571 |
|
|
/* True iff zdepi can be used to generate this CONST_INT.
|
572 |
|
|
zdepi first sign extends a 5 bit signed number to a given field
|
573 |
|
|
length, then places this field anywhere in a zero. */
|
574 |
|
|
int
|
575 |
|
|
zdepi_cint_p (unsigned HOST_WIDE_INT x)
|
576 |
|
|
{
|
577 |
|
|
unsigned HOST_WIDE_INT lsb_mask, t;
|
578 |
|
|
|
579 |
|
|
/* This might not be obvious, but it's at least fast.
|
580 |
|
|
This function is critical; we don't have the time loops would take. */
|
581 |
|
|
lsb_mask = x & -x;
|
582 |
|
|
t = ((x >> 4) + lsb_mask) & ~(lsb_mask - 1);
|
583 |
|
|
/* Return true iff t is a power of two. */
|
584 |
|
|
return ((t & (t - 1)) == 0);
|
585 |
|
|
}
|
586 |
|
|
|
587 |
|
|
/* True iff depi or extru can be used to compute (reg & mask).
|
588 |
|
|
Accept bit pattern like these:
|
589 |
|
|
0....01....1
|
590 |
|
|
1....10....0
|
591 |
|
|
1..10..01..1 */
|
592 |
|
|
int
|
593 |
|
|
and_mask_p (unsigned HOST_WIDE_INT mask)
|
594 |
|
|
{
|
595 |
|
|
mask = ~mask;
|
596 |
|
|
mask += mask & -mask;
|
597 |
|
|
return (mask & (mask - 1)) == 0;
|
598 |
|
|
}
|
599 |
|
|
|
600 |
|
|
/* True iff depi can be used to compute (reg | MASK). */
|
601 |
|
|
int
|
602 |
|
|
ior_mask_p (unsigned HOST_WIDE_INT mask)
|
603 |
|
|
{
|
604 |
|
|
mask += mask & -mask;
|
605 |
|
|
return (mask & (mask - 1)) == 0;
|
606 |
|
|
}
|
607 |
|
|
|
608 |
|
|
/* Legitimize PIC addresses. If the address is already
|
609 |
|
|
position-independent, we return ORIG. Newly generated
|
610 |
|
|
position-independent addresses go to REG. If we need more
|
611 |
|
|
than one register, we lose. */
|
612 |
|
|
|
613 |
|
|
rtx
|
614 |
|
|
legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg)
|
615 |
|
|
{
|
616 |
|
|
rtx pic_ref = orig;
|
617 |
|
|
|
618 |
|
|
gcc_assert (!PA_SYMBOL_REF_TLS_P (orig));
|
619 |
|
|
|
620 |
|
|
/* Labels need special handling. */
|
621 |
|
|
if (pic_label_operand (orig, mode))
|
622 |
|
|
{
|
623 |
|
|
/* We do not want to go through the movXX expanders here since that
|
624 |
|
|
would create recursion.
|
625 |
|
|
|
626 |
|
|
Nor do we really want to call a generator for a named pattern
|
627 |
|
|
since that requires multiple patterns if we want to support
|
628 |
|
|
multiple word sizes.
|
629 |
|
|
|
630 |
|
|
So instead we just emit the raw set, which avoids the movXX
|
631 |
|
|
expanders completely. */
|
632 |
|
|
mark_reg_pointer (reg, BITS_PER_UNIT);
|
633 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, reg, orig));
|
634 |
|
|
current_function_uses_pic_offset_table = 1;
|
635 |
|
|
return reg;
|
636 |
|
|
}
|
637 |
|
|
if (GET_CODE (orig) == SYMBOL_REF)
|
638 |
|
|
{
|
639 |
|
|
rtx insn, tmp_reg;
|
640 |
|
|
|
641 |
|
|
gcc_assert (reg);
|
642 |
|
|
|
643 |
|
|
/* Before reload, allocate a temporary register for the intermediate
|
644 |
|
|
result. This allows the sequence to be deleted when the final
|
645 |
|
|
result is unused and the insns are trivially dead. */
|
646 |
|
|
tmp_reg = ((reload_in_progress || reload_completed)
|
647 |
|
|
? reg : gen_reg_rtx (Pmode));
|
648 |
|
|
|
649 |
|
|
emit_move_insn (tmp_reg,
|
650 |
|
|
gen_rtx_PLUS (word_mode, pic_offset_table_rtx,
|
651 |
|
|
gen_rtx_HIGH (word_mode, orig)));
|
652 |
|
|
pic_ref
|
653 |
|
|
= gen_const_mem (Pmode,
|
654 |
|
|
gen_rtx_LO_SUM (Pmode, tmp_reg,
|
655 |
|
|
gen_rtx_UNSPEC (Pmode,
|
656 |
|
|
gen_rtvec (1, orig),
|
657 |
|
|
UNSPEC_DLTIND14R)));
|
658 |
|
|
|
659 |
|
|
current_function_uses_pic_offset_table = 1;
|
660 |
|
|
mark_reg_pointer (reg, BITS_PER_UNIT);
|
661 |
|
|
insn = emit_move_insn (reg, pic_ref);
|
662 |
|
|
|
663 |
|
|
/* Put a REG_EQUAL note on this insn, so that it can be optimized. */
|
664 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig, REG_NOTES (insn));
|
665 |
|
|
|
666 |
|
|
return reg;
|
667 |
|
|
}
|
668 |
|
|
else if (GET_CODE (orig) == CONST)
|
669 |
|
|
{
|
670 |
|
|
rtx base;
|
671 |
|
|
|
672 |
|
|
if (GET_CODE (XEXP (orig, 0)) == PLUS
|
673 |
|
|
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
|
674 |
|
|
return orig;
|
675 |
|
|
|
676 |
|
|
gcc_assert (reg);
|
677 |
|
|
gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
|
678 |
|
|
|
679 |
|
|
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
|
680 |
|
|
orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
|
681 |
|
|
base == reg ? 0 : reg);
|
682 |
|
|
|
683 |
|
|
if (GET_CODE (orig) == CONST_INT)
|
684 |
|
|
{
|
685 |
|
|
if (INT_14_BITS (orig))
|
686 |
|
|
return plus_constant (base, INTVAL (orig));
|
687 |
|
|
orig = force_reg (Pmode, orig);
|
688 |
|
|
}
|
689 |
|
|
pic_ref = gen_rtx_PLUS (Pmode, base, orig);
|
690 |
|
|
/* Likewise, should we set special REG_NOTEs here? */
|
691 |
|
|
}
|
692 |
|
|
|
693 |
|
|
return pic_ref;
|
694 |
|
|
}
|
695 |
|
|
|
696 |
|
|
static GTY(()) rtx gen_tls_tga;
|
697 |
|
|
|
698 |
|
|
static rtx
|
699 |
|
|
gen_tls_get_addr (void)
|
700 |
|
|
{
|
701 |
|
|
if (!gen_tls_tga)
|
702 |
|
|
gen_tls_tga = init_one_libfunc ("__tls_get_addr");
|
703 |
|
|
return gen_tls_tga;
|
704 |
|
|
}
|
705 |
|
|
|
706 |
|
|
static rtx
|
707 |
|
|
hppa_tls_call (rtx arg)
|
708 |
|
|
{
|
709 |
|
|
rtx ret;
|
710 |
|
|
|
711 |
|
|
ret = gen_reg_rtx (Pmode);
|
712 |
|
|
emit_library_call_value (gen_tls_get_addr (), ret,
|
713 |
|
|
LCT_CONST, Pmode, 1, arg, Pmode);
|
714 |
|
|
|
715 |
|
|
return ret;
|
716 |
|
|
}
|
717 |
|
|
|
718 |
|
|
static rtx
|
719 |
|
|
legitimize_tls_address (rtx addr)
|
720 |
|
|
{
|
721 |
|
|
rtx ret, insn, tmp, t1, t2, tp;
|
722 |
|
|
enum tls_model model = SYMBOL_REF_TLS_MODEL (addr);
|
723 |
|
|
|
724 |
|
|
switch (model)
|
725 |
|
|
{
|
726 |
|
|
case TLS_MODEL_GLOBAL_DYNAMIC:
|
727 |
|
|
tmp = gen_reg_rtx (Pmode);
|
728 |
|
|
if (flag_pic)
|
729 |
|
|
emit_insn (gen_tgd_load_pic (tmp, addr));
|
730 |
|
|
else
|
731 |
|
|
emit_insn (gen_tgd_load (tmp, addr));
|
732 |
|
|
ret = hppa_tls_call (tmp);
|
733 |
|
|
break;
|
734 |
|
|
|
735 |
|
|
case TLS_MODEL_LOCAL_DYNAMIC:
|
736 |
|
|
ret = gen_reg_rtx (Pmode);
|
737 |
|
|
tmp = gen_reg_rtx (Pmode);
|
738 |
|
|
start_sequence ();
|
739 |
|
|
if (flag_pic)
|
740 |
|
|
emit_insn (gen_tld_load_pic (tmp, addr));
|
741 |
|
|
else
|
742 |
|
|
emit_insn (gen_tld_load (tmp, addr));
|
743 |
|
|
t1 = hppa_tls_call (tmp);
|
744 |
|
|
insn = get_insns ();
|
745 |
|
|
end_sequence ();
|
746 |
|
|
t2 = gen_reg_rtx (Pmode);
|
747 |
|
|
emit_libcall_block (insn, t2, t1,
|
748 |
|
|
gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
|
749 |
|
|
UNSPEC_TLSLDBASE));
|
750 |
|
|
emit_insn (gen_tld_offset_load (ret, addr, t2));
|
751 |
|
|
break;
|
752 |
|
|
|
753 |
|
|
case TLS_MODEL_INITIAL_EXEC:
|
754 |
|
|
tp = gen_reg_rtx (Pmode);
|
755 |
|
|
tmp = gen_reg_rtx (Pmode);
|
756 |
|
|
ret = gen_reg_rtx (Pmode);
|
757 |
|
|
emit_insn (gen_tp_load (tp));
|
758 |
|
|
if (flag_pic)
|
759 |
|
|
emit_insn (gen_tie_load_pic (tmp, addr));
|
760 |
|
|
else
|
761 |
|
|
emit_insn (gen_tie_load (tmp, addr));
|
762 |
|
|
emit_move_insn (ret, gen_rtx_PLUS (Pmode, tp, tmp));
|
763 |
|
|
break;
|
764 |
|
|
|
765 |
|
|
case TLS_MODEL_LOCAL_EXEC:
|
766 |
|
|
tp = gen_reg_rtx (Pmode);
|
767 |
|
|
ret = gen_reg_rtx (Pmode);
|
768 |
|
|
emit_insn (gen_tp_load (tp));
|
769 |
|
|
emit_insn (gen_tle_load (ret, addr, tp));
|
770 |
|
|
break;
|
771 |
|
|
|
772 |
|
|
default:
|
773 |
|
|
gcc_unreachable ();
|
774 |
|
|
}
|
775 |
|
|
|
776 |
|
|
return ret;
|
777 |
|
|
}
|
778 |
|
|
|
779 |
|
|
/* Try machine-dependent ways of modifying an illegitimate address
|
780 |
|
|
to be legitimate. If we find one, return the new, valid address.
|
781 |
|
|
This macro is used in only one place: `memory_address' in explow.c.
|
782 |
|
|
|
783 |
|
|
OLDX is the address as it was before break_out_memory_refs was called.
|
784 |
|
|
In some cases it is useful to look at this to decide what needs to be done.
|
785 |
|
|
|
786 |
|
|
MODE and WIN are passed so that this macro can use
|
787 |
|
|
GO_IF_LEGITIMATE_ADDRESS.
|
788 |
|
|
|
789 |
|
|
It is always safe for this macro to do nothing. It exists to recognize
|
790 |
|
|
opportunities to optimize the output.
|
791 |
|
|
|
792 |
|
|
For the PA, transform:
|
793 |
|
|
|
794 |
|
|
memory(X + <large int>)
|
795 |
|
|
|
796 |
|
|
into:
|
797 |
|
|
|
798 |
|
|
if (<large int> & mask) >= 16
|
799 |
|
|
Y = (<large int> & ~mask) + mask + 1 Round up.
|
800 |
|
|
else
|
801 |
|
|
Y = (<large int> & ~mask) Round down.
|
802 |
|
|
Z = X + Y
|
803 |
|
|
memory (Z + (<large int> - Y));
|
804 |
|
|
|
805 |
|
|
This is for CSE to find several similar references, and only use one Z.
|
806 |
|
|
|
807 |
|
|
X can either be a SYMBOL_REF or REG, but because combine cannot
|
808 |
|
|
perform a 4->2 combination we do nothing for SYMBOL_REF + D where
|
809 |
|
|
D will not fit in 14 bits.
|
810 |
|
|
|
811 |
|
|
MODE_FLOAT references allow displacements which fit in 5 bits, so use
|
812 |
|
|
0x1f as the mask.
|
813 |
|
|
|
814 |
|
|
MODE_INT references allow displacements which fit in 14 bits, so use
|
815 |
|
|
0x3fff as the mask.
|
816 |
|
|
|
817 |
|
|
This relies on the fact that most mode MODE_FLOAT references will use FP
|
818 |
|
|
registers and most mode MODE_INT references will use integer registers.
|
819 |
|
|
(In the rare case of an FP register used in an integer MODE, we depend
|
820 |
|
|
on secondary reloads to clean things up.)
|
821 |
|
|
|
822 |
|
|
|
823 |
|
|
It is also beneficial to handle (plus (mult (X) (Y)) (Z)) in a special
|
824 |
|
|
manner if Y is 2, 4, or 8. (allows more shadd insns and shifted indexed
|
825 |
|
|
addressing modes to be used).
|
826 |
|
|
|
827 |
|
|
Put X and Z into registers. Then put the entire expression into
|
828 |
|
|
a register. */
|
829 |
|
|
|
830 |
|
|
rtx
|
831 |
|
|
hppa_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
|
832 |
|
|
enum machine_mode mode)
|
833 |
|
|
{
|
834 |
|
|
rtx orig = x;
|
835 |
|
|
|
836 |
|
|
/* We need to canonicalize the order of operands in unscaled indexed
|
837 |
|
|
addresses since the code that checks if an address is valid doesn't
|
838 |
|
|
always try both orders. */
|
839 |
|
|
if (!TARGET_NO_SPACE_REGS
|
840 |
|
|
&& GET_CODE (x) == PLUS
|
841 |
|
|
&& GET_MODE (x) == Pmode
|
842 |
|
|
&& REG_P (XEXP (x, 0))
|
843 |
|
|
&& REG_P (XEXP (x, 1))
|
844 |
|
|
&& REG_POINTER (XEXP (x, 0))
|
845 |
|
|
&& !REG_POINTER (XEXP (x, 1)))
|
846 |
|
|
return gen_rtx_PLUS (Pmode, XEXP (x, 1), XEXP (x, 0));
|
847 |
|
|
|
848 |
|
|
if (PA_SYMBOL_REF_TLS_P (x))
|
849 |
|
|
return legitimize_tls_address (x);
|
850 |
|
|
else if (flag_pic)
|
851 |
|
|
return legitimize_pic_address (x, mode, gen_reg_rtx (Pmode));
|
852 |
|
|
|
853 |
|
|
/* Strip off CONST. */
|
854 |
|
|
if (GET_CODE (x) == CONST)
|
855 |
|
|
x = XEXP (x, 0);
|
856 |
|
|
|
857 |
|
|
/* Special case. Get the SYMBOL_REF into a register and use indexing.
|
858 |
|
|
That should always be safe. */
|
859 |
|
|
if (GET_CODE (x) == PLUS
|
860 |
|
|
&& GET_CODE (XEXP (x, 0)) == REG
|
861 |
|
|
&& GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
|
862 |
|
|
{
|
863 |
|
|
rtx reg = force_reg (Pmode, XEXP (x, 1));
|
864 |
|
|
return force_reg (Pmode, gen_rtx_PLUS (Pmode, reg, XEXP (x, 0)));
|
865 |
|
|
}
|
866 |
|
|
|
867 |
|
|
/* Note we must reject symbols which represent function addresses
|
868 |
|
|
since the assembler/linker can't handle arithmetic on plabels. */
|
869 |
|
|
if (GET_CODE (x) == PLUS
|
870 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
871 |
|
|
&& ((GET_CODE (XEXP (x, 0)) == SYMBOL_REF
|
872 |
|
|
&& !FUNCTION_NAME_P (XSTR (XEXP (x, 0), 0)))
|
873 |
|
|
|| GET_CODE (XEXP (x, 0)) == REG))
|
874 |
|
|
{
|
875 |
|
|
rtx int_part, ptr_reg;
|
876 |
|
|
int newoffset;
|
877 |
|
|
int offset = INTVAL (XEXP (x, 1));
|
878 |
|
|
int mask;
|
879 |
|
|
|
880 |
|
|
mask = (GET_MODE_CLASS (mode) == MODE_FLOAT
|
881 |
|
|
? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff);
|
882 |
|
|
|
883 |
|
|
/* Choose which way to round the offset. Round up if we
|
884 |
|
|
are >= halfway to the next boundary. */
|
885 |
|
|
if ((offset & mask) >= ((mask + 1) / 2))
|
886 |
|
|
newoffset = (offset & ~ mask) + mask + 1;
|
887 |
|
|
else
|
888 |
|
|
newoffset = (offset & ~ mask);
|
889 |
|
|
|
890 |
|
|
/* If the newoffset will not fit in 14 bits (ldo), then
|
891 |
|
|
handling this would take 4 or 5 instructions (2 to load
|
892 |
|
|
the SYMBOL_REF + 1 or 2 to load the newoffset + 1 to
|
893 |
|
|
add the new offset and the SYMBOL_REF.) Combine can
|
894 |
|
|
not handle 4->2 or 5->2 combinations, so do not create
|
895 |
|
|
them. */
|
896 |
|
|
if (! VAL_14_BITS_P (newoffset)
|
897 |
|
|
&& GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
|
898 |
|
|
{
|
899 |
|
|
rtx const_part = plus_constant (XEXP (x, 0), newoffset);
|
900 |
|
|
rtx tmp_reg
|
901 |
|
|
= force_reg (Pmode,
|
902 |
|
|
gen_rtx_HIGH (Pmode, const_part));
|
903 |
|
|
ptr_reg
|
904 |
|
|
= force_reg (Pmode,
|
905 |
|
|
gen_rtx_LO_SUM (Pmode,
|
906 |
|
|
tmp_reg, const_part));
|
907 |
|
|
}
|
908 |
|
|
else
|
909 |
|
|
{
|
910 |
|
|
if (! VAL_14_BITS_P (newoffset))
|
911 |
|
|
int_part = force_reg (Pmode, GEN_INT (newoffset));
|
912 |
|
|
else
|
913 |
|
|
int_part = GEN_INT (newoffset);
|
914 |
|
|
|
915 |
|
|
ptr_reg = force_reg (Pmode,
|
916 |
|
|
gen_rtx_PLUS (Pmode,
|
917 |
|
|
force_reg (Pmode, XEXP (x, 0)),
|
918 |
|
|
int_part));
|
919 |
|
|
}
|
920 |
|
|
return plus_constant (ptr_reg, offset - newoffset);
|
921 |
|
|
}
|
922 |
|
|
|
923 |
|
|
/* Handle (plus (mult (a) (shadd_constant)) (b)). */
|
924 |
|
|
|
925 |
|
|
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT
|
926 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
927 |
|
|
&& shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1)))
|
928 |
|
|
&& (OBJECT_P (XEXP (x, 1))
|
929 |
|
|
|| GET_CODE (XEXP (x, 1)) == SUBREG)
|
930 |
|
|
&& GET_CODE (XEXP (x, 1)) != CONST)
|
931 |
|
|
{
|
932 |
|
|
int val = INTVAL (XEXP (XEXP (x, 0), 1));
|
933 |
|
|
rtx reg1, reg2;
|
934 |
|
|
|
935 |
|
|
reg1 = XEXP (x, 1);
|
936 |
|
|
if (GET_CODE (reg1) != REG)
|
937 |
|
|
reg1 = force_reg (Pmode, force_operand (reg1, 0));
|
938 |
|
|
|
939 |
|
|
reg2 = XEXP (XEXP (x, 0), 0);
|
940 |
|
|
if (GET_CODE (reg2) != REG)
|
941 |
|
|
reg2 = force_reg (Pmode, force_operand (reg2, 0));
|
942 |
|
|
|
943 |
|
|
return force_reg (Pmode, gen_rtx_PLUS (Pmode,
|
944 |
|
|
gen_rtx_MULT (Pmode,
|
945 |
|
|
reg2,
|
946 |
|
|
GEN_INT (val)),
|
947 |
|
|
reg1));
|
948 |
|
|
}
|
949 |
|
|
|
950 |
|
|
/* Similarly for (plus (plus (mult (a) (shadd_constant)) (b)) (c)).
|
951 |
|
|
|
952 |
|
|
Only do so for floating point modes since this is more speculative
|
953 |
|
|
and we lose if it's an integer store. */
|
954 |
|
|
if (GET_CODE (x) == PLUS
|
955 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
956 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
|
957 |
|
|
&& GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
|
958 |
|
|
&& shadd_constant_p (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1)))
|
959 |
|
|
&& (mode == SFmode || mode == DFmode))
|
960 |
|
|
{
|
961 |
|
|
|
962 |
|
|
/* First, try and figure out what to use as a base register. */
|
963 |
|
|
rtx reg1, reg2, base, idx, orig_base;
|
964 |
|
|
|
965 |
|
|
reg1 = XEXP (XEXP (x, 0), 1);
|
966 |
|
|
reg2 = XEXP (x, 1);
|
967 |
|
|
base = NULL_RTX;
|
968 |
|
|
idx = NULL_RTX;
|
969 |
|
|
|
970 |
|
|
/* Make sure they're both regs. If one was a SYMBOL_REF [+ const],
|
971 |
|
|
then emit_move_sequence will turn on REG_POINTER so we'll know
|
972 |
|
|
it's a base register below. */
|
973 |
|
|
if (GET_CODE (reg1) != REG)
|
974 |
|
|
reg1 = force_reg (Pmode, force_operand (reg1, 0));
|
975 |
|
|
|
976 |
|
|
if (GET_CODE (reg2) != REG)
|
977 |
|
|
reg2 = force_reg (Pmode, force_operand (reg2, 0));
|
978 |
|
|
|
979 |
|
|
/* Figure out what the base and index are. */
|
980 |
|
|
|
981 |
|
|
if (GET_CODE (reg1) == REG
|
982 |
|
|
&& REG_POINTER (reg1))
|
983 |
|
|
{
|
984 |
|
|
base = reg1;
|
985 |
|
|
orig_base = XEXP (XEXP (x, 0), 1);
|
986 |
|
|
idx = gen_rtx_PLUS (Pmode,
|
987 |
|
|
gen_rtx_MULT (Pmode,
|
988 |
|
|
XEXP (XEXP (XEXP (x, 0), 0), 0),
|
989 |
|
|
XEXP (XEXP (XEXP (x, 0), 0), 1)),
|
990 |
|
|
XEXP (x, 1));
|
991 |
|
|
}
|
992 |
|
|
else if (GET_CODE (reg2) == REG
|
993 |
|
|
&& REG_POINTER (reg2))
|
994 |
|
|
{
|
995 |
|
|
base = reg2;
|
996 |
|
|
orig_base = XEXP (x, 1);
|
997 |
|
|
idx = XEXP (x, 0);
|
998 |
|
|
}
|
999 |
|
|
|
1000 |
|
|
if (base == 0)
|
1001 |
|
|
return orig;
|
1002 |
|
|
|
1003 |
|
|
/* If the index adds a large constant, try to scale the
|
1004 |
|
|
constant so that it can be loaded with only one insn. */
|
1005 |
|
|
if (GET_CODE (XEXP (idx, 1)) == CONST_INT
|
1006 |
|
|
&& VAL_14_BITS_P (INTVAL (XEXP (idx, 1))
|
1007 |
|
|
/ INTVAL (XEXP (XEXP (idx, 0), 1)))
|
1008 |
|
|
&& INTVAL (XEXP (idx, 1)) % INTVAL (XEXP (XEXP (idx, 0), 1)) == 0)
|
1009 |
|
|
{
|
1010 |
|
|
/* Divide the CONST_INT by the scale factor, then add it to A. */
|
1011 |
|
|
int val = INTVAL (XEXP (idx, 1));
|
1012 |
|
|
|
1013 |
|
|
val /= INTVAL (XEXP (XEXP (idx, 0), 1));
|
1014 |
|
|
reg1 = XEXP (XEXP (idx, 0), 0);
|
1015 |
|
|
if (GET_CODE (reg1) != REG)
|
1016 |
|
|
reg1 = force_reg (Pmode, force_operand (reg1, 0));
|
1017 |
|
|
|
1018 |
|
|
reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, reg1, GEN_INT (val)));
|
1019 |
|
|
|
1020 |
|
|
/* We can now generate a simple scaled indexed address. */
|
1021 |
|
|
return
|
1022 |
|
|
force_reg
|
1023 |
|
|
(Pmode, gen_rtx_PLUS (Pmode,
|
1024 |
|
|
gen_rtx_MULT (Pmode, reg1,
|
1025 |
|
|
XEXP (XEXP (idx, 0), 1)),
|
1026 |
|
|
base));
|
1027 |
|
|
}
|
1028 |
|
|
|
1029 |
|
|
/* If B + C is still a valid base register, then add them. */
|
1030 |
|
|
if (GET_CODE (XEXP (idx, 1)) == CONST_INT
|
1031 |
|
|
&& INTVAL (XEXP (idx, 1)) <= 4096
|
1032 |
|
|
&& INTVAL (XEXP (idx, 1)) >= -4096)
|
1033 |
|
|
{
|
1034 |
|
|
int val = INTVAL (XEXP (XEXP (idx, 0), 1));
|
1035 |
|
|
rtx reg1, reg2;
|
1036 |
|
|
|
1037 |
|
|
reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, XEXP (idx, 1)));
|
1038 |
|
|
|
1039 |
|
|
reg2 = XEXP (XEXP (idx, 0), 0);
|
1040 |
|
|
if (GET_CODE (reg2) != CONST_INT)
|
1041 |
|
|
reg2 = force_reg (Pmode, force_operand (reg2, 0));
|
1042 |
|
|
|
1043 |
|
|
return force_reg (Pmode, gen_rtx_PLUS (Pmode,
|
1044 |
|
|
gen_rtx_MULT (Pmode,
|
1045 |
|
|
reg2,
|
1046 |
|
|
GEN_INT (val)),
|
1047 |
|
|
reg1));
|
1048 |
|
|
}
|
1049 |
|
|
|
1050 |
|
|
/* Get the index into a register, then add the base + index and
|
1051 |
|
|
return a register holding the result. */
|
1052 |
|
|
|
1053 |
|
|
/* First get A into a register. */
|
1054 |
|
|
reg1 = XEXP (XEXP (idx, 0), 0);
|
1055 |
|
|
if (GET_CODE (reg1) != REG)
|
1056 |
|
|
reg1 = force_reg (Pmode, force_operand (reg1, 0));
|
1057 |
|
|
|
1058 |
|
|
/* And get B into a register. */
|
1059 |
|
|
reg2 = XEXP (idx, 1);
|
1060 |
|
|
if (GET_CODE (reg2) != REG)
|
1061 |
|
|
reg2 = force_reg (Pmode, force_operand (reg2, 0));
|
1062 |
|
|
|
1063 |
|
|
reg1 = force_reg (Pmode,
|
1064 |
|
|
gen_rtx_PLUS (Pmode,
|
1065 |
|
|
gen_rtx_MULT (Pmode, reg1,
|
1066 |
|
|
XEXP (XEXP (idx, 0), 1)),
|
1067 |
|
|
reg2));
|
1068 |
|
|
|
1069 |
|
|
/* Add the result to our base register and return. */
|
1070 |
|
|
return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, reg1));
|
1071 |
|
|
|
1072 |
|
|
}
|
1073 |
|
|
|
1074 |
|
|
/* Uh-oh. We might have an address for x[n-100000]. This needs
|
1075 |
|
|
special handling to avoid creating an indexed memory address
|
1076 |
|
|
with x-100000 as the base.
|
1077 |
|
|
|
1078 |
|
|
If the constant part is small enough, then it's still safe because
|
1079 |
|
|
there is a guard page at the beginning and end of the data segment.
|
1080 |
|
|
|
1081 |
|
|
Scaled references are common enough that we want to try and rearrange the
|
1082 |
|
|
terms so that we can use indexing for these addresses too. Only
|
1083 |
|
|
do the optimization for floatint point modes. */
|
1084 |
|
|
|
1085 |
|
|
if (GET_CODE (x) == PLUS
|
1086 |
|
|
&& symbolic_expression_p (XEXP (x, 1)))
|
1087 |
|
|
{
|
1088 |
|
|
/* Ugly. We modify things here so that the address offset specified
|
1089 |
|
|
by the index expression is computed first, then added to x to form
|
1090 |
|
|
the entire address. */
|
1091 |
|
|
|
1092 |
|
|
rtx regx1, regx2, regy1, regy2, y;
|
1093 |
|
|
|
1094 |
|
|
/* Strip off any CONST. */
|
1095 |
|
|
y = XEXP (x, 1);
|
1096 |
|
|
if (GET_CODE (y) == CONST)
|
1097 |
|
|
y = XEXP (y, 0);
|
1098 |
|
|
|
1099 |
|
|
if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
|
1100 |
|
|
{
|
1101 |
|
|
/* See if this looks like
|
1102 |
|
|
(plus (mult (reg) (shadd_const))
|
1103 |
|
|
(const (plus (symbol_ref) (const_int))))
|
1104 |
|
|
|
1105 |
|
|
Where const_int is small. In that case the const
|
1106 |
|
|
expression is a valid pointer for indexing.
|
1107 |
|
|
|
1108 |
|
|
If const_int is big, but can be divided evenly by shadd_const
|
1109 |
|
|
and added to (reg). This allows more scaled indexed addresses. */
|
1110 |
|
|
if (GET_CODE (XEXP (y, 0)) == SYMBOL_REF
|
1111 |
|
|
&& GET_CODE (XEXP (x, 0)) == MULT
|
1112 |
|
|
&& GET_CODE (XEXP (y, 1)) == CONST_INT
|
1113 |
|
|
&& INTVAL (XEXP (y, 1)) >= -4096
|
1114 |
|
|
&& INTVAL (XEXP (y, 1)) <= 4095
|
1115 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
1116 |
|
|
&& shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))))
|
1117 |
|
|
{
|
1118 |
|
|
int val = INTVAL (XEXP (XEXP (x, 0), 1));
|
1119 |
|
|
rtx reg1, reg2;
|
1120 |
|
|
|
1121 |
|
|
reg1 = XEXP (x, 1);
|
1122 |
|
|
if (GET_CODE (reg1) != REG)
|
1123 |
|
|
reg1 = force_reg (Pmode, force_operand (reg1, 0));
|
1124 |
|
|
|
1125 |
|
|
reg2 = XEXP (XEXP (x, 0), 0);
|
1126 |
|
|
if (GET_CODE (reg2) != REG)
|
1127 |
|
|
reg2 = force_reg (Pmode, force_operand (reg2, 0));
|
1128 |
|
|
|
1129 |
|
|
return force_reg (Pmode,
|
1130 |
|
|
gen_rtx_PLUS (Pmode,
|
1131 |
|
|
gen_rtx_MULT (Pmode,
|
1132 |
|
|
reg2,
|
1133 |
|
|
GEN_INT (val)),
|
1134 |
|
|
reg1));
|
1135 |
|
|
}
|
1136 |
|
|
else if ((mode == DFmode || mode == SFmode)
|
1137 |
|
|
&& GET_CODE (XEXP (y, 0)) == SYMBOL_REF
|
1138 |
|
|
&& GET_CODE (XEXP (x, 0)) == MULT
|
1139 |
|
|
&& GET_CODE (XEXP (y, 1)) == CONST_INT
|
1140 |
|
|
&& INTVAL (XEXP (y, 1)) % INTVAL (XEXP (XEXP (x, 0), 1)) == 0
|
1141 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
|
1142 |
|
|
&& shadd_constant_p (INTVAL (XEXP (XEXP (x, 0), 1))))
|
1143 |
|
|
{
|
1144 |
|
|
regx1
|
1145 |
|
|
= force_reg (Pmode, GEN_INT (INTVAL (XEXP (y, 1))
|
1146 |
|
|
/ INTVAL (XEXP (XEXP (x, 0), 1))));
|
1147 |
|
|
regx2 = XEXP (XEXP (x, 0), 0);
|
1148 |
|
|
if (GET_CODE (regx2) != REG)
|
1149 |
|
|
regx2 = force_reg (Pmode, force_operand (regx2, 0));
|
1150 |
|
|
regx2 = force_reg (Pmode, gen_rtx_fmt_ee (GET_CODE (y), Pmode,
|
1151 |
|
|
regx2, regx1));
|
1152 |
|
|
return
|
1153 |
|
|
force_reg (Pmode,
|
1154 |
|
|
gen_rtx_PLUS (Pmode,
|
1155 |
|
|
gen_rtx_MULT (Pmode, regx2,
|
1156 |
|
|
XEXP (XEXP (x, 0), 1)),
|
1157 |
|
|
force_reg (Pmode, XEXP (y, 0))));
|
1158 |
|
|
}
|
1159 |
|
|
else if (GET_CODE (XEXP (y, 1)) == CONST_INT
|
1160 |
|
|
&& INTVAL (XEXP (y, 1)) >= -4096
|
1161 |
|
|
&& INTVAL (XEXP (y, 1)) <= 4095)
|
1162 |
|
|
{
|
1163 |
|
|
/* This is safe because of the guard page at the
|
1164 |
|
|
beginning and end of the data space. Just
|
1165 |
|
|
return the original address. */
|
1166 |
|
|
return orig;
|
1167 |
|
|
}
|
1168 |
|
|
else
|
1169 |
|
|
{
|
1170 |
|
|
/* Doesn't look like one we can optimize. */
|
1171 |
|
|
regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
|
1172 |
|
|
regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
|
1173 |
|
|
regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
|
1174 |
|
|
regx1 = force_reg (Pmode,
|
1175 |
|
|
gen_rtx_fmt_ee (GET_CODE (y), Pmode,
|
1176 |
|
|
regx1, regy2));
|
1177 |
|
|
return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
|
1178 |
|
|
}
|
1179 |
|
|
}
|
1180 |
|
|
}
|
1181 |
|
|
|
1182 |
|
|
return orig;
|
1183 |
|
|
}
|
1184 |
|
|
|
1185 |
|
|
/* For the HPPA, REG and REG+CONST is cost 0
|
1186 |
|
|
and addresses involving symbolic constants are cost 2.
|
1187 |
|
|
|
1188 |
|
|
PIC addresses are very expensive.
|
1189 |
|
|
|
1190 |
|
|
It is no coincidence that this has the same structure
|
1191 |
|
|
as GO_IF_LEGITIMATE_ADDRESS. */
|
1192 |
|
|
|
1193 |
|
|
static int
|
1194 |
|
|
hppa_address_cost (rtx X)
|
1195 |
|
|
{
|
1196 |
|
|
switch (GET_CODE (X))
|
1197 |
|
|
{
|
1198 |
|
|
case REG:
|
1199 |
|
|
case PLUS:
|
1200 |
|
|
case LO_SUM:
|
1201 |
|
|
return 1;
|
1202 |
|
|
case HIGH:
|
1203 |
|
|
return 2;
|
1204 |
|
|
default:
|
1205 |
|
|
return 4;
|
1206 |
|
|
}
|
1207 |
|
|
}
|
1208 |
|
|
|
1209 |
|
|
/* Compute a (partial) cost for rtx X. Return true if the complete
|
1210 |
|
|
cost has been computed, and false if subexpressions should be
|
1211 |
|
|
scanned. In either case, *TOTAL contains the cost result. */
|
1212 |
|
|
|
1213 |
|
|
static bool
|
1214 |
|
|
hppa_rtx_costs (rtx x, int code, int outer_code, int *total)
|
1215 |
|
|
{
|
1216 |
|
|
switch (code)
|
1217 |
|
|
{
|
1218 |
|
|
case CONST_INT:
|
1219 |
|
|
if (INTVAL (x) == 0)
|
1220 |
|
|
*total = 0;
|
1221 |
|
|
else if (INT_14_BITS (x))
|
1222 |
|
|
*total = 1;
|
1223 |
|
|
else
|
1224 |
|
|
*total = 2;
|
1225 |
|
|
return true;
|
1226 |
|
|
|
1227 |
|
|
case HIGH:
|
1228 |
|
|
*total = 2;
|
1229 |
|
|
return true;
|
1230 |
|
|
|
1231 |
|
|
case CONST:
|
1232 |
|
|
case LABEL_REF:
|
1233 |
|
|
case SYMBOL_REF:
|
1234 |
|
|
*total = 4;
|
1235 |
|
|
return true;
|
1236 |
|
|
|
1237 |
|
|
case CONST_DOUBLE:
|
1238 |
|
|
if ((x == CONST0_RTX (DFmode) || x == CONST0_RTX (SFmode))
|
1239 |
|
|
&& outer_code != SET)
|
1240 |
|
|
*total = 0;
|
1241 |
|
|
else
|
1242 |
|
|
*total = 8;
|
1243 |
|
|
return true;
|
1244 |
|
|
|
1245 |
|
|
case MULT:
|
1246 |
|
|
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
1247 |
|
|
*total = COSTS_N_INSNS (3);
|
1248 |
|
|
else if (TARGET_PA_11 && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT)
|
1249 |
|
|
*total = COSTS_N_INSNS (8);
|
1250 |
|
|
else
|
1251 |
|
|
*total = COSTS_N_INSNS (20);
|
1252 |
|
|
return true;
|
1253 |
|
|
|
1254 |
|
|
case DIV:
|
1255 |
|
|
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
1256 |
|
|
{
|
1257 |
|
|
*total = COSTS_N_INSNS (14);
|
1258 |
|
|
return true;
|
1259 |
|
|
}
|
1260 |
|
|
/* FALLTHRU */
|
1261 |
|
|
|
1262 |
|
|
case UDIV:
|
1263 |
|
|
case MOD:
|
1264 |
|
|
case UMOD:
|
1265 |
|
|
*total = COSTS_N_INSNS (60);
|
1266 |
|
|
return true;
|
1267 |
|
|
|
1268 |
|
|
case PLUS: /* this includes shNadd insns */
|
1269 |
|
|
case MINUS:
|
1270 |
|
|
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
|
1271 |
|
|
*total = COSTS_N_INSNS (3);
|
1272 |
|
|
else
|
1273 |
|
|
*total = COSTS_N_INSNS (1);
|
1274 |
|
|
return true;
|
1275 |
|
|
|
1276 |
|
|
case ASHIFT:
|
1277 |
|
|
case ASHIFTRT:
|
1278 |
|
|
case LSHIFTRT:
|
1279 |
|
|
*total = COSTS_N_INSNS (1);
|
1280 |
|
|
return true;
|
1281 |
|
|
|
1282 |
|
|
default:
|
1283 |
|
|
return false;
|
1284 |
|
|
}
|
1285 |
|
|
}
|
1286 |
|
|
|
1287 |
|
|
/* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
|
1288 |
|
|
new rtx with the correct mode. */
|
1289 |
|
|
static inline rtx
|
1290 |
|
|
force_mode (enum machine_mode mode, rtx orig)
|
1291 |
|
|
{
|
1292 |
|
|
if (mode == GET_MODE (orig))
|
1293 |
|
|
return orig;
|
1294 |
|
|
|
1295 |
|
|
gcc_assert (REGNO (orig) < FIRST_PSEUDO_REGISTER);
|
1296 |
|
|
|
1297 |
|
|
return gen_rtx_REG (mode, REGNO (orig));
|
1298 |
|
|
}
|
1299 |
|
|
|
1300 |
|
|
/* Return 1 if *X is a thread-local symbol. */
|
1301 |
|
|
|
1302 |
|
|
static int
|
1303 |
|
|
pa_tls_symbol_ref_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
|
1304 |
|
|
{
|
1305 |
|
|
return PA_SYMBOL_REF_TLS_P (*x);
|
1306 |
|
|
}
|
1307 |
|
|
|
1308 |
|
|
/* Return 1 if X contains a thread-local symbol. */
|
1309 |
|
|
|
1310 |
|
|
bool
|
1311 |
|
|
pa_tls_referenced_p (rtx x)
|
1312 |
|
|
{
|
1313 |
|
|
if (!TARGET_HAVE_TLS)
|
1314 |
|
|
return false;
|
1315 |
|
|
|
1316 |
|
|
return for_each_rtx (&x, &pa_tls_symbol_ref_1, 0);
|
1317 |
|
|
}
|
1318 |
|
|
|
1319 |
|
|
/* Emit insns to move operands[1] into operands[0].
|
1320 |
|
|
|
1321 |
|
|
Return 1 if we have written out everything that needs to be done to
|
1322 |
|
|
do the move. Otherwise, return 0 and the caller will emit the move
|
1323 |
|
|
normally.
|
1324 |
|
|
|
1325 |
|
|
Note SCRATCH_REG may not be in the proper mode depending on how it
|
1326 |
|
|
will be used. This routine is responsible for creating a new copy
|
1327 |
|
|
of SCRATCH_REG in the proper mode. */
|
1328 |
|
|
|
1329 |
|
|
int
|
1330 |
|
|
emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
|
1331 |
|
|
{
|
1332 |
|
|
register rtx operand0 = operands[0];
|
1333 |
|
|
register rtx operand1 = operands[1];
|
1334 |
|
|
register rtx tem;
|
1335 |
|
|
|
1336 |
|
|
/* We can only handle indexed addresses in the destination operand
|
1337 |
|
|
of floating point stores. Thus, we need to break out indexed
|
1338 |
|
|
addresses from the destination operand. */
|
1339 |
|
|
if (GET_CODE (operand0) == MEM && IS_INDEX_ADDR_P (XEXP (operand0, 0)))
|
1340 |
|
|
{
|
1341 |
|
|
/* This is only safe up to the beginning of life analysis. */
|
1342 |
|
|
gcc_assert (!no_new_pseudos);
|
1343 |
|
|
|
1344 |
|
|
tem = copy_to_mode_reg (Pmode, XEXP (operand0, 0));
|
1345 |
|
|
operand0 = replace_equiv_address (operand0, tem);
|
1346 |
|
|
}
|
1347 |
|
|
|
1348 |
|
|
/* On targets with non-equivalent space registers, break out unscaled
|
1349 |
|
|
indexed addresses from the source operand before the final CSE.
|
1350 |
|
|
We have to do this because the REG_POINTER flag is not correctly
|
1351 |
|
|
carried through various optimization passes and CSE may substitute
|
1352 |
|
|
a pseudo without the pointer set for one with the pointer set. As
|
1353 |
|
|
a result, we loose various opportunities to create insns with
|
1354 |
|
|
unscaled indexed addresses. */
|
1355 |
|
|
if (!TARGET_NO_SPACE_REGS
|
1356 |
|
|
&& !cse_not_expected
|
1357 |
|
|
&& GET_CODE (operand1) == MEM
|
1358 |
|
|
&& GET_CODE (XEXP (operand1, 0)) == PLUS
|
1359 |
|
|
&& REG_P (XEXP (XEXP (operand1, 0), 0))
|
1360 |
|
|
&& REG_P (XEXP (XEXP (operand1, 0), 1)))
|
1361 |
|
|
operand1
|
1362 |
|
|
= replace_equiv_address (operand1,
|
1363 |
|
|
copy_to_mode_reg (Pmode, XEXP (operand1, 0)));
|
1364 |
|
|
|
1365 |
|
|
if (scratch_reg
|
1366 |
|
|
&& reload_in_progress && GET_CODE (operand0) == REG
|
1367 |
|
|
&& REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
|
1368 |
|
|
operand0 = reg_equiv_mem[REGNO (operand0)];
|
1369 |
|
|
else if (scratch_reg
|
1370 |
|
|
&& reload_in_progress && GET_CODE (operand0) == SUBREG
|
1371 |
|
|
&& GET_CODE (SUBREG_REG (operand0)) == REG
|
1372 |
|
|
&& REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
|
1373 |
|
|
{
|
1374 |
|
|
/* We must not alter SUBREG_BYTE (operand0) since that would confuse
|
1375 |
|
|
the code which tracks sets/uses for delete_output_reload. */
|
1376 |
|
|
rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
|
1377 |
|
|
reg_equiv_mem [REGNO (SUBREG_REG (operand0))],
|
1378 |
|
|
SUBREG_BYTE (operand0));
|
1379 |
|
|
operand0 = alter_subreg (&temp);
|
1380 |
|
|
}
|
1381 |
|
|
|
1382 |
|
|
if (scratch_reg
|
1383 |
|
|
&& reload_in_progress && GET_CODE (operand1) == REG
|
1384 |
|
|
&& REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
|
1385 |
|
|
operand1 = reg_equiv_mem[REGNO (operand1)];
|
1386 |
|
|
else if (scratch_reg
|
1387 |
|
|
&& reload_in_progress && GET_CODE (operand1) == SUBREG
|
1388 |
|
|
&& GET_CODE (SUBREG_REG (operand1)) == REG
|
1389 |
|
|
&& REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
|
1390 |
|
|
{
|
1391 |
|
|
/* We must not alter SUBREG_BYTE (operand0) since that would confuse
|
1392 |
|
|
the code which tracks sets/uses for delete_output_reload. */
|
1393 |
|
|
rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
|
1394 |
|
|
reg_equiv_mem [REGNO (SUBREG_REG (operand1))],
|
1395 |
|
|
SUBREG_BYTE (operand1));
|
1396 |
|
|
operand1 = alter_subreg (&temp);
|
1397 |
|
|
}
|
1398 |
|
|
|
1399 |
|
|
if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
|
1400 |
|
|
&& ((tem = find_replacement (&XEXP (operand0, 0)))
|
1401 |
|
|
!= XEXP (operand0, 0)))
|
1402 |
|
|
operand0 = replace_equiv_address (operand0, tem);
|
1403 |
|
|
|
1404 |
|
|
if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
|
1405 |
|
|
&& ((tem = find_replacement (&XEXP (operand1, 0)))
|
1406 |
|
|
!= XEXP (operand1, 0)))
|
1407 |
|
|
operand1 = replace_equiv_address (operand1, tem);
|
1408 |
|
|
|
1409 |
|
|
/* Handle secondary reloads for loads/stores of FP registers from
|
1410 |
|
|
REG+D addresses where D does not fit in 5 or 14 bits, including
|
1411 |
|
|
(subreg (mem (addr))) cases. */
|
1412 |
|
|
if (scratch_reg
|
1413 |
|
|
&& fp_reg_operand (operand0, mode)
|
1414 |
|
|
&& ((GET_CODE (operand1) == MEM
|
1415 |
|
|
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4 ? SFmode : DFmode),
|
1416 |
|
|
XEXP (operand1, 0)))
|
1417 |
|
|
|| ((GET_CODE (operand1) == SUBREG
|
1418 |
|
|
&& GET_CODE (XEXP (operand1, 0)) == MEM
|
1419 |
|
|
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4
|
1420 |
|
|
? SFmode : DFmode),
|
1421 |
|
|
XEXP (XEXP (operand1, 0), 0))))))
|
1422 |
|
|
{
|
1423 |
|
|
if (GET_CODE (operand1) == SUBREG)
|
1424 |
|
|
operand1 = XEXP (operand1, 0);
|
1425 |
|
|
|
1426 |
|
|
/* SCRATCH_REG will hold an address and maybe the actual data. We want
|
1427 |
|
|
it in WORD_MODE regardless of what mode it was originally given
|
1428 |
|
|
to us. */
|
1429 |
|
|
scratch_reg = force_mode (word_mode, scratch_reg);
|
1430 |
|
|
|
1431 |
|
|
/* D might not fit in 14 bits either; for such cases load D into
|
1432 |
|
|
scratch reg. */
|
1433 |
|
|
if (!memory_address_p (Pmode, XEXP (operand1, 0)))
|
1434 |
|
|
{
|
1435 |
|
|
emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
|
1436 |
|
|
emit_move_insn (scratch_reg,
|
1437 |
|
|
gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
|
1438 |
|
|
Pmode,
|
1439 |
|
|
XEXP (XEXP (operand1, 0), 0),
|
1440 |
|
|
scratch_reg));
|
1441 |
|
|
}
|
1442 |
|
|
else
|
1443 |
|
|
emit_move_insn (scratch_reg, XEXP (operand1, 0));
|
1444 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operand0,
|
1445 |
|
|
replace_equiv_address (operand1, scratch_reg)));
|
1446 |
|
|
return 1;
|
1447 |
|
|
}
|
1448 |
|
|
else if (scratch_reg
|
1449 |
|
|
&& fp_reg_operand (operand1, mode)
|
1450 |
|
|
&& ((GET_CODE (operand0) == MEM
|
1451 |
|
|
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4
|
1452 |
|
|
? SFmode : DFmode),
|
1453 |
|
|
XEXP (operand0, 0)))
|
1454 |
|
|
|| ((GET_CODE (operand0) == SUBREG)
|
1455 |
|
|
&& GET_CODE (XEXP (operand0, 0)) == MEM
|
1456 |
|
|
&& !memory_address_p ((GET_MODE_SIZE (mode) == 4
|
1457 |
|
|
? SFmode : DFmode),
|
1458 |
|
|
XEXP (XEXP (operand0, 0), 0)))))
|
1459 |
|
|
{
|
1460 |
|
|
if (GET_CODE (operand0) == SUBREG)
|
1461 |
|
|
operand0 = XEXP (operand0, 0);
|
1462 |
|
|
|
1463 |
|
|
/* SCRATCH_REG will hold an address and maybe the actual data. We want
|
1464 |
|
|
it in WORD_MODE regardless of what mode it was originally given
|
1465 |
|
|
to us. */
|
1466 |
|
|
scratch_reg = force_mode (word_mode, scratch_reg);
|
1467 |
|
|
|
1468 |
|
|
/* D might not fit in 14 bits either; for such cases load D into
|
1469 |
|
|
scratch reg. */
|
1470 |
|
|
if (!memory_address_p (Pmode, XEXP (operand0, 0)))
|
1471 |
|
|
{
|
1472 |
|
|
emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
|
1473 |
|
|
emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
|
1474 |
|
|
0)),
|
1475 |
|
|
Pmode,
|
1476 |
|
|
XEXP (XEXP (operand0, 0),
|
1477 |
|
|
0),
|
1478 |
|
|
scratch_reg));
|
1479 |
|
|
}
|
1480 |
|
|
else
|
1481 |
|
|
emit_move_insn (scratch_reg, XEXP (operand0, 0));
|
1482 |
|
|
emit_insn (gen_rtx_SET (VOIDmode,
|
1483 |
|
|
replace_equiv_address (operand0, scratch_reg),
|
1484 |
|
|
operand1));
|
1485 |
|
|
return 1;
|
1486 |
|
|
}
|
1487 |
|
|
/* Handle secondary reloads for loads of FP registers from constant
|
1488 |
|
|
expressions by forcing the constant into memory.
|
1489 |
|
|
|
1490 |
|
|
Use scratch_reg to hold the address of the memory location.
|
1491 |
|
|
|
1492 |
|
|
The proper fix is to change PREFERRED_RELOAD_CLASS to return
|
1493 |
|
|
NO_REGS when presented with a const_int and a register class
|
1494 |
|
|
containing only FP registers. Doing so unfortunately creates
|
1495 |
|
|
more problems than it solves. Fix this for 2.5. */
|
1496 |
|
|
else if (scratch_reg
|
1497 |
|
|
&& CONSTANT_P (operand1)
|
1498 |
|
|
&& fp_reg_operand (operand0, mode))
|
1499 |
|
|
{
|
1500 |
|
|
rtx const_mem, xoperands[2];
|
1501 |
|
|
|
1502 |
|
|
/* SCRATCH_REG will hold an address and maybe the actual data. We want
|
1503 |
|
|
it in WORD_MODE regardless of what mode it was originally given
|
1504 |
|
|
to us. */
|
1505 |
|
|
scratch_reg = force_mode (word_mode, scratch_reg);
|
1506 |
|
|
|
1507 |
|
|
/* Force the constant into memory and put the address of the
|
1508 |
|
|
memory location into scratch_reg. */
|
1509 |
|
|
const_mem = force_const_mem (mode, operand1);
|
1510 |
|
|
xoperands[0] = scratch_reg;
|
1511 |
|
|
xoperands[1] = XEXP (const_mem, 0);
|
1512 |
|
|
emit_move_sequence (xoperands, Pmode, 0);
|
1513 |
|
|
|
1514 |
|
|
/* Now load the destination register. */
|
1515 |
|
|
emit_insn (gen_rtx_SET (mode, operand0,
|
1516 |
|
|
replace_equiv_address (const_mem, scratch_reg)));
|
1517 |
|
|
return 1;
|
1518 |
|
|
}
|
1519 |
|
|
/* Handle secondary reloads for SAR. These occur when trying to load
|
1520 |
|
|
the SAR from memory, FP register, or with a constant. */
|
1521 |
|
|
else if (scratch_reg
|
1522 |
|
|
&& GET_CODE (operand0) == REG
|
1523 |
|
|
&& REGNO (operand0) < FIRST_PSEUDO_REGISTER
|
1524 |
|
|
&& REGNO_REG_CLASS (REGNO (operand0)) == SHIFT_REGS
|
1525 |
|
|
&& (GET_CODE (operand1) == MEM
|
1526 |
|
|
|| GET_CODE (operand1) == CONST_INT
|
1527 |
|
|
|| (GET_CODE (operand1) == REG
|
1528 |
|
|
&& FP_REG_CLASS_P (REGNO_REG_CLASS (REGNO (operand1))))))
|
1529 |
|
|
{
|
1530 |
|
|
/* D might not fit in 14 bits either; for such cases load D into
|
1531 |
|
|
scratch reg. */
|
1532 |
|
|
if (GET_CODE (operand1) == MEM
|
1533 |
|
|
&& !memory_address_p (Pmode, XEXP (operand1, 0)))
|
1534 |
|
|
{
|
1535 |
|
|
/* We are reloading the address into the scratch register, so we
|
1536 |
|
|
want to make sure the scratch register is a full register. */
|
1537 |
|
|
scratch_reg = force_mode (word_mode, scratch_reg);
|
1538 |
|
|
|
1539 |
|
|
emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
|
1540 |
|
|
emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1,
|
1541 |
|
|
0)),
|
1542 |
|
|
Pmode,
|
1543 |
|
|
XEXP (XEXP (operand1, 0),
|
1544 |
|
|
0),
|
1545 |
|
|
scratch_reg));
|
1546 |
|
|
|
1547 |
|
|
/* Now we are going to load the scratch register from memory,
|
1548 |
|
|
we want to load it in the same width as the original MEM,
|
1549 |
|
|
which must be the same as the width of the ultimate destination,
|
1550 |
|
|
OPERAND0. */
|
1551 |
|
|
scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
|
1552 |
|
|
|
1553 |
|
|
emit_move_insn (scratch_reg,
|
1554 |
|
|
replace_equiv_address (operand1, scratch_reg));
|
1555 |
|
|
}
|
1556 |
|
|
else
|
1557 |
|
|
{
|
1558 |
|
|
/* We want to load the scratch register using the same mode as
|
1559 |
|
|
the ultimate destination. */
|
1560 |
|
|
scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
|
1561 |
|
|
|
1562 |
|
|
emit_move_insn (scratch_reg, operand1);
|
1563 |
|
|
}
|
1564 |
|
|
|
1565 |
|
|
/* And emit the insn to set the ultimate destination. We know that
|
1566 |
|
|
the scratch register has the same mode as the destination at this
|
1567 |
|
|
point. */
|
1568 |
|
|
emit_move_insn (operand0, scratch_reg);
|
1569 |
|
|
return 1;
|
1570 |
|
|
}
|
1571 |
|
|
/* Handle the most common case: storing into a register. */
|
1572 |
|
|
else if (register_operand (operand0, mode))
|
1573 |
|
|
{
|
1574 |
|
|
if (register_operand (operand1, mode)
|
1575 |
|
|
|| (GET_CODE (operand1) == CONST_INT
|
1576 |
|
|
&& cint_ok_for_move (INTVAL (operand1)))
|
1577 |
|
|
|| (operand1 == CONST0_RTX (mode))
|
1578 |
|
|
|| (GET_CODE (operand1) == HIGH
|
1579 |
|
|
&& !symbolic_operand (XEXP (operand1, 0), VOIDmode))
|
1580 |
|
|
/* Only `general_operands' can come here, so MEM is ok. */
|
1581 |
|
|
|| GET_CODE (operand1) == MEM)
|
1582 |
|
|
{
|
1583 |
|
|
/* Various sets are created during RTL generation which don't
|
1584 |
|
|
have the REG_POINTER flag correctly set. After the CSE pass,
|
1585 |
|
|
instruction recognition can fail if we don't consistently
|
1586 |
|
|
set this flag when performing register copies. This should
|
1587 |
|
|
also improve the opportunities for creating insns that use
|
1588 |
|
|
unscaled indexing. */
|
1589 |
|
|
if (REG_P (operand0) && REG_P (operand1))
|
1590 |
|
|
{
|
1591 |
|
|
if (REG_POINTER (operand1)
|
1592 |
|
|
&& !REG_POINTER (operand0)
|
1593 |
|
|
&& !HARD_REGISTER_P (operand0))
|
1594 |
|
|
copy_reg_pointer (operand0, operand1);
|
1595 |
|
|
else if (REG_POINTER (operand0)
|
1596 |
|
|
&& !REG_POINTER (operand1)
|
1597 |
|
|
&& !HARD_REGISTER_P (operand1))
|
1598 |
|
|
copy_reg_pointer (operand1, operand0);
|
1599 |
|
|
}
|
1600 |
|
|
|
1601 |
|
|
/* When MEMs are broken out, the REG_POINTER flag doesn't
|
1602 |
|
|
get set. In some cases, we can set the REG_POINTER flag
|
1603 |
|
|
from the declaration for the MEM. */
|
1604 |
|
|
if (REG_P (operand0)
|
1605 |
|
|
&& GET_CODE (operand1) == MEM
|
1606 |
|
|
&& !REG_POINTER (operand0))
|
1607 |
|
|
{
|
1608 |
|
|
tree decl = MEM_EXPR (operand1);
|
1609 |
|
|
|
1610 |
|
|
/* Set the register pointer flag and register alignment
|
1611 |
|
|
if the declaration for this memory reference is a
|
1612 |
|
|
pointer type. Fortran indirect argument references
|
1613 |
|
|
are ignored. */
|
1614 |
|
|
if (decl
|
1615 |
|
|
&& !(flag_argument_noalias > 1
|
1616 |
|
|
&& TREE_CODE (decl) == INDIRECT_REF
|
1617 |
|
|
&& TREE_CODE (TREE_OPERAND (decl, 0)) == PARM_DECL))
|
1618 |
|
|
{
|
1619 |
|
|
tree type;
|
1620 |
|
|
|
1621 |
|
|
/* If this is a COMPONENT_REF, use the FIELD_DECL from
|
1622 |
|
|
tree operand 1. */
|
1623 |
|
|
if (TREE_CODE (decl) == COMPONENT_REF)
|
1624 |
|
|
decl = TREE_OPERAND (decl, 1);
|
1625 |
|
|
|
1626 |
|
|
type = TREE_TYPE (decl);
|
1627 |
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
1628 |
|
|
type = get_inner_array_type (type);
|
1629 |
|
|
|
1630 |
|
|
if (POINTER_TYPE_P (type))
|
1631 |
|
|
{
|
1632 |
|
|
int align;
|
1633 |
|
|
|
1634 |
|
|
type = TREE_TYPE (type);
|
1635 |
|
|
/* Using TYPE_ALIGN_OK is rather conservative as
|
1636 |
|
|
only the ada frontend actually sets it. */
|
1637 |
|
|
align = (TYPE_ALIGN_OK (type) ? TYPE_ALIGN (type)
|
1638 |
|
|
: BITS_PER_UNIT);
|
1639 |
|
|
mark_reg_pointer (operand0, align);
|
1640 |
|
|
}
|
1641 |
|
|
}
|
1642 |
|
|
}
|
1643 |
|
|
|
1644 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1));
|
1645 |
|
|
return 1;
|
1646 |
|
|
}
|
1647 |
|
|
}
|
1648 |
|
|
else if (GET_CODE (operand0) == MEM)
|
1649 |
|
|
{
|
1650 |
|
|
if (mode == DFmode && operand1 == CONST0_RTX (mode)
|
1651 |
|
|
&& !(reload_in_progress || reload_completed))
|
1652 |
|
|
{
|
1653 |
|
|
rtx temp = gen_reg_rtx (DFmode);
|
1654 |
|
|
|
1655 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp, operand1));
|
1656 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operand0, temp));
|
1657 |
|
|
return 1;
|
1658 |
|
|
}
|
1659 |
|
|
if (register_operand (operand1, mode) || operand1 == CONST0_RTX (mode))
|
1660 |
|
|
{
|
1661 |
|
|
/* Run this case quickly. */
|
1662 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operand0, operand1));
|
1663 |
|
|
return 1;
|
1664 |
|
|
}
|
1665 |
|
|
if (! (reload_in_progress || reload_completed))
|
1666 |
|
|
{
|
1667 |
|
|
operands[0] = validize_mem (operand0);
|
1668 |
|
|
operands[1] = operand1 = force_reg (mode, operand1);
|
1669 |
|
|
}
|
1670 |
|
|
}
|
1671 |
|
|
|
1672 |
|
|
/* Simplify the source if we need to.
|
1673 |
|
|
Note we do have to handle function labels here, even though we do
|
1674 |
|
|
not consider them legitimate constants. Loop optimizations can
|
1675 |
|
|
call the emit_move_xxx with one as a source. */
|
1676 |
|
|
if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
|
1677 |
|
|
|| function_label_operand (operand1, mode)
|
1678 |
|
|
|| (GET_CODE (operand1) == HIGH
|
1679 |
|
|
&& symbolic_operand (XEXP (operand1, 0), mode)))
|
1680 |
|
|
{
|
1681 |
|
|
int ishighonly = 0;
|
1682 |
|
|
|
1683 |
|
|
if (GET_CODE (operand1) == HIGH)
|
1684 |
|
|
{
|
1685 |
|
|
ishighonly = 1;
|
1686 |
|
|
operand1 = XEXP (operand1, 0);
|
1687 |
|
|
}
|
1688 |
|
|
if (symbolic_operand (operand1, mode))
|
1689 |
|
|
{
|
1690 |
|
|
/* Argh. The assembler and linker can't handle arithmetic
|
1691 |
|
|
involving plabels.
|
1692 |
|
|
|
1693 |
|
|
So we force the plabel into memory, load operand0 from
|
1694 |
|
|
the memory location, then add in the constant part. */
|
1695 |
|
|
if ((GET_CODE (operand1) == CONST
|
1696 |
|
|
&& GET_CODE (XEXP (operand1, 0)) == PLUS
|
1697 |
|
|
&& function_label_operand (XEXP (XEXP (operand1, 0), 0), Pmode))
|
1698 |
|
|
|| function_label_operand (operand1, mode))
|
1699 |
|
|
{
|
1700 |
|
|
rtx temp, const_part;
|
1701 |
|
|
|
1702 |
|
|
/* Figure out what (if any) scratch register to use. */
|
1703 |
|
|
if (reload_in_progress || reload_completed)
|
1704 |
|
|
{
|
1705 |
|
|
scratch_reg = scratch_reg ? scratch_reg : operand0;
|
1706 |
|
|
/* SCRATCH_REG will hold an address and maybe the actual
|
1707 |
|
|
data. We want it in WORD_MODE regardless of what mode it
|
1708 |
|
|
was originally given to us. */
|
1709 |
|
|
scratch_reg = force_mode (word_mode, scratch_reg);
|
1710 |
|
|
}
|
1711 |
|
|
else if (flag_pic)
|
1712 |
|
|
scratch_reg = gen_reg_rtx (Pmode);
|
1713 |
|
|
|
1714 |
|
|
if (GET_CODE (operand1) == CONST)
|
1715 |
|
|
{
|
1716 |
|
|
/* Save away the constant part of the expression. */
|
1717 |
|
|
const_part = XEXP (XEXP (operand1, 0), 1);
|
1718 |
|
|
gcc_assert (GET_CODE (const_part) == CONST_INT);
|
1719 |
|
|
|
1720 |
|
|
/* Force the function label into memory. */
|
1721 |
|
|
temp = force_const_mem (mode, XEXP (XEXP (operand1, 0), 0));
|
1722 |
|
|
}
|
1723 |
|
|
else
|
1724 |
|
|
{
|
1725 |
|
|
/* No constant part. */
|
1726 |
|
|
const_part = NULL_RTX;
|
1727 |
|
|
|
1728 |
|
|
/* Force the function label into memory. */
|
1729 |
|
|
temp = force_const_mem (mode, operand1);
|
1730 |
|
|
}
|
1731 |
|
|
|
1732 |
|
|
|
1733 |
|
|
/* Get the address of the memory location. PIC-ify it if
|
1734 |
|
|
necessary. */
|
1735 |
|
|
temp = XEXP (temp, 0);
|
1736 |
|
|
if (flag_pic)
|
1737 |
|
|
temp = legitimize_pic_address (temp, mode, scratch_reg);
|
1738 |
|
|
|
1739 |
|
|
/* Put the address of the memory location into our destination
|
1740 |
|
|
register. */
|
1741 |
|
|
operands[1] = temp;
|
1742 |
|
|
emit_move_sequence (operands, mode, scratch_reg);
|
1743 |
|
|
|
1744 |
|
|
/* Now load from the memory location into our destination
|
1745 |
|
|
register. */
|
1746 |
|
|
operands[1] = gen_rtx_MEM (Pmode, operands[0]);
|
1747 |
|
|
emit_move_sequence (operands, mode, scratch_reg);
|
1748 |
|
|
|
1749 |
|
|
/* And add back in the constant part. */
|
1750 |
|
|
if (const_part != NULL_RTX)
|
1751 |
|
|
expand_inc (operand0, const_part);
|
1752 |
|
|
|
1753 |
|
|
return 1;
|
1754 |
|
|
}
|
1755 |
|
|
|
1756 |
|
|
if (flag_pic)
|
1757 |
|
|
{
|
1758 |
|
|
rtx temp;
|
1759 |
|
|
|
1760 |
|
|
if (reload_in_progress || reload_completed)
|
1761 |
|
|
{
|
1762 |
|
|
temp = scratch_reg ? scratch_reg : operand0;
|
1763 |
|
|
/* TEMP will hold an address and maybe the actual
|
1764 |
|
|
data. We want it in WORD_MODE regardless of what mode it
|
1765 |
|
|
was originally given to us. */
|
1766 |
|
|
temp = force_mode (word_mode, temp);
|
1767 |
|
|
}
|
1768 |
|
|
else
|
1769 |
|
|
temp = gen_reg_rtx (Pmode);
|
1770 |
|
|
|
1771 |
|
|
/* (const (plus (symbol) (const_int))) must be forced to
|
1772 |
|
|
memory during/after reload if the const_int will not fit
|
1773 |
|
|
in 14 bits. */
|
1774 |
|
|
if (GET_CODE (operand1) == CONST
|
1775 |
|
|
&& GET_CODE (XEXP (operand1, 0)) == PLUS
|
1776 |
|
|
&& GET_CODE (XEXP (XEXP (operand1, 0), 1)) == CONST_INT
|
1777 |
|
|
&& !INT_14_BITS (XEXP (XEXP (operand1, 0), 1))
|
1778 |
|
|
&& (reload_completed || reload_in_progress)
|
1779 |
|
|
&& flag_pic)
|
1780 |
|
|
{
|
1781 |
|
|
rtx const_mem = force_const_mem (mode, operand1);
|
1782 |
|
|
operands[1] = legitimize_pic_address (XEXP (const_mem, 0),
|
1783 |
|
|
mode, temp);
|
1784 |
|
|
operands[1] = replace_equiv_address (const_mem, operands[1]);
|
1785 |
|
|
emit_move_sequence (operands, mode, temp);
|
1786 |
|
|
}
|
1787 |
|
|
else
|
1788 |
|
|
{
|
1789 |
|
|
operands[1] = legitimize_pic_address (operand1, mode, temp);
|
1790 |
|
|
if (REG_P (operand0) && REG_P (operands[1]))
|
1791 |
|
|
copy_reg_pointer (operand0, operands[1]);
|
1792 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operand0, operands[1]));
|
1793 |
|
|
}
|
1794 |
|
|
}
|
1795 |
|
|
/* On the HPPA, references to data space are supposed to use dp,
|
1796 |
|
|
register 27, but showing it in the RTL inhibits various cse
|
1797 |
|
|
and loop optimizations. */
|
1798 |
|
|
else
|
1799 |
|
|
{
|
1800 |
|
|
rtx temp, set;
|
1801 |
|
|
|
1802 |
|
|
if (reload_in_progress || reload_completed)
|
1803 |
|
|
{
|
1804 |
|
|
temp = scratch_reg ? scratch_reg : operand0;
|
1805 |
|
|
/* TEMP will hold an address and maybe the actual
|
1806 |
|
|
data. We want it in WORD_MODE regardless of what mode it
|
1807 |
|
|
was originally given to us. */
|
1808 |
|
|
temp = force_mode (word_mode, temp);
|
1809 |
|
|
}
|
1810 |
|
|
else
|
1811 |
|
|
temp = gen_reg_rtx (mode);
|
1812 |
|
|
|
1813 |
|
|
/* Loading a SYMBOL_REF into a register makes that register
|
1814 |
|
|
safe to be used as the base in an indexed address.
|
1815 |
|
|
|
1816 |
|
|
Don't mark hard registers though. That loses. */
|
1817 |
|
|
if (GET_CODE (operand0) == REG
|
1818 |
|
|
&& REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
|
1819 |
|
|
mark_reg_pointer (operand0, BITS_PER_UNIT);
|
1820 |
|
|
if (REGNO (temp) >= FIRST_PSEUDO_REGISTER)
|
1821 |
|
|
mark_reg_pointer (temp, BITS_PER_UNIT);
|
1822 |
|
|
|
1823 |
|
|
if (ishighonly)
|
1824 |
|
|
set = gen_rtx_SET (mode, operand0, temp);
|
1825 |
|
|
else
|
1826 |
|
|
set = gen_rtx_SET (VOIDmode,
|
1827 |
|
|
operand0,
|
1828 |
|
|
gen_rtx_LO_SUM (mode, temp, operand1));
|
1829 |
|
|
|
1830 |
|
|
emit_insn (gen_rtx_SET (VOIDmode,
|
1831 |
|
|
temp,
|
1832 |
|
|
gen_rtx_HIGH (mode, operand1)));
|
1833 |
|
|
emit_insn (set);
|
1834 |
|
|
|
1835 |
|
|
}
|
1836 |
|
|
return 1;
|
1837 |
|
|
}
|
1838 |
|
|
else if (pa_tls_referenced_p (operand1))
|
1839 |
|
|
{
|
1840 |
|
|
rtx tmp = operand1;
|
1841 |
|
|
rtx addend = NULL;
|
1842 |
|
|
|
1843 |
|
|
if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
|
1844 |
|
|
{
|
1845 |
|
|
addend = XEXP (XEXP (tmp, 0), 1);
|
1846 |
|
|
tmp = XEXP (XEXP (tmp, 0), 0);
|
1847 |
|
|
}
|
1848 |
|
|
|
1849 |
|
|
gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
|
1850 |
|
|
tmp = legitimize_tls_address (tmp);
|
1851 |
|
|
if (addend)
|
1852 |
|
|
{
|
1853 |
|
|
tmp = gen_rtx_PLUS (mode, tmp, addend);
|
1854 |
|
|
tmp = force_operand (tmp, operands[0]);
|
1855 |
|
|
}
|
1856 |
|
|
operands[1] = tmp;
|
1857 |
|
|
}
|
1858 |
|
|
else if (GET_CODE (operand1) != CONST_INT
|
1859 |
|
|
|| !cint_ok_for_move (INTVAL (operand1)))
|
1860 |
|
|
{
|
1861 |
|
|
rtx insn, temp;
|
1862 |
|
|
rtx op1 = operand1;
|
1863 |
|
|
HOST_WIDE_INT value = 0;
|
1864 |
|
|
HOST_WIDE_INT insv = 0;
|
1865 |
|
|
int insert = 0;
|
1866 |
|
|
|
1867 |
|
|
if (GET_CODE (operand1) == CONST_INT)
|
1868 |
|
|
value = INTVAL (operand1);
|
1869 |
|
|
|
1870 |
|
|
if (TARGET_64BIT
|
1871 |
|
|
&& GET_CODE (operand1) == CONST_INT
|
1872 |
|
|
&& HOST_BITS_PER_WIDE_INT > 32
|
1873 |
|
|
&& GET_MODE_BITSIZE (GET_MODE (operand0)) > 32)
|
1874 |
|
|
{
|
1875 |
|
|
HOST_WIDE_INT nval;
|
1876 |
|
|
|
1877 |
|
|
/* Extract the low order 32 bits of the value and sign extend.
|
1878 |
|
|
If the new value is the same as the original value, we can
|
1879 |
|
|
can use the original value as-is. If the new value is
|
1880 |
|
|
different, we use it and insert the most-significant 32-bits
|
1881 |
|
|
of the original value into the final result. */
|
1882 |
|
|
nval = ((value & (((HOST_WIDE_INT) 2 << 31) - 1))
|
1883 |
|
|
^ ((HOST_WIDE_INT) 1 << 31)) - ((HOST_WIDE_INT) 1 << 31);
|
1884 |
|
|
if (value != nval)
|
1885 |
|
|
{
|
1886 |
|
|
#if HOST_BITS_PER_WIDE_INT > 32
|
1887 |
|
|
insv = value >= 0 ? value >> 32 : ~(~value >> 32);
|
1888 |
|
|
#endif
|
1889 |
|
|
insert = 1;
|
1890 |
|
|
value = nval;
|
1891 |
|
|
operand1 = GEN_INT (nval);
|
1892 |
|
|
}
|
1893 |
|
|
}
|
1894 |
|
|
|
1895 |
|
|
if (reload_in_progress || reload_completed)
|
1896 |
|
|
temp = scratch_reg ? scratch_reg : operand0;
|
1897 |
|
|
else
|
1898 |
|
|
temp = gen_reg_rtx (mode);
|
1899 |
|
|
|
1900 |
|
|
/* We don't directly split DImode constants on 32-bit targets
|
1901 |
|
|
because PLUS uses an 11-bit immediate and the insn sequence
|
1902 |
|
|
generated is not as efficient as the one using HIGH/LO_SUM. */
|
1903 |
|
|
if (GET_CODE (operand1) == CONST_INT
|
1904 |
|
|
&& GET_MODE_BITSIZE (mode) <= BITS_PER_WORD
|
1905 |
|
|
&& GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
|
1906 |
|
|
&& !insert)
|
1907 |
|
|
{
|
1908 |
|
|
/* Directly break constant into high and low parts. This
|
1909 |
|
|
provides better optimization opportunities because various
|
1910 |
|
|
passes recognize constants split with PLUS but not LO_SUM.
|
1911 |
|
|
We use a 14-bit signed low part except when the addition
|
1912 |
|
|
of 0x4000 to the high part might change the sign of the
|
1913 |
|
|
high part. */
|
1914 |
|
|
HOST_WIDE_INT low = value & 0x3fff;
|
1915 |
|
|
HOST_WIDE_INT high = value & ~ 0x3fff;
|
1916 |
|
|
|
1917 |
|
|
if (low >= 0x2000)
|
1918 |
|
|
{
|
1919 |
|
|
if (high == 0x7fffc000 || (mode == HImode && high == 0x4000))
|
1920 |
|
|
high += 0x2000;
|
1921 |
|
|
else
|
1922 |
|
|
high += 0x4000;
|
1923 |
|
|
}
|
1924 |
|
|
|
1925 |
|
|
low = value - high;
|
1926 |
|
|
|
1927 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp, GEN_INT (high)));
|
1928 |
|
|
operands[1] = gen_rtx_PLUS (mode, temp, GEN_INT (low));
|
1929 |
|
|
}
|
1930 |
|
|
else
|
1931 |
|
|
{
|
1932 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp,
|
1933 |
|
|
gen_rtx_HIGH (mode, operand1)));
|
1934 |
|
|
operands[1] = gen_rtx_LO_SUM (mode, temp, operand1);
|
1935 |
|
|
}
|
1936 |
|
|
|
1937 |
|
|
insn = emit_move_insn (operands[0], operands[1]);
|
1938 |
|
|
|
1939 |
|
|
/* Now insert the most significant 32 bits of the value
|
1940 |
|
|
into the register. When we don't have a second register
|
1941 |
|
|
available, it could take up to nine instructions to load
|
1942 |
|
|
a 64-bit integer constant. Prior to reload, we force
|
1943 |
|
|
constants that would take more than three instructions
|
1944 |
|
|
to load to the constant pool. During and after reload,
|
1945 |
|
|
we have to handle all possible values. */
|
1946 |
|
|
if (insert)
|
1947 |
|
|
{
|
1948 |
|
|
/* Use a HIGH/LO_SUM/INSV sequence if we have a second
|
1949 |
|
|
register and the value to be inserted is outside the
|
1950 |
|
|
range that can be loaded with three depdi instructions. */
|
1951 |
|
|
if (temp != operand0 && (insv >= 16384 || insv < -16384))
|
1952 |
|
|
{
|
1953 |
|
|
operand1 = GEN_INT (insv);
|
1954 |
|
|
|
1955 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, temp,
|
1956 |
|
|
gen_rtx_HIGH (mode, operand1)));
|
1957 |
|
|
emit_move_insn (temp, gen_rtx_LO_SUM (mode, temp, operand1));
|
1958 |
|
|
emit_insn (gen_insv (operand0, GEN_INT (32),
|
1959 |
|
|
const0_rtx, temp));
|
1960 |
|
|
}
|
1961 |
|
|
else
|
1962 |
|
|
{
|
1963 |
|
|
int len = 5, pos = 27;
|
1964 |
|
|
|
1965 |
|
|
/* Insert the bits using the depdi instruction. */
|
1966 |
|
|
while (pos >= 0)
|
1967 |
|
|
{
|
1968 |
|
|
HOST_WIDE_INT v5 = ((insv & 31) ^ 16) - 16;
|
1969 |
|
|
HOST_WIDE_INT sign = v5 < 0;
|
1970 |
|
|
|
1971 |
|
|
/* Left extend the insertion. */
|
1972 |
|
|
insv = (insv >= 0 ? insv >> len : ~(~insv >> len));
|
1973 |
|
|
while (pos > 0 && (insv & 1) == sign)
|
1974 |
|
|
{
|
1975 |
|
|
insv = (insv >= 0 ? insv >> 1 : ~(~insv >> 1));
|
1976 |
|
|
len += 1;
|
1977 |
|
|
pos -= 1;
|
1978 |
|
|
}
|
1979 |
|
|
|
1980 |
|
|
emit_insn (gen_insv (operand0, GEN_INT (len),
|
1981 |
|
|
GEN_INT (pos), GEN_INT (v5)));
|
1982 |
|
|
|
1983 |
|
|
len = pos > 0 && pos < 5 ? pos : 5;
|
1984 |
|
|
pos -= len;
|
1985 |
|
|
}
|
1986 |
|
|
}
|
1987 |
|
|
}
|
1988 |
|
|
|
1989 |
|
|
REG_NOTES (insn)
|
1990 |
|
|
= gen_rtx_EXPR_LIST (REG_EQUAL, op1, REG_NOTES (insn));
|
1991 |
|
|
|
1992 |
|
|
return 1;
|
1993 |
|
|
}
|
1994 |
|
|
}
|
1995 |
|
|
/* Now have insn-emit do whatever it normally does. */
|
1996 |
|
|
return 0;
|
1997 |
|
|
}
|
1998 |
|
|
|
1999 |
|
|
/* Examine EXP and return nonzero if it contains an ADDR_EXPR (meaning
|
2000 |
|
|
it will need a link/runtime reloc). */
|
2001 |
|
|
|
2002 |
|
|
int
|
2003 |
|
|
reloc_needed (tree exp)
|
2004 |
|
|
{
|
2005 |
|
|
int reloc = 0;
|
2006 |
|
|
|
2007 |
|
|
switch (TREE_CODE (exp))
|
2008 |
|
|
{
|
2009 |
|
|
case ADDR_EXPR:
|
2010 |
|
|
return 1;
|
2011 |
|
|
|
2012 |
|
|
case PLUS_EXPR:
|
2013 |
|
|
case MINUS_EXPR:
|
2014 |
|
|
reloc = reloc_needed (TREE_OPERAND (exp, 0));
|
2015 |
|
|
reloc |= reloc_needed (TREE_OPERAND (exp, 1));
|
2016 |
|
|
break;
|
2017 |
|
|
|
2018 |
|
|
case NOP_EXPR:
|
2019 |
|
|
case CONVERT_EXPR:
|
2020 |
|
|
case NON_LVALUE_EXPR:
|
2021 |
|
|
reloc = reloc_needed (TREE_OPERAND (exp, 0));
|
2022 |
|
|
break;
|
2023 |
|
|
|
2024 |
|
|
case CONSTRUCTOR:
|
2025 |
|
|
{
|
2026 |
|
|
tree value;
|
2027 |
|
|
unsigned HOST_WIDE_INT ix;
|
2028 |
|
|
|
2029 |
|
|
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
|
2030 |
|
|
if (value)
|
2031 |
|
|
reloc |= reloc_needed (value);
|
2032 |
|
|
}
|
2033 |
|
|
break;
|
2034 |
|
|
|
2035 |
|
|
case ERROR_MARK:
|
2036 |
|
|
break;
|
2037 |
|
|
|
2038 |
|
|
default:
|
2039 |
|
|
break;
|
2040 |
|
|
}
|
2041 |
|
|
return reloc;
|
2042 |
|
|
}
|
2043 |
|
|
|
2044 |
|
|
/* Does operand (which is a symbolic_operand) live in text space?
|
2045 |
|
|
If so, SYMBOL_REF_FLAG, which is set by pa_encode_section_info,
|
2046 |
|
|
will be true. */
|
2047 |
|
|
|
2048 |
|
|
int
|
2049 |
|
|
read_only_operand (rtx operand, enum machine_mode mode ATTRIBUTE_UNUSED)
|
2050 |
|
|
{
|
2051 |
|
|
if (GET_CODE (operand) == CONST)
|
2052 |
|
|
operand = XEXP (XEXP (operand, 0), 0);
|
2053 |
|
|
if (flag_pic)
|
2054 |
|
|
{
|
2055 |
|
|
if (GET_CODE (operand) == SYMBOL_REF)
|
2056 |
|
|
return SYMBOL_REF_FLAG (operand) && !CONSTANT_POOL_ADDRESS_P (operand);
|
2057 |
|
|
}
|
2058 |
|
|
else
|
2059 |
|
|
{
|
2060 |
|
|
if (GET_CODE (operand) == SYMBOL_REF)
|
2061 |
|
|
return SYMBOL_REF_FLAG (operand) || CONSTANT_POOL_ADDRESS_P (operand);
|
2062 |
|
|
}
|
2063 |
|
|
return 1;
|
2064 |
|
|
}
|
2065 |
|
|
|
2066 |
|
|
|
2067 |
|
|
/* Return the best assembler insn template
|
2068 |
|
|
for moving operands[1] into operands[0] as a fullword. */
|
2069 |
|
|
const char *
|
2070 |
|
|
singlemove_string (rtx *operands)
|
2071 |
|
|
{
|
2072 |
|
|
HOST_WIDE_INT intval;
|
2073 |
|
|
|
2074 |
|
|
if (GET_CODE (operands[0]) == MEM)
|
2075 |
|
|
return "stw %r1,%0";
|
2076 |
|
|
if (GET_CODE (operands[1]) == MEM)
|
2077 |
|
|
return "ldw %1,%0";
|
2078 |
|
|
if (GET_CODE (operands[1]) == CONST_DOUBLE)
|
2079 |
|
|
{
|
2080 |
|
|
long i;
|
2081 |
|
|
REAL_VALUE_TYPE d;
|
2082 |
|
|
|
2083 |
|
|
gcc_assert (GET_MODE (operands[1]) == SFmode);
|
2084 |
|
|
|
2085 |
|
|
/* Translate the CONST_DOUBLE to a CONST_INT with the same target
|
2086 |
|
|
bit pattern. */
|
2087 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (d, operands[1]);
|
2088 |
|
|
REAL_VALUE_TO_TARGET_SINGLE (d, i);
|
2089 |
|
|
|
2090 |
|
|
operands[1] = GEN_INT (i);
|
2091 |
|
|
/* Fall through to CONST_INT case. */
|
2092 |
|
|
}
|
2093 |
|
|
if (GET_CODE (operands[1]) == CONST_INT)
|
2094 |
|
|
{
|
2095 |
|
|
intval = INTVAL (operands[1]);
|
2096 |
|
|
|
2097 |
|
|
if (VAL_14_BITS_P (intval))
|
2098 |
|
|
return "ldi %1,%0";
|
2099 |
|
|
else if ((intval & 0x7ff) == 0)
|
2100 |
|
|
return "ldil L'%1,%0";
|
2101 |
|
|
else if (zdepi_cint_p (intval))
|
2102 |
|
|
return "{zdepi %Z1,%0|depwi,z %Z1,%0}";
|
2103 |
|
|
else
|
2104 |
|
|
return "ldil L'%1,%0\n\tldo R'%1(%0),%0";
|
2105 |
|
|
}
|
2106 |
|
|
return "copy %1,%0";
|
2107 |
|
|
}
|
2108 |
|
|
|
2109 |
|
|
|
2110 |
|
|
/* Compute position (in OP[1]) and width (in OP[2])
|
2111 |
|
|
useful for copying IMM to a register using the zdepi
|
2112 |
|
|
instructions. Store the immediate value to insert in OP[0]. */
|
2113 |
|
|
static void
|
2114 |
|
|
compute_zdepwi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
|
2115 |
|
|
{
|
2116 |
|
|
int lsb, len;
|
2117 |
|
|
|
2118 |
|
|
/* Find the least significant set bit in IMM. */
|
2119 |
|
|
for (lsb = 0; lsb < 32; lsb++)
|
2120 |
|
|
{
|
2121 |
|
|
if ((imm & 1) != 0)
|
2122 |
|
|
break;
|
2123 |
|
|
imm >>= 1;
|
2124 |
|
|
}
|
2125 |
|
|
|
2126 |
|
|
/* Choose variants based on *sign* of the 5-bit field. */
|
2127 |
|
|
if ((imm & 0x10) == 0)
|
2128 |
|
|
len = (lsb <= 28) ? 4 : 32 - lsb;
|
2129 |
|
|
else
|
2130 |
|
|
{
|
2131 |
|
|
/* Find the width of the bitstring in IMM. */
|
2132 |
|
|
for (len = 5; len < 32; len++)
|
2133 |
|
|
{
|
2134 |
|
|
if ((imm & (1 << len)) == 0)
|
2135 |
|
|
break;
|
2136 |
|
|
}
|
2137 |
|
|
|
2138 |
|
|
/* Sign extend IMM as a 5-bit value. */
|
2139 |
|
|
imm = (imm & 0xf) - 0x10;
|
2140 |
|
|
}
|
2141 |
|
|
|
2142 |
|
|
op[0] = imm;
|
2143 |
|
|
op[1] = 31 - lsb;
|
2144 |
|
|
op[2] = len;
|
2145 |
|
|
}
|
2146 |
|
|
|
2147 |
|
|
/* Compute position (in OP[1]) and width (in OP[2])
|
2148 |
|
|
useful for copying IMM to a register using the depdi,z
|
2149 |
|
|
instructions. Store the immediate value to insert in OP[0]. */
|
2150 |
|
|
void
|
2151 |
|
|
compute_zdepdi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
|
2152 |
|
|
{
|
2153 |
|
|
HOST_WIDE_INT lsb, len;
|
2154 |
|
|
|
2155 |
|
|
/* Find the least significant set bit in IMM. */
|
2156 |
|
|
for (lsb = 0; lsb < HOST_BITS_PER_WIDE_INT; lsb++)
|
2157 |
|
|
{
|
2158 |
|
|
if ((imm & 1) != 0)
|
2159 |
|
|
break;
|
2160 |
|
|
imm >>= 1;
|
2161 |
|
|
}
|
2162 |
|
|
|
2163 |
|
|
/* Choose variants based on *sign* of the 5-bit field. */
|
2164 |
|
|
if ((imm & 0x10) == 0)
|
2165 |
|
|
len = ((lsb <= HOST_BITS_PER_WIDE_INT - 4)
|
2166 |
|
|
? 4 : HOST_BITS_PER_WIDE_INT - lsb);
|
2167 |
|
|
else
|
2168 |
|
|
{
|
2169 |
|
|
/* Find the width of the bitstring in IMM. */
|
2170 |
|
|
for (len = 5; len < HOST_BITS_PER_WIDE_INT; len++)
|
2171 |
|
|
{
|
2172 |
|
|
if ((imm & ((unsigned HOST_WIDE_INT) 1 << len)) == 0)
|
2173 |
|
|
break;
|
2174 |
|
|
}
|
2175 |
|
|
|
2176 |
|
|
/* Sign extend IMM as a 5-bit value. */
|
2177 |
|
|
imm = (imm & 0xf) - 0x10;
|
2178 |
|
|
}
|
2179 |
|
|
|
2180 |
|
|
op[0] = imm;
|
2181 |
|
|
op[1] = 63 - lsb;
|
2182 |
|
|
op[2] = len;
|
2183 |
|
|
}
|
2184 |
|
|
|
2185 |
|
|
/* Output assembler code to perform a doubleword move insn
|
2186 |
|
|
with operands OPERANDS. */
|
2187 |
|
|
|
2188 |
|
|
const char *
|
2189 |
|
|
output_move_double (rtx *operands)
|
2190 |
|
|
{
|
2191 |
|
|
enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1;
|
2192 |
|
|
rtx latehalf[2];
|
2193 |
|
|
rtx addreg0 = 0, addreg1 = 0;
|
2194 |
|
|
|
2195 |
|
|
/* First classify both operands. */
|
2196 |
|
|
|
2197 |
|
|
if (REG_P (operands[0]))
|
2198 |
|
|
optype0 = REGOP;
|
2199 |
|
|
else if (offsettable_memref_p (operands[0]))
|
2200 |
|
|
optype0 = OFFSOP;
|
2201 |
|
|
else if (GET_CODE (operands[0]) == MEM)
|
2202 |
|
|
optype0 = MEMOP;
|
2203 |
|
|
else
|
2204 |
|
|
optype0 = RNDOP;
|
2205 |
|
|
|
2206 |
|
|
if (REG_P (operands[1]))
|
2207 |
|
|
optype1 = REGOP;
|
2208 |
|
|
else if (CONSTANT_P (operands[1]))
|
2209 |
|
|
optype1 = CNSTOP;
|
2210 |
|
|
else if (offsettable_memref_p (operands[1]))
|
2211 |
|
|
optype1 = OFFSOP;
|
2212 |
|
|
else if (GET_CODE (operands[1]) == MEM)
|
2213 |
|
|
optype1 = MEMOP;
|
2214 |
|
|
else
|
2215 |
|
|
optype1 = RNDOP;
|
2216 |
|
|
|
2217 |
|
|
/* Check for the cases that the operand constraints are not
|
2218 |
|
|
supposed to allow to happen. */
|
2219 |
|
|
gcc_assert (optype0 == REGOP || optype1 == REGOP);
|
2220 |
|
|
|
2221 |
|
|
/* Handle copies between general and floating registers. */
|
2222 |
|
|
|
2223 |
|
|
if (optype0 == REGOP && optype1 == REGOP
|
2224 |
|
|
&& FP_REG_P (operands[0]) ^ FP_REG_P (operands[1]))
|
2225 |
|
|
{
|
2226 |
|
|
if (FP_REG_P (operands[0]))
|
2227 |
|
|
{
|
2228 |
|
|
output_asm_insn ("{stws|stw} %1,-16(%%sp)", operands);
|
2229 |
|
|
output_asm_insn ("{stws|stw} %R1,-12(%%sp)", operands);
|
2230 |
|
|
return "{fldds|fldd} -16(%%sp),%0";
|
2231 |
|
|
}
|
2232 |
|
|
else
|
2233 |
|
|
{
|
2234 |
|
|
output_asm_insn ("{fstds|fstd} %1,-16(%%sp)", operands);
|
2235 |
|
|
output_asm_insn ("{ldws|ldw} -16(%%sp),%0", operands);
|
2236 |
|
|
return "{ldws|ldw} -12(%%sp),%R0";
|
2237 |
|
|
}
|
2238 |
|
|
}
|
2239 |
|
|
|
2240 |
|
|
/* Handle auto decrementing and incrementing loads and stores
|
2241 |
|
|
specifically, since the structure of the function doesn't work
|
2242 |
|
|
for them without major modification. Do it better when we learn
|
2243 |
|
|
this port about the general inc/dec addressing of PA.
|
2244 |
|
|
(This was written by tege. Chide him if it doesn't work.) */
|
2245 |
|
|
|
2246 |
|
|
if (optype0 == MEMOP)
|
2247 |
|
|
{
|
2248 |
|
|
/* We have to output the address syntax ourselves, since print_operand
|
2249 |
|
|
doesn't deal with the addresses we want to use. Fix this later. */
|
2250 |
|
|
|
2251 |
|
|
rtx addr = XEXP (operands[0], 0);
|
2252 |
|
|
if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
|
2253 |
|
|
{
|
2254 |
|
|
rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
|
2255 |
|
|
|
2256 |
|
|
operands[0] = XEXP (addr, 0);
|
2257 |
|
|
gcc_assert (GET_CODE (operands[1]) == REG
|
2258 |
|
|
&& GET_CODE (operands[0]) == REG);
|
2259 |
|
|
|
2260 |
|
|
gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
|
2261 |
|
|
|
2262 |
|
|
/* No overlap between high target register and address
|
2263 |
|
|
register. (We do this in a non-obvious way to
|
2264 |
|
|
save a register file writeback) */
|
2265 |
|
|
if (GET_CODE (addr) == POST_INC)
|
2266 |
|
|
return "{stws|stw},ma %1,8(%0)\n\tstw %R1,-4(%0)";
|
2267 |
|
|
return "{stws|stw},ma %1,-8(%0)\n\tstw %R1,12(%0)";
|
2268 |
|
|
}
|
2269 |
|
|
else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
|
2270 |
|
|
{
|
2271 |
|
|
rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
|
2272 |
|
|
|
2273 |
|
|
operands[0] = XEXP (addr, 0);
|
2274 |
|
|
gcc_assert (GET_CODE (operands[1]) == REG
|
2275 |
|
|
&& GET_CODE (operands[0]) == REG);
|
2276 |
|
|
|
2277 |
|
|
gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
|
2278 |
|
|
/* No overlap between high target register and address
|
2279 |
|
|
register. (We do this in a non-obvious way to save a
|
2280 |
|
|
register file writeback) */
|
2281 |
|
|
if (GET_CODE (addr) == PRE_INC)
|
2282 |
|
|
return "{stws|stw},mb %1,8(%0)\n\tstw %R1,4(%0)";
|
2283 |
|
|
return "{stws|stw},mb %1,-8(%0)\n\tstw %R1,4(%0)";
|
2284 |
|
|
}
|
2285 |
|
|
}
|
2286 |
|
|
if (optype1 == MEMOP)
|
2287 |
|
|
{
|
2288 |
|
|
/* We have to output the address syntax ourselves, since print_operand
|
2289 |
|
|
doesn't deal with the addresses we want to use. Fix this later. */
|
2290 |
|
|
|
2291 |
|
|
rtx addr = XEXP (operands[1], 0);
|
2292 |
|
|
if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
|
2293 |
|
|
{
|
2294 |
|
|
rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
|
2295 |
|
|
|
2296 |
|
|
operands[1] = XEXP (addr, 0);
|
2297 |
|
|
gcc_assert (GET_CODE (operands[0]) == REG
|
2298 |
|
|
&& GET_CODE (operands[1]) == REG);
|
2299 |
|
|
|
2300 |
|
|
if (!reg_overlap_mentioned_p (high_reg, addr))
|
2301 |
|
|
{
|
2302 |
|
|
/* No overlap between high target register and address
|
2303 |
|
|
register. (We do this in a non-obvious way to
|
2304 |
|
|
save a register file writeback) */
|
2305 |
|
|
if (GET_CODE (addr) == POST_INC)
|
2306 |
|
|
return "{ldws|ldw},ma 8(%1),%0\n\tldw -4(%1),%R0";
|
2307 |
|
|
return "{ldws|ldw},ma -8(%1),%0\n\tldw 12(%1),%R0";
|
2308 |
|
|
}
|
2309 |
|
|
else
|
2310 |
|
|
{
|
2311 |
|
|
/* This is an undefined situation. We should load into the
|
2312 |
|
|
address register *and* update that register. Probably
|
2313 |
|
|
we don't need to handle this at all. */
|
2314 |
|
|
if (GET_CODE (addr) == POST_INC)
|
2315 |
|
|
return "ldw 4(%1),%R0\n\t{ldws|ldw},ma 8(%1),%0";
|
2316 |
|
|
return "ldw 4(%1),%R0\n\t{ldws|ldw},ma -8(%1),%0";
|
2317 |
|
|
}
|
2318 |
|
|
}
|
2319 |
|
|
else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
|
2320 |
|
|
{
|
2321 |
|
|
rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
|
2322 |
|
|
|
2323 |
|
|
operands[1] = XEXP (addr, 0);
|
2324 |
|
|
gcc_assert (GET_CODE (operands[0]) == REG
|
2325 |
|
|
&& GET_CODE (operands[1]) == REG);
|
2326 |
|
|
|
2327 |
|
|
if (!reg_overlap_mentioned_p (high_reg, addr))
|
2328 |
|
|
{
|
2329 |
|
|
/* No overlap between high target register and address
|
2330 |
|
|
register. (We do this in a non-obvious way to
|
2331 |
|
|
save a register file writeback) */
|
2332 |
|
|
if (GET_CODE (addr) == PRE_INC)
|
2333 |
|
|
return "{ldws|ldw},mb 8(%1),%0\n\tldw 4(%1),%R0";
|
2334 |
|
|
return "{ldws|ldw},mb -8(%1),%0\n\tldw 4(%1),%R0";
|
2335 |
|
|
}
|
2336 |
|
|
else
|
2337 |
|
|
{
|
2338 |
|
|
/* This is an undefined situation. We should load into the
|
2339 |
|
|
address register *and* update that register. Probably
|
2340 |
|
|
we don't need to handle this at all. */
|
2341 |
|
|
if (GET_CODE (addr) == PRE_INC)
|
2342 |
|
|
return "ldw 12(%1),%R0\n\t{ldws|ldw},mb 8(%1),%0";
|
2343 |
|
|
return "ldw -4(%1),%R0\n\t{ldws|ldw},mb -8(%1),%0";
|
2344 |
|
|
}
|
2345 |
|
|
}
|
2346 |
|
|
else if (GET_CODE (addr) == PLUS
|
2347 |
|
|
&& GET_CODE (XEXP (addr, 0)) == MULT)
|
2348 |
|
|
{
|
2349 |
|
|
rtx xoperands[4];
|
2350 |
|
|
rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
|
2351 |
|
|
|
2352 |
|
|
if (!reg_overlap_mentioned_p (high_reg, addr))
|
2353 |
|
|
{
|
2354 |
|
|
xoperands[0] = high_reg;
|
2355 |
|
|
xoperands[1] = XEXP (addr, 1);
|
2356 |
|
|
xoperands[2] = XEXP (XEXP (addr, 0), 0);
|
2357 |
|
|
xoperands[3] = XEXP (XEXP (addr, 0), 1);
|
2358 |
|
|
output_asm_insn ("{sh%O3addl %2,%1,%0|shladd,l %2,%O3,%1,%0}",
|
2359 |
|
|
xoperands);
|
2360 |
|
|
return "ldw 4(%0),%R0\n\tldw 0(%0),%0";
|
2361 |
|
|
}
|
2362 |
|
|
else
|
2363 |
|
|
{
|
2364 |
|
|
xoperands[0] = high_reg;
|
2365 |
|
|
xoperands[1] = XEXP (addr, 1);
|
2366 |
|
|
xoperands[2] = XEXP (XEXP (addr, 0), 0);
|
2367 |
|
|
xoperands[3] = XEXP (XEXP (addr, 0), 1);
|
2368 |
|
|
output_asm_insn ("{sh%O3addl %2,%1,%R0|shladd,l %2,%O3,%1,%R0}",
|
2369 |
|
|
xoperands);
|
2370 |
|
|
return "ldw 0(%R0),%0\n\tldw 4(%R0),%R0";
|
2371 |
|
|
}
|
2372 |
|
|
}
|
2373 |
|
|
}
|
2374 |
|
|
|
2375 |
|
|
/* If an operand is an unoffsettable memory ref, find a register
|
2376 |
|
|
we can increment temporarily to make it refer to the second word. */
|
2377 |
|
|
|
2378 |
|
|
if (optype0 == MEMOP)
|
2379 |
|
|
addreg0 = find_addr_reg (XEXP (operands[0], 0));
|
2380 |
|
|
|
2381 |
|
|
if (optype1 == MEMOP)
|
2382 |
|
|
addreg1 = find_addr_reg (XEXP (operands[1], 0));
|
2383 |
|
|
|
2384 |
|
|
/* Ok, we can do one word at a time.
|
2385 |
|
|
Normally we do the low-numbered word first.
|
2386 |
|
|
|
2387 |
|
|
In either case, set up in LATEHALF the operands to use
|
2388 |
|
|
for the high-numbered word and in some cases alter the
|
2389 |
|
|
operands in OPERANDS to be suitable for the low-numbered word. */
|
2390 |
|
|
|
2391 |
|
|
if (optype0 == REGOP)
|
2392 |
|
|
latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
|
2393 |
|
|
else if (optype0 == OFFSOP)
|
2394 |
|
|
latehalf[0] = adjust_address (operands[0], SImode, 4);
|
2395 |
|
|
else
|
2396 |
|
|
latehalf[0] = operands[0];
|
2397 |
|
|
|
2398 |
|
|
if (optype1 == REGOP)
|
2399 |
|
|
latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
|
2400 |
|
|
else if (optype1 == OFFSOP)
|
2401 |
|
|
latehalf[1] = adjust_address (operands[1], SImode, 4);
|
2402 |
|
|
else if (optype1 == CNSTOP)
|
2403 |
|
|
split_double (operands[1], &operands[1], &latehalf[1]);
|
2404 |
|
|
else
|
2405 |
|
|
latehalf[1] = operands[1];
|
2406 |
|
|
|
2407 |
|
|
/* If the first move would clobber the source of the second one,
|
2408 |
|
|
do them in the other order.
|
2409 |
|
|
|
2410 |
|
|
This can happen in two cases:
|
2411 |
|
|
|
2412 |
|
|
mem -> register where the first half of the destination register
|
2413 |
|
|
is the same register used in the memory's address. Reload
|
2414 |
|
|
can create such insns.
|
2415 |
|
|
|
2416 |
|
|
mem in this case will be either register indirect or register
|
2417 |
|
|
indirect plus a valid offset.
|
2418 |
|
|
|
2419 |
|
|
register -> register move where REGNO(dst) == REGNO(src + 1)
|
2420 |
|
|
someone (Tim/Tege?) claimed this can happen for parameter loads.
|
2421 |
|
|
|
2422 |
|
|
Handle mem -> register case first. */
|
2423 |
|
|
if (optype0 == REGOP
|
2424 |
|
|
&& (optype1 == MEMOP || optype1 == OFFSOP)
|
2425 |
|
|
&& refers_to_regno_p (REGNO (operands[0]), REGNO (operands[0]) + 1,
|
2426 |
|
|
operands[1], 0))
|
2427 |
|
|
{
|
2428 |
|
|
/* Do the late half first. */
|
2429 |
|
|
if (addreg1)
|
2430 |
|
|
output_asm_insn ("ldo 4(%0),%0", &addreg1);
|
2431 |
|
|
output_asm_insn (singlemove_string (latehalf), latehalf);
|
2432 |
|
|
|
2433 |
|
|
/* Then clobber. */
|
2434 |
|
|
if (addreg1)
|
2435 |
|
|
output_asm_insn ("ldo -4(%0),%0", &addreg1);
|
2436 |
|
|
return singlemove_string (operands);
|
2437 |
|
|
}
|
2438 |
|
|
|
2439 |
|
|
/* Now handle register -> register case. */
|
2440 |
|
|
if (optype0 == REGOP && optype1 == REGOP
|
2441 |
|
|
&& REGNO (operands[0]) == REGNO (operands[1]) + 1)
|
2442 |
|
|
{
|
2443 |
|
|
output_asm_insn (singlemove_string (latehalf), latehalf);
|
2444 |
|
|
return singlemove_string (operands);
|
2445 |
|
|
}
|
2446 |
|
|
|
2447 |
|
|
/* Normal case: do the two words, low-numbered first. */
|
2448 |
|
|
|
2449 |
|
|
output_asm_insn (singlemove_string (operands), operands);
|
2450 |
|
|
|
2451 |
|
|
/* Make any unoffsettable addresses point at high-numbered word. */
|
2452 |
|
|
if (addreg0)
|
2453 |
|
|
output_asm_insn ("ldo 4(%0),%0", &addreg0);
|
2454 |
|
|
if (addreg1)
|
2455 |
|
|
output_asm_insn ("ldo 4(%0),%0", &addreg1);
|
2456 |
|
|
|
2457 |
|
|
/* Do that word. */
|
2458 |
|
|
output_asm_insn (singlemove_string (latehalf), latehalf);
|
2459 |
|
|
|
2460 |
|
|
/* Undo the adds we just did. */
|
2461 |
|
|
if (addreg0)
|
2462 |
|
|
output_asm_insn ("ldo -4(%0),%0", &addreg0);
|
2463 |
|
|
if (addreg1)
|
2464 |
|
|
output_asm_insn ("ldo -4(%0),%0", &addreg1);
|
2465 |
|
|
|
2466 |
|
|
return "";
|
2467 |
|
|
}
|
2468 |
|
|
|
2469 |
|
|
const char *
|
2470 |
|
|
output_fp_move_double (rtx *operands)
|
2471 |
|
|
{
|
2472 |
|
|
if (FP_REG_P (operands[0]))
|
2473 |
|
|
{
|
2474 |
|
|
if (FP_REG_P (operands[1])
|
2475 |
|
|
|| operands[1] == CONST0_RTX (GET_MODE (operands[0])))
|
2476 |
|
|
output_asm_insn ("fcpy,dbl %f1,%0", operands);
|
2477 |
|
|
else
|
2478 |
|
|
output_asm_insn ("fldd%F1 %1,%0", operands);
|
2479 |
|
|
}
|
2480 |
|
|
else if (FP_REG_P (operands[1]))
|
2481 |
|
|
{
|
2482 |
|
|
output_asm_insn ("fstd%F0 %1,%0", operands);
|
2483 |
|
|
}
|
2484 |
|
|
else
|
2485 |
|
|
{
|
2486 |
|
|
rtx xoperands[2];
|
2487 |
|
|
|
2488 |
|
|
gcc_assert (operands[1] == CONST0_RTX (GET_MODE (operands[0])));
|
2489 |
|
|
|
2490 |
|
|
/* This is a pain. You have to be prepared to deal with an
|
2491 |
|
|
arbitrary address here including pre/post increment/decrement.
|
2492 |
|
|
|
2493 |
|
|
so avoid this in the MD. */
|
2494 |
|
|
gcc_assert (GET_CODE (operands[0]) == REG);
|
2495 |
|
|
|
2496 |
|
|
xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
|
2497 |
|
|
xoperands[0] = operands[0];
|
2498 |
|
|
output_asm_insn ("copy %%r0,%0\n\tcopy %%r0,%1", xoperands);
|
2499 |
|
|
}
|
2500 |
|
|
return "";
|
2501 |
|
|
}
|
2502 |
|
|
|
2503 |
|
|
/* Return a REG that occurs in ADDR with coefficient 1.
|
2504 |
|
|
ADDR can be effectively incremented by incrementing REG. */
|
2505 |
|
|
|
2506 |
|
|
static rtx
|
2507 |
|
|
find_addr_reg (rtx addr)
|
2508 |
|
|
{
|
2509 |
|
|
while (GET_CODE (addr) == PLUS)
|
2510 |
|
|
{
|
2511 |
|
|
if (GET_CODE (XEXP (addr, 0)) == REG)
|
2512 |
|
|
addr = XEXP (addr, 0);
|
2513 |
|
|
else if (GET_CODE (XEXP (addr, 1)) == REG)
|
2514 |
|
|
addr = XEXP (addr, 1);
|
2515 |
|
|
else if (CONSTANT_P (XEXP (addr, 0)))
|
2516 |
|
|
addr = XEXP (addr, 1);
|
2517 |
|
|
else if (CONSTANT_P (XEXP (addr, 1)))
|
2518 |
|
|
addr = XEXP (addr, 0);
|
2519 |
|
|
else
|
2520 |
|
|
gcc_unreachable ();
|
2521 |
|
|
}
|
2522 |
|
|
gcc_assert (GET_CODE (addr) == REG);
|
2523 |
|
|
return addr;
|
2524 |
|
|
}
|
2525 |
|
|
|
2526 |
|
|
/* Emit code to perform a block move.
|
2527 |
|
|
|
2528 |
|
|
OPERANDS[0] is the destination pointer as a REG, clobbered.
|
2529 |
|
|
OPERANDS[1] is the source pointer as a REG, clobbered.
|
2530 |
|
|
OPERANDS[2] is a register for temporary storage.
|
2531 |
|
|
OPERANDS[3] is a register for temporary storage.
|
2532 |
|
|
OPERANDS[4] is the size as a CONST_INT
|
2533 |
|
|
OPERANDS[5] is the alignment safe to use, as a CONST_INT.
|
2534 |
|
|
OPERANDS[6] is another temporary register. */
|
2535 |
|
|
|
2536 |
|
|
const char *
|
2537 |
|
|
output_block_move (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
|
2538 |
|
|
{
|
2539 |
|
|
int align = INTVAL (operands[5]);
|
2540 |
|
|
unsigned long n_bytes = INTVAL (operands[4]);
|
2541 |
|
|
|
2542 |
|
|
/* We can't move more than a word at a time because the PA
|
2543 |
|
|
has no longer integer move insns. (Could use fp mem ops?) */
|
2544 |
|
|
if (align > (TARGET_64BIT ? 8 : 4))
|
2545 |
|
|
align = (TARGET_64BIT ? 8 : 4);
|
2546 |
|
|
|
2547 |
|
|
/* Note that we know each loop below will execute at least twice
|
2548 |
|
|
(else we would have open-coded the copy). */
|
2549 |
|
|
switch (align)
|
2550 |
|
|
{
|
2551 |
|
|
case 8:
|
2552 |
|
|
/* Pre-adjust the loop counter. */
|
2553 |
|
|
operands[4] = GEN_INT (n_bytes - 16);
|
2554 |
|
|
output_asm_insn ("ldi %4,%2", operands);
|
2555 |
|
|
|
2556 |
|
|
/* Copying loop. */
|
2557 |
|
|
output_asm_insn ("ldd,ma 8(%1),%3", operands);
|
2558 |
|
|
output_asm_insn ("ldd,ma 8(%1),%6", operands);
|
2559 |
|
|
output_asm_insn ("std,ma %3,8(%0)", operands);
|
2560 |
|
|
output_asm_insn ("addib,>= -16,%2,.-12", operands);
|
2561 |
|
|
output_asm_insn ("std,ma %6,8(%0)", operands);
|
2562 |
|
|
|
2563 |
|
|
/* Handle the residual. There could be up to 7 bytes of
|
2564 |
|
|
residual to copy! */
|
2565 |
|
|
if (n_bytes % 16 != 0)
|
2566 |
|
|
{
|
2567 |
|
|
operands[4] = GEN_INT (n_bytes % 8);
|
2568 |
|
|
if (n_bytes % 16 >= 8)
|
2569 |
|
|
output_asm_insn ("ldd,ma 8(%1),%3", operands);
|
2570 |
|
|
if (n_bytes % 8 != 0)
|
2571 |
|
|
output_asm_insn ("ldd 0(%1),%6", operands);
|
2572 |
|
|
if (n_bytes % 16 >= 8)
|
2573 |
|
|
output_asm_insn ("std,ma %3,8(%0)", operands);
|
2574 |
|
|
if (n_bytes % 8 != 0)
|
2575 |
|
|
output_asm_insn ("stdby,e %6,%4(%0)", operands);
|
2576 |
|
|
}
|
2577 |
|
|
return "";
|
2578 |
|
|
|
2579 |
|
|
case 4:
|
2580 |
|
|
/* Pre-adjust the loop counter. */
|
2581 |
|
|
operands[4] = GEN_INT (n_bytes - 8);
|
2582 |
|
|
output_asm_insn ("ldi %4,%2", operands);
|
2583 |
|
|
|
2584 |
|
|
/* Copying loop. */
|
2585 |
|
|
output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
|
2586 |
|
|
output_asm_insn ("{ldws|ldw},ma 4(%1),%6", operands);
|
2587 |
|
|
output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
|
2588 |
|
|
output_asm_insn ("addib,>= -8,%2,.-12", operands);
|
2589 |
|
|
output_asm_insn ("{stws|stw},ma %6,4(%0)", operands);
|
2590 |
|
|
|
2591 |
|
|
/* Handle the residual. There could be up to 7 bytes of
|
2592 |
|
|
residual to copy! */
|
2593 |
|
|
if (n_bytes % 8 != 0)
|
2594 |
|
|
{
|
2595 |
|
|
operands[4] = GEN_INT (n_bytes % 4);
|
2596 |
|
|
if (n_bytes % 8 >= 4)
|
2597 |
|
|
output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
|
2598 |
|
|
if (n_bytes % 4 != 0)
|
2599 |
|
|
output_asm_insn ("ldw 0(%1),%6", operands);
|
2600 |
|
|
if (n_bytes % 8 >= 4)
|
2601 |
|
|
output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
|
2602 |
|
|
if (n_bytes % 4 != 0)
|
2603 |
|
|
output_asm_insn ("{stbys|stby},e %6,%4(%0)", operands);
|
2604 |
|
|
}
|
2605 |
|
|
return "";
|
2606 |
|
|
|
2607 |
|
|
case 2:
|
2608 |
|
|
/* Pre-adjust the loop counter. */
|
2609 |
|
|
operands[4] = GEN_INT (n_bytes - 4);
|
2610 |
|
|
output_asm_insn ("ldi %4,%2", operands);
|
2611 |
|
|
|
2612 |
|
|
/* Copying loop. */
|
2613 |
|
|
output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
|
2614 |
|
|
output_asm_insn ("{ldhs|ldh},ma 2(%1),%6", operands);
|
2615 |
|
|
output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
|
2616 |
|
|
output_asm_insn ("addib,>= -4,%2,.-12", operands);
|
2617 |
|
|
output_asm_insn ("{sths|sth},ma %6,2(%0)", operands);
|
2618 |
|
|
|
2619 |
|
|
/* Handle the residual. */
|
2620 |
|
|
if (n_bytes % 4 != 0)
|
2621 |
|
|
{
|
2622 |
|
|
if (n_bytes % 4 >= 2)
|
2623 |
|
|
output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
|
2624 |
|
|
if (n_bytes % 2 != 0)
|
2625 |
|
|
output_asm_insn ("ldb 0(%1),%6", operands);
|
2626 |
|
|
if (n_bytes % 4 >= 2)
|
2627 |
|
|
output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
|
2628 |
|
|
if (n_bytes % 2 != 0)
|
2629 |
|
|
output_asm_insn ("stb %6,0(%0)", operands);
|
2630 |
|
|
}
|
2631 |
|
|
return "";
|
2632 |
|
|
|
2633 |
|
|
case 1:
|
2634 |
|
|
/* Pre-adjust the loop counter. */
|
2635 |
|
|
operands[4] = GEN_INT (n_bytes - 2);
|
2636 |
|
|
output_asm_insn ("ldi %4,%2", operands);
|
2637 |
|
|
|
2638 |
|
|
/* Copying loop. */
|
2639 |
|
|
output_asm_insn ("{ldbs|ldb},ma 1(%1),%3", operands);
|
2640 |
|
|
output_asm_insn ("{ldbs|ldb},ma 1(%1),%6", operands);
|
2641 |
|
|
output_asm_insn ("{stbs|stb},ma %3,1(%0)", operands);
|
2642 |
|
|
output_asm_insn ("addib,>= -2,%2,.-12", operands);
|
2643 |
|
|
output_asm_insn ("{stbs|stb},ma %6,1(%0)", operands);
|
2644 |
|
|
|
2645 |
|
|
/* Handle the residual. */
|
2646 |
|
|
if (n_bytes % 2 != 0)
|
2647 |
|
|
{
|
2648 |
|
|
output_asm_insn ("ldb 0(%1),%3", operands);
|
2649 |
|
|
output_asm_insn ("stb %3,0(%0)", operands);
|
2650 |
|
|
}
|
2651 |
|
|
return "";
|
2652 |
|
|
|
2653 |
|
|
default:
|
2654 |
|
|
gcc_unreachable ();
|
2655 |
|
|
}
|
2656 |
|
|
}
|
2657 |
|
|
|
2658 |
|
|
/* Count the number of insns necessary to handle this block move.
|
2659 |
|
|
|
2660 |
|
|
Basic structure is the same as emit_block_move, except that we
|
2661 |
|
|
count insns rather than emit them. */
|
2662 |
|
|
|
2663 |
|
|
static int
|
2664 |
|
|
compute_movmem_length (rtx insn)
|
2665 |
|
|
{
|
2666 |
|
|
rtx pat = PATTERN (insn);
|
2667 |
|
|
unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 7), 0));
|
2668 |
|
|
unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 6), 0));
|
2669 |
|
|
unsigned int n_insns = 0;
|
2670 |
|
|
|
2671 |
|
|
/* We can't move more than four bytes at a time because the PA
|
2672 |
|
|
has no longer integer move insns. (Could use fp mem ops?) */
|
2673 |
|
|
if (align > (TARGET_64BIT ? 8 : 4))
|
2674 |
|
|
align = (TARGET_64BIT ? 8 : 4);
|
2675 |
|
|
|
2676 |
|
|
/* The basic copying loop. */
|
2677 |
|
|
n_insns = 6;
|
2678 |
|
|
|
2679 |
|
|
/* Residuals. */
|
2680 |
|
|
if (n_bytes % (2 * align) != 0)
|
2681 |
|
|
{
|
2682 |
|
|
if ((n_bytes % (2 * align)) >= align)
|
2683 |
|
|
n_insns += 2;
|
2684 |
|
|
|
2685 |
|
|
if ((n_bytes % align) != 0)
|
2686 |
|
|
n_insns += 2;
|
2687 |
|
|
}
|
2688 |
|
|
|
2689 |
|
|
/* Lengths are expressed in bytes now; each insn is 4 bytes. */
|
2690 |
|
|
return n_insns * 4;
|
2691 |
|
|
}
|
2692 |
|
|
|
2693 |
|
|
/* Emit code to perform a block clear.
|
2694 |
|
|
|
2695 |
|
|
OPERANDS[0] is the destination pointer as a REG, clobbered.
|
2696 |
|
|
OPERANDS[1] is a register for temporary storage.
|
2697 |
|
|
OPERANDS[2] is the size as a CONST_INT
|
2698 |
|
|
OPERANDS[3] is the alignment safe to use, as a CONST_INT. */
|
2699 |
|
|
|
2700 |
|
|
const char *
|
2701 |
|
|
output_block_clear (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
|
2702 |
|
|
{
|
2703 |
|
|
int align = INTVAL (operands[3]);
|
2704 |
|
|
unsigned long n_bytes = INTVAL (operands[2]);
|
2705 |
|
|
|
2706 |
|
|
/* We can't clear more than a word at a time because the PA
|
2707 |
|
|
has no longer integer move insns. */
|
2708 |
|
|
if (align > (TARGET_64BIT ? 8 : 4))
|
2709 |
|
|
align = (TARGET_64BIT ? 8 : 4);
|
2710 |
|
|
|
2711 |
|
|
/* Note that we know each loop below will execute at least twice
|
2712 |
|
|
(else we would have open-coded the copy). */
|
2713 |
|
|
switch (align)
|
2714 |
|
|
{
|
2715 |
|
|
case 8:
|
2716 |
|
|
/* Pre-adjust the loop counter. */
|
2717 |
|
|
operands[2] = GEN_INT (n_bytes - 16);
|
2718 |
|
|
output_asm_insn ("ldi %2,%1", operands);
|
2719 |
|
|
|
2720 |
|
|
/* Loop. */
|
2721 |
|
|
output_asm_insn ("std,ma %%r0,8(%0)", operands);
|
2722 |
|
|
output_asm_insn ("addib,>= -16,%1,.-4", operands);
|
2723 |
|
|
output_asm_insn ("std,ma %%r0,8(%0)", operands);
|
2724 |
|
|
|
2725 |
|
|
/* Handle the residual. There could be up to 7 bytes of
|
2726 |
|
|
residual to copy! */
|
2727 |
|
|
if (n_bytes % 16 != 0)
|
2728 |
|
|
{
|
2729 |
|
|
operands[2] = GEN_INT (n_bytes % 8);
|
2730 |
|
|
if (n_bytes % 16 >= 8)
|
2731 |
|
|
output_asm_insn ("std,ma %%r0,8(%0)", operands);
|
2732 |
|
|
if (n_bytes % 8 != 0)
|
2733 |
|
|
output_asm_insn ("stdby,e %%r0,%2(%0)", operands);
|
2734 |
|
|
}
|
2735 |
|
|
return "";
|
2736 |
|
|
|
2737 |
|
|
case 4:
|
2738 |
|
|
/* Pre-adjust the loop counter. */
|
2739 |
|
|
operands[2] = GEN_INT (n_bytes - 8);
|
2740 |
|
|
output_asm_insn ("ldi %2,%1", operands);
|
2741 |
|
|
|
2742 |
|
|
/* Loop. */
|
2743 |
|
|
output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
|
2744 |
|
|
output_asm_insn ("addib,>= -8,%1,.-4", operands);
|
2745 |
|
|
output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
|
2746 |
|
|
|
2747 |
|
|
/* Handle the residual. There could be up to 7 bytes of
|
2748 |
|
|
residual to copy! */
|
2749 |
|
|
if (n_bytes % 8 != 0)
|
2750 |
|
|
{
|
2751 |
|
|
operands[2] = GEN_INT (n_bytes % 4);
|
2752 |
|
|
if (n_bytes % 8 >= 4)
|
2753 |
|
|
output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
|
2754 |
|
|
if (n_bytes % 4 != 0)
|
2755 |
|
|
output_asm_insn ("{stbys|stby},e %%r0,%2(%0)", operands);
|
2756 |
|
|
}
|
2757 |
|
|
return "";
|
2758 |
|
|
|
2759 |
|
|
case 2:
|
2760 |
|
|
/* Pre-adjust the loop counter. */
|
2761 |
|
|
operands[2] = GEN_INT (n_bytes - 4);
|
2762 |
|
|
output_asm_insn ("ldi %2,%1", operands);
|
2763 |
|
|
|
2764 |
|
|
/* Loop. */
|
2765 |
|
|
output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
|
2766 |
|
|
output_asm_insn ("addib,>= -4,%1,.-4", operands);
|
2767 |
|
|
output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
|
2768 |
|
|
|
2769 |
|
|
/* Handle the residual. */
|
2770 |
|
|
if (n_bytes % 4 != 0)
|
2771 |
|
|
{
|
2772 |
|
|
if (n_bytes % 4 >= 2)
|
2773 |
|
|
output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
|
2774 |
|
|
if (n_bytes % 2 != 0)
|
2775 |
|
|
output_asm_insn ("stb %%r0,0(%0)", operands);
|
2776 |
|
|
}
|
2777 |
|
|
return "";
|
2778 |
|
|
|
2779 |
|
|
case 1:
|
2780 |
|
|
/* Pre-adjust the loop counter. */
|
2781 |
|
|
operands[2] = GEN_INT (n_bytes - 2);
|
2782 |
|
|
output_asm_insn ("ldi %2,%1", operands);
|
2783 |
|
|
|
2784 |
|
|
/* Loop. */
|
2785 |
|
|
output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
|
2786 |
|
|
output_asm_insn ("addib,>= -2,%1,.-4", operands);
|
2787 |
|
|
output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
|
2788 |
|
|
|
2789 |
|
|
/* Handle the residual. */
|
2790 |
|
|
if (n_bytes % 2 != 0)
|
2791 |
|
|
output_asm_insn ("stb %%r0,0(%0)", operands);
|
2792 |
|
|
|
2793 |
|
|
return "";
|
2794 |
|
|
|
2795 |
|
|
default:
|
2796 |
|
|
gcc_unreachable ();
|
2797 |
|
|
}
|
2798 |
|
|
}
|
2799 |
|
|
|
2800 |
|
|
/* Count the number of insns necessary to handle this block move.
|
2801 |
|
|
|
2802 |
|
|
Basic structure is the same as emit_block_move, except that we
|
2803 |
|
|
count insns rather than emit them. */
|
2804 |
|
|
|
2805 |
|
|
static int
|
2806 |
|
|
compute_clrmem_length (rtx insn)
|
2807 |
|
|
{
|
2808 |
|
|
rtx pat = PATTERN (insn);
|
2809 |
|
|
unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 4), 0));
|
2810 |
|
|
unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 3), 0));
|
2811 |
|
|
unsigned int n_insns = 0;
|
2812 |
|
|
|
2813 |
|
|
/* We can't clear more than a word at a time because the PA
|
2814 |
|
|
has no longer integer move insns. */
|
2815 |
|
|
if (align > (TARGET_64BIT ? 8 : 4))
|
2816 |
|
|
align = (TARGET_64BIT ? 8 : 4);
|
2817 |
|
|
|
2818 |
|
|
/* The basic loop. */
|
2819 |
|
|
n_insns = 4;
|
2820 |
|
|
|
2821 |
|
|
/* Residuals. */
|
2822 |
|
|
if (n_bytes % (2 * align) != 0)
|
2823 |
|
|
{
|
2824 |
|
|
if ((n_bytes % (2 * align)) >= align)
|
2825 |
|
|
n_insns++;
|
2826 |
|
|
|
2827 |
|
|
if ((n_bytes % align) != 0)
|
2828 |
|
|
n_insns++;
|
2829 |
|
|
}
|
2830 |
|
|
|
2831 |
|
|
/* Lengths are expressed in bytes now; each insn is 4 bytes. */
|
2832 |
|
|
return n_insns * 4;
|
2833 |
|
|
}
|
2834 |
|
|
|
2835 |
|
|
|
2836 |
|
|
const char *
|
2837 |
|
|
output_and (rtx *operands)
|
2838 |
|
|
{
|
2839 |
|
|
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
|
2840 |
|
|
{
|
2841 |
|
|
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
|
2842 |
|
|
int ls0, ls1, ms0, p, len;
|
2843 |
|
|
|
2844 |
|
|
for (ls0 = 0; ls0 < 32; ls0++)
|
2845 |
|
|
if ((mask & (1 << ls0)) == 0)
|
2846 |
|
|
break;
|
2847 |
|
|
|
2848 |
|
|
for (ls1 = ls0; ls1 < 32; ls1++)
|
2849 |
|
|
if ((mask & (1 << ls1)) != 0)
|
2850 |
|
|
break;
|
2851 |
|
|
|
2852 |
|
|
for (ms0 = ls1; ms0 < 32; ms0++)
|
2853 |
|
|
if ((mask & (1 << ms0)) == 0)
|
2854 |
|
|
break;
|
2855 |
|
|
|
2856 |
|
|
gcc_assert (ms0 == 32);
|
2857 |
|
|
|
2858 |
|
|
if (ls1 == 32)
|
2859 |
|
|
{
|
2860 |
|
|
len = ls0;
|
2861 |
|
|
|
2862 |
|
|
gcc_assert (len);
|
2863 |
|
|
|
2864 |
|
|
operands[2] = GEN_INT (len);
|
2865 |
|
|
return "{extru|extrw,u} %1,31,%2,%0";
|
2866 |
|
|
}
|
2867 |
|
|
else
|
2868 |
|
|
{
|
2869 |
|
|
/* We could use this `depi' for the case above as well, but `depi'
|
2870 |
|
|
requires one more register file access than an `extru'. */
|
2871 |
|
|
|
2872 |
|
|
p = 31 - ls0;
|
2873 |
|
|
len = ls1 - ls0;
|
2874 |
|
|
|
2875 |
|
|
operands[2] = GEN_INT (p);
|
2876 |
|
|
operands[3] = GEN_INT (len);
|
2877 |
|
|
return "{depi|depwi} 0,%2,%3,%0";
|
2878 |
|
|
}
|
2879 |
|
|
}
|
2880 |
|
|
else
|
2881 |
|
|
return "and %1,%2,%0";
|
2882 |
|
|
}
|
2883 |
|
|
|
2884 |
|
|
/* Return a string to perform a bitwise-and of operands[1] with operands[2]
|
2885 |
|
|
storing the result in operands[0]. */
|
2886 |
|
|
const char *
|
2887 |
|
|
output_64bit_and (rtx *operands)
|
2888 |
|
|
{
|
2889 |
|
|
if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
|
2890 |
|
|
{
|
2891 |
|
|
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
|
2892 |
|
|
int ls0, ls1, ms0, p, len;
|
2893 |
|
|
|
2894 |
|
|
for (ls0 = 0; ls0 < HOST_BITS_PER_WIDE_INT; ls0++)
|
2895 |
|
|
if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls0)) == 0)
|
2896 |
|
|
break;
|
2897 |
|
|
|
2898 |
|
|
for (ls1 = ls0; ls1 < HOST_BITS_PER_WIDE_INT; ls1++)
|
2899 |
|
|
if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls1)) != 0)
|
2900 |
|
|
break;
|
2901 |
|
|
|
2902 |
|
|
for (ms0 = ls1; ms0 < HOST_BITS_PER_WIDE_INT; ms0++)
|
2903 |
|
|
if ((mask & ((unsigned HOST_WIDE_INT) 1 << ms0)) == 0)
|
2904 |
|
|
break;
|
2905 |
|
|
|
2906 |
|
|
gcc_assert (ms0 == HOST_BITS_PER_WIDE_INT);
|
2907 |
|
|
|
2908 |
|
|
if (ls1 == HOST_BITS_PER_WIDE_INT)
|
2909 |
|
|
{
|
2910 |
|
|
len = ls0;
|
2911 |
|
|
|
2912 |
|
|
gcc_assert (len);
|
2913 |
|
|
|
2914 |
|
|
operands[2] = GEN_INT (len);
|
2915 |
|
|
return "extrd,u %1,63,%2,%0";
|
2916 |
|
|
}
|
2917 |
|
|
else
|
2918 |
|
|
{
|
2919 |
|
|
/* We could use this `depi' for the case above as well, but `depi'
|
2920 |
|
|
requires one more register file access than an `extru'. */
|
2921 |
|
|
|
2922 |
|
|
p = 63 - ls0;
|
2923 |
|
|
len = ls1 - ls0;
|
2924 |
|
|
|
2925 |
|
|
operands[2] = GEN_INT (p);
|
2926 |
|
|
operands[3] = GEN_INT (len);
|
2927 |
|
|
return "depdi 0,%2,%3,%0";
|
2928 |
|
|
}
|
2929 |
|
|
}
|
2930 |
|
|
else
|
2931 |
|
|
return "and %1,%2,%0";
|
2932 |
|
|
}
|
2933 |
|
|
|
2934 |
|
|
const char *
|
2935 |
|
|
output_ior (rtx *operands)
|
2936 |
|
|
{
|
2937 |
|
|
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
|
2938 |
|
|
int bs0, bs1, p, len;
|
2939 |
|
|
|
2940 |
|
|
if (INTVAL (operands[2]) == 0)
|
2941 |
|
|
return "copy %1,%0";
|
2942 |
|
|
|
2943 |
|
|
for (bs0 = 0; bs0 < 32; bs0++)
|
2944 |
|
|
if ((mask & (1 << bs0)) != 0)
|
2945 |
|
|
break;
|
2946 |
|
|
|
2947 |
|
|
for (bs1 = bs0; bs1 < 32; bs1++)
|
2948 |
|
|
if ((mask & (1 << bs1)) == 0)
|
2949 |
|
|
break;
|
2950 |
|
|
|
2951 |
|
|
gcc_assert (bs1 == 32 || ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
|
2952 |
|
|
|
2953 |
|
|
p = 31 - bs0;
|
2954 |
|
|
len = bs1 - bs0;
|
2955 |
|
|
|
2956 |
|
|
operands[2] = GEN_INT (p);
|
2957 |
|
|
operands[3] = GEN_INT (len);
|
2958 |
|
|
return "{depi|depwi} -1,%2,%3,%0";
|
2959 |
|
|
}
|
2960 |
|
|
|
2961 |
|
|
/* Return a string to perform a bitwise-and of operands[1] with operands[2]
|
2962 |
|
|
storing the result in operands[0]. */
|
2963 |
|
|
const char *
|
2964 |
|
|
output_64bit_ior (rtx *operands)
|
2965 |
|
|
{
|
2966 |
|
|
unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
|
2967 |
|
|
int bs0, bs1, p, len;
|
2968 |
|
|
|
2969 |
|
|
if (INTVAL (operands[2]) == 0)
|
2970 |
|
|
return "copy %1,%0";
|
2971 |
|
|
|
2972 |
|
|
for (bs0 = 0; bs0 < HOST_BITS_PER_WIDE_INT; bs0++)
|
2973 |
|
|
if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs0)) != 0)
|
2974 |
|
|
break;
|
2975 |
|
|
|
2976 |
|
|
for (bs1 = bs0; bs1 < HOST_BITS_PER_WIDE_INT; bs1++)
|
2977 |
|
|
if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs1)) == 0)
|
2978 |
|
|
break;
|
2979 |
|
|
|
2980 |
|
|
gcc_assert (bs1 == HOST_BITS_PER_WIDE_INT
|
2981 |
|
|
|| ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
|
2982 |
|
|
|
2983 |
|
|
p = 63 - bs0;
|
2984 |
|
|
len = bs1 - bs0;
|
2985 |
|
|
|
2986 |
|
|
operands[2] = GEN_INT (p);
|
2987 |
|
|
operands[3] = GEN_INT (len);
|
2988 |
|
|
return "depdi -1,%2,%3,%0";
|
2989 |
|
|
}
|
2990 |
|
|
|
2991 |
|
|
/* Target hook for assembling integer objects. This code handles
|
2992 |
|
|
aligned SI and DI integers specially since function references
|
2993 |
|
|
must be preceded by P%. */
|
2994 |
|
|
|
2995 |
|
|
static bool
|
2996 |
|
|
pa_assemble_integer (rtx x, unsigned int size, int aligned_p)
|
2997 |
|
|
{
|
2998 |
|
|
if (size == UNITS_PER_WORD
|
2999 |
|
|
&& aligned_p
|
3000 |
|
|
&& function_label_operand (x, VOIDmode))
|
3001 |
|
|
{
|
3002 |
|
|
fputs (size == 8? "\t.dword\tP%" : "\t.word\tP%", asm_out_file);
|
3003 |
|
|
output_addr_const (asm_out_file, x);
|
3004 |
|
|
fputc ('\n', asm_out_file);
|
3005 |
|
|
return true;
|
3006 |
|
|
}
|
3007 |
|
|
return default_assemble_integer (x, size, aligned_p);
|
3008 |
|
|
}
|
3009 |
|
|
|
3010 |
|
|
/* Output an ascii string. */
|
3011 |
|
|
void
|
3012 |
|
|
output_ascii (FILE *file, const char *p, int size)
|
3013 |
|
|
{
|
3014 |
|
|
int i;
|
3015 |
|
|
int chars_output;
|
3016 |
|
|
unsigned char partial_output[16]; /* Max space 4 chars can occupy. */
|
3017 |
|
|
|
3018 |
|
|
/* The HP assembler can only take strings of 256 characters at one
|
3019 |
|
|
time. This is a limitation on input line length, *not* the
|
3020 |
|
|
length of the string. Sigh. Even worse, it seems that the
|
3021 |
|
|
restriction is in number of input characters (see \xnn &
|
3022 |
|
|
\whatever). So we have to do this very carefully. */
|
3023 |
|
|
|
3024 |
|
|
fputs ("\t.STRING \"", file);
|
3025 |
|
|
|
3026 |
|
|
chars_output = 0;
|
3027 |
|
|
for (i = 0; i < size; i += 4)
|
3028 |
|
|
{
|
3029 |
|
|
int co = 0;
|
3030 |
|
|
int io = 0;
|
3031 |
|
|
for (io = 0, co = 0; io < MIN (4, size - i); io++)
|
3032 |
|
|
{
|
3033 |
|
|
register unsigned int c = (unsigned char) p[i + io];
|
3034 |
|
|
|
3035 |
|
|
if (c == '\"' || c == '\\')
|
3036 |
|
|
partial_output[co++] = '\\';
|
3037 |
|
|
if (c >= ' ' && c < 0177)
|
3038 |
|
|
partial_output[co++] = c;
|
3039 |
|
|
else
|
3040 |
|
|
{
|
3041 |
|
|
unsigned int hexd;
|
3042 |
|
|
partial_output[co++] = '\\';
|
3043 |
|
|
partial_output[co++] = 'x';
|
3044 |
|
|
hexd = c / 16 - 0 + '0';
|
3045 |
|
|
if (hexd > '9')
|
3046 |
|
|
hexd -= '9' - 'a' + 1;
|
3047 |
|
|
partial_output[co++] = hexd;
|
3048 |
|
|
hexd = c % 16 - 0 + '0';
|
3049 |
|
|
if (hexd > '9')
|
3050 |
|
|
hexd -= '9' - 'a' + 1;
|
3051 |
|
|
partial_output[co++] = hexd;
|
3052 |
|
|
}
|
3053 |
|
|
}
|
3054 |
|
|
if (chars_output + co > 243)
|
3055 |
|
|
{
|
3056 |
|
|
fputs ("\"\n\t.STRING \"", file);
|
3057 |
|
|
chars_output = 0;
|
3058 |
|
|
}
|
3059 |
|
|
fwrite (partial_output, 1, (size_t) co, file);
|
3060 |
|
|
chars_output += co;
|
3061 |
|
|
co = 0;
|
3062 |
|
|
}
|
3063 |
|
|
fputs ("\"\n", file);
|
3064 |
|
|
}
|
3065 |
|
|
|
3066 |
|
|
/* Try to rewrite floating point comparisons & branches to avoid
|
3067 |
|
|
useless add,tr insns.
|
3068 |
|
|
|
3069 |
|
|
CHECK_NOTES is nonzero if we should examine REG_DEAD notes
|
3070 |
|
|
to see if FPCC is dead. CHECK_NOTES is nonzero for the
|
3071 |
|
|
first attempt to remove useless add,tr insns. It is zero
|
3072 |
|
|
for the second pass as reorg sometimes leaves bogus REG_DEAD
|
3073 |
|
|
notes lying around.
|
3074 |
|
|
|
3075 |
|
|
When CHECK_NOTES is zero we can only eliminate add,tr insns
|
3076 |
|
|
when there's a 1:1 correspondence between fcmp and ftest/fbranch
|
3077 |
|
|
instructions. */
|
3078 |
|
|
static void
|
3079 |
|
|
remove_useless_addtr_insns (int check_notes)
|
3080 |
|
|
{
|
3081 |
|
|
rtx insn;
|
3082 |
|
|
static int pass = 0;
|
3083 |
|
|
|
3084 |
|
|
/* This is fairly cheap, so always run it when optimizing. */
|
3085 |
|
|
if (optimize > 0)
|
3086 |
|
|
{
|
3087 |
|
|
int fcmp_count = 0;
|
3088 |
|
|
int fbranch_count = 0;
|
3089 |
|
|
|
3090 |
|
|
/* Walk all the insns in this function looking for fcmp & fbranch
|
3091 |
|
|
instructions. Keep track of how many of each we find. */
|
3092 |
|
|
for (insn = get_insns (); insn; insn = next_insn (insn))
|
3093 |
|
|
{
|
3094 |
|
|
rtx tmp;
|
3095 |
|
|
|
3096 |
|
|
/* Ignore anything that isn't an INSN or a JUMP_INSN. */
|
3097 |
|
|
if (GET_CODE (insn) != INSN && GET_CODE (insn) != JUMP_INSN)
|
3098 |
|
|
continue;
|
3099 |
|
|
|
3100 |
|
|
tmp = PATTERN (insn);
|
3101 |
|
|
|
3102 |
|
|
/* It must be a set. */
|
3103 |
|
|
if (GET_CODE (tmp) != SET)
|
3104 |
|
|
continue;
|
3105 |
|
|
|
3106 |
|
|
/* If the destination is CCFP, then we've found an fcmp insn. */
|
3107 |
|
|
tmp = SET_DEST (tmp);
|
3108 |
|
|
if (GET_CODE (tmp) == REG && REGNO (tmp) == 0)
|
3109 |
|
|
{
|
3110 |
|
|
fcmp_count++;
|
3111 |
|
|
continue;
|
3112 |
|
|
}
|
3113 |
|
|
|
3114 |
|
|
tmp = PATTERN (insn);
|
3115 |
|
|
/* If this is an fbranch instruction, bump the fbranch counter. */
|
3116 |
|
|
if (GET_CODE (tmp) == SET
|
3117 |
|
|
&& SET_DEST (tmp) == pc_rtx
|
3118 |
|
|
&& GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
|
3119 |
|
|
&& GET_CODE (XEXP (SET_SRC (tmp), 0)) == NE
|
3120 |
|
|
&& GET_CODE (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == REG
|
3121 |
|
|
&& REGNO (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == 0)
|
3122 |
|
|
{
|
3123 |
|
|
fbranch_count++;
|
3124 |
|
|
continue;
|
3125 |
|
|
}
|
3126 |
|
|
}
|
3127 |
|
|
|
3128 |
|
|
|
3129 |
|
|
/* Find all floating point compare + branch insns. If possible,
|
3130 |
|
|
reverse the comparison & the branch to avoid add,tr insns. */
|
3131 |
|
|
for (insn = get_insns (); insn; insn = next_insn (insn))
|
3132 |
|
|
{
|
3133 |
|
|
rtx tmp, next;
|
3134 |
|
|
|
3135 |
|
|
/* Ignore anything that isn't an INSN. */
|
3136 |
|
|
if (GET_CODE (insn) != INSN)
|
3137 |
|
|
continue;
|
3138 |
|
|
|
3139 |
|
|
tmp = PATTERN (insn);
|
3140 |
|
|
|
3141 |
|
|
/* It must be a set. */
|
3142 |
|
|
if (GET_CODE (tmp) != SET)
|
3143 |
|
|
continue;
|
3144 |
|
|
|
3145 |
|
|
/* The destination must be CCFP, which is register zero. */
|
3146 |
|
|
tmp = SET_DEST (tmp);
|
3147 |
|
|
if (GET_CODE (tmp) != REG || REGNO (tmp) != 0)
|
3148 |
|
|
continue;
|
3149 |
|
|
|
3150 |
|
|
/* INSN should be a set of CCFP.
|
3151 |
|
|
|
3152 |
|
|
See if the result of this insn is used in a reversed FP
|
3153 |
|
|
conditional branch. If so, reverse our condition and
|
3154 |
|
|
the branch. Doing so avoids useless add,tr insns. */
|
3155 |
|
|
next = next_insn (insn);
|
3156 |
|
|
while (next)
|
3157 |
|
|
{
|
3158 |
|
|
/* Jumps, calls and labels stop our search. */
|
3159 |
|
|
if (GET_CODE (next) == JUMP_INSN
|
3160 |
|
|
|| GET_CODE (next) == CALL_INSN
|
3161 |
|
|
|| GET_CODE (next) == CODE_LABEL)
|
3162 |
|
|
break;
|
3163 |
|
|
|
3164 |
|
|
/* As does another fcmp insn. */
|
3165 |
|
|
if (GET_CODE (next) == INSN
|
3166 |
|
|
&& GET_CODE (PATTERN (next)) == SET
|
3167 |
|
|
&& GET_CODE (SET_DEST (PATTERN (next))) == REG
|
3168 |
|
|
&& REGNO (SET_DEST (PATTERN (next))) == 0)
|
3169 |
|
|
break;
|
3170 |
|
|
|
3171 |
|
|
next = next_insn (next);
|
3172 |
|
|
}
|
3173 |
|
|
|
3174 |
|
|
/* Is NEXT_INSN a branch? */
|
3175 |
|
|
if (next
|
3176 |
|
|
&& GET_CODE (next) == JUMP_INSN)
|
3177 |
|
|
{
|
3178 |
|
|
rtx pattern = PATTERN (next);
|
3179 |
|
|
|
3180 |
|
|
/* If it a reversed fp conditional branch (e.g. uses add,tr)
|
3181 |
|
|
and CCFP dies, then reverse our conditional and the branch
|
3182 |
|
|
to avoid the add,tr. */
|
3183 |
|
|
if (GET_CODE (pattern) == SET
|
3184 |
|
|
&& SET_DEST (pattern) == pc_rtx
|
3185 |
|
|
&& GET_CODE (SET_SRC (pattern)) == IF_THEN_ELSE
|
3186 |
|
|
&& GET_CODE (XEXP (SET_SRC (pattern), 0)) == NE
|
3187 |
|
|
&& GET_CODE (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == REG
|
3188 |
|
|
&& REGNO (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == 0
|
3189 |
|
|
&& GET_CODE (XEXP (SET_SRC (pattern), 1)) == PC
|
3190 |
|
|
&& (fcmp_count == fbranch_count
|
3191 |
|
|
|| (check_notes
|
3192 |
|
|
&& find_regno_note (next, REG_DEAD, 0))))
|
3193 |
|
|
{
|
3194 |
|
|
/* Reverse the branch. */
|
3195 |
|
|
tmp = XEXP (SET_SRC (pattern), 1);
|
3196 |
|
|
XEXP (SET_SRC (pattern), 1) = XEXP (SET_SRC (pattern), 2);
|
3197 |
|
|
XEXP (SET_SRC (pattern), 2) = tmp;
|
3198 |
|
|
INSN_CODE (next) = -1;
|
3199 |
|
|
|
3200 |
|
|
/* Reverse our condition. */
|
3201 |
|
|
tmp = PATTERN (insn);
|
3202 |
|
|
PUT_CODE (XEXP (tmp, 1),
|
3203 |
|
|
(reverse_condition_maybe_unordered
|
3204 |
|
|
(GET_CODE (XEXP (tmp, 1)))));
|
3205 |
|
|
}
|
3206 |
|
|
}
|
3207 |
|
|
}
|
3208 |
|
|
}
|
3209 |
|
|
|
3210 |
|
|
pass = !pass;
|
3211 |
|
|
|
3212 |
|
|
}
|
3213 |
|
|
|
3214 |
|
|
/* You may have trouble believing this, but this is the 32 bit HP-PA
|
3215 |
|
|
stack layout. Wow.
|
3216 |
|
|
|
3217 |
|
|
Offset Contents
|
3218 |
|
|
|
3219 |
|
|
Variable arguments (optional; any number may be allocated)
|
3220 |
|
|
|
3221 |
|
|
SP-(4*(N+9)) arg word N
|
3222 |
|
|
: :
|
3223 |
|
|
SP-56 arg word 5
|
3224 |
|
|
SP-52 arg word 4
|
3225 |
|
|
|
3226 |
|
|
Fixed arguments (must be allocated; may remain unused)
|
3227 |
|
|
|
3228 |
|
|
SP-48 arg word 3
|
3229 |
|
|
SP-44 arg word 2
|
3230 |
|
|
SP-40 arg word 1
|
3231 |
|
|
SP-36 arg word 0
|
3232 |
|
|
|
3233 |
|
|
Frame Marker
|
3234 |
|
|
|
3235 |
|
|
SP-32 External Data Pointer (DP)
|
3236 |
|
|
SP-28 External sr4
|
3237 |
|
|
SP-24 External/stub RP (RP')
|
3238 |
|
|
SP-20 Current RP
|
3239 |
|
|
SP-16 Static Link
|
3240 |
|
|
SP-12 Clean up
|
3241 |
|
|
SP-8 Calling Stub RP (RP'')
|
3242 |
|
|
SP-4 Previous SP
|
3243 |
|
|
|
3244 |
|
|
Top of Frame
|
3245 |
|
|
|
3246 |
|
|
SP-0 Stack Pointer (points to next available address)
|
3247 |
|
|
|
3248 |
|
|
*/
|
3249 |
|
|
|
3250 |
|
|
/* This function saves registers as follows. Registers marked with ' are
|
3251 |
|
|
this function's registers (as opposed to the previous function's).
|
3252 |
|
|
If a frame_pointer isn't needed, r4 is saved as a general register;
|
3253 |
|
|
the space for the frame pointer is still allocated, though, to keep
|
3254 |
|
|
things simple.
|
3255 |
|
|
|
3256 |
|
|
|
3257 |
|
|
Top of Frame
|
3258 |
|
|
|
3259 |
|
|
SP (FP') Previous FP
|
3260 |
|
|
SP + 4 Alignment filler (sigh)
|
3261 |
|
|
SP + 8 Space for locals reserved here.
|
3262 |
|
|
.
|
3263 |
|
|
.
|
3264 |
|
|
.
|
3265 |
|
|
SP + n All call saved register used.
|
3266 |
|
|
.
|
3267 |
|
|
.
|
3268 |
|
|
.
|
3269 |
|
|
SP + o All call saved fp registers used.
|
3270 |
|
|
.
|
3271 |
|
|
.
|
3272 |
|
|
.
|
3273 |
|
|
SP + p (SP') points to next available address.
|
3274 |
|
|
|
3275 |
|
|
*/
|
3276 |
|
|
|
3277 |
|
|
/* Global variables set by output_function_prologue(). */
|
3278 |
|
|
/* Size of frame. Need to know this to emit return insns from
|
3279 |
|
|
leaf procedures. */
|
3280 |
|
|
static HOST_WIDE_INT actual_fsize, local_fsize;
|
3281 |
|
|
static int save_fregs;
|
3282 |
|
|
|
3283 |
|
|
/* Emit RTL to store REG at the memory location specified by BASE+DISP.
|
3284 |
|
|
Handle case where DISP > 8k by using the add_high_const patterns.
|
3285 |
|
|
|
3286 |
|
|
Note in DISP > 8k case, we will leave the high part of the address
|
3287 |
|
|
in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/
|
3288 |
|
|
|
3289 |
|
|
static void
|
3290 |
|
|
store_reg (int reg, HOST_WIDE_INT disp, int base)
|
3291 |
|
|
{
|
3292 |
|
|
rtx insn, dest, src, basereg;
|
3293 |
|
|
|
3294 |
|
|
src = gen_rtx_REG (word_mode, reg);
|
3295 |
|
|
basereg = gen_rtx_REG (Pmode, base);
|
3296 |
|
|
if (VAL_14_BITS_P (disp))
|
3297 |
|
|
{
|
3298 |
|
|
dest = gen_rtx_MEM (word_mode, plus_constant (basereg, disp));
|
3299 |
|
|
insn = emit_move_insn (dest, src);
|
3300 |
|
|
}
|
3301 |
|
|
else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
|
3302 |
|
|
{
|
3303 |
|
|
rtx delta = GEN_INT (disp);
|
3304 |
|
|
rtx tmpreg = gen_rtx_REG (Pmode, 1);
|
3305 |
|
|
|
3306 |
|
|
emit_move_insn (tmpreg, delta);
|
3307 |
|
|
insn = emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
|
3308 |
|
|
if (DO_FRAME_NOTES)
|
3309 |
|
|
{
|
3310 |
|
|
REG_NOTES (insn)
|
3311 |
|
|
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
3312 |
|
|
gen_rtx_SET (VOIDmode, tmpreg,
|
3313 |
|
|
gen_rtx_PLUS (Pmode, basereg, delta)),
|
3314 |
|
|
REG_NOTES (insn));
|
3315 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3316 |
|
|
}
|
3317 |
|
|
dest = gen_rtx_MEM (word_mode, tmpreg);
|
3318 |
|
|
insn = emit_move_insn (dest, src);
|
3319 |
|
|
}
|
3320 |
|
|
else
|
3321 |
|
|
{
|
3322 |
|
|
rtx delta = GEN_INT (disp);
|
3323 |
|
|
rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
|
3324 |
|
|
rtx tmpreg = gen_rtx_REG (Pmode, 1);
|
3325 |
|
|
|
3326 |
|
|
emit_move_insn (tmpreg, high);
|
3327 |
|
|
dest = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
|
3328 |
|
|
insn = emit_move_insn (dest, src);
|
3329 |
|
|
if (DO_FRAME_NOTES)
|
3330 |
|
|
{
|
3331 |
|
|
REG_NOTES (insn)
|
3332 |
|
|
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
3333 |
|
|
gen_rtx_SET (VOIDmode,
|
3334 |
|
|
gen_rtx_MEM (word_mode,
|
3335 |
|
|
gen_rtx_PLUS (word_mode, basereg,
|
3336 |
|
|
delta)),
|
3337 |
|
|
src),
|
3338 |
|
|
REG_NOTES (insn));
|
3339 |
|
|
}
|
3340 |
|
|
}
|
3341 |
|
|
|
3342 |
|
|
if (DO_FRAME_NOTES)
|
3343 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3344 |
|
|
}
|
3345 |
|
|
|
3346 |
|
|
/* Emit RTL to store REG at the memory location specified by BASE and then
|
3347 |
|
|
add MOD to BASE. MOD must be <= 8k. */
|
3348 |
|
|
|
3349 |
|
|
static void
|
3350 |
|
|
store_reg_modify (int base, int reg, HOST_WIDE_INT mod)
|
3351 |
|
|
{
|
3352 |
|
|
rtx insn, basereg, srcreg, delta;
|
3353 |
|
|
|
3354 |
|
|
gcc_assert (VAL_14_BITS_P (mod));
|
3355 |
|
|
|
3356 |
|
|
basereg = gen_rtx_REG (Pmode, base);
|
3357 |
|
|
srcreg = gen_rtx_REG (word_mode, reg);
|
3358 |
|
|
delta = GEN_INT (mod);
|
3359 |
|
|
|
3360 |
|
|
insn = emit_insn (gen_post_store (basereg, srcreg, delta));
|
3361 |
|
|
if (DO_FRAME_NOTES)
|
3362 |
|
|
{
|
3363 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3364 |
|
|
|
3365 |
|
|
/* RTX_FRAME_RELATED_P must be set on each frame related set
|
3366 |
|
|
in a parallel with more than one element. */
|
3367 |
|
|
RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 0)) = 1;
|
3368 |
|
|
RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
|
3369 |
|
|
}
|
3370 |
|
|
}
|
3371 |
|
|
|
3372 |
|
|
/* Emit RTL to set REG to the value specified by BASE+DISP. Handle case
|
3373 |
|
|
where DISP > 8k by using the add_high_const patterns. NOTE indicates
|
3374 |
|
|
whether to add a frame note or not.
|
3375 |
|
|
|
3376 |
|
|
In the DISP > 8k case, we leave the high part of the address in %r1.
|
3377 |
|
|
There is code in expand_hppa_{prologue,epilogue} that knows about this. */
|
3378 |
|
|
|
3379 |
|
|
static void
|
3380 |
|
|
set_reg_plus_d (int reg, int base, HOST_WIDE_INT disp, int note)
|
3381 |
|
|
{
|
3382 |
|
|
rtx insn;
|
3383 |
|
|
|
3384 |
|
|
if (VAL_14_BITS_P (disp))
|
3385 |
|
|
{
|
3386 |
|
|
insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
|
3387 |
|
|
plus_constant (gen_rtx_REG (Pmode, base), disp));
|
3388 |
|
|
}
|
3389 |
|
|
else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
|
3390 |
|
|
{
|
3391 |
|
|
rtx basereg = gen_rtx_REG (Pmode, base);
|
3392 |
|
|
rtx delta = GEN_INT (disp);
|
3393 |
|
|
rtx tmpreg = gen_rtx_REG (Pmode, 1);
|
3394 |
|
|
|
3395 |
|
|
emit_move_insn (tmpreg, delta);
|
3396 |
|
|
insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
|
3397 |
|
|
gen_rtx_PLUS (Pmode, tmpreg, basereg));
|
3398 |
|
|
if (DO_FRAME_NOTES)
|
3399 |
|
|
REG_NOTES (insn)
|
3400 |
|
|
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
3401 |
|
|
gen_rtx_SET (VOIDmode, tmpreg,
|
3402 |
|
|
gen_rtx_PLUS (Pmode, basereg, delta)),
|
3403 |
|
|
REG_NOTES (insn));
|
3404 |
|
|
}
|
3405 |
|
|
else
|
3406 |
|
|
{
|
3407 |
|
|
rtx basereg = gen_rtx_REG (Pmode, base);
|
3408 |
|
|
rtx delta = GEN_INT (disp);
|
3409 |
|
|
rtx tmpreg = gen_rtx_REG (Pmode, 1);
|
3410 |
|
|
|
3411 |
|
|
emit_move_insn (tmpreg,
|
3412 |
|
|
gen_rtx_PLUS (Pmode, basereg,
|
3413 |
|
|
gen_rtx_HIGH (Pmode, delta)));
|
3414 |
|
|
insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
|
3415 |
|
|
gen_rtx_LO_SUM (Pmode, tmpreg, delta));
|
3416 |
|
|
}
|
3417 |
|
|
|
3418 |
|
|
if (DO_FRAME_NOTES && note)
|
3419 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3420 |
|
|
}
|
3421 |
|
|
|
3422 |
|
|
HOST_WIDE_INT
|
3423 |
|
|
compute_frame_size (HOST_WIDE_INT size, int *fregs_live)
|
3424 |
|
|
{
|
3425 |
|
|
int freg_saved = 0;
|
3426 |
|
|
int i, j;
|
3427 |
|
|
|
3428 |
|
|
/* The code in hppa_expand_prologue and hppa_expand_epilogue must
|
3429 |
|
|
be consistent with the rounding and size calculation done here.
|
3430 |
|
|
Change them at the same time. */
|
3431 |
|
|
|
3432 |
|
|
/* We do our own stack alignment. First, round the size of the
|
3433 |
|
|
stack locals up to a word boundary. */
|
3434 |
|
|
size = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
|
3435 |
|
|
|
3436 |
|
|
/* Space for previous frame pointer + filler. If any frame is
|
3437 |
|
|
allocated, we need to add in the STARTING_FRAME_OFFSET. We
|
3438 |
|
|
waste some space here for the sake of HP compatibility. The
|
3439 |
|
|
first slot is only used when the frame pointer is needed. */
|
3440 |
|
|
if (size || frame_pointer_needed)
|
3441 |
|
|
size += STARTING_FRAME_OFFSET;
|
3442 |
|
|
|
3443 |
|
|
/* If the current function calls __builtin_eh_return, then we need
|
3444 |
|
|
to allocate stack space for registers that will hold data for
|
3445 |
|
|
the exception handler. */
|
3446 |
|
|
if (DO_FRAME_NOTES && current_function_calls_eh_return)
|
3447 |
|
|
{
|
3448 |
|
|
unsigned int i;
|
3449 |
|
|
|
3450 |
|
|
for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
|
3451 |
|
|
continue;
|
3452 |
|
|
size += i * UNITS_PER_WORD;
|
3453 |
|
|
}
|
3454 |
|
|
|
3455 |
|
|
/* Account for space used by the callee general register saves. */
|
3456 |
|
|
for (i = 18, j = frame_pointer_needed ? 4 : 3; i >= j; i--)
|
3457 |
|
|
if (regs_ever_live[i])
|
3458 |
|
|
size += UNITS_PER_WORD;
|
3459 |
|
|
|
3460 |
|
|
/* Account for space used by the callee floating point register saves. */
|
3461 |
|
|
for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
|
3462 |
|
|
if (regs_ever_live[i]
|
3463 |
|
|
|| (!TARGET_64BIT && regs_ever_live[i + 1]))
|
3464 |
|
|
{
|
3465 |
|
|
freg_saved = 1;
|
3466 |
|
|
|
3467 |
|
|
/* We always save both halves of the FP register, so always
|
3468 |
|
|
increment the frame size by 8 bytes. */
|
3469 |
|
|
size += 8;
|
3470 |
|
|
}
|
3471 |
|
|
|
3472 |
|
|
/* If any of the floating registers are saved, account for the
|
3473 |
|
|
alignment needed for the floating point register save block. */
|
3474 |
|
|
if (freg_saved)
|
3475 |
|
|
{
|
3476 |
|
|
size = (size + 7) & ~7;
|
3477 |
|
|
if (fregs_live)
|
3478 |
|
|
*fregs_live = 1;
|
3479 |
|
|
}
|
3480 |
|
|
|
3481 |
|
|
/* The various ABIs include space for the outgoing parameters in the
|
3482 |
|
|
size of the current function's stack frame. We don't need to align
|
3483 |
|
|
for the outgoing arguments as their alignment is set by the final
|
3484 |
|
|
rounding for the frame as a whole. */
|
3485 |
|
|
size += current_function_outgoing_args_size;
|
3486 |
|
|
|
3487 |
|
|
/* Allocate space for the fixed frame marker. This space must be
|
3488 |
|
|
allocated for any function that makes calls or allocates
|
3489 |
|
|
stack space. */
|
3490 |
|
|
if (!current_function_is_leaf || size)
|
3491 |
|
|
size += TARGET_64BIT ? 48 : 32;
|
3492 |
|
|
|
3493 |
|
|
/* Finally, round to the preferred stack boundary. */
|
3494 |
|
|
return ((size + PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)
|
3495 |
|
|
& ~(PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1));
|
3496 |
|
|
}
|
3497 |
|
|
|
3498 |
|
|
/* Generate the assembly code for function entry. FILE is a stdio
|
3499 |
|
|
stream to output the code to. SIZE is an int: how many units of
|
3500 |
|
|
temporary storage to allocate.
|
3501 |
|
|
|
3502 |
|
|
Refer to the array `regs_ever_live' to determine which registers to
|
3503 |
|
|
save; `regs_ever_live[I]' is nonzero if register number I is ever
|
3504 |
|
|
used in the function. This function is responsible for knowing
|
3505 |
|
|
which registers should not be saved even if used. */
|
3506 |
|
|
|
3507 |
|
|
/* On HP-PA, move-double insns between fpu and cpu need an 8-byte block
|
3508 |
|
|
of memory. If any fpu reg is used in the function, we allocate
|
3509 |
|
|
such a block here, at the bottom of the frame, just in case it's needed.
|
3510 |
|
|
|
3511 |
|
|
If this function is a leaf procedure, then we may choose not
|
3512 |
|
|
to do a "save" insn. The decision about whether or not
|
3513 |
|
|
to do this is made in regclass.c. */
|
3514 |
|
|
|
3515 |
|
|
static void
|
3516 |
|
|
pa_output_function_prologue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
3517 |
|
|
{
|
3518 |
|
|
/* The function's label and associated .PROC must never be
|
3519 |
|
|
separated and must be output *after* any profiling declarations
|
3520 |
|
|
to avoid changing spaces/subspaces within a procedure. */
|
3521 |
|
|
ASM_OUTPUT_LABEL (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
|
3522 |
|
|
fputs ("\t.PROC\n", file);
|
3523 |
|
|
|
3524 |
|
|
/* hppa_expand_prologue does the dirty work now. We just need
|
3525 |
|
|
to output the assembler directives which denote the start
|
3526 |
|
|
of a function. */
|
3527 |
|
|
fprintf (file, "\t.CALLINFO FRAME=" HOST_WIDE_INT_PRINT_DEC, actual_fsize);
|
3528 |
|
|
if (regs_ever_live[2])
|
3529 |
|
|
fputs (",CALLS,SAVE_RP", file);
|
3530 |
|
|
else
|
3531 |
|
|
fputs (",NO_CALLS", file);
|
3532 |
|
|
|
3533 |
|
|
/* The SAVE_SP flag is used to indicate that register %r3 is stored
|
3534 |
|
|
at the beginning of the frame and that it is used as the frame
|
3535 |
|
|
pointer for the frame. We do this because our current frame
|
3536 |
|
|
layout doesn't conform to that specified in the HP runtime
|
3537 |
|
|
documentation and we need a way to indicate to programs such as
|
3538 |
|
|
GDB where %r3 is saved. The SAVE_SP flag was chosen because it
|
3539 |
|
|
isn't used by HP compilers but is supported by the assembler.
|
3540 |
|
|
However, SAVE_SP is supposed to indicate that the previous stack
|
3541 |
|
|
pointer has been saved in the frame marker. */
|
3542 |
|
|
if (frame_pointer_needed)
|
3543 |
|
|
fputs (",SAVE_SP", file);
|
3544 |
|
|
|
3545 |
|
|
/* Pass on information about the number of callee register saves
|
3546 |
|
|
performed in the prologue.
|
3547 |
|
|
|
3548 |
|
|
The compiler is supposed to pass the highest register number
|
3549 |
|
|
saved, the assembler then has to adjust that number before
|
3550 |
|
|
entering it into the unwind descriptor (to account for any
|
3551 |
|
|
caller saved registers with lower register numbers than the
|
3552 |
|
|
first callee saved register). */
|
3553 |
|
|
if (gr_saved)
|
3554 |
|
|
fprintf (file, ",ENTRY_GR=%d", gr_saved + 2);
|
3555 |
|
|
|
3556 |
|
|
if (fr_saved)
|
3557 |
|
|
fprintf (file, ",ENTRY_FR=%d", fr_saved + 11);
|
3558 |
|
|
|
3559 |
|
|
fputs ("\n\t.ENTRY\n", file);
|
3560 |
|
|
|
3561 |
|
|
remove_useless_addtr_insns (0);
|
3562 |
|
|
}
|
3563 |
|
|
|
3564 |
|
|
void
|
3565 |
|
|
hppa_expand_prologue (void)
|
3566 |
|
|
{
|
3567 |
|
|
int merge_sp_adjust_with_store = 0;
|
3568 |
|
|
HOST_WIDE_INT size = get_frame_size ();
|
3569 |
|
|
HOST_WIDE_INT offset;
|
3570 |
|
|
int i;
|
3571 |
|
|
rtx insn, tmpreg;
|
3572 |
|
|
|
3573 |
|
|
gr_saved = 0;
|
3574 |
|
|
fr_saved = 0;
|
3575 |
|
|
save_fregs = 0;
|
3576 |
|
|
|
3577 |
|
|
/* Compute total size for frame pointer, filler, locals and rounding to
|
3578 |
|
|
the next word boundary. Similar code appears in compute_frame_size
|
3579 |
|
|
and must be changed in tandem with this code. */
|
3580 |
|
|
local_fsize = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
|
3581 |
|
|
if (local_fsize || frame_pointer_needed)
|
3582 |
|
|
local_fsize += STARTING_FRAME_OFFSET;
|
3583 |
|
|
|
3584 |
|
|
actual_fsize = compute_frame_size (size, &save_fregs);
|
3585 |
|
|
|
3586 |
|
|
/* Compute a few things we will use often. */
|
3587 |
|
|
tmpreg = gen_rtx_REG (word_mode, 1);
|
3588 |
|
|
|
3589 |
|
|
/* Save RP first. The calling conventions manual states RP will
|
3590 |
|
|
always be stored into the caller's frame at sp - 20 or sp - 16
|
3591 |
|
|
depending on which ABI is in use. */
|
3592 |
|
|
if (regs_ever_live[2] || current_function_calls_eh_return)
|
3593 |
|
|
store_reg (2, TARGET_64BIT ? -16 : -20, STACK_POINTER_REGNUM);
|
3594 |
|
|
|
3595 |
|
|
/* Allocate the local frame and set up the frame pointer if needed. */
|
3596 |
|
|
if (actual_fsize != 0)
|
3597 |
|
|
{
|
3598 |
|
|
if (frame_pointer_needed)
|
3599 |
|
|
{
|
3600 |
|
|
/* Copy the old frame pointer temporarily into %r1. Set up the
|
3601 |
|
|
new stack pointer, then store away the saved old frame pointer
|
3602 |
|
|
into the stack at sp and at the same time update the stack
|
3603 |
|
|
pointer by actual_fsize bytes. Two versions, first
|
3604 |
|
|
handles small (<8k) frames. The second handles large (>=8k)
|
3605 |
|
|
frames. */
|
3606 |
|
|
insn = emit_move_insn (tmpreg, frame_pointer_rtx);
|
3607 |
|
|
if (DO_FRAME_NOTES)
|
3608 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3609 |
|
|
|
3610 |
|
|
insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
|
3611 |
|
|
if (DO_FRAME_NOTES)
|
3612 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3613 |
|
|
|
3614 |
|
|
if (VAL_14_BITS_P (actual_fsize))
|
3615 |
|
|
store_reg_modify (STACK_POINTER_REGNUM, 1, actual_fsize);
|
3616 |
|
|
else
|
3617 |
|
|
{
|
3618 |
|
|
/* It is incorrect to store the saved frame pointer at *sp,
|
3619 |
|
|
then increment sp (writes beyond the current stack boundary).
|
3620 |
|
|
|
3621 |
|
|
So instead use stwm to store at *sp and post-increment the
|
3622 |
|
|
stack pointer as an atomic operation. Then increment sp to
|
3623 |
|
|
finish allocating the new frame. */
|
3624 |
|
|
HOST_WIDE_INT adjust1 = 8192 - 64;
|
3625 |
|
|
HOST_WIDE_INT adjust2 = actual_fsize - adjust1;
|
3626 |
|
|
|
3627 |
|
|
store_reg_modify (STACK_POINTER_REGNUM, 1, adjust1);
|
3628 |
|
|
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
|
3629 |
|
|
adjust2, 1);
|
3630 |
|
|
}
|
3631 |
|
|
|
3632 |
|
|
/* We set SAVE_SP in frames that need a frame pointer. Thus,
|
3633 |
|
|
we need to store the previous stack pointer (frame pointer)
|
3634 |
|
|
into the frame marker on targets that use the HP unwind
|
3635 |
|
|
library. This allows the HP unwind library to be used to
|
3636 |
|
|
unwind GCC frames. However, we are not fully compatible
|
3637 |
|
|
with the HP library because our frame layout differs from
|
3638 |
|
|
that specified in the HP runtime specification.
|
3639 |
|
|
|
3640 |
|
|
We don't want a frame note on this instruction as the frame
|
3641 |
|
|
marker moves during dynamic stack allocation.
|
3642 |
|
|
|
3643 |
|
|
This instruction also serves as a blockage to prevent
|
3644 |
|
|
register spills from being scheduled before the stack
|
3645 |
|
|
pointer is raised. This is necessary as we store
|
3646 |
|
|
registers using the frame pointer as a base register,
|
3647 |
|
|
and the frame pointer is set before sp is raised. */
|
3648 |
|
|
if (TARGET_HPUX_UNWIND_LIBRARY)
|
3649 |
|
|
{
|
3650 |
|
|
rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx,
|
3651 |
|
|
GEN_INT (TARGET_64BIT ? -8 : -4));
|
3652 |
|
|
|
3653 |
|
|
emit_move_insn (gen_rtx_MEM (word_mode, addr),
|
3654 |
|
|
frame_pointer_rtx);
|
3655 |
|
|
}
|
3656 |
|
|
else
|
3657 |
|
|
emit_insn (gen_blockage ());
|
3658 |
|
|
}
|
3659 |
|
|
/* no frame pointer needed. */
|
3660 |
|
|
else
|
3661 |
|
|
{
|
3662 |
|
|
/* In some cases we can perform the first callee register save
|
3663 |
|
|
and allocating the stack frame at the same time. If so, just
|
3664 |
|
|
make a note of it and defer allocating the frame until saving
|
3665 |
|
|
the callee registers. */
|
3666 |
|
|
if (VAL_14_BITS_P (actual_fsize) && local_fsize == 0)
|
3667 |
|
|
merge_sp_adjust_with_store = 1;
|
3668 |
|
|
/* Can not optimize. Adjust the stack frame by actual_fsize
|
3669 |
|
|
bytes. */
|
3670 |
|
|
else
|
3671 |
|
|
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
|
3672 |
|
|
actual_fsize, 1);
|
3673 |
|
|
}
|
3674 |
|
|
}
|
3675 |
|
|
|
3676 |
|
|
/* Normal register save.
|
3677 |
|
|
|
3678 |
|
|
Do not save the frame pointer in the frame_pointer_needed case. It
|
3679 |
|
|
was done earlier. */
|
3680 |
|
|
if (frame_pointer_needed)
|
3681 |
|
|
{
|
3682 |
|
|
offset = local_fsize;
|
3683 |
|
|
|
3684 |
|
|
/* Saving the EH return data registers in the frame is the simplest
|
3685 |
|
|
way to get the frame unwind information emitted. We put them
|
3686 |
|
|
just before the general registers. */
|
3687 |
|
|
if (DO_FRAME_NOTES && current_function_calls_eh_return)
|
3688 |
|
|
{
|
3689 |
|
|
unsigned int i, regno;
|
3690 |
|
|
|
3691 |
|
|
for (i = 0; ; ++i)
|
3692 |
|
|
{
|
3693 |
|
|
regno = EH_RETURN_DATA_REGNO (i);
|
3694 |
|
|
if (regno == INVALID_REGNUM)
|
3695 |
|
|
break;
|
3696 |
|
|
|
3697 |
|
|
store_reg (regno, offset, FRAME_POINTER_REGNUM);
|
3698 |
|
|
offset += UNITS_PER_WORD;
|
3699 |
|
|
}
|
3700 |
|
|
}
|
3701 |
|
|
|
3702 |
|
|
for (i = 18; i >= 4; i--)
|
3703 |
|
|
if (regs_ever_live[i] && ! call_used_regs[i])
|
3704 |
|
|
{
|
3705 |
|
|
store_reg (i, offset, FRAME_POINTER_REGNUM);
|
3706 |
|
|
offset += UNITS_PER_WORD;
|
3707 |
|
|
gr_saved++;
|
3708 |
|
|
}
|
3709 |
|
|
/* Account for %r3 which is saved in a special place. */
|
3710 |
|
|
gr_saved++;
|
3711 |
|
|
}
|
3712 |
|
|
/* No frame pointer needed. */
|
3713 |
|
|
else
|
3714 |
|
|
{
|
3715 |
|
|
offset = local_fsize - actual_fsize;
|
3716 |
|
|
|
3717 |
|
|
/* Saving the EH return data registers in the frame is the simplest
|
3718 |
|
|
way to get the frame unwind information emitted. */
|
3719 |
|
|
if (DO_FRAME_NOTES && current_function_calls_eh_return)
|
3720 |
|
|
{
|
3721 |
|
|
unsigned int i, regno;
|
3722 |
|
|
|
3723 |
|
|
for (i = 0; ; ++i)
|
3724 |
|
|
{
|
3725 |
|
|
regno = EH_RETURN_DATA_REGNO (i);
|
3726 |
|
|
if (regno == INVALID_REGNUM)
|
3727 |
|
|
break;
|
3728 |
|
|
|
3729 |
|
|
/* If merge_sp_adjust_with_store is nonzero, then we can
|
3730 |
|
|
optimize the first save. */
|
3731 |
|
|
if (merge_sp_adjust_with_store)
|
3732 |
|
|
{
|
3733 |
|
|
store_reg_modify (STACK_POINTER_REGNUM, regno, -offset);
|
3734 |
|
|
merge_sp_adjust_with_store = 0;
|
3735 |
|
|
}
|
3736 |
|
|
else
|
3737 |
|
|
store_reg (regno, offset, STACK_POINTER_REGNUM);
|
3738 |
|
|
offset += UNITS_PER_WORD;
|
3739 |
|
|
}
|
3740 |
|
|
}
|
3741 |
|
|
|
3742 |
|
|
for (i = 18; i >= 3; i--)
|
3743 |
|
|
if (regs_ever_live[i] && ! call_used_regs[i])
|
3744 |
|
|
{
|
3745 |
|
|
/* If merge_sp_adjust_with_store is nonzero, then we can
|
3746 |
|
|
optimize the first GR save. */
|
3747 |
|
|
if (merge_sp_adjust_with_store)
|
3748 |
|
|
{
|
3749 |
|
|
store_reg_modify (STACK_POINTER_REGNUM, i, -offset);
|
3750 |
|
|
merge_sp_adjust_with_store = 0;
|
3751 |
|
|
}
|
3752 |
|
|
else
|
3753 |
|
|
store_reg (i, offset, STACK_POINTER_REGNUM);
|
3754 |
|
|
offset += UNITS_PER_WORD;
|
3755 |
|
|
gr_saved++;
|
3756 |
|
|
}
|
3757 |
|
|
|
3758 |
|
|
/* If we wanted to merge the SP adjustment with a GR save, but we never
|
3759 |
|
|
did any GR saves, then just emit the adjustment here. */
|
3760 |
|
|
if (merge_sp_adjust_with_store)
|
3761 |
|
|
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
|
3762 |
|
|
actual_fsize, 1);
|
3763 |
|
|
}
|
3764 |
|
|
|
3765 |
|
|
/* The hppa calling conventions say that %r19, the pic offset
|
3766 |
|
|
register, is saved at sp - 32 (in this function's frame)
|
3767 |
|
|
when generating PIC code. FIXME: What is the correct thing
|
3768 |
|
|
to do for functions which make no calls and allocate no
|
3769 |
|
|
frame? Do we need to allocate a frame, or can we just omit
|
3770 |
|
|
the save? For now we'll just omit the save.
|
3771 |
|
|
|
3772 |
|
|
We don't want a note on this insn as the frame marker can
|
3773 |
|
|
move if there is a dynamic stack allocation. */
|
3774 |
|
|
if (flag_pic && actual_fsize != 0 && !TARGET_64BIT)
|
3775 |
|
|
{
|
3776 |
|
|
rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx, GEN_INT (-32));
|
3777 |
|
|
|
3778 |
|
|
emit_move_insn (gen_rtx_MEM (word_mode, addr), pic_offset_table_rtx);
|
3779 |
|
|
|
3780 |
|
|
}
|
3781 |
|
|
|
3782 |
|
|
/* Align pointer properly (doubleword boundary). */
|
3783 |
|
|
offset = (offset + 7) & ~7;
|
3784 |
|
|
|
3785 |
|
|
/* Floating point register store. */
|
3786 |
|
|
if (save_fregs)
|
3787 |
|
|
{
|
3788 |
|
|
rtx base;
|
3789 |
|
|
|
3790 |
|
|
/* First get the frame or stack pointer to the start of the FP register
|
3791 |
|
|
save area. */
|
3792 |
|
|
if (frame_pointer_needed)
|
3793 |
|
|
{
|
3794 |
|
|
set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0);
|
3795 |
|
|
base = frame_pointer_rtx;
|
3796 |
|
|
}
|
3797 |
|
|
else
|
3798 |
|
|
{
|
3799 |
|
|
set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
|
3800 |
|
|
base = stack_pointer_rtx;
|
3801 |
|
|
}
|
3802 |
|
|
|
3803 |
|
|
/* Now actually save the FP registers. */
|
3804 |
|
|
for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
|
3805 |
|
|
{
|
3806 |
|
|
if (regs_ever_live[i]
|
3807 |
|
|
|| (! TARGET_64BIT && regs_ever_live[i + 1]))
|
3808 |
|
|
{
|
3809 |
|
|
rtx addr, insn, reg;
|
3810 |
|
|
addr = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg));
|
3811 |
|
|
reg = gen_rtx_REG (DFmode, i);
|
3812 |
|
|
insn = emit_move_insn (addr, reg);
|
3813 |
|
|
if (DO_FRAME_NOTES)
|
3814 |
|
|
{
|
3815 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
3816 |
|
|
if (TARGET_64BIT)
|
3817 |
|
|
{
|
3818 |
|
|
rtx mem = gen_rtx_MEM (DFmode,
|
3819 |
|
|
plus_constant (base, offset));
|
3820 |
|
|
REG_NOTES (insn)
|
3821 |
|
|
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
3822 |
|
|
gen_rtx_SET (VOIDmode, mem, reg),
|
3823 |
|
|
REG_NOTES (insn));
|
3824 |
|
|
}
|
3825 |
|
|
else
|
3826 |
|
|
{
|
3827 |
|
|
rtx meml = gen_rtx_MEM (SFmode,
|
3828 |
|
|
plus_constant (base, offset));
|
3829 |
|
|
rtx memr = gen_rtx_MEM (SFmode,
|
3830 |
|
|
plus_constant (base, offset + 4));
|
3831 |
|
|
rtx regl = gen_rtx_REG (SFmode, i);
|
3832 |
|
|
rtx regr = gen_rtx_REG (SFmode, i + 1);
|
3833 |
|
|
rtx setl = gen_rtx_SET (VOIDmode, meml, regl);
|
3834 |
|
|
rtx setr = gen_rtx_SET (VOIDmode, memr, regr);
|
3835 |
|
|
rtvec vec;
|
3836 |
|
|
|
3837 |
|
|
RTX_FRAME_RELATED_P (setl) = 1;
|
3838 |
|
|
RTX_FRAME_RELATED_P (setr) = 1;
|
3839 |
|
|
vec = gen_rtvec (2, setl, setr);
|
3840 |
|
|
REG_NOTES (insn)
|
3841 |
|
|
= gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR,
|
3842 |
|
|
gen_rtx_SEQUENCE (VOIDmode, vec),
|
3843 |
|
|
REG_NOTES (insn));
|
3844 |
|
|
}
|
3845 |
|
|
}
|
3846 |
|
|
offset += GET_MODE_SIZE (DFmode);
|
3847 |
|
|
fr_saved++;
|
3848 |
|
|
}
|
3849 |
|
|
}
|
3850 |
|
|
}
|
3851 |
|
|
}
|
3852 |
|
|
|
3853 |
|
|
/* Emit RTL to load REG from the memory location specified by BASE+DISP.
|
3854 |
|
|
Handle case where DISP > 8k by using the add_high_const patterns. */
|
3855 |
|
|
|
3856 |
|
|
static void
|
3857 |
|
|
load_reg (int reg, HOST_WIDE_INT disp, int base)
|
3858 |
|
|
{
|
3859 |
|
|
rtx dest = gen_rtx_REG (word_mode, reg);
|
3860 |
|
|
rtx basereg = gen_rtx_REG (Pmode, base);
|
3861 |
|
|
rtx src;
|
3862 |
|
|
|
3863 |
|
|
if (VAL_14_BITS_P (disp))
|
3864 |
|
|
src = gen_rtx_MEM (word_mode, plus_constant (basereg, disp));
|
3865 |
|
|
else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
|
3866 |
|
|
{
|
3867 |
|
|
rtx delta = GEN_INT (disp);
|
3868 |
|
|
rtx tmpreg = gen_rtx_REG (Pmode, 1);
|
3869 |
|
|
|
3870 |
|
|
emit_move_insn (tmpreg, delta);
|
3871 |
|
|
if (TARGET_DISABLE_INDEXING)
|
3872 |
|
|
{
|
3873 |
|
|
emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
|
3874 |
|
|
src = gen_rtx_MEM (word_mode, tmpreg);
|
3875 |
|
|
}
|
3876 |
|
|
else
|
3877 |
|
|
src = gen_rtx_MEM (word_mode, gen_rtx_PLUS (Pmode, tmpreg, basereg));
|
3878 |
|
|
}
|
3879 |
|
|
else
|
3880 |
|
|
{
|
3881 |
|
|
rtx delta = GEN_INT (disp);
|
3882 |
|
|
rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
|
3883 |
|
|
rtx tmpreg = gen_rtx_REG (Pmode, 1);
|
3884 |
|
|
|
3885 |
|
|
emit_move_insn (tmpreg, high);
|
3886 |
|
|
src = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
|
3887 |
|
|
}
|
3888 |
|
|
|
3889 |
|
|
emit_move_insn (dest, src);
|
3890 |
|
|
}
|
3891 |
|
|
|
3892 |
|
|
/* Update the total code bytes output to the text section. */
|
3893 |
|
|
|
3894 |
|
|
static void
|
3895 |
|
|
update_total_code_bytes (int nbytes)
|
3896 |
|
|
{
|
3897 |
|
|
if ((TARGET_PORTABLE_RUNTIME || !TARGET_GAS || !TARGET_SOM)
|
3898 |
|
|
&& !IN_NAMED_SECTION_P (cfun->decl))
|
3899 |
|
|
{
|
3900 |
|
|
if (INSN_ADDRESSES_SET_P ())
|
3901 |
|
|
{
|
3902 |
|
|
unsigned long old_total = total_code_bytes;
|
3903 |
|
|
|
3904 |
|
|
total_code_bytes += nbytes;
|
3905 |
|
|
|
3906 |
|
|
/* Be prepared to handle overflows. */
|
3907 |
|
|
if (old_total > total_code_bytes)
|
3908 |
|
|
total_code_bytes = -1;
|
3909 |
|
|
}
|
3910 |
|
|
else
|
3911 |
|
|
total_code_bytes = -1;
|
3912 |
|
|
}
|
3913 |
|
|
}
|
3914 |
|
|
|
3915 |
|
|
/* This function generates the assembly code for function exit.
|
3916 |
|
|
Args are as for output_function_prologue ().
|
3917 |
|
|
|
3918 |
|
|
The function epilogue should not depend on the current stack
|
3919 |
|
|
pointer! It should use the frame pointer only. This is mandatory
|
3920 |
|
|
because of alloca; we also take advantage of it to omit stack
|
3921 |
|
|
adjustments before returning. */
|
3922 |
|
|
|
3923 |
|
|
static void
|
3924 |
|
|
pa_output_function_epilogue (FILE *file, HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
3925 |
|
|
{
|
3926 |
|
|
rtx insn = get_last_insn ();
|
3927 |
|
|
|
3928 |
|
|
last_address = 0;
|
3929 |
|
|
|
3930 |
|
|
/* hppa_expand_epilogue does the dirty work now. We just need
|
3931 |
|
|
to output the assembler directives which denote the end
|
3932 |
|
|
of a function.
|
3933 |
|
|
|
3934 |
|
|
To make debuggers happy, emit a nop if the epilogue was completely
|
3935 |
|
|
eliminated due to a volatile call as the last insn in the
|
3936 |
|
|
current function. That way the return address (in %r2) will
|
3937 |
|
|
always point to a valid instruction in the current function. */
|
3938 |
|
|
|
3939 |
|
|
/* Get the last real insn. */
|
3940 |
|
|
if (GET_CODE (insn) == NOTE)
|
3941 |
|
|
insn = prev_real_insn (insn);
|
3942 |
|
|
|
3943 |
|
|
/* If it is a sequence, then look inside. */
|
3944 |
|
|
if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
3945 |
|
|
insn = XVECEXP (PATTERN (insn), 0, 0);
|
3946 |
|
|
|
3947 |
|
|
/* If insn is a CALL_INSN, then it must be a call to a volatile
|
3948 |
|
|
function (otherwise there would be epilogue insns). */
|
3949 |
|
|
if (insn && GET_CODE (insn) == CALL_INSN)
|
3950 |
|
|
{
|
3951 |
|
|
fputs ("\tnop\n", file);
|
3952 |
|
|
last_address += 4;
|
3953 |
|
|
}
|
3954 |
|
|
|
3955 |
|
|
fputs ("\t.EXIT\n\t.PROCEND\n", file);
|
3956 |
|
|
|
3957 |
|
|
if (TARGET_SOM && TARGET_GAS)
|
3958 |
|
|
{
|
3959 |
|
|
/* We done with this subspace except possibly for some additional
|
3960 |
|
|
debug information. Forget that we are in this subspace to ensure
|
3961 |
|
|
that the next function is output in its own subspace. */
|
3962 |
|
|
in_section = NULL;
|
3963 |
|
|
cfun->machine->in_nsubspa = 2;
|
3964 |
|
|
}
|
3965 |
|
|
|
3966 |
|
|
if (INSN_ADDRESSES_SET_P ())
|
3967 |
|
|
{
|
3968 |
|
|
insn = get_last_nonnote_insn ();
|
3969 |
|
|
last_address += INSN_ADDRESSES (INSN_UID (insn));
|
3970 |
|
|
if (INSN_P (insn))
|
3971 |
|
|
last_address += insn_default_length (insn);
|
3972 |
|
|
last_address = ((last_address + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)
|
3973 |
|
|
& ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1));
|
3974 |
|
|
}
|
3975 |
|
|
|
3976 |
|
|
/* Finally, update the total number of code bytes output so far. */
|
3977 |
|
|
update_total_code_bytes (last_address);
|
3978 |
|
|
}
|
3979 |
|
|
|
3980 |
|
|
void
|
3981 |
|
|
hppa_expand_epilogue (void)
|
3982 |
|
|
{
|
3983 |
|
|
rtx tmpreg;
|
3984 |
|
|
HOST_WIDE_INT offset;
|
3985 |
|
|
HOST_WIDE_INT ret_off = 0;
|
3986 |
|
|
int i;
|
3987 |
|
|
int merge_sp_adjust_with_load = 0;
|
3988 |
|
|
|
3989 |
|
|
/* We will use this often. */
|
3990 |
|
|
tmpreg = gen_rtx_REG (word_mode, 1);
|
3991 |
|
|
|
3992 |
|
|
/* Try to restore RP early to avoid load/use interlocks when
|
3993 |
|
|
RP gets used in the return (bv) instruction. This appears to still
|
3994 |
|
|
be necessary even when we schedule the prologue and epilogue. */
|
3995 |
|
|
if (regs_ever_live [2] || current_function_calls_eh_return)
|
3996 |
|
|
{
|
3997 |
|
|
ret_off = TARGET_64BIT ? -16 : -20;
|
3998 |
|
|
if (frame_pointer_needed)
|
3999 |
|
|
{
|
4000 |
|
|
load_reg (2, ret_off, FRAME_POINTER_REGNUM);
|
4001 |
|
|
ret_off = 0;
|
4002 |
|
|
}
|
4003 |
|
|
else
|
4004 |
|
|
{
|
4005 |
|
|
/* No frame pointer, and stack is smaller than 8k. */
|
4006 |
|
|
if (VAL_14_BITS_P (ret_off - actual_fsize))
|
4007 |
|
|
{
|
4008 |
|
|
load_reg (2, ret_off - actual_fsize, STACK_POINTER_REGNUM);
|
4009 |
|
|
ret_off = 0;
|
4010 |
|
|
}
|
4011 |
|
|
}
|
4012 |
|
|
}
|
4013 |
|
|
|
4014 |
|
|
/* General register restores. */
|
4015 |
|
|
if (frame_pointer_needed)
|
4016 |
|
|
{
|
4017 |
|
|
offset = local_fsize;
|
4018 |
|
|
|
4019 |
|
|
/* If the current function calls __builtin_eh_return, then we need
|
4020 |
|
|
to restore the saved EH data registers. */
|
4021 |
|
|
if (DO_FRAME_NOTES && current_function_calls_eh_return)
|
4022 |
|
|
{
|
4023 |
|
|
unsigned int i, regno;
|
4024 |
|
|
|
4025 |
|
|
for (i = 0; ; ++i)
|
4026 |
|
|
{
|
4027 |
|
|
regno = EH_RETURN_DATA_REGNO (i);
|
4028 |
|
|
if (regno == INVALID_REGNUM)
|
4029 |
|
|
break;
|
4030 |
|
|
|
4031 |
|
|
load_reg (regno, offset, FRAME_POINTER_REGNUM);
|
4032 |
|
|
offset += UNITS_PER_WORD;
|
4033 |
|
|
}
|
4034 |
|
|
}
|
4035 |
|
|
|
4036 |
|
|
for (i = 18; i >= 4; i--)
|
4037 |
|
|
if (regs_ever_live[i] && ! call_used_regs[i])
|
4038 |
|
|
{
|
4039 |
|
|
load_reg (i, offset, FRAME_POINTER_REGNUM);
|
4040 |
|
|
offset += UNITS_PER_WORD;
|
4041 |
|
|
}
|
4042 |
|
|
}
|
4043 |
|
|
else
|
4044 |
|
|
{
|
4045 |
|
|
offset = local_fsize - actual_fsize;
|
4046 |
|
|
|
4047 |
|
|
/* If the current function calls __builtin_eh_return, then we need
|
4048 |
|
|
to restore the saved EH data registers. */
|
4049 |
|
|
if (DO_FRAME_NOTES && current_function_calls_eh_return)
|
4050 |
|
|
{
|
4051 |
|
|
unsigned int i, regno;
|
4052 |
|
|
|
4053 |
|
|
for (i = 0; ; ++i)
|
4054 |
|
|
{
|
4055 |
|
|
regno = EH_RETURN_DATA_REGNO (i);
|
4056 |
|
|
if (regno == INVALID_REGNUM)
|
4057 |
|
|
break;
|
4058 |
|
|
|
4059 |
|
|
/* Only for the first load.
|
4060 |
|
|
merge_sp_adjust_with_load holds the register load
|
4061 |
|
|
with which we will merge the sp adjustment. */
|
4062 |
|
|
if (merge_sp_adjust_with_load == 0
|
4063 |
|
|
&& local_fsize == 0
|
4064 |
|
|
&& VAL_14_BITS_P (-actual_fsize))
|
4065 |
|
|
merge_sp_adjust_with_load = regno;
|
4066 |
|
|
else
|
4067 |
|
|
load_reg (regno, offset, STACK_POINTER_REGNUM);
|
4068 |
|
|
offset += UNITS_PER_WORD;
|
4069 |
|
|
}
|
4070 |
|
|
}
|
4071 |
|
|
|
4072 |
|
|
for (i = 18; i >= 3; i--)
|
4073 |
|
|
{
|
4074 |
|
|
if (regs_ever_live[i] && ! call_used_regs[i])
|
4075 |
|
|
{
|
4076 |
|
|
/* Only for the first load.
|
4077 |
|
|
merge_sp_adjust_with_load holds the register load
|
4078 |
|
|
with which we will merge the sp adjustment. */
|
4079 |
|
|
if (merge_sp_adjust_with_load == 0
|
4080 |
|
|
&& local_fsize == 0
|
4081 |
|
|
&& VAL_14_BITS_P (-actual_fsize))
|
4082 |
|
|
merge_sp_adjust_with_load = i;
|
4083 |
|
|
else
|
4084 |
|
|
load_reg (i, offset, STACK_POINTER_REGNUM);
|
4085 |
|
|
offset += UNITS_PER_WORD;
|
4086 |
|
|
}
|
4087 |
|
|
}
|
4088 |
|
|
}
|
4089 |
|
|
|
4090 |
|
|
/* Align pointer properly (doubleword boundary). */
|
4091 |
|
|
offset = (offset + 7) & ~7;
|
4092 |
|
|
|
4093 |
|
|
/* FP register restores. */
|
4094 |
|
|
if (save_fregs)
|
4095 |
|
|
{
|
4096 |
|
|
/* Adjust the register to index off of. */
|
4097 |
|
|
if (frame_pointer_needed)
|
4098 |
|
|
set_reg_plus_d (1, FRAME_POINTER_REGNUM, offset, 0);
|
4099 |
|
|
else
|
4100 |
|
|
set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
|
4101 |
|
|
|
4102 |
|
|
/* Actually do the restores now. */
|
4103 |
|
|
for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
|
4104 |
|
|
if (regs_ever_live[i]
|
4105 |
|
|
|| (! TARGET_64BIT && regs_ever_live[i + 1]))
|
4106 |
|
|
{
|
4107 |
|
|
rtx src = gen_rtx_MEM (DFmode, gen_rtx_POST_INC (DFmode, tmpreg));
|
4108 |
|
|
rtx dest = gen_rtx_REG (DFmode, i);
|
4109 |
|
|
emit_move_insn (dest, src);
|
4110 |
|
|
}
|
4111 |
|
|
}
|
4112 |
|
|
|
4113 |
|
|
/* Emit a blockage insn here to keep these insns from being moved to
|
4114 |
|
|
an earlier spot in the epilogue, or into the main instruction stream.
|
4115 |
|
|
|
4116 |
|
|
This is necessary as we must not cut the stack back before all the
|
4117 |
|
|
restores are finished. */
|
4118 |
|
|
emit_insn (gen_blockage ());
|
4119 |
|
|
|
4120 |
|
|
/* Reset stack pointer (and possibly frame pointer). The stack
|
4121 |
|
|
pointer is initially set to fp + 64 to avoid a race condition. */
|
4122 |
|
|
if (frame_pointer_needed)
|
4123 |
|
|
{
|
4124 |
|
|
rtx delta = GEN_INT (-64);
|
4125 |
|
|
|
4126 |
|
|
set_reg_plus_d (STACK_POINTER_REGNUM, FRAME_POINTER_REGNUM, 64, 0);
|
4127 |
|
|
emit_insn (gen_pre_load (frame_pointer_rtx, stack_pointer_rtx, delta));
|
4128 |
|
|
}
|
4129 |
|
|
/* If we were deferring a callee register restore, do it now. */
|
4130 |
|
|
else if (merge_sp_adjust_with_load)
|
4131 |
|
|
{
|
4132 |
|
|
rtx delta = GEN_INT (-actual_fsize);
|
4133 |
|
|
rtx dest = gen_rtx_REG (word_mode, merge_sp_adjust_with_load);
|
4134 |
|
|
|
4135 |
|
|
emit_insn (gen_pre_load (dest, stack_pointer_rtx, delta));
|
4136 |
|
|
}
|
4137 |
|
|
else if (actual_fsize != 0)
|
4138 |
|
|
set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
|
4139 |
|
|
- actual_fsize, 0);
|
4140 |
|
|
|
4141 |
|
|
/* If we haven't restored %r2 yet (no frame pointer, and a stack
|
4142 |
|
|
frame greater than 8k), do so now. */
|
4143 |
|
|
if (ret_off != 0)
|
4144 |
|
|
load_reg (2, ret_off, STACK_POINTER_REGNUM);
|
4145 |
|
|
|
4146 |
|
|
if (DO_FRAME_NOTES && current_function_calls_eh_return)
|
4147 |
|
|
{
|
4148 |
|
|
rtx sa = EH_RETURN_STACKADJ_RTX;
|
4149 |
|
|
|
4150 |
|
|
emit_insn (gen_blockage ());
|
4151 |
|
|
emit_insn (TARGET_64BIT
|
4152 |
|
|
? gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx, sa)
|
4153 |
|
|
: gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, sa));
|
4154 |
|
|
}
|
4155 |
|
|
}
|
4156 |
|
|
|
4157 |
|
|
rtx
|
4158 |
|
|
hppa_pic_save_rtx (void)
|
4159 |
|
|
{
|
4160 |
|
|
return get_hard_reg_initial_val (word_mode, PIC_OFFSET_TABLE_REGNUM);
|
4161 |
|
|
}
|
4162 |
|
|
|
4163 |
|
|
#ifndef NO_DEFERRED_PROFILE_COUNTERS
|
4164 |
|
|
#define NO_DEFERRED_PROFILE_COUNTERS 0
|
4165 |
|
|
#endif
|
4166 |
|
|
|
4167 |
|
|
/* Define heap vector type for funcdef numbers. */
|
4168 |
|
|
DEF_VEC_I(int);
|
4169 |
|
|
DEF_VEC_ALLOC_I(int,heap);
|
4170 |
|
|
|
4171 |
|
|
/* Vector of funcdef numbers. */
|
4172 |
|
|
static VEC(int,heap) *funcdef_nos;
|
4173 |
|
|
|
4174 |
|
|
/* Output deferred profile counters. */
|
4175 |
|
|
static void
|
4176 |
|
|
output_deferred_profile_counters (void)
|
4177 |
|
|
{
|
4178 |
|
|
unsigned int i;
|
4179 |
|
|
int align, n;
|
4180 |
|
|
|
4181 |
|
|
if (VEC_empty (int, funcdef_nos))
|
4182 |
|
|
return;
|
4183 |
|
|
|
4184 |
|
|
switch_to_section (data_section);
|
4185 |
|
|
align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
|
4186 |
|
|
ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT));
|
4187 |
|
|
|
4188 |
|
|
for (i = 0; VEC_iterate (int, funcdef_nos, i, n); i++)
|
4189 |
|
|
{
|
4190 |
|
|
targetm.asm_out.internal_label (asm_out_file, "LP", n);
|
4191 |
|
|
assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
|
4192 |
|
|
}
|
4193 |
|
|
|
4194 |
|
|
VEC_free (int, heap, funcdef_nos);
|
4195 |
|
|
}
|
4196 |
|
|
|
4197 |
|
|
void
|
4198 |
|
|
hppa_profile_hook (int label_no)
|
4199 |
|
|
{
|
4200 |
|
|
/* We use SImode for the address of the function in both 32 and
|
4201 |
|
|
64-bit code to avoid having to provide DImode versions of the
|
4202 |
|
|
lcla2 and load_offset_label_address insn patterns. */
|
4203 |
|
|
rtx reg = gen_reg_rtx (SImode);
|
4204 |
|
|
rtx label_rtx = gen_label_rtx ();
|
4205 |
|
|
rtx begin_label_rtx, call_insn;
|
4206 |
|
|
char begin_label_name[16];
|
4207 |
|
|
|
4208 |
|
|
ASM_GENERATE_INTERNAL_LABEL (begin_label_name, FUNC_BEGIN_PROLOG_LABEL,
|
4209 |
|
|
label_no);
|
4210 |
|
|
begin_label_rtx = gen_rtx_SYMBOL_REF (SImode, ggc_strdup (begin_label_name));
|
4211 |
|
|
|
4212 |
|
|
if (TARGET_64BIT)
|
4213 |
|
|
emit_move_insn (arg_pointer_rtx,
|
4214 |
|
|
gen_rtx_PLUS (word_mode, virtual_outgoing_args_rtx,
|
4215 |
|
|
GEN_INT (64)));
|
4216 |
|
|
|
4217 |
|
|
emit_move_insn (gen_rtx_REG (word_mode, 26), gen_rtx_REG (word_mode, 2));
|
4218 |
|
|
|
4219 |
|
|
/* The address of the function is loaded into %r25 with a instruction-
|
4220 |
|
|
relative sequence that avoids the use of relocations. The sequence
|
4221 |
|
|
is split so that the load_offset_label_address instruction can
|
4222 |
|
|
occupy the delay slot of the call to _mcount. */
|
4223 |
|
|
if (TARGET_PA_20)
|
4224 |
|
|
emit_insn (gen_lcla2 (reg, label_rtx));
|
4225 |
|
|
else
|
4226 |
|
|
emit_insn (gen_lcla1 (reg, label_rtx));
|
4227 |
|
|
|
4228 |
|
|
emit_insn (gen_load_offset_label_address (gen_rtx_REG (SImode, 25),
|
4229 |
|
|
reg, begin_label_rtx, label_rtx));
|
4230 |
|
|
|
4231 |
|
|
#if !NO_DEFERRED_PROFILE_COUNTERS
|
4232 |
|
|
{
|
4233 |
|
|
rtx count_label_rtx, addr, r24;
|
4234 |
|
|
char count_label_name[16];
|
4235 |
|
|
|
4236 |
|
|
VEC_safe_push (int, heap, funcdef_nos, label_no);
|
4237 |
|
|
ASM_GENERATE_INTERNAL_LABEL (count_label_name, "LP", label_no);
|
4238 |
|
|
count_label_rtx = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (count_label_name));
|
4239 |
|
|
|
4240 |
|
|
addr = force_reg (Pmode, count_label_rtx);
|
4241 |
|
|
r24 = gen_rtx_REG (Pmode, 24);
|
4242 |
|
|
emit_move_insn (r24, addr);
|
4243 |
|
|
|
4244 |
|
|
call_insn =
|
4245 |
|
|
emit_call_insn (gen_call (gen_rtx_MEM (Pmode,
|
4246 |
|
|
gen_rtx_SYMBOL_REF (Pmode,
|
4247 |
|
|
"_mcount")),
|
4248 |
|
|
GEN_INT (TARGET_64BIT ? 24 : 12)));
|
4249 |
|
|
|
4250 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), r24);
|
4251 |
|
|
}
|
4252 |
|
|
#else
|
4253 |
|
|
|
4254 |
|
|
call_insn =
|
4255 |
|
|
emit_call_insn (gen_call (gen_rtx_MEM (Pmode,
|
4256 |
|
|
gen_rtx_SYMBOL_REF (Pmode,
|
4257 |
|
|
"_mcount")),
|
4258 |
|
|
GEN_INT (TARGET_64BIT ? 16 : 8)));
|
4259 |
|
|
|
4260 |
|
|
#endif
|
4261 |
|
|
|
4262 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 25));
|
4263 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 26));
|
4264 |
|
|
|
4265 |
|
|
/* Indicate the _mcount call cannot throw, nor will it execute a
|
4266 |
|
|
non-local goto. */
|
4267 |
|
|
REG_NOTES (call_insn)
|
4268 |
|
|
= gen_rtx_EXPR_LIST (REG_EH_REGION, constm1_rtx, REG_NOTES (call_insn));
|
4269 |
|
|
}
|
4270 |
|
|
|
4271 |
|
|
/* Fetch the return address for the frame COUNT steps up from
|
4272 |
|
|
the current frame, after the prologue. FRAMEADDR is the
|
4273 |
|
|
frame pointer of the COUNT frame.
|
4274 |
|
|
|
4275 |
|
|
We want to ignore any export stub remnants here. To handle this,
|
4276 |
|
|
we examine the code at the return address, and if it is an export
|
4277 |
|
|
stub, we return a memory rtx for the stub return address stored
|
4278 |
|
|
at frame-24.
|
4279 |
|
|
|
4280 |
|
|
The value returned is used in two different ways:
|
4281 |
|
|
|
4282 |
|
|
1. To find a function's caller.
|
4283 |
|
|
|
4284 |
|
|
2. To change the return address for a function.
|
4285 |
|
|
|
4286 |
|
|
This function handles most instances of case 1; however, it will
|
4287 |
|
|
fail if there are two levels of stubs to execute on the return
|
4288 |
|
|
path. The only way I believe that can happen is if the return value
|
4289 |
|
|
needs a parameter relocation, which never happens for C code.
|
4290 |
|
|
|
4291 |
|
|
This function handles most instances of case 2; however, it will
|
4292 |
|
|
fail if we did not originally have stub code on the return path
|
4293 |
|
|
but will need stub code on the new return path. This can happen if
|
4294 |
|
|
the caller & callee are both in the main program, but the new
|
4295 |
|
|
return location is in a shared library. */
|
4296 |
|
|
|
4297 |
|
|
rtx
|
4298 |
|
|
return_addr_rtx (int count, rtx frameaddr)
|
4299 |
|
|
{
|
4300 |
|
|
rtx label;
|
4301 |
|
|
rtx rp;
|
4302 |
|
|
rtx saved_rp;
|
4303 |
|
|
rtx ins;
|
4304 |
|
|
|
4305 |
|
|
if (count != 0)
|
4306 |
|
|
return NULL_RTX;
|
4307 |
|
|
|
4308 |
|
|
rp = get_hard_reg_initial_val (Pmode, 2);
|
4309 |
|
|
|
4310 |
|
|
if (TARGET_64BIT || TARGET_NO_SPACE_REGS)
|
4311 |
|
|
return rp;
|
4312 |
|
|
|
4313 |
|
|
saved_rp = gen_reg_rtx (Pmode);
|
4314 |
|
|
emit_move_insn (saved_rp, rp);
|
4315 |
|
|
|
4316 |
|
|
/* Get pointer to the instruction stream. We have to mask out the
|
4317 |
|
|
privilege level from the two low order bits of the return address
|
4318 |
|
|
pointer here so that ins will point to the start of the first
|
4319 |
|
|
instruction that would have been executed if we returned. */
|
4320 |
|
|
ins = copy_to_reg (gen_rtx_AND (Pmode, rp, MASK_RETURN_ADDR));
|
4321 |
|
|
label = gen_label_rtx ();
|
4322 |
|
|
|
4323 |
|
|
/* Check the instruction stream at the normal return address for the
|
4324 |
|
|
export stub:
|
4325 |
|
|
|
4326 |
|
|
0x4bc23fd1 | stub+8: ldw -18(sr0,sp),rp
|
4327 |
|
|
0x004010a1 | stub+12: ldsid (sr0,rp),r1
|
4328 |
|
|
0x00011820 | stub+16: mtsp r1,sr0
|
4329 |
|
|
0xe0400002 | stub+20: be,n 0(sr0,rp)
|
4330 |
|
|
|
4331 |
|
|
If it is an export stub, than our return address is really in
|
4332 |
|
|
-24[frameaddr]. */
|
4333 |
|
|
|
4334 |
|
|
emit_cmp_insn (gen_rtx_MEM (SImode, ins), GEN_INT (0x4bc23fd1), NE,
|
4335 |
|
|
NULL_RTX, SImode, 1);
|
4336 |
|
|
emit_jump_insn (gen_bne (label));
|
4337 |
|
|
|
4338 |
|
|
emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 4)),
|
4339 |
|
|
GEN_INT (0x004010a1), NE, NULL_RTX, SImode, 1);
|
4340 |
|
|
emit_jump_insn (gen_bne (label));
|
4341 |
|
|
|
4342 |
|
|
emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 8)),
|
4343 |
|
|
GEN_INT (0x00011820), NE, NULL_RTX, SImode, 1);
|
4344 |
|
|
emit_jump_insn (gen_bne (label));
|
4345 |
|
|
|
4346 |
|
|
/* 0xe0400002 must be specified as -532676606 so that it won't be
|
4347 |
|
|
rejected as an invalid immediate operand on 64-bit hosts. */
|
4348 |
|
|
emit_cmp_insn (gen_rtx_MEM (SImode, plus_constant (ins, 12)),
|
4349 |
|
|
GEN_INT (-532676606), NE, NULL_RTX, SImode, 1);
|
4350 |
|
|
|
4351 |
|
|
/* If there is no export stub then just use the value saved from
|
4352 |
|
|
the return pointer register. */
|
4353 |
|
|
|
4354 |
|
|
emit_jump_insn (gen_bne (label));
|
4355 |
|
|
|
4356 |
|
|
/* Here we know that our return address points to an export
|
4357 |
|
|
stub. We don't want to return the address of the export stub,
|
4358 |
|
|
but rather the return address of the export stub. That return
|
4359 |
|
|
address is stored at -24[frameaddr]. */
|
4360 |
|
|
|
4361 |
|
|
emit_move_insn (saved_rp,
|
4362 |
|
|
gen_rtx_MEM (Pmode,
|
4363 |
|
|
memory_address (Pmode,
|
4364 |
|
|
plus_constant (frameaddr,
|
4365 |
|
|
-24))));
|
4366 |
|
|
|
4367 |
|
|
emit_label (label);
|
4368 |
|
|
return saved_rp;
|
4369 |
|
|
}
|
4370 |
|
|
|
4371 |
|
|
/* This is only valid once reload has completed because it depends on
|
4372 |
|
|
knowing exactly how much (if any) frame there is and...
|
4373 |
|
|
|
4374 |
|
|
It's only valid if there is no frame marker to de-allocate and...
|
4375 |
|
|
|
4376 |
|
|
It's only valid if %r2 hasn't been saved into the caller's frame
|
4377 |
|
|
(we're not profiling and %r2 isn't live anywhere). */
|
4378 |
|
|
int
|
4379 |
|
|
hppa_can_use_return_insn_p (void)
|
4380 |
|
|
{
|
4381 |
|
|
return (reload_completed
|
4382 |
|
|
&& (compute_frame_size (get_frame_size (), 0) ? 0 : 1)
|
4383 |
|
|
&& ! regs_ever_live[2]
|
4384 |
|
|
&& ! frame_pointer_needed);
|
4385 |
|
|
}
|
4386 |
|
|
|
4387 |
|
|
void
|
4388 |
|
|
emit_bcond_fp (enum rtx_code code, rtx operand0)
|
4389 |
|
|
{
|
4390 |
|
|
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
|
4391 |
|
|
gen_rtx_IF_THEN_ELSE (VOIDmode,
|
4392 |
|
|
gen_rtx_fmt_ee (code,
|
4393 |
|
|
VOIDmode,
|
4394 |
|
|
gen_rtx_REG (CCFPmode, 0),
|
4395 |
|
|
const0_rtx),
|
4396 |
|
|
gen_rtx_LABEL_REF (VOIDmode, operand0),
|
4397 |
|
|
pc_rtx)));
|
4398 |
|
|
|
4399 |
|
|
}
|
4400 |
|
|
|
4401 |
|
|
rtx
|
4402 |
|
|
gen_cmp_fp (enum rtx_code code, rtx operand0, rtx operand1)
|
4403 |
|
|
{
|
4404 |
|
|
return gen_rtx_SET (VOIDmode, gen_rtx_REG (CCFPmode, 0),
|
4405 |
|
|
gen_rtx_fmt_ee (code, CCFPmode, operand0, operand1));
|
4406 |
|
|
}
|
4407 |
|
|
|
4408 |
|
|
/* Adjust the cost of a scheduling dependency. Return the new cost of
|
4409 |
|
|
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
|
4410 |
|
|
|
4411 |
|
|
static int
|
4412 |
|
|
pa_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
|
4413 |
|
|
{
|
4414 |
|
|
enum attr_type attr_type;
|
4415 |
|
|
|
4416 |
|
|
/* Don't adjust costs for a pa8000 chip, also do not adjust any
|
4417 |
|
|
true dependencies as they are described with bypasses now. */
|
4418 |
|
|
if (pa_cpu >= PROCESSOR_8000 || REG_NOTE_KIND (link) == 0)
|
4419 |
|
|
return cost;
|
4420 |
|
|
|
4421 |
|
|
if (! recog_memoized (insn))
|
4422 |
|
|
return 0;
|
4423 |
|
|
|
4424 |
|
|
attr_type = get_attr_type (insn);
|
4425 |
|
|
|
4426 |
|
|
switch (REG_NOTE_KIND (link))
|
4427 |
|
|
{
|
4428 |
|
|
case REG_DEP_ANTI:
|
4429 |
|
|
/* Anti dependency; DEP_INSN reads a register that INSN writes some
|
4430 |
|
|
cycles later. */
|
4431 |
|
|
|
4432 |
|
|
if (attr_type == TYPE_FPLOAD)
|
4433 |
|
|
{
|
4434 |
|
|
rtx pat = PATTERN (insn);
|
4435 |
|
|
rtx dep_pat = PATTERN (dep_insn);
|
4436 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
4437 |
|
|
{
|
4438 |
|
|
/* This happens for the fldXs,mb patterns. */
|
4439 |
|
|
pat = XVECEXP (pat, 0, 0);
|
4440 |
|
|
}
|
4441 |
|
|
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
4442 |
|
|
/* If this happens, we have to extend this to schedule
|
4443 |
|
|
optimally. Return 0 for now. */
|
4444 |
|
|
return 0;
|
4445 |
|
|
|
4446 |
|
|
if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat)))
|
4447 |
|
|
{
|
4448 |
|
|
if (! recog_memoized (dep_insn))
|
4449 |
|
|
return 0;
|
4450 |
|
|
switch (get_attr_type (dep_insn))
|
4451 |
|
|
{
|
4452 |
|
|
case TYPE_FPALU:
|
4453 |
|
|
case TYPE_FPMULSGL:
|
4454 |
|
|
case TYPE_FPMULDBL:
|
4455 |
|
|
case TYPE_FPDIVSGL:
|
4456 |
|
|
case TYPE_FPDIVDBL:
|
4457 |
|
|
case TYPE_FPSQRTSGL:
|
4458 |
|
|
case TYPE_FPSQRTDBL:
|
4459 |
|
|
/* A fpload can't be issued until one cycle before a
|
4460 |
|
|
preceding arithmetic operation has finished if
|
4461 |
|
|
the target of the fpload is any of the sources
|
4462 |
|
|
(or destination) of the arithmetic operation. */
|
4463 |
|
|
return insn_default_latency (dep_insn) - 1;
|
4464 |
|
|
|
4465 |
|
|
default:
|
4466 |
|
|
return 0;
|
4467 |
|
|
}
|
4468 |
|
|
}
|
4469 |
|
|
}
|
4470 |
|
|
else if (attr_type == TYPE_FPALU)
|
4471 |
|
|
{
|
4472 |
|
|
rtx pat = PATTERN (insn);
|
4473 |
|
|
rtx dep_pat = PATTERN (dep_insn);
|
4474 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
4475 |
|
|
{
|
4476 |
|
|
/* This happens for the fldXs,mb patterns. */
|
4477 |
|
|
pat = XVECEXP (pat, 0, 0);
|
4478 |
|
|
}
|
4479 |
|
|
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
4480 |
|
|
/* If this happens, we have to extend this to schedule
|
4481 |
|
|
optimally. Return 0 for now. */
|
4482 |
|
|
return 0;
|
4483 |
|
|
|
4484 |
|
|
if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat)))
|
4485 |
|
|
{
|
4486 |
|
|
if (! recog_memoized (dep_insn))
|
4487 |
|
|
return 0;
|
4488 |
|
|
switch (get_attr_type (dep_insn))
|
4489 |
|
|
{
|
4490 |
|
|
case TYPE_FPDIVSGL:
|
4491 |
|
|
case TYPE_FPDIVDBL:
|
4492 |
|
|
case TYPE_FPSQRTSGL:
|
4493 |
|
|
case TYPE_FPSQRTDBL:
|
4494 |
|
|
/* An ALU flop can't be issued until two cycles before a
|
4495 |
|
|
preceding divide or sqrt operation has finished if
|
4496 |
|
|
the target of the ALU flop is any of the sources
|
4497 |
|
|
(or destination) of the divide or sqrt operation. */
|
4498 |
|
|
return insn_default_latency (dep_insn) - 2;
|
4499 |
|
|
|
4500 |
|
|
default:
|
4501 |
|
|
return 0;
|
4502 |
|
|
}
|
4503 |
|
|
}
|
4504 |
|
|
}
|
4505 |
|
|
|
4506 |
|
|
/* For other anti dependencies, the cost is 0. */
|
4507 |
|
|
return 0;
|
4508 |
|
|
|
4509 |
|
|
case REG_DEP_OUTPUT:
|
4510 |
|
|
/* Output dependency; DEP_INSN writes a register that INSN writes some
|
4511 |
|
|
cycles later. */
|
4512 |
|
|
if (attr_type == TYPE_FPLOAD)
|
4513 |
|
|
{
|
4514 |
|
|
rtx pat = PATTERN (insn);
|
4515 |
|
|
rtx dep_pat = PATTERN (dep_insn);
|
4516 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
4517 |
|
|
{
|
4518 |
|
|
/* This happens for the fldXs,mb patterns. */
|
4519 |
|
|
pat = XVECEXP (pat, 0, 0);
|
4520 |
|
|
}
|
4521 |
|
|
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
4522 |
|
|
/* If this happens, we have to extend this to schedule
|
4523 |
|
|
optimally. Return 0 for now. */
|
4524 |
|
|
return 0;
|
4525 |
|
|
|
4526 |
|
|
if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat)))
|
4527 |
|
|
{
|
4528 |
|
|
if (! recog_memoized (dep_insn))
|
4529 |
|
|
return 0;
|
4530 |
|
|
switch (get_attr_type (dep_insn))
|
4531 |
|
|
{
|
4532 |
|
|
case TYPE_FPALU:
|
4533 |
|
|
case TYPE_FPMULSGL:
|
4534 |
|
|
case TYPE_FPMULDBL:
|
4535 |
|
|
case TYPE_FPDIVSGL:
|
4536 |
|
|
case TYPE_FPDIVDBL:
|
4537 |
|
|
case TYPE_FPSQRTSGL:
|
4538 |
|
|
case TYPE_FPSQRTDBL:
|
4539 |
|
|
/* A fpload can't be issued until one cycle before a
|
4540 |
|
|
preceding arithmetic operation has finished if
|
4541 |
|
|
the target of the fpload is the destination of the
|
4542 |
|
|
arithmetic operation.
|
4543 |
|
|
|
4544 |
|
|
Exception: For PA7100LC, PA7200 and PA7300, the cost
|
4545 |
|
|
is 3 cycles, unless they bundle together. We also
|
4546 |
|
|
pay the penalty if the second insn is a fpload. */
|
4547 |
|
|
return insn_default_latency (dep_insn) - 1;
|
4548 |
|
|
|
4549 |
|
|
default:
|
4550 |
|
|
return 0;
|
4551 |
|
|
}
|
4552 |
|
|
}
|
4553 |
|
|
}
|
4554 |
|
|
else if (attr_type == TYPE_FPALU)
|
4555 |
|
|
{
|
4556 |
|
|
rtx pat = PATTERN (insn);
|
4557 |
|
|
rtx dep_pat = PATTERN (dep_insn);
|
4558 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
4559 |
|
|
{
|
4560 |
|
|
/* This happens for the fldXs,mb patterns. */
|
4561 |
|
|
pat = XVECEXP (pat, 0, 0);
|
4562 |
|
|
}
|
4563 |
|
|
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
|
4564 |
|
|
/* If this happens, we have to extend this to schedule
|
4565 |
|
|
optimally. Return 0 for now. */
|
4566 |
|
|
return 0;
|
4567 |
|
|
|
4568 |
|
|
if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat)))
|
4569 |
|
|
{
|
4570 |
|
|
if (! recog_memoized (dep_insn))
|
4571 |
|
|
return 0;
|
4572 |
|
|
switch (get_attr_type (dep_insn))
|
4573 |
|
|
{
|
4574 |
|
|
case TYPE_FPDIVSGL:
|
4575 |
|
|
case TYPE_FPDIVDBL:
|
4576 |
|
|
case TYPE_FPSQRTSGL:
|
4577 |
|
|
case TYPE_FPSQRTDBL:
|
4578 |
|
|
/* An ALU flop can't be issued until two cycles before a
|
4579 |
|
|
preceding divide or sqrt operation has finished if
|
4580 |
|
|
the target of the ALU flop is also the target of
|
4581 |
|
|
the divide or sqrt operation. */
|
4582 |
|
|
return insn_default_latency (dep_insn) - 2;
|
4583 |
|
|
|
4584 |
|
|
default:
|
4585 |
|
|
return 0;
|
4586 |
|
|
}
|
4587 |
|
|
}
|
4588 |
|
|
}
|
4589 |
|
|
|
4590 |
|
|
/* For other output dependencies, the cost is 0. */
|
4591 |
|
|
return 0;
|
4592 |
|
|
|
4593 |
|
|
default:
|
4594 |
|
|
gcc_unreachable ();
|
4595 |
|
|
}
|
4596 |
|
|
}
|
4597 |
|
|
|
4598 |
|
|
/* Adjust scheduling priorities. We use this to try and keep addil
|
4599 |
|
|
and the next use of %r1 close together. */
|
4600 |
|
|
static int
|
4601 |
|
|
pa_adjust_priority (rtx insn, int priority)
|
4602 |
|
|
{
|
4603 |
|
|
rtx set = single_set (insn);
|
4604 |
|
|
rtx src, dest;
|
4605 |
|
|
if (set)
|
4606 |
|
|
{
|
4607 |
|
|
src = SET_SRC (set);
|
4608 |
|
|
dest = SET_DEST (set);
|
4609 |
|
|
if (GET_CODE (src) == LO_SUM
|
4610 |
|
|
&& symbolic_operand (XEXP (src, 1), VOIDmode)
|
4611 |
|
|
&& ! read_only_operand (XEXP (src, 1), VOIDmode))
|
4612 |
|
|
priority >>= 3;
|
4613 |
|
|
|
4614 |
|
|
else if (GET_CODE (src) == MEM
|
4615 |
|
|
&& GET_CODE (XEXP (src, 0)) == LO_SUM
|
4616 |
|
|
&& symbolic_operand (XEXP (XEXP (src, 0), 1), VOIDmode)
|
4617 |
|
|
&& ! read_only_operand (XEXP (XEXP (src, 0), 1), VOIDmode))
|
4618 |
|
|
priority >>= 1;
|
4619 |
|
|
|
4620 |
|
|
else if (GET_CODE (dest) == MEM
|
4621 |
|
|
&& GET_CODE (XEXP (dest, 0)) == LO_SUM
|
4622 |
|
|
&& symbolic_operand (XEXP (XEXP (dest, 0), 1), VOIDmode)
|
4623 |
|
|
&& ! read_only_operand (XEXP (XEXP (dest, 0), 1), VOIDmode))
|
4624 |
|
|
priority >>= 3;
|
4625 |
|
|
}
|
4626 |
|
|
return priority;
|
4627 |
|
|
}
|
4628 |
|
|
|
4629 |
|
|
/* The 700 can only issue a single insn at a time.
|
4630 |
|
|
The 7XXX processors can issue two insns at a time.
|
4631 |
|
|
The 8000 can issue 4 insns at a time. */
|
4632 |
|
|
static int
|
4633 |
|
|
pa_issue_rate (void)
|
4634 |
|
|
{
|
4635 |
|
|
switch (pa_cpu)
|
4636 |
|
|
{
|
4637 |
|
|
case PROCESSOR_700: return 1;
|
4638 |
|
|
case PROCESSOR_7100: return 2;
|
4639 |
|
|
case PROCESSOR_7100LC: return 2;
|
4640 |
|
|
case PROCESSOR_7200: return 2;
|
4641 |
|
|
case PROCESSOR_7300: return 2;
|
4642 |
|
|
case PROCESSOR_8000: return 4;
|
4643 |
|
|
|
4644 |
|
|
default:
|
4645 |
|
|
gcc_unreachable ();
|
4646 |
|
|
}
|
4647 |
|
|
}
|
4648 |
|
|
|
4649 |
|
|
|
4650 |
|
|
|
4651 |
|
|
/* Return any length adjustment needed by INSN which already has its length
|
4652 |
|
|
computed as LENGTH. Return zero if no adjustment is necessary.
|
4653 |
|
|
|
4654 |
|
|
For the PA: function calls, millicode calls, and backwards short
|
4655 |
|
|
conditional branches with unfilled delay slots need an adjustment by +1
|
4656 |
|
|
(to account for the NOP which will be inserted into the instruction stream).
|
4657 |
|
|
|
4658 |
|
|
Also compute the length of an inline block move here as it is too
|
4659 |
|
|
complicated to express as a length attribute in pa.md. */
|
4660 |
|
|
int
|
4661 |
|
|
pa_adjust_insn_length (rtx insn, int length)
|
4662 |
|
|
{
|
4663 |
|
|
rtx pat = PATTERN (insn);
|
4664 |
|
|
|
4665 |
|
|
/* Jumps inside switch tables which have unfilled delay slots need
|
4666 |
|
|
adjustment. */
|
4667 |
|
|
if (GET_CODE (insn) == JUMP_INSN
|
4668 |
|
|
&& GET_CODE (pat) == PARALLEL
|
4669 |
|
|
&& get_attr_type (insn) == TYPE_BTABLE_BRANCH)
|
4670 |
|
|
return 4;
|
4671 |
|
|
/* Millicode insn with an unfilled delay slot. */
|
4672 |
|
|
else if (GET_CODE (insn) == INSN
|
4673 |
|
|
&& GET_CODE (pat) != SEQUENCE
|
4674 |
|
|
&& GET_CODE (pat) != USE
|
4675 |
|
|
&& GET_CODE (pat) != CLOBBER
|
4676 |
|
|
&& get_attr_type (insn) == TYPE_MILLI)
|
4677 |
|
|
return 4;
|
4678 |
|
|
/* Block move pattern. */
|
4679 |
|
|
else if (GET_CODE (insn) == INSN
|
4680 |
|
|
&& GET_CODE (pat) == PARALLEL
|
4681 |
|
|
&& GET_CODE (XVECEXP (pat, 0, 0)) == SET
|
4682 |
|
|
&& GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM
|
4683 |
|
|
&& GET_CODE (XEXP (XVECEXP (pat, 0, 0), 1)) == MEM
|
4684 |
|
|
&& GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode
|
4685 |
|
|
&& GET_MODE (XEXP (XVECEXP (pat, 0, 0), 1)) == BLKmode)
|
4686 |
|
|
return compute_movmem_length (insn) - 4;
|
4687 |
|
|
/* Block clear pattern. */
|
4688 |
|
|
else if (GET_CODE (insn) == INSN
|
4689 |
|
|
&& GET_CODE (pat) == PARALLEL
|
4690 |
|
|
&& GET_CODE (XVECEXP (pat, 0, 0)) == SET
|
4691 |
|
|
&& GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM
|
4692 |
|
|
&& XEXP (XVECEXP (pat, 0, 0), 1) == const0_rtx
|
4693 |
|
|
&& GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode)
|
4694 |
|
|
return compute_clrmem_length (insn) - 4;
|
4695 |
|
|
/* Conditional branch with an unfilled delay slot. */
|
4696 |
|
|
else if (GET_CODE (insn) == JUMP_INSN && ! simplejump_p (insn))
|
4697 |
|
|
{
|
4698 |
|
|
/* Adjust a short backwards conditional with an unfilled delay slot. */
|
4699 |
|
|
if (GET_CODE (pat) == SET
|
4700 |
|
|
&& length == 4
|
4701 |
|
|
&& ! forward_branch_p (insn))
|
4702 |
|
|
return 4;
|
4703 |
|
|
else if (GET_CODE (pat) == PARALLEL
|
4704 |
|
|
&& get_attr_type (insn) == TYPE_PARALLEL_BRANCH
|
4705 |
|
|
&& length == 4)
|
4706 |
|
|
return 4;
|
4707 |
|
|
/* Adjust dbra insn with short backwards conditional branch with
|
4708 |
|
|
unfilled delay slot -- only for case where counter is in a
|
4709 |
|
|
general register register. */
|
4710 |
|
|
else if (GET_CODE (pat) == PARALLEL
|
4711 |
|
|
&& GET_CODE (XVECEXP (pat, 0, 1)) == SET
|
4712 |
|
|
&& GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == REG
|
4713 |
|
|
&& ! FP_REG_P (XEXP (XVECEXP (pat, 0, 1), 0))
|
4714 |
|
|
&& length == 4
|
4715 |
|
|
&& ! forward_branch_p (insn))
|
4716 |
|
|
return 4;
|
4717 |
|
|
else
|
4718 |
|
|
return 0;
|
4719 |
|
|
}
|
4720 |
|
|
return 0;
|
4721 |
|
|
}
|
4722 |
|
|
|
4723 |
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
4724 |
|
|
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
4725 |
|
|
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
4726 |
|
|
|
4727 |
|
|
void
|
4728 |
|
|
print_operand (FILE *file, rtx x, int code)
|
4729 |
|
|
{
|
4730 |
|
|
switch (code)
|
4731 |
|
|
{
|
4732 |
|
|
case '#':
|
4733 |
|
|
/* Output a 'nop' if there's nothing for the delay slot. */
|
4734 |
|
|
if (dbr_sequence_length () == 0)
|
4735 |
|
|
fputs ("\n\tnop", file);
|
4736 |
|
|
return;
|
4737 |
|
|
case '*':
|
4738 |
|
|
/* Output a nullification completer if there's nothing for the */
|
4739 |
|
|
/* delay slot or nullification is requested. */
|
4740 |
|
|
if (dbr_sequence_length () == 0 ||
|
4741 |
|
|
(final_sequence &&
|
4742 |
|
|
INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))))
|
4743 |
|
|
fputs (",n", file);
|
4744 |
|
|
return;
|
4745 |
|
|
case 'R':
|
4746 |
|
|
/* Print out the second register name of a register pair.
|
4747 |
|
|
I.e., R (6) => 7. */
|
4748 |
|
|
fputs (reg_names[REGNO (x) + 1], file);
|
4749 |
|
|
return;
|
4750 |
|
|
case 'r':
|
4751 |
|
|
/* A register or zero. */
|
4752 |
|
|
if (x == const0_rtx
|
4753 |
|
|
|| (x == CONST0_RTX (DFmode))
|
4754 |
|
|
|| (x == CONST0_RTX (SFmode)))
|
4755 |
|
|
{
|
4756 |
|
|
fputs ("%r0", file);
|
4757 |
|
|
return;
|
4758 |
|
|
}
|
4759 |
|
|
else
|
4760 |
|
|
break;
|
4761 |
|
|
case 'f':
|
4762 |
|
|
/* A register or zero (floating point). */
|
4763 |
|
|
if (x == const0_rtx
|
4764 |
|
|
|| (x == CONST0_RTX (DFmode))
|
4765 |
|
|
|| (x == CONST0_RTX (SFmode)))
|
4766 |
|
|
{
|
4767 |
|
|
fputs ("%fr0", file);
|
4768 |
|
|
return;
|
4769 |
|
|
}
|
4770 |
|
|
else
|
4771 |
|
|
break;
|
4772 |
|
|
case 'A':
|
4773 |
|
|
{
|
4774 |
|
|
rtx xoperands[2];
|
4775 |
|
|
|
4776 |
|
|
xoperands[0] = XEXP (XEXP (x, 0), 0);
|
4777 |
|
|
xoperands[1] = XVECEXP (XEXP (XEXP (x, 0), 1), 0, 0);
|
4778 |
|
|
output_global_address (file, xoperands[1], 0);
|
4779 |
|
|
fprintf (file, "(%s)", reg_names [REGNO (xoperands[0])]);
|
4780 |
|
|
return;
|
4781 |
|
|
}
|
4782 |
|
|
|
4783 |
|
|
case 'C': /* Plain (C)ondition */
|
4784 |
|
|
case 'X':
|
4785 |
|
|
switch (GET_CODE (x))
|
4786 |
|
|
{
|
4787 |
|
|
case EQ:
|
4788 |
|
|
fputs ("=", file); break;
|
4789 |
|
|
case NE:
|
4790 |
|
|
fputs ("<>", file); break;
|
4791 |
|
|
case GT:
|
4792 |
|
|
fputs (">", file); break;
|
4793 |
|
|
case GE:
|
4794 |
|
|
fputs (">=", file); break;
|
4795 |
|
|
case GEU:
|
4796 |
|
|
fputs (">>=", file); break;
|
4797 |
|
|
case GTU:
|
4798 |
|
|
fputs (">>", file); break;
|
4799 |
|
|
case LT:
|
4800 |
|
|
fputs ("<", file); break;
|
4801 |
|
|
case LE:
|
4802 |
|
|
fputs ("<=", file); break;
|
4803 |
|
|
case LEU:
|
4804 |
|
|
fputs ("<<=", file); break;
|
4805 |
|
|
case LTU:
|
4806 |
|
|
fputs ("<<", file); break;
|
4807 |
|
|
default:
|
4808 |
|
|
gcc_unreachable ();
|
4809 |
|
|
}
|
4810 |
|
|
return;
|
4811 |
|
|
case 'N': /* Condition, (N)egated */
|
4812 |
|
|
switch (GET_CODE (x))
|
4813 |
|
|
{
|
4814 |
|
|
case EQ:
|
4815 |
|
|
fputs ("<>", file); break;
|
4816 |
|
|
case NE:
|
4817 |
|
|
fputs ("=", file); break;
|
4818 |
|
|
case GT:
|
4819 |
|
|
fputs ("<=", file); break;
|
4820 |
|
|
case GE:
|
4821 |
|
|
fputs ("<", file); break;
|
4822 |
|
|
case GEU:
|
4823 |
|
|
fputs ("<<", file); break;
|
4824 |
|
|
case GTU:
|
4825 |
|
|
fputs ("<<=", file); break;
|
4826 |
|
|
case LT:
|
4827 |
|
|
fputs (">=", file); break;
|
4828 |
|
|
case LE:
|
4829 |
|
|
fputs (">", file); break;
|
4830 |
|
|
case LEU:
|
4831 |
|
|
fputs (">>", file); break;
|
4832 |
|
|
case LTU:
|
4833 |
|
|
fputs (">>=", file); break;
|
4834 |
|
|
default:
|
4835 |
|
|
gcc_unreachable ();
|
4836 |
|
|
}
|
4837 |
|
|
return;
|
4838 |
|
|
/* For floating point comparisons. Note that the output
|
4839 |
|
|
predicates are the complement of the desired mode. The
|
4840 |
|
|
conditions for GT, GE, LT, LE and LTGT cause an invalid
|
4841 |
|
|
operation exception if the result is unordered and this
|
4842 |
|
|
exception is enabled in the floating-point status register. */
|
4843 |
|
|
case 'Y':
|
4844 |
|
|
switch (GET_CODE (x))
|
4845 |
|
|
{
|
4846 |
|
|
case EQ:
|
4847 |
|
|
fputs ("!=", file); break;
|
4848 |
|
|
case NE:
|
4849 |
|
|
fputs ("=", file); break;
|
4850 |
|
|
case GT:
|
4851 |
|
|
fputs ("!>", file); break;
|
4852 |
|
|
case GE:
|
4853 |
|
|
fputs ("!>=", file); break;
|
4854 |
|
|
case LT:
|
4855 |
|
|
fputs ("!<", file); break;
|
4856 |
|
|
case LE:
|
4857 |
|
|
fputs ("!<=", file); break;
|
4858 |
|
|
case LTGT:
|
4859 |
|
|
fputs ("!<>", file); break;
|
4860 |
|
|
case UNLE:
|
4861 |
|
|
fputs ("!?<=", file); break;
|
4862 |
|
|
case UNLT:
|
4863 |
|
|
fputs ("!?<", file); break;
|
4864 |
|
|
case UNGE:
|
4865 |
|
|
fputs ("!?>=", file); break;
|
4866 |
|
|
case UNGT:
|
4867 |
|
|
fputs ("!?>", file); break;
|
4868 |
|
|
case UNEQ:
|
4869 |
|
|
fputs ("!?=", file); break;
|
4870 |
|
|
case UNORDERED:
|
4871 |
|
|
fputs ("!?", file); break;
|
4872 |
|
|
case ORDERED:
|
4873 |
|
|
fputs ("?", file); break;
|
4874 |
|
|
default:
|
4875 |
|
|
gcc_unreachable ();
|
4876 |
|
|
}
|
4877 |
|
|
return;
|
4878 |
|
|
case 'S': /* Condition, operands are (S)wapped. */
|
4879 |
|
|
switch (GET_CODE (x))
|
4880 |
|
|
{
|
4881 |
|
|
case EQ:
|
4882 |
|
|
fputs ("=", file); break;
|
4883 |
|
|
case NE:
|
4884 |
|
|
fputs ("<>", file); break;
|
4885 |
|
|
case GT:
|
4886 |
|
|
fputs ("<", file); break;
|
4887 |
|
|
case GE:
|
4888 |
|
|
fputs ("<=", file); break;
|
4889 |
|
|
case GEU:
|
4890 |
|
|
fputs ("<<=", file); break;
|
4891 |
|
|
case GTU:
|
4892 |
|
|
fputs ("<<", file); break;
|
4893 |
|
|
case LT:
|
4894 |
|
|
fputs (">", file); break;
|
4895 |
|
|
case LE:
|
4896 |
|
|
fputs (">=", file); break;
|
4897 |
|
|
case LEU:
|
4898 |
|
|
fputs (">>=", file); break;
|
4899 |
|
|
case LTU:
|
4900 |
|
|
fputs (">>", file); break;
|
4901 |
|
|
default:
|
4902 |
|
|
gcc_unreachable ();
|
4903 |
|
|
}
|
4904 |
|
|
return;
|
4905 |
|
|
case 'B': /* Condition, (B)oth swapped and negate. */
|
4906 |
|
|
switch (GET_CODE (x))
|
4907 |
|
|
{
|
4908 |
|
|
case EQ:
|
4909 |
|
|
fputs ("<>", file); break;
|
4910 |
|
|
case NE:
|
4911 |
|
|
fputs ("=", file); break;
|
4912 |
|
|
case GT:
|
4913 |
|
|
fputs (">=", file); break;
|
4914 |
|
|
case GE:
|
4915 |
|
|
fputs (">", file); break;
|
4916 |
|
|
case GEU:
|
4917 |
|
|
fputs (">>", file); break;
|
4918 |
|
|
case GTU:
|
4919 |
|
|
fputs (">>=", file); break;
|
4920 |
|
|
case LT:
|
4921 |
|
|
fputs ("<=", file); break;
|
4922 |
|
|
case LE:
|
4923 |
|
|
fputs ("<", file); break;
|
4924 |
|
|
case LEU:
|
4925 |
|
|
fputs ("<<", file); break;
|
4926 |
|
|
case LTU:
|
4927 |
|
|
fputs ("<<=", file); break;
|
4928 |
|
|
default:
|
4929 |
|
|
gcc_unreachable ();
|
4930 |
|
|
}
|
4931 |
|
|
return;
|
4932 |
|
|
case 'k':
|
4933 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
4934 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (x));
|
4935 |
|
|
return;
|
4936 |
|
|
case 'Q':
|
4937 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
4938 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - (INTVAL (x) & 63));
|
4939 |
|
|
return;
|
4940 |
|
|
case 'L':
|
4941 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
4942 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - (INTVAL (x) & 31));
|
4943 |
|
|
return;
|
4944 |
|
|
case 'O':
|
4945 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT && exact_log2 (INTVAL (x)) >= 0);
|
4946 |
|
|
fprintf (file, "%d", exact_log2 (INTVAL (x)));
|
4947 |
|
|
return;
|
4948 |
|
|
case 'p':
|
4949 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
4950 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 63 - (INTVAL (x) & 63));
|
4951 |
|
|
return;
|
4952 |
|
|
case 'P':
|
4953 |
|
|
gcc_assert (GET_CODE (x) == CONST_INT);
|
4954 |
|
|
fprintf (file, HOST_WIDE_INT_PRINT_DEC, 31 - (INTVAL (x) & 31));
|
4955 |
|
|
return;
|
4956 |
|
|
case 'I':
|
4957 |
|
|
if (GET_CODE (x) == CONST_INT)
|
4958 |
|
|
fputs ("i", file);
|
4959 |
|
|
return;
|
4960 |
|
|
case 'M':
|
4961 |
|
|
case 'F':
|
4962 |
|
|
switch (GET_CODE (XEXP (x, 0)))
|
4963 |
|
|
{
|
4964 |
|
|
case PRE_DEC:
|
4965 |
|
|
case PRE_INC:
|
4966 |
|
|
if (ASSEMBLER_DIALECT == 0)
|
4967 |
|
|
fputs ("s,mb", file);
|
4968 |
|
|
else
|
4969 |
|
|
fputs (",mb", file);
|
4970 |
|
|
break;
|
4971 |
|
|
case POST_DEC:
|
4972 |
|
|
case POST_INC:
|
4973 |
|
|
if (ASSEMBLER_DIALECT == 0)
|
4974 |
|
|
fputs ("s,ma", file);
|
4975 |
|
|
else
|
4976 |
|
|
fputs (",ma", file);
|
4977 |
|
|
break;
|
4978 |
|
|
case PLUS:
|
4979 |
|
|
if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
|
4980 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == REG)
|
4981 |
|
|
{
|
4982 |
|
|
if (ASSEMBLER_DIALECT == 0)
|
4983 |
|
|
fputs ("x", file);
|
4984 |
|
|
}
|
4985 |
|
|
else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
|
4986 |
|
|
|| GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT)
|
4987 |
|
|
{
|
4988 |
|
|
if (ASSEMBLER_DIALECT == 0)
|
4989 |
|
|
fputs ("x,s", file);
|
4990 |
|
|
else
|
4991 |
|
|
fputs (",s", file);
|
4992 |
|
|
}
|
4993 |
|
|
else if (code == 'F' && ASSEMBLER_DIALECT == 0)
|
4994 |
|
|
fputs ("s", file);
|
4995 |
|
|
break;
|
4996 |
|
|
default:
|
4997 |
|
|
if (code == 'F' && ASSEMBLER_DIALECT == 0)
|
4998 |
|
|
fputs ("s", file);
|
4999 |
|
|
break;
|
5000 |
|
|
}
|
5001 |
|
|
return;
|
5002 |
|
|
case 'G':
|
5003 |
|
|
output_global_address (file, x, 0);
|
5004 |
|
|
return;
|
5005 |
|
|
case 'H':
|
5006 |
|
|
output_global_address (file, x, 1);
|
5007 |
|
|
return;
|
5008 |
|
|
case 0: /* Don't do anything special */
|
5009 |
|
|
break;
|
5010 |
|
|
case 'Z':
|
5011 |
|
|
{
|
5012 |
|
|
unsigned op[3];
|
5013 |
|
|
compute_zdepwi_operands (INTVAL (x), op);
|
5014 |
|
|
fprintf (file, "%d,%d,%d", op[0], op[1], op[2]);
|
5015 |
|
|
return;
|
5016 |
|
|
}
|
5017 |
|
|
case 'z':
|
5018 |
|
|
{
|
5019 |
|
|
unsigned op[3];
|
5020 |
|
|
compute_zdepdi_operands (INTVAL (x), op);
|
5021 |
|
|
fprintf (file, "%d,%d,%d", op[0], op[1], op[2]);
|
5022 |
|
|
return;
|
5023 |
|
|
}
|
5024 |
|
|
case 'c':
|
5025 |
|
|
/* We can get here from a .vtable_inherit due to our
|
5026 |
|
|
CONSTANT_ADDRESS_P rejecting perfectly good constant
|
5027 |
|
|
addresses. */
|
5028 |
|
|
break;
|
5029 |
|
|
default:
|
5030 |
|
|
gcc_unreachable ();
|
5031 |
|
|
}
|
5032 |
|
|
if (GET_CODE (x) == REG)
|
5033 |
|
|
{
|
5034 |
|
|
fputs (reg_names [REGNO (x)], file);
|
5035 |
|
|
if (TARGET_64BIT && FP_REG_P (x) && GET_MODE_SIZE (GET_MODE (x)) <= 4)
|
5036 |
|
|
{
|
5037 |
|
|
fputs ("R", file);
|
5038 |
|
|
return;
|
5039 |
|
|
}
|
5040 |
|
|
if (FP_REG_P (x)
|
5041 |
|
|
&& GET_MODE_SIZE (GET_MODE (x)) <= 4
|
5042 |
|
|
&& (REGNO (x) & 1) == 0)
|
5043 |
|
|
fputs ("L", file);
|
5044 |
|
|
}
|
5045 |
|
|
else if (GET_CODE (x) == MEM)
|
5046 |
|
|
{
|
5047 |
|
|
int size = GET_MODE_SIZE (GET_MODE (x));
|
5048 |
|
|
rtx base = NULL_RTX;
|
5049 |
|
|
switch (GET_CODE (XEXP (x, 0)))
|
5050 |
|
|
{
|
5051 |
|
|
case PRE_DEC:
|
5052 |
|
|
case POST_DEC:
|
5053 |
|
|
base = XEXP (XEXP (x, 0), 0);
|
5054 |
|
|
fprintf (file, "-%d(%s)", size, reg_names [REGNO (base)]);
|
5055 |
|
|
break;
|
5056 |
|
|
case PRE_INC:
|
5057 |
|
|
case POST_INC:
|
5058 |
|
|
base = XEXP (XEXP (x, 0), 0);
|
5059 |
|
|
fprintf (file, "%d(%s)", size, reg_names [REGNO (base)]);
|
5060 |
|
|
break;
|
5061 |
|
|
case PLUS:
|
5062 |
|
|
if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT)
|
5063 |
|
|
fprintf (file, "%s(%s)",
|
5064 |
|
|
reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 0), 0))],
|
5065 |
|
|
reg_names [REGNO (XEXP (XEXP (x, 0), 1))]);
|
5066 |
|
|
else if (GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT)
|
5067 |
|
|
fprintf (file, "%s(%s)",
|
5068 |
|
|
reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 1), 0))],
|
5069 |
|
|
reg_names [REGNO (XEXP (XEXP (x, 0), 0))]);
|
5070 |
|
|
else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
|
5071 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == REG)
|
5072 |
|
|
{
|
5073 |
|
|
/* Because the REG_POINTER flag can get lost during reload,
|
5074 |
|
|
GO_IF_LEGITIMATE_ADDRESS canonicalizes the order of the
|
5075 |
|
|
index and base registers in the combined move patterns. */
|
5076 |
|
|
rtx base = XEXP (XEXP (x, 0), 1);
|
5077 |
|
|
rtx index = XEXP (XEXP (x, 0), 0);
|
5078 |
|
|
|
5079 |
|
|
fprintf (file, "%s(%s)",
|
5080 |
|
|
reg_names [REGNO (index)], reg_names [REGNO (base)]);
|
5081 |
|
|
}
|
5082 |
|
|
else
|
5083 |
|
|
output_address (XEXP (x, 0));
|
5084 |
|
|
break;
|
5085 |
|
|
default:
|
5086 |
|
|
output_address (XEXP (x, 0));
|
5087 |
|
|
break;
|
5088 |
|
|
}
|
5089 |
|
|
}
|
5090 |
|
|
else
|
5091 |
|
|
output_addr_const (file, x);
|
5092 |
|
|
}
|
5093 |
|
|
|
5094 |
|
|
/* output a SYMBOL_REF or a CONST expression involving a SYMBOL_REF. */
|
5095 |
|
|
|
5096 |
|
|
void
|
5097 |
|
|
output_global_address (FILE *file, rtx x, int round_constant)
|
5098 |
|
|
{
|
5099 |
|
|
|
5100 |
|
|
/* Imagine (high (const (plus ...))). */
|
5101 |
|
|
if (GET_CODE (x) == HIGH)
|
5102 |
|
|
x = XEXP (x, 0);
|
5103 |
|
|
|
5104 |
|
|
if (GET_CODE (x) == SYMBOL_REF && read_only_operand (x, VOIDmode))
|
5105 |
|
|
output_addr_const (file, x);
|
5106 |
|
|
else if (GET_CODE (x) == SYMBOL_REF && !flag_pic)
|
5107 |
|
|
{
|
5108 |
|
|
output_addr_const (file, x);
|
5109 |
|
|
fputs ("-$global$", file);
|
5110 |
|
|
}
|
5111 |
|
|
else if (GET_CODE (x) == CONST)
|
5112 |
|
|
{
|
5113 |
|
|
const char *sep = "";
|
5114 |
|
|
int offset = 0; /* assembler wants -$global$ at end */
|
5115 |
|
|
rtx base = NULL_RTX;
|
5116 |
|
|
|
5117 |
|
|
switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
|
5118 |
|
|
{
|
5119 |
|
|
case SYMBOL_REF:
|
5120 |
|
|
base = XEXP (XEXP (x, 0), 0);
|
5121 |
|
|
output_addr_const (file, base);
|
5122 |
|
|
break;
|
5123 |
|
|
case CONST_INT:
|
5124 |
|
|
offset = INTVAL (XEXP (XEXP (x, 0), 0));
|
5125 |
|
|
break;
|
5126 |
|
|
default:
|
5127 |
|
|
gcc_unreachable ();
|
5128 |
|
|
}
|
5129 |
|
|
|
5130 |
|
|
switch (GET_CODE (XEXP (XEXP (x, 0), 1)))
|
5131 |
|
|
{
|
5132 |
|
|
case SYMBOL_REF:
|
5133 |
|
|
base = XEXP (XEXP (x, 0), 1);
|
5134 |
|
|
output_addr_const (file, base);
|
5135 |
|
|
break;
|
5136 |
|
|
case CONST_INT:
|
5137 |
|
|
offset = INTVAL (XEXP (XEXP (x, 0), 1));
|
5138 |
|
|
break;
|
5139 |
|
|
default:
|
5140 |
|
|
gcc_unreachable ();
|
5141 |
|
|
}
|
5142 |
|
|
|
5143 |
|
|
/* How bogus. The compiler is apparently responsible for
|
5144 |
|
|
rounding the constant if it uses an LR field selector.
|
5145 |
|
|
|
5146 |
|
|
The linker and/or assembler seem a better place since
|
5147 |
|
|
they have to do this kind of thing already.
|
5148 |
|
|
|
5149 |
|
|
If we fail to do this, HP's optimizing linker may eliminate
|
5150 |
|
|
an addil, but not update the ldw/stw/ldo instruction that
|
5151 |
|
|
uses the result of the addil. */
|
5152 |
|
|
if (round_constant)
|
5153 |
|
|
offset = ((offset + 0x1000) & ~0x1fff);
|
5154 |
|
|
|
5155 |
|
|
switch (GET_CODE (XEXP (x, 0)))
|
5156 |
|
|
{
|
5157 |
|
|
case PLUS:
|
5158 |
|
|
if (offset < 0)
|
5159 |
|
|
{
|
5160 |
|
|
offset = -offset;
|
5161 |
|
|
sep = "-";
|
5162 |
|
|
}
|
5163 |
|
|
else
|
5164 |
|
|
sep = "+";
|
5165 |
|
|
break;
|
5166 |
|
|
|
5167 |
|
|
case MINUS:
|
5168 |
|
|
gcc_assert (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF);
|
5169 |
|
|
sep = "-";
|
5170 |
|
|
break;
|
5171 |
|
|
|
5172 |
|
|
default:
|
5173 |
|
|
gcc_unreachable ();
|
5174 |
|
|
}
|
5175 |
|
|
|
5176 |
|
|
if (!read_only_operand (base, VOIDmode) && !flag_pic)
|
5177 |
|
|
fputs ("-$global$", file);
|
5178 |
|
|
if (offset)
|
5179 |
|
|
fprintf (file, "%s%d", sep, offset);
|
5180 |
|
|
}
|
5181 |
|
|
else
|
5182 |
|
|
output_addr_const (file, x);
|
5183 |
|
|
}
|
5184 |
|
|
|
5185 |
|
|
/* Output boilerplate text to appear at the beginning of the file.
|
5186 |
|
|
There are several possible versions. */
|
5187 |
|
|
#define aputs(x) fputs(x, asm_out_file)
|
5188 |
|
|
static inline void
|
5189 |
|
|
pa_file_start_level (void)
|
5190 |
|
|
{
|
5191 |
|
|
if (TARGET_64BIT)
|
5192 |
|
|
aputs ("\t.LEVEL 2.0w\n");
|
5193 |
|
|
else if (TARGET_PA_20)
|
5194 |
|
|
aputs ("\t.LEVEL 2.0\n");
|
5195 |
|
|
else if (TARGET_PA_11)
|
5196 |
|
|
aputs ("\t.LEVEL 1.1\n");
|
5197 |
|
|
else
|
5198 |
|
|
aputs ("\t.LEVEL 1.0\n");
|
5199 |
|
|
}
|
5200 |
|
|
|
5201 |
|
|
static inline void
|
5202 |
|
|
pa_file_start_space (int sortspace)
|
5203 |
|
|
{
|
5204 |
|
|
aputs ("\t.SPACE $PRIVATE$");
|
5205 |
|
|
if (sortspace)
|
5206 |
|
|
aputs (",SORT=16");
|
5207 |
|
|
aputs ("\n\t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31"
|
5208 |
|
|
"\n\t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82"
|
5209 |
|
|
"\n\t.SPACE $TEXT$");
|
5210 |
|
|
if (sortspace)
|
5211 |
|
|
aputs (",SORT=8");
|
5212 |
|
|
aputs ("\n\t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44"
|
5213 |
|
|
"\n\t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n");
|
5214 |
|
|
}
|
5215 |
|
|
|
5216 |
|
|
static inline void
|
5217 |
|
|
pa_file_start_file (int want_version)
|
5218 |
|
|
{
|
5219 |
|
|
if (write_symbols != NO_DEBUG)
|
5220 |
|
|
{
|
5221 |
|
|
output_file_directive (asm_out_file, main_input_filename);
|
5222 |
|
|
if (want_version)
|
5223 |
|
|
aputs ("\t.version\t\"01.01\"\n");
|
5224 |
|
|
}
|
5225 |
|
|
}
|
5226 |
|
|
|
5227 |
|
|
static inline void
|
5228 |
|
|
pa_file_start_mcount (const char *aswhat)
|
5229 |
|
|
{
|
5230 |
|
|
if (profile_flag)
|
5231 |
|
|
fprintf (asm_out_file, "\t.IMPORT _mcount,%s\n", aswhat);
|
5232 |
|
|
}
|
5233 |
|
|
|
5234 |
|
|
static void
|
5235 |
|
|
pa_elf_file_start (void)
|
5236 |
|
|
{
|
5237 |
|
|
pa_file_start_level ();
|
5238 |
|
|
pa_file_start_mcount ("ENTRY");
|
5239 |
|
|
pa_file_start_file (0);
|
5240 |
|
|
}
|
5241 |
|
|
|
5242 |
|
|
static void
|
5243 |
|
|
pa_som_file_start (void)
|
5244 |
|
|
{
|
5245 |
|
|
pa_file_start_level ();
|
5246 |
|
|
pa_file_start_space (0);
|
5247 |
|
|
aputs ("\t.IMPORT $global$,DATA\n"
|
5248 |
|
|
"\t.IMPORT $$dyncall,MILLICODE\n");
|
5249 |
|
|
pa_file_start_mcount ("CODE");
|
5250 |
|
|
pa_file_start_file (0);
|
5251 |
|
|
}
|
5252 |
|
|
|
5253 |
|
|
static void
|
5254 |
|
|
pa_linux_file_start (void)
|
5255 |
|
|
{
|
5256 |
|
|
pa_file_start_file (1);
|
5257 |
|
|
pa_file_start_level ();
|
5258 |
|
|
pa_file_start_mcount ("CODE");
|
5259 |
|
|
}
|
5260 |
|
|
|
5261 |
|
|
static void
|
5262 |
|
|
pa_hpux64_gas_file_start (void)
|
5263 |
|
|
{
|
5264 |
|
|
pa_file_start_level ();
|
5265 |
|
|
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
|
5266 |
|
|
if (profile_flag)
|
5267 |
|
|
ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, "_mcount", "function");
|
5268 |
|
|
#endif
|
5269 |
|
|
pa_file_start_file (1);
|
5270 |
|
|
}
|
5271 |
|
|
|
5272 |
|
|
static void
|
5273 |
|
|
pa_hpux64_hpas_file_start (void)
|
5274 |
|
|
{
|
5275 |
|
|
pa_file_start_level ();
|
5276 |
|
|
pa_file_start_space (1);
|
5277 |
|
|
pa_file_start_mcount ("CODE");
|
5278 |
|
|
pa_file_start_file (0);
|
5279 |
|
|
}
|
5280 |
|
|
#undef aputs
|
5281 |
|
|
|
5282 |
|
|
/* Search the deferred plabel list for SYMBOL and return its internal
|
5283 |
|
|
label. If an entry for SYMBOL is not found, a new entry is created. */
|
5284 |
|
|
|
5285 |
|
|
rtx
|
5286 |
|
|
get_deferred_plabel (rtx symbol)
|
5287 |
|
|
{
|
5288 |
|
|
const char *fname = XSTR (symbol, 0);
|
5289 |
|
|
size_t i;
|
5290 |
|
|
|
5291 |
|
|
/* See if we have already put this function on the list of deferred
|
5292 |
|
|
plabels. This list is generally small, so a liner search is not
|
5293 |
|
|
too ugly. If it proves too slow replace it with something faster. */
|
5294 |
|
|
for (i = 0; i < n_deferred_plabels; i++)
|
5295 |
|
|
if (strcmp (fname, XSTR (deferred_plabels[i].symbol, 0)) == 0)
|
5296 |
|
|
break;
|
5297 |
|
|
|
5298 |
|
|
/* If the deferred plabel list is empty, or this entry was not found
|
5299 |
|
|
on the list, create a new entry on the list. */
|
5300 |
|
|
if (deferred_plabels == NULL || i == n_deferred_plabels)
|
5301 |
|
|
{
|
5302 |
|
|
tree id;
|
5303 |
|
|
|
5304 |
|
|
if (deferred_plabels == 0)
|
5305 |
|
|
deferred_plabels = (struct deferred_plabel *)
|
5306 |
|
|
ggc_alloc (sizeof (struct deferred_plabel));
|
5307 |
|
|
else
|
5308 |
|
|
deferred_plabels = (struct deferred_plabel *)
|
5309 |
|
|
ggc_realloc (deferred_plabels,
|
5310 |
|
|
((n_deferred_plabels + 1)
|
5311 |
|
|
* sizeof (struct deferred_plabel)));
|
5312 |
|
|
|
5313 |
|
|
i = n_deferred_plabels++;
|
5314 |
|
|
deferred_plabels[i].internal_label = gen_label_rtx ();
|
5315 |
|
|
deferred_plabels[i].symbol = symbol;
|
5316 |
|
|
|
5317 |
|
|
/* Gross. We have just implicitly taken the address of this
|
5318 |
|
|
function. Mark it in the same manner as assemble_name. */
|
5319 |
|
|
id = maybe_get_identifier (targetm.strip_name_encoding (fname));
|
5320 |
|
|
if (id)
|
5321 |
|
|
mark_referenced (id);
|
5322 |
|
|
}
|
5323 |
|
|
|
5324 |
|
|
return deferred_plabels[i].internal_label;
|
5325 |
|
|
}
|
5326 |
|
|
|
5327 |
|
|
static void
|
5328 |
|
|
output_deferred_plabels (void)
|
5329 |
|
|
{
|
5330 |
|
|
size_t i;
|
5331 |
|
|
|
5332 |
|
|
/* If we have some deferred plabels, then we need to switch into the
|
5333 |
|
|
data or readonly data section, and align it to a 4 byte boundary
|
5334 |
|
|
before outputting the deferred plabels. */
|
5335 |
|
|
if (n_deferred_plabels)
|
5336 |
|
|
{
|
5337 |
|
|
switch_to_section (flag_pic ? data_section : readonly_data_section);
|
5338 |
|
|
ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
|
5339 |
|
|
}
|
5340 |
|
|
|
5341 |
|
|
/* Now output the deferred plabels. */
|
5342 |
|
|
for (i = 0; i < n_deferred_plabels; i++)
|
5343 |
|
|
{
|
5344 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
5345 |
|
|
CODE_LABEL_NUMBER (deferred_plabels[i].internal_label));
|
5346 |
|
|
assemble_integer (deferred_plabels[i].symbol,
|
5347 |
|
|
TARGET_64BIT ? 8 : 4, TARGET_64BIT ? 64 : 32, 1);
|
5348 |
|
|
}
|
5349 |
|
|
}
|
5350 |
|
|
|
5351 |
|
|
#ifdef HPUX_LONG_DOUBLE_LIBRARY
|
5352 |
|
|
/* Initialize optabs to point to HPUX long double emulation routines. */
|
5353 |
|
|
static void
|
5354 |
|
|
pa_hpux_init_libfuncs (void)
|
5355 |
|
|
{
|
5356 |
|
|
set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
|
5357 |
|
|
set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
|
5358 |
|
|
set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
|
5359 |
|
|
set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
|
5360 |
|
|
set_optab_libfunc (smin_optab, TFmode, "_U_Qmin");
|
5361 |
|
|
set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
|
5362 |
|
|
set_optab_libfunc (sqrt_optab, TFmode, "_U_Qfsqrt");
|
5363 |
|
|
set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
|
5364 |
|
|
set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
|
5365 |
|
|
|
5366 |
|
|
set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
|
5367 |
|
|
set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
|
5368 |
|
|
set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
|
5369 |
|
|
set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
|
5370 |
|
|
set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
|
5371 |
|
|
set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
|
5372 |
|
|
set_optab_libfunc (unord_optab, TFmode, "_U_Qfunord");
|
5373 |
|
|
|
5374 |
|
|
set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
|
5375 |
|
|
set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
|
5376 |
|
|
set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
|
5377 |
|
|
set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
|
5378 |
|
|
|
5379 |
|
|
set_conv_libfunc (sfix_optab, SImode, TFmode, TARGET_64BIT
|
5380 |
|
|
? "__U_Qfcnvfxt_quad_to_sgl"
|
5381 |
|
|
: "_U_Qfcnvfxt_quad_to_sgl");
|
5382 |
|
|
set_conv_libfunc (sfix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_dbl");
|
5383 |
|
|
set_conv_libfunc (ufix_optab, SImode, TFmode, "_U_Qfcnvfxt_quad_to_usgl");
|
5384 |
|
|
set_conv_libfunc (ufix_optab, DImode, TFmode, "_U_Qfcnvfxt_quad_to_udbl");
|
5385 |
|
|
|
5386 |
|
|
set_conv_libfunc (sfloat_optab, TFmode, SImode, "_U_Qfcnvxf_sgl_to_quad");
|
5387 |
|
|
set_conv_libfunc (sfloat_optab, TFmode, DImode, "_U_Qfcnvxf_dbl_to_quad");
|
5388 |
|
|
set_conv_libfunc (ufloat_optab, TFmode, SImode, "_U_Qfcnvxf_usgl_to_quad");
|
5389 |
|
|
set_conv_libfunc (ufloat_optab, TFmode, DImode, "_U_Qfcnvxf_udbl_to_quad");
|
5390 |
|
|
}
|
5391 |
|
|
#endif
|
5392 |
|
|
|
5393 |
|
|
/* HP's millicode routines mean something special to the assembler.
|
5394 |
|
|
Keep track of which ones we have used. */
|
5395 |
|
|
|
5396 |
|
|
enum millicodes { remI, remU, divI, divU, mulI, end1000 };
|
5397 |
|
|
static void import_milli (enum millicodes);
|
5398 |
|
|
static char imported[(int) end1000];
|
5399 |
|
|
static const char * const milli_names[] = {"remI", "remU", "divI", "divU", "mulI"};
|
5400 |
|
|
static const char import_string[] = ".IMPORT $$....,MILLICODE";
|
5401 |
|
|
#define MILLI_START 10
|
5402 |
|
|
|
5403 |
|
|
static void
|
5404 |
|
|
import_milli (enum millicodes code)
|
5405 |
|
|
{
|
5406 |
|
|
char str[sizeof (import_string)];
|
5407 |
|
|
|
5408 |
|
|
if (!imported[(int) code])
|
5409 |
|
|
{
|
5410 |
|
|
imported[(int) code] = 1;
|
5411 |
|
|
strcpy (str, import_string);
|
5412 |
|
|
strncpy (str + MILLI_START, milli_names[(int) code], 4);
|
5413 |
|
|
output_asm_insn (str, 0);
|
5414 |
|
|
}
|
5415 |
|
|
}
|
5416 |
|
|
|
5417 |
|
|
/* The register constraints have put the operands and return value in
|
5418 |
|
|
the proper registers. */
|
5419 |
|
|
|
5420 |
|
|
const char *
|
5421 |
|
|
output_mul_insn (int unsignedp ATTRIBUTE_UNUSED, rtx insn)
|
5422 |
|
|
{
|
5423 |
|
|
import_milli (mulI);
|
5424 |
|
|
return output_millicode_call (insn, gen_rtx_SYMBOL_REF (Pmode, "$$mulI"));
|
5425 |
|
|
}
|
5426 |
|
|
|
5427 |
|
|
/* Emit the rtl for doing a division by a constant. */
|
5428 |
|
|
|
5429 |
|
|
/* Do magic division millicodes exist for this value? */
|
5430 |
|
|
const int magic_milli[]= {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1};
|
5431 |
|
|
|
5432 |
|
|
/* We'll use an array to keep track of the magic millicodes and
|
5433 |
|
|
whether or not we've used them already. [n][0] is signed, [n][1] is
|
5434 |
|
|
unsigned. */
|
5435 |
|
|
|
5436 |
|
|
static int div_milli[16][2];
|
5437 |
|
|
|
5438 |
|
|
int
|
5439 |
|
|
emit_hpdiv_const (rtx *operands, int unsignedp)
|
5440 |
|
|
{
|
5441 |
|
|
if (GET_CODE (operands[2]) == CONST_INT
|
5442 |
|
|
&& INTVAL (operands[2]) > 0
|
5443 |
|
|
&& INTVAL (operands[2]) < 16
|
5444 |
|
|
&& magic_milli[INTVAL (operands[2])])
|
5445 |
|
|
{
|
5446 |
|
|
rtx ret = gen_rtx_REG (SImode, TARGET_64BIT ? 2 : 31);
|
5447 |
|
|
|
5448 |
|
|
emit_move_insn (gen_rtx_REG (SImode, 26), operands[1]);
|
5449 |
|
|
emit
|
5450 |
|
|
(gen_rtx_PARALLEL
|
5451 |
|
|
(VOIDmode,
|
5452 |
|
|
gen_rtvec (6, gen_rtx_SET (VOIDmode, gen_rtx_REG (SImode, 29),
|
5453 |
|
|
gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
|
5454 |
|
|
SImode,
|
5455 |
|
|
gen_rtx_REG (SImode, 26),
|
5456 |
|
|
operands[2])),
|
5457 |
|
|
gen_rtx_CLOBBER (VOIDmode, operands[4]),
|
5458 |
|
|
gen_rtx_CLOBBER (VOIDmode, operands[3]),
|
5459 |
|
|
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 26)),
|
5460 |
|
|
gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 25)),
|
5461 |
|
|
gen_rtx_CLOBBER (VOIDmode, ret))));
|
5462 |
|
|
emit_move_insn (operands[0], gen_rtx_REG (SImode, 29));
|
5463 |
|
|
return 1;
|
5464 |
|
|
}
|
5465 |
|
|
return 0;
|
5466 |
|
|
}
|
5467 |
|
|
|
5468 |
|
|
const char *
|
5469 |
|
|
output_div_insn (rtx *operands, int unsignedp, rtx insn)
|
5470 |
|
|
{
|
5471 |
|
|
int divisor;
|
5472 |
|
|
|
5473 |
|
|
/* If the divisor is a constant, try to use one of the special
|
5474 |
|
|
opcodes .*/
|
5475 |
|
|
if (GET_CODE (operands[0]) == CONST_INT)
|
5476 |
|
|
{
|
5477 |
|
|
static char buf[100];
|
5478 |
|
|
divisor = INTVAL (operands[0]);
|
5479 |
|
|
if (!div_milli[divisor][unsignedp])
|
5480 |
|
|
{
|
5481 |
|
|
div_milli[divisor][unsignedp] = 1;
|
5482 |
|
|
if (unsignedp)
|
5483 |
|
|
output_asm_insn (".IMPORT $$divU_%0,MILLICODE", operands);
|
5484 |
|
|
else
|
5485 |
|
|
output_asm_insn (".IMPORT $$divI_%0,MILLICODE", operands);
|
5486 |
|
|
}
|
5487 |
|
|
if (unsignedp)
|
5488 |
|
|
{
|
5489 |
|
|
sprintf (buf, "$$divU_" HOST_WIDE_INT_PRINT_DEC,
|
5490 |
|
|
INTVAL (operands[0]));
|
5491 |
|
|
return output_millicode_call (insn,
|
5492 |
|
|
gen_rtx_SYMBOL_REF (SImode, buf));
|
5493 |
|
|
}
|
5494 |
|
|
else
|
5495 |
|
|
{
|
5496 |
|
|
sprintf (buf, "$$divI_" HOST_WIDE_INT_PRINT_DEC,
|
5497 |
|
|
INTVAL (operands[0]));
|
5498 |
|
|
return output_millicode_call (insn,
|
5499 |
|
|
gen_rtx_SYMBOL_REF (SImode, buf));
|
5500 |
|
|
}
|
5501 |
|
|
}
|
5502 |
|
|
/* Divisor isn't a special constant. */
|
5503 |
|
|
else
|
5504 |
|
|
{
|
5505 |
|
|
if (unsignedp)
|
5506 |
|
|
{
|
5507 |
|
|
import_milli (divU);
|
5508 |
|
|
return output_millicode_call (insn,
|
5509 |
|
|
gen_rtx_SYMBOL_REF (SImode, "$$divU"));
|
5510 |
|
|
}
|
5511 |
|
|
else
|
5512 |
|
|
{
|
5513 |
|
|
import_milli (divI);
|
5514 |
|
|
return output_millicode_call (insn,
|
5515 |
|
|
gen_rtx_SYMBOL_REF (SImode, "$$divI"));
|
5516 |
|
|
}
|
5517 |
|
|
}
|
5518 |
|
|
}
|
5519 |
|
|
|
5520 |
|
|
/* Output a $$rem millicode to do mod. */
|
5521 |
|
|
|
5522 |
|
|
const char *
|
5523 |
|
|
output_mod_insn (int unsignedp, rtx insn)
|
5524 |
|
|
{
|
5525 |
|
|
if (unsignedp)
|
5526 |
|
|
{
|
5527 |
|
|
import_milli (remU);
|
5528 |
|
|
return output_millicode_call (insn,
|
5529 |
|
|
gen_rtx_SYMBOL_REF (SImode, "$$remU"));
|
5530 |
|
|
}
|
5531 |
|
|
else
|
5532 |
|
|
{
|
5533 |
|
|
import_milli (remI);
|
5534 |
|
|
return output_millicode_call (insn,
|
5535 |
|
|
gen_rtx_SYMBOL_REF (SImode, "$$remI"));
|
5536 |
|
|
}
|
5537 |
|
|
}
|
5538 |
|
|
|
5539 |
|
|
void
|
5540 |
|
|
output_arg_descriptor (rtx call_insn)
|
5541 |
|
|
{
|
5542 |
|
|
const char *arg_regs[4];
|
5543 |
|
|
enum machine_mode arg_mode;
|
5544 |
|
|
rtx link;
|
5545 |
|
|
int i, output_flag = 0;
|
5546 |
|
|
int regno;
|
5547 |
|
|
|
5548 |
|
|
/* We neither need nor want argument location descriptors for the
|
5549 |
|
|
64bit runtime environment or the ELF32 environment. */
|
5550 |
|
|
if (TARGET_64BIT || TARGET_ELF32)
|
5551 |
|
|
return;
|
5552 |
|
|
|
5553 |
|
|
for (i = 0; i < 4; i++)
|
5554 |
|
|
arg_regs[i] = 0;
|
5555 |
|
|
|
5556 |
|
|
/* Specify explicitly that no argument relocations should take place
|
5557 |
|
|
if using the portable runtime calling conventions. */
|
5558 |
|
|
if (TARGET_PORTABLE_RUNTIME)
|
5559 |
|
|
{
|
5560 |
|
|
fputs ("\t.CALL ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,RETVAL=NO\n",
|
5561 |
|
|
asm_out_file);
|
5562 |
|
|
return;
|
5563 |
|
|
}
|
5564 |
|
|
|
5565 |
|
|
gcc_assert (GET_CODE (call_insn) == CALL_INSN);
|
5566 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
|
5567 |
|
|
link; link = XEXP (link, 1))
|
5568 |
|
|
{
|
5569 |
|
|
rtx use = XEXP (link, 0);
|
5570 |
|
|
|
5571 |
|
|
if (! (GET_CODE (use) == USE
|
5572 |
|
|
&& GET_CODE (XEXP (use, 0)) == REG
|
5573 |
|
|
&& FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
|
5574 |
|
|
continue;
|
5575 |
|
|
|
5576 |
|
|
arg_mode = GET_MODE (XEXP (use, 0));
|
5577 |
|
|
regno = REGNO (XEXP (use, 0));
|
5578 |
|
|
if (regno >= 23 && regno <= 26)
|
5579 |
|
|
{
|
5580 |
|
|
arg_regs[26 - regno] = "GR";
|
5581 |
|
|
if (arg_mode == DImode)
|
5582 |
|
|
arg_regs[25 - regno] = "GR";
|
5583 |
|
|
}
|
5584 |
|
|
else if (regno >= 32 && regno <= 39)
|
5585 |
|
|
{
|
5586 |
|
|
if (arg_mode == SFmode)
|
5587 |
|
|
arg_regs[(regno - 32) / 2] = "FR";
|
5588 |
|
|
else
|
5589 |
|
|
{
|
5590 |
|
|
#ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
|
5591 |
|
|
arg_regs[(regno - 34) / 2] = "FR";
|
5592 |
|
|
arg_regs[(regno - 34) / 2 + 1] = "FU";
|
5593 |
|
|
#else
|
5594 |
|
|
arg_regs[(regno - 34) / 2] = "FU";
|
5595 |
|
|
arg_regs[(regno - 34) / 2 + 1] = "FR";
|
5596 |
|
|
#endif
|
5597 |
|
|
}
|
5598 |
|
|
}
|
5599 |
|
|
}
|
5600 |
|
|
fputs ("\t.CALL ", asm_out_file);
|
5601 |
|
|
for (i = 0; i < 4; i++)
|
5602 |
|
|
{
|
5603 |
|
|
if (arg_regs[i])
|
5604 |
|
|
{
|
5605 |
|
|
if (output_flag++)
|
5606 |
|
|
fputc (',', asm_out_file);
|
5607 |
|
|
fprintf (asm_out_file, "ARGW%d=%s", i, arg_regs[i]);
|
5608 |
|
|
}
|
5609 |
|
|
}
|
5610 |
|
|
fputc ('\n', asm_out_file);
|
5611 |
|
|
}
|
5612 |
|
|
|
5613 |
|
|
static enum reg_class
|
5614 |
|
|
pa_secondary_reload (bool in_p, rtx x, enum reg_class class,
|
5615 |
|
|
enum machine_mode mode, secondary_reload_info *sri)
|
5616 |
|
|
{
|
5617 |
|
|
int is_symbolic, regno;
|
5618 |
|
|
|
5619 |
|
|
/* Handle the easy stuff first. */
|
5620 |
|
|
if (class == R1_REGS)
|
5621 |
|
|
return NO_REGS;
|
5622 |
|
|
|
5623 |
|
|
if (REG_P (x))
|
5624 |
|
|
{
|
5625 |
|
|
regno = REGNO (x);
|
5626 |
|
|
if (class == BASE_REG_CLASS && regno < FIRST_PSEUDO_REGISTER)
|
5627 |
|
|
return NO_REGS;
|
5628 |
|
|
}
|
5629 |
|
|
else
|
5630 |
|
|
regno = -1;
|
5631 |
|
|
|
5632 |
|
|
/* If we have something like (mem (mem (...)), we can safely assume the
|
5633 |
|
|
inner MEM will end up in a general register after reloading, so there's
|
5634 |
|
|
no need for a secondary reload. */
|
5635 |
|
|
if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == MEM)
|
5636 |
|
|
return NO_REGS;
|
5637 |
|
|
|
5638 |
|
|
/* Trying to load a constant into a FP register during PIC code
|
5639 |
|
|
generation requires %r1 as a scratch register. */
|
5640 |
|
|
if (flag_pic
|
5641 |
|
|
&& (mode == SImode || mode == DImode)
|
5642 |
|
|
&& FP_REG_CLASS_P (class)
|
5643 |
|
|
&& (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
|
5644 |
|
|
{
|
5645 |
|
|
sri->icode = (mode == SImode ? CODE_FOR_reload_insi_r1
|
5646 |
|
|
: CODE_FOR_reload_indi_r1);
|
5647 |
|
|
return NO_REGS;
|
5648 |
|
|
}
|
5649 |
|
|
|
5650 |
|
|
/* Profiling showed the PA port spends about 1.3% of its compilation
|
5651 |
|
|
time in true_regnum from calls inside pa_secondary_reload_class. */
|
5652 |
|
|
if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG)
|
5653 |
|
|
regno = true_regnum (x);
|
5654 |
|
|
|
5655 |
|
|
/* Handle out of range displacement for integer mode loads/stores of
|
5656 |
|
|
FP registers. */
|
5657 |
|
|
if (((regno >= FIRST_PSEUDO_REGISTER || regno == -1)
|
5658 |
|
|
&& GET_MODE_CLASS (mode) == MODE_INT
|
5659 |
|
|
&& FP_REG_CLASS_P (class))
|
5660 |
|
|
|| (class == SHIFT_REGS && (regno <= 0 || regno >= 32)))
|
5661 |
|
|
{
|
5662 |
|
|
sri->icode = in_p ? reload_in_optab[mode] : reload_out_optab[mode];
|
5663 |
|
|
return NO_REGS;
|
5664 |
|
|
}
|
5665 |
|
|
|
5666 |
|
|
/* A SAR<->FP register copy requires a secondary register (GPR) as
|
5667 |
|
|
well as secondary memory. */
|
5668 |
|
|
if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
|
5669 |
|
|
&& ((REGNO_REG_CLASS (regno) == SHIFT_REGS && FP_REG_CLASS_P (class))
|
5670 |
|
|
|| (class == SHIFT_REGS
|
5671 |
|
|
&& FP_REG_CLASS_P (REGNO_REG_CLASS (regno)))))
|
5672 |
|
|
{
|
5673 |
|
|
sri->icode = in_p ? reload_in_optab[mode] : reload_out_optab[mode];
|
5674 |
|
|
return NO_REGS;
|
5675 |
|
|
}
|
5676 |
|
|
|
5677 |
|
|
/* Secondary reloads of symbolic operands require %r1 as a scratch
|
5678 |
|
|
register when we're generating PIC code and the operand isn't
|
5679 |
|
|
readonly. */
|
5680 |
|
|
if (GET_CODE (x) == HIGH)
|
5681 |
|
|
x = XEXP (x, 0);
|
5682 |
|
|
|
5683 |
|
|
/* Profiling has showed GCC spends about 2.6% of its compilation
|
5684 |
|
|
time in symbolic_operand from calls inside pa_secondary_reload_class.
|
5685 |
|
|
So, we use an inline copy to avoid useless work. */
|
5686 |
|
|
switch (GET_CODE (x))
|
5687 |
|
|
{
|
5688 |
|
|
rtx op;
|
5689 |
|
|
|
5690 |
|
|
case SYMBOL_REF:
|
5691 |
|
|
is_symbolic = !SYMBOL_REF_TLS_MODEL (x);
|
5692 |
|
|
break;
|
5693 |
|
|
case LABEL_REF:
|
5694 |
|
|
is_symbolic = 1;
|
5695 |
|
|
break;
|
5696 |
|
|
case CONST:
|
5697 |
|
|
op = XEXP (x, 0);
|
5698 |
|
|
is_symbolic = (((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|
5699 |
|
|
&& !SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
|
5700 |
|
|
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
|
5701 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
|
5702 |
|
|
break;
|
5703 |
|
|
default:
|
5704 |
|
|
is_symbolic = 0;
|
5705 |
|
|
break;
|
5706 |
|
|
}
|
5707 |
|
|
|
5708 |
|
|
if (is_symbolic && (flag_pic || !read_only_operand (x, VOIDmode)))
|
5709 |
|
|
{
|
5710 |
|
|
gcc_assert (mode == SImode || mode == DImode);
|
5711 |
|
|
sri->icode = (mode == SImode ? CODE_FOR_reload_insi_r1
|
5712 |
|
|
: CODE_FOR_reload_indi_r1);
|
5713 |
|
|
}
|
5714 |
|
|
|
5715 |
|
|
return NO_REGS;
|
5716 |
|
|
}
|
5717 |
|
|
|
5718 |
|
|
/* In the 32-bit runtime, arguments larger than eight bytes are passed
|
5719 |
|
|
by invisible reference. As a GCC extension, we also pass anything
|
5720 |
|
|
with a zero or variable size by reference.
|
5721 |
|
|
|
5722 |
|
|
The 64-bit runtime does not describe passing any types by invisible
|
5723 |
|
|
reference. The internals of GCC can't currently handle passing
|
5724 |
|
|
empty structures, and zero or variable length arrays when they are
|
5725 |
|
|
not passed entirely on the stack or by reference. Thus, as a GCC
|
5726 |
|
|
extension, we pass these types by reference. The HP compiler doesn't
|
5727 |
|
|
support these types, so hopefully there shouldn't be any compatibility
|
5728 |
|
|
issues. This may have to be revisited when HP releases a C99 compiler
|
5729 |
|
|
or updates the ABI. */
|
5730 |
|
|
|
5731 |
|
|
static bool
|
5732 |
|
|
pa_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
|
5733 |
|
|
enum machine_mode mode, tree type,
|
5734 |
|
|
bool named ATTRIBUTE_UNUSED)
|
5735 |
|
|
{
|
5736 |
|
|
HOST_WIDE_INT size;
|
5737 |
|
|
|
5738 |
|
|
if (type)
|
5739 |
|
|
size = int_size_in_bytes (type);
|
5740 |
|
|
else
|
5741 |
|
|
size = GET_MODE_SIZE (mode);
|
5742 |
|
|
|
5743 |
|
|
if (TARGET_64BIT)
|
5744 |
|
|
return size <= 0;
|
5745 |
|
|
else
|
5746 |
|
|
return size <= 0 || size > 8;
|
5747 |
|
|
}
|
5748 |
|
|
|
5749 |
|
|
enum direction
|
5750 |
|
|
function_arg_padding (enum machine_mode mode, tree type)
|
5751 |
|
|
{
|
5752 |
|
|
if (mode == BLKmode
|
5753 |
|
|
|| (TARGET_64BIT && type && AGGREGATE_TYPE_P (type)))
|
5754 |
|
|
{
|
5755 |
|
|
/* Return none if justification is not required. */
|
5756 |
|
|
if (type
|
5757 |
|
|
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
|
5758 |
|
|
&& (int_size_in_bytes (type) * BITS_PER_UNIT) % PARM_BOUNDARY == 0)
|
5759 |
|
|
return none;
|
5760 |
|
|
|
5761 |
|
|
/* The directions set here are ignored when a BLKmode argument larger
|
5762 |
|
|
than a word is placed in a register. Different code is used for
|
5763 |
|
|
the stack and registers. This makes it difficult to have a
|
5764 |
|
|
consistent data representation for both the stack and registers.
|
5765 |
|
|
For both runtimes, the justification and padding for arguments on
|
5766 |
|
|
the stack and in registers should be identical. */
|
5767 |
|
|
if (TARGET_64BIT)
|
5768 |
|
|
/* The 64-bit runtime specifies left justification for aggregates. */
|
5769 |
|
|
return upward;
|
5770 |
|
|
else
|
5771 |
|
|
/* The 32-bit runtime architecture specifies right justification.
|
5772 |
|
|
When the argument is passed on the stack, the argument is padded
|
5773 |
|
|
with garbage on the left. The HP compiler pads with zeros. */
|
5774 |
|
|
return downward;
|
5775 |
|
|
}
|
5776 |
|
|
|
5777 |
|
|
if (GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
|
5778 |
|
|
return downward;
|
5779 |
|
|
else
|
5780 |
|
|
return none;
|
5781 |
|
|
}
|
5782 |
|
|
|
5783 |
|
|
|
5784 |
|
|
/* Do what is necessary for `va_start'. We look at the current function
|
5785 |
|
|
to determine if stdargs or varargs is used and fill in an initial
|
5786 |
|
|
va_list. A pointer to this constructor is returned. */
|
5787 |
|
|
|
5788 |
|
|
static rtx
|
5789 |
|
|
hppa_builtin_saveregs (void)
|
5790 |
|
|
{
|
5791 |
|
|
rtx offset, dest;
|
5792 |
|
|
tree fntype = TREE_TYPE (current_function_decl);
|
5793 |
|
|
int argadj = ((!(TYPE_ARG_TYPES (fntype) != 0
|
5794 |
|
|
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
|
5795 |
|
|
!= void_type_node)))
|
5796 |
|
|
? UNITS_PER_WORD : 0);
|
5797 |
|
|
|
5798 |
|
|
if (argadj)
|
5799 |
|
|
offset = plus_constant (current_function_arg_offset_rtx, argadj);
|
5800 |
|
|
else
|
5801 |
|
|
offset = current_function_arg_offset_rtx;
|
5802 |
|
|
|
5803 |
|
|
if (TARGET_64BIT)
|
5804 |
|
|
{
|
5805 |
|
|
int i, off;
|
5806 |
|
|
|
5807 |
|
|
/* Adjust for varargs/stdarg differences. */
|
5808 |
|
|
if (argadj)
|
5809 |
|
|
offset = plus_constant (current_function_arg_offset_rtx, -argadj);
|
5810 |
|
|
else
|
5811 |
|
|
offset = current_function_arg_offset_rtx;
|
5812 |
|
|
|
5813 |
|
|
/* We need to save %r26 .. %r19 inclusive starting at offset -64
|
5814 |
|
|
from the incoming arg pointer and growing to larger addresses. */
|
5815 |
|
|
for (i = 26, off = -64; i >= 19; i--, off += 8)
|
5816 |
|
|
emit_move_insn (gen_rtx_MEM (word_mode,
|
5817 |
|
|
plus_constant (arg_pointer_rtx, off)),
|
5818 |
|
|
gen_rtx_REG (word_mode, i));
|
5819 |
|
|
|
5820 |
|
|
/* The incoming args pointer points just beyond the flushback area;
|
5821 |
|
|
normally this is not a serious concern. However, when we are doing
|
5822 |
|
|
varargs/stdargs we want to make the arg pointer point to the start
|
5823 |
|
|
of the incoming argument area. */
|
5824 |
|
|
emit_move_insn (virtual_incoming_args_rtx,
|
5825 |
|
|
plus_constant (arg_pointer_rtx, -64));
|
5826 |
|
|
|
5827 |
|
|
/* Now return a pointer to the first anonymous argument. */
|
5828 |
|
|
return copy_to_reg (expand_binop (Pmode, add_optab,
|
5829 |
|
|
virtual_incoming_args_rtx,
|
5830 |
|
|
offset, 0, 0, OPTAB_LIB_WIDEN));
|
5831 |
|
|
}
|
5832 |
|
|
|
5833 |
|
|
/* Store general registers on the stack. */
|
5834 |
|
|
dest = gen_rtx_MEM (BLKmode,
|
5835 |
|
|
plus_constant (current_function_internal_arg_pointer,
|
5836 |
|
|
-16));
|
5837 |
|
|
set_mem_alias_set (dest, get_varargs_alias_set ());
|
5838 |
|
|
set_mem_align (dest, BITS_PER_WORD);
|
5839 |
|
|
move_block_from_reg (23, dest, 4);
|
5840 |
|
|
|
5841 |
|
|
/* move_block_from_reg will emit code to store the argument registers
|
5842 |
|
|
individually as scalar stores.
|
5843 |
|
|
|
5844 |
|
|
However, other insns may later load from the same addresses for
|
5845 |
|
|
a structure load (passing a struct to a varargs routine).
|
5846 |
|
|
|
5847 |
|
|
The alias code assumes that such aliasing can never happen, so we
|
5848 |
|
|
have to keep memory referencing insns from moving up beyond the
|
5849 |
|
|
last argument register store. So we emit a blockage insn here. */
|
5850 |
|
|
emit_insn (gen_blockage ());
|
5851 |
|
|
|
5852 |
|
|
return copy_to_reg (expand_binop (Pmode, add_optab,
|
5853 |
|
|
current_function_internal_arg_pointer,
|
5854 |
|
|
offset, 0, 0, OPTAB_LIB_WIDEN));
|
5855 |
|
|
}
|
5856 |
|
|
|
5857 |
|
|
void
|
5858 |
|
|
hppa_va_start (tree valist, rtx nextarg)
|
5859 |
|
|
{
|
5860 |
|
|
nextarg = expand_builtin_saveregs ();
|
5861 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
5862 |
|
|
}
|
5863 |
|
|
|
5864 |
|
|
static tree
|
5865 |
|
|
hppa_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p, tree *post_p)
|
5866 |
|
|
{
|
5867 |
|
|
if (TARGET_64BIT)
|
5868 |
|
|
{
|
5869 |
|
|
/* Args grow upward. We can use the generic routines. */
|
5870 |
|
|
return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
|
5871 |
|
|
}
|
5872 |
|
|
else /* !TARGET_64BIT */
|
5873 |
|
|
{
|
5874 |
|
|
tree ptr = build_pointer_type (type);
|
5875 |
|
|
tree valist_type;
|
5876 |
|
|
tree t, u;
|
5877 |
|
|
unsigned int size, ofs;
|
5878 |
|
|
bool indirect;
|
5879 |
|
|
|
5880 |
|
|
indirect = pass_by_reference (NULL, TYPE_MODE (type), type, 0);
|
5881 |
|
|
if (indirect)
|
5882 |
|
|
{
|
5883 |
|
|
type = ptr;
|
5884 |
|
|
ptr = build_pointer_type (type);
|
5885 |
|
|
}
|
5886 |
|
|
size = int_size_in_bytes (type);
|
5887 |
|
|
valist_type = TREE_TYPE (valist);
|
5888 |
|
|
|
5889 |
|
|
/* Args grow down. Not handled by generic routines. */
|
5890 |
|
|
|
5891 |
|
|
u = fold_convert (valist_type, size_in_bytes (type));
|
5892 |
|
|
t = build2 (MINUS_EXPR, valist_type, valist, u);
|
5893 |
|
|
|
5894 |
|
|
/* Copied from va-pa.h, but we probably don't need to align to
|
5895 |
|
|
word size, since we generate and preserve that invariant. */
|
5896 |
|
|
u = build_int_cst (valist_type, (size > 4 ? -8 : -4));
|
5897 |
|
|
t = build2 (BIT_AND_EXPR, valist_type, t, u);
|
5898 |
|
|
|
5899 |
|
|
t = build2 (MODIFY_EXPR, valist_type, valist, t);
|
5900 |
|
|
|
5901 |
|
|
ofs = (8 - size) % 4;
|
5902 |
|
|
if (ofs != 0)
|
5903 |
|
|
{
|
5904 |
|
|
u = fold_convert (valist_type, size_int (ofs));
|
5905 |
|
|
t = build2 (PLUS_EXPR, valist_type, t, u);
|
5906 |
|
|
}
|
5907 |
|
|
|
5908 |
|
|
t = fold_convert (ptr, t);
|
5909 |
|
|
t = build_va_arg_indirect_ref (t);
|
5910 |
|
|
|
5911 |
|
|
if (indirect)
|
5912 |
|
|
t = build_va_arg_indirect_ref (t);
|
5913 |
|
|
|
5914 |
|
|
return t;
|
5915 |
|
|
}
|
5916 |
|
|
}
|
5917 |
|
|
|
5918 |
|
|
/* True if MODE is valid for the target. By "valid", we mean able to
|
5919 |
|
|
be manipulated in non-trivial ways. In particular, this means all
|
5920 |
|
|
the arithmetic is supported.
|
5921 |
|
|
|
5922 |
|
|
Currently, TImode is not valid as the HP 64-bit runtime documentation
|
5923 |
|
|
doesn't document the alignment and calling conventions for this type.
|
5924 |
|
|
Thus, we return false when PRECISION is 2 * BITS_PER_WORD and
|
5925 |
|
|
2 * BITS_PER_WORD isn't equal LONG_LONG_TYPE_SIZE. */
|
5926 |
|
|
|
5927 |
|
|
static bool
|
5928 |
|
|
pa_scalar_mode_supported_p (enum machine_mode mode)
|
5929 |
|
|
{
|
5930 |
|
|
int precision = GET_MODE_PRECISION (mode);
|
5931 |
|
|
|
5932 |
|
|
switch (GET_MODE_CLASS (mode))
|
5933 |
|
|
{
|
5934 |
|
|
case MODE_PARTIAL_INT:
|
5935 |
|
|
case MODE_INT:
|
5936 |
|
|
if (precision == CHAR_TYPE_SIZE)
|
5937 |
|
|
return true;
|
5938 |
|
|
if (precision == SHORT_TYPE_SIZE)
|
5939 |
|
|
return true;
|
5940 |
|
|
if (precision == INT_TYPE_SIZE)
|
5941 |
|
|
return true;
|
5942 |
|
|
if (precision == LONG_TYPE_SIZE)
|
5943 |
|
|
return true;
|
5944 |
|
|
if (precision == LONG_LONG_TYPE_SIZE)
|
5945 |
|
|
return true;
|
5946 |
|
|
return false;
|
5947 |
|
|
|
5948 |
|
|
case MODE_FLOAT:
|
5949 |
|
|
if (precision == FLOAT_TYPE_SIZE)
|
5950 |
|
|
return true;
|
5951 |
|
|
if (precision == DOUBLE_TYPE_SIZE)
|
5952 |
|
|
return true;
|
5953 |
|
|
if (precision == LONG_DOUBLE_TYPE_SIZE)
|
5954 |
|
|
return true;
|
5955 |
|
|
return false;
|
5956 |
|
|
|
5957 |
|
|
case MODE_DECIMAL_FLOAT:
|
5958 |
|
|
return false;
|
5959 |
|
|
|
5960 |
|
|
default:
|
5961 |
|
|
gcc_unreachable ();
|
5962 |
|
|
}
|
5963 |
|
|
}
|
5964 |
|
|
|
5965 |
|
|
/* This routine handles all the normal conditional branch sequences we
|
5966 |
|
|
might need to generate. It handles compare immediate vs compare
|
5967 |
|
|
register, nullification of delay slots, varying length branches,
|
5968 |
|
|
negated branches, and all combinations of the above. It returns the
|
5969 |
|
|
output appropriate to emit the branch corresponding to all given
|
5970 |
|
|
parameters. */
|
5971 |
|
|
|
5972 |
|
|
const char *
|
5973 |
|
|
output_cbranch (rtx *operands, int negated, rtx insn)
|
5974 |
|
|
{
|
5975 |
|
|
static char buf[100];
|
5976 |
|
|
int useskip = 0;
|
5977 |
|
|
int nullify = INSN_ANNULLED_BRANCH_P (insn);
|
5978 |
|
|
int length = get_attr_length (insn);
|
5979 |
|
|
int xdelay;
|
5980 |
|
|
|
5981 |
|
|
/* A conditional branch to the following instruction (e.g. the delay slot)
|
5982 |
|
|
is asking for a disaster. This can happen when not optimizing and
|
5983 |
|
|
when jump optimization fails.
|
5984 |
|
|
|
5985 |
|
|
While it is usually safe to emit nothing, this can fail if the
|
5986 |
|
|
preceding instruction is a nullified branch with an empty delay
|
5987 |
|
|
slot and the same branch target as this branch. We could check
|
5988 |
|
|
for this but jump optimization should eliminate nop jumps. It
|
5989 |
|
|
is always safe to emit a nop. */
|
5990 |
|
|
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
|
5991 |
|
|
return "nop";
|
5992 |
|
|
|
5993 |
|
|
/* The doubleword form of the cmpib instruction doesn't have the LEU
|
5994 |
|
|
and GTU conditions while the cmpb instruction does. Since we accept
|
5995 |
|
|
zero for cmpb, we must ensure that we use cmpb for the comparison. */
|
5996 |
|
|
if (GET_MODE (operands[1]) == DImode && operands[2] == const0_rtx)
|
5997 |
|
|
operands[2] = gen_rtx_REG (DImode, 0);
|
5998 |
|
|
if (GET_MODE (operands[2]) == DImode && operands[1] == const0_rtx)
|
5999 |
|
|
operands[1] = gen_rtx_REG (DImode, 0);
|
6000 |
|
|
|
6001 |
|
|
/* If this is a long branch with its delay slot unfilled, set `nullify'
|
6002 |
|
|
as it can nullify the delay slot and save a nop. */
|
6003 |
|
|
if (length == 8 && dbr_sequence_length () == 0)
|
6004 |
|
|
nullify = 1;
|
6005 |
|
|
|
6006 |
|
|
/* If this is a short forward conditional branch which did not get
|
6007 |
|
|
its delay slot filled, the delay slot can still be nullified. */
|
6008 |
|
|
if (! nullify && length == 4 && dbr_sequence_length () == 0)
|
6009 |
|
|
nullify = forward_branch_p (insn);
|
6010 |
|
|
|
6011 |
|
|
/* A forward branch over a single nullified insn can be done with a
|
6012 |
|
|
comclr instruction. This avoids a single cycle penalty due to
|
6013 |
|
|
mis-predicted branch if we fall through (branch not taken). */
|
6014 |
|
|
if (length == 4
|
6015 |
|
|
&& next_real_insn (insn) != 0
|
6016 |
|
|
&& get_attr_length (next_real_insn (insn)) == 4
|
6017 |
|
|
&& JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn))
|
6018 |
|
|
&& nullify)
|
6019 |
|
|
useskip = 1;
|
6020 |
|
|
|
6021 |
|
|
switch (length)
|
6022 |
|
|
{
|
6023 |
|
|
/* All short conditional branches except backwards with an unfilled
|
6024 |
|
|
delay slot. */
|
6025 |
|
|
case 4:
|
6026 |
|
|
if (useskip)
|
6027 |
|
|
strcpy (buf, "{com%I2clr,|cmp%I2clr,}");
|
6028 |
|
|
else
|
6029 |
|
|
strcpy (buf, "{com%I2b,|cmp%I2b,}");
|
6030 |
|
|
if (GET_MODE (operands[1]) == DImode)
|
6031 |
|
|
strcat (buf, "*");
|
6032 |
|
|
if (negated)
|
6033 |
|
|
strcat (buf, "%B3");
|
6034 |
|
|
else
|
6035 |
|
|
strcat (buf, "%S3");
|
6036 |
|
|
if (useskip)
|
6037 |
|
|
strcat (buf, " %2,%r1,%%r0");
|
6038 |
|
|
else if (nullify)
|
6039 |
|
|
strcat (buf, ",n %2,%r1,%0");
|
6040 |
|
|
else
|
6041 |
|
|
strcat (buf, " %2,%r1,%0");
|
6042 |
|
|
break;
|
6043 |
|
|
|
6044 |
|
|
/* All long conditionals. Note a short backward branch with an
|
6045 |
|
|
unfilled delay slot is treated just like a long backward branch
|
6046 |
|
|
with an unfilled delay slot. */
|
6047 |
|
|
case 8:
|
6048 |
|
|
/* Handle weird backwards branch with a filled delay slot
|
6049 |
|
|
which is nullified. */
|
6050 |
|
|
if (dbr_sequence_length () != 0
|
6051 |
|
|
&& ! forward_branch_p (insn)
|
6052 |
|
|
&& nullify)
|
6053 |
|
|
{
|
6054 |
|
|
strcpy (buf, "{com%I2b,|cmp%I2b,}");
|
6055 |
|
|
if (GET_MODE (operands[1]) == DImode)
|
6056 |
|
|
strcat (buf, "*");
|
6057 |
|
|
if (negated)
|
6058 |
|
|
strcat (buf, "%S3");
|
6059 |
|
|
else
|
6060 |
|
|
strcat (buf, "%B3");
|
6061 |
|
|
strcat (buf, ",n %2,%r1,.+12\n\tb %0");
|
6062 |
|
|
}
|
6063 |
|
|
/* Handle short backwards branch with an unfilled delay slot.
|
6064 |
|
|
Using a comb;nop rather than comiclr;bl saves 1 cycle for both
|
6065 |
|
|
taken and untaken branches. */
|
6066 |
|
|
else if (dbr_sequence_length () == 0
|
6067 |
|
|
&& ! forward_branch_p (insn)
|
6068 |
|
|
&& INSN_ADDRESSES_SET_P ()
|
6069 |
|
|
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
|
6070 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
|
6071 |
|
|
{
|
6072 |
|
|
strcpy (buf, "{com%I2b,|cmp%I2b,}");
|
6073 |
|
|
if (GET_MODE (operands[1]) == DImode)
|
6074 |
|
|
strcat (buf, "*");
|
6075 |
|
|
if (negated)
|
6076 |
|
|
strcat (buf, "%B3 %2,%r1,%0%#");
|
6077 |
|
|
else
|
6078 |
|
|
strcat (buf, "%S3 %2,%r1,%0%#");
|
6079 |
|
|
}
|
6080 |
|
|
else
|
6081 |
|
|
{
|
6082 |
|
|
strcpy (buf, "{com%I2clr,|cmp%I2clr,}");
|
6083 |
|
|
if (GET_MODE (operands[1]) == DImode)
|
6084 |
|
|
strcat (buf, "*");
|
6085 |
|
|
if (negated)
|
6086 |
|
|
strcat (buf, "%S3");
|
6087 |
|
|
else
|
6088 |
|
|
strcat (buf, "%B3");
|
6089 |
|
|
if (nullify)
|
6090 |
|
|
strcat (buf, " %2,%r1,%%r0\n\tb,n %0");
|
6091 |
|
|
else
|
6092 |
|
|
strcat (buf, " %2,%r1,%%r0\n\tb %0");
|
6093 |
|
|
}
|
6094 |
|
|
break;
|
6095 |
|
|
|
6096 |
|
|
default:
|
6097 |
|
|
/* The reversed conditional branch must branch over one additional
|
6098 |
|
|
instruction if the delay slot is filled and needs to be extracted
|
6099 |
|
|
by output_lbranch. If the delay slot is empty or this is a
|
6100 |
|
|
nullified forward branch, the instruction after the reversed
|
6101 |
|
|
condition branch must be nullified. */
|
6102 |
|
|
if (dbr_sequence_length () == 0
|
6103 |
|
|
|| (nullify && forward_branch_p (insn)))
|
6104 |
|
|
{
|
6105 |
|
|
nullify = 1;
|
6106 |
|
|
xdelay = 0;
|
6107 |
|
|
operands[4] = GEN_INT (length);
|
6108 |
|
|
}
|
6109 |
|
|
else
|
6110 |
|
|
{
|
6111 |
|
|
xdelay = 1;
|
6112 |
|
|
operands[4] = GEN_INT (length + 4);
|
6113 |
|
|
}
|
6114 |
|
|
|
6115 |
|
|
/* Create a reversed conditional branch which branches around
|
6116 |
|
|
the following insns. */
|
6117 |
|
|
if (GET_MODE (operands[1]) != DImode)
|
6118 |
|
|
{
|
6119 |
|
|
if (nullify)
|
6120 |
|
|
{
|
6121 |
|
|
if (negated)
|
6122 |
|
|
strcpy (buf,
|
6123 |
|
|
"{com%I2b,%S3,n %2,%r1,.+%4|cmp%I2b,%S3,n %2,%r1,.+%4}");
|
6124 |
|
|
else
|
6125 |
|
|
strcpy (buf,
|
6126 |
|
|
"{com%I2b,%B3,n %2,%r1,.+%4|cmp%I2b,%B3,n %2,%r1,.+%4}");
|
6127 |
|
|
}
|
6128 |
|
|
else
|
6129 |
|
|
{
|
6130 |
|
|
if (negated)
|
6131 |
|
|
strcpy (buf,
|
6132 |
|
|
"{com%I2b,%S3 %2,%r1,.+%4|cmp%I2b,%S3 %2,%r1,.+%4}");
|
6133 |
|
|
else
|
6134 |
|
|
strcpy (buf,
|
6135 |
|
|
"{com%I2b,%B3 %2,%r1,.+%4|cmp%I2b,%B3 %2,%r1,.+%4}");
|
6136 |
|
|
}
|
6137 |
|
|
}
|
6138 |
|
|
else
|
6139 |
|
|
{
|
6140 |
|
|
if (nullify)
|
6141 |
|
|
{
|
6142 |
|
|
if (negated)
|
6143 |
|
|
strcpy (buf,
|
6144 |
|
|
"{com%I2b,*%S3,n %2,%r1,.+%4|cmp%I2b,*%S3,n %2,%r1,.+%4}");
|
6145 |
|
|
else
|
6146 |
|
|
strcpy (buf,
|
6147 |
|
|
"{com%I2b,*%B3,n %2,%r1,.+%4|cmp%I2b,*%B3,n %2,%r1,.+%4}");
|
6148 |
|
|
}
|
6149 |
|
|
else
|
6150 |
|
|
{
|
6151 |
|
|
if (negated)
|
6152 |
|
|
strcpy (buf,
|
6153 |
|
|
"{com%I2b,*%S3 %2,%r1,.+%4|cmp%I2b,*%S3 %2,%r1,.+%4}");
|
6154 |
|
|
else
|
6155 |
|
|
strcpy (buf,
|
6156 |
|
|
"{com%I2b,*%B3 %2,%r1,.+%4|cmp%I2b,*%B3 %2,%r1,.+%4}");
|
6157 |
|
|
}
|
6158 |
|
|
}
|
6159 |
|
|
|
6160 |
|
|
output_asm_insn (buf, operands);
|
6161 |
|
|
return output_lbranch (operands[0], insn, xdelay);
|
6162 |
|
|
}
|
6163 |
|
|
return buf;
|
6164 |
|
|
}
|
6165 |
|
|
|
6166 |
|
|
/* This routine handles output of long unconditional branches that
|
6167 |
|
|
exceed the maximum range of a simple branch instruction. Since
|
6168 |
|
|
we don't have a register available for the branch, we save register
|
6169 |
|
|
%r1 in the frame marker, load the branch destination DEST into %r1,
|
6170 |
|
|
execute the branch, and restore %r1 in the delay slot of the branch.
|
6171 |
|
|
|
6172 |
|
|
Since long branches may have an insn in the delay slot and the
|
6173 |
|
|
delay slot is used to restore %r1, we in general need to extract
|
6174 |
|
|
this insn and execute it before the branch. However, to facilitate
|
6175 |
|
|
use of this function by conditional branches, we also provide an
|
6176 |
|
|
option to not extract the delay insn so that it will be emitted
|
6177 |
|
|
after the long branch. So, if there is an insn in the delay slot,
|
6178 |
|
|
it is extracted if XDELAY is nonzero.
|
6179 |
|
|
|
6180 |
|
|
The lengths of the various long-branch sequences are 20, 16 and 24
|
6181 |
|
|
bytes for the portable runtime, non-PIC and PIC cases, respectively. */
|
6182 |
|
|
|
6183 |
|
|
const char *
|
6184 |
|
|
output_lbranch (rtx dest, rtx insn, int xdelay)
|
6185 |
|
|
{
|
6186 |
|
|
rtx xoperands[2];
|
6187 |
|
|
|
6188 |
|
|
xoperands[0] = dest;
|
6189 |
|
|
|
6190 |
|
|
/* First, free up the delay slot. */
|
6191 |
|
|
if (xdelay && dbr_sequence_length () != 0)
|
6192 |
|
|
{
|
6193 |
|
|
/* We can't handle a jump in the delay slot. */
|
6194 |
|
|
gcc_assert (GET_CODE (NEXT_INSN (insn)) != JUMP_INSN);
|
6195 |
|
|
|
6196 |
|
|
final_scan_insn (NEXT_INSN (insn), asm_out_file,
|
6197 |
|
|
optimize, 0, NULL);
|
6198 |
|
|
|
6199 |
|
|
/* Now delete the delay insn. */
|
6200 |
|
|
PUT_CODE (NEXT_INSN (insn), NOTE);
|
6201 |
|
|
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
|
6202 |
|
|
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
|
6203 |
|
|
}
|
6204 |
|
|
|
6205 |
|
|
/* Output an insn to save %r1. The runtime documentation doesn't
|
6206 |
|
|
specify whether the "Clean Up" slot in the callers frame can
|
6207 |
|
|
be clobbered by the callee. It isn't copied by HP's builtin
|
6208 |
|
|
alloca, so this suggests that it can be clobbered if necessary.
|
6209 |
|
|
The "Static Link" location is copied by HP builtin alloca, so
|
6210 |
|
|
we avoid using it. Using the cleanup slot might be a problem
|
6211 |
|
|
if we have to interoperate with languages that pass cleanup
|
6212 |
|
|
information. However, it should be possible to handle these
|
6213 |
|
|
situations with GCC's asm feature.
|
6214 |
|
|
|
6215 |
|
|
The "Current RP" slot is reserved for the called procedure, so
|
6216 |
|
|
we try to use it when we don't have a frame of our own. It's
|
6217 |
|
|
rather unlikely that we won't have a frame when we need to emit
|
6218 |
|
|
a very long branch.
|
6219 |
|
|
|
6220 |
|
|
Really the way to go long term is a register scavenger; goto
|
6221 |
|
|
the target of the jump and find a register which we can use
|
6222 |
|
|
as a scratch to hold the value in %r1. Then, we wouldn't have
|
6223 |
|
|
to free up the delay slot or clobber a slot that may be needed
|
6224 |
|
|
for other purposes. */
|
6225 |
|
|
if (TARGET_64BIT)
|
6226 |
|
|
{
|
6227 |
|
|
if (actual_fsize == 0 && !regs_ever_live[2])
|
6228 |
|
|
/* Use the return pointer slot in the frame marker. */
|
6229 |
|
|
output_asm_insn ("std %%r1,-16(%%r30)", xoperands);
|
6230 |
|
|
else
|
6231 |
|
|
/* Use the slot at -40 in the frame marker since HP builtin
|
6232 |
|
|
alloca doesn't copy it. */
|
6233 |
|
|
output_asm_insn ("std %%r1,-40(%%r30)", xoperands);
|
6234 |
|
|
}
|
6235 |
|
|
else
|
6236 |
|
|
{
|
6237 |
|
|
if (actual_fsize == 0 && !regs_ever_live[2])
|
6238 |
|
|
/* Use the return pointer slot in the frame marker. */
|
6239 |
|
|
output_asm_insn ("stw %%r1,-20(%%r30)", xoperands);
|
6240 |
|
|
else
|
6241 |
|
|
/* Use the "Clean Up" slot in the frame marker. In GCC,
|
6242 |
|
|
the only other use of this location is for copying a
|
6243 |
|
|
floating point double argument from a floating-point
|
6244 |
|
|
register to two general registers. The copy is done
|
6245 |
|
|
as an "atomic" operation when outputting a call, so it
|
6246 |
|
|
won't interfere with our using the location here. */
|
6247 |
|
|
output_asm_insn ("stw %%r1,-12(%%r30)", xoperands);
|
6248 |
|
|
}
|
6249 |
|
|
|
6250 |
|
|
if (TARGET_PORTABLE_RUNTIME)
|
6251 |
|
|
{
|
6252 |
|
|
output_asm_insn ("ldil L'%0,%%r1", xoperands);
|
6253 |
|
|
output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands);
|
6254 |
|
|
output_asm_insn ("bv %%r0(%%r1)", xoperands);
|
6255 |
|
|
}
|
6256 |
|
|
else if (flag_pic)
|
6257 |
|
|
{
|
6258 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
|
6259 |
|
|
if (TARGET_SOM || !TARGET_GAS)
|
6260 |
|
|
{
|
6261 |
|
|
xoperands[1] = gen_label_rtx ();
|
6262 |
|
|
output_asm_insn ("addil L'%l0-%l1,%%r1", xoperands);
|
6263 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
6264 |
|
|
CODE_LABEL_NUMBER (xoperands[1]));
|
6265 |
|
|
output_asm_insn ("ldo R'%l0-%l1(%%r1),%%r1", xoperands);
|
6266 |
|
|
}
|
6267 |
|
|
else
|
6268 |
|
|
{
|
6269 |
|
|
output_asm_insn ("addil L'%l0-$PIC_pcrel$0+4,%%r1", xoperands);
|
6270 |
|
|
output_asm_insn ("ldo R'%l0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands);
|
6271 |
|
|
}
|
6272 |
|
|
output_asm_insn ("bv %%r0(%%r1)", xoperands);
|
6273 |
|
|
}
|
6274 |
|
|
else
|
6275 |
|
|
/* Now output a very long branch to the original target. */
|
6276 |
|
|
output_asm_insn ("ldil L'%l0,%%r1\n\tbe R'%l0(%%sr4,%%r1)", xoperands);
|
6277 |
|
|
|
6278 |
|
|
/* Now restore the value of %r1 in the delay slot. */
|
6279 |
|
|
if (TARGET_64BIT)
|
6280 |
|
|
{
|
6281 |
|
|
if (actual_fsize == 0 && !regs_ever_live[2])
|
6282 |
|
|
return "ldd -16(%%r30),%%r1";
|
6283 |
|
|
else
|
6284 |
|
|
return "ldd -40(%%r30),%%r1";
|
6285 |
|
|
}
|
6286 |
|
|
else
|
6287 |
|
|
{
|
6288 |
|
|
if (actual_fsize == 0 && !regs_ever_live[2])
|
6289 |
|
|
return "ldw -20(%%r30),%%r1";
|
6290 |
|
|
else
|
6291 |
|
|
return "ldw -12(%%r30),%%r1";
|
6292 |
|
|
}
|
6293 |
|
|
}
|
6294 |
|
|
|
6295 |
|
|
/* This routine handles all the branch-on-bit conditional branch sequences we
|
6296 |
|
|
might need to generate. It handles nullification of delay slots,
|
6297 |
|
|
varying length branches, negated branches and all combinations of the
|
6298 |
|
|
above. it returns the appropriate output template to emit the branch. */
|
6299 |
|
|
|
6300 |
|
|
const char *
|
6301 |
|
|
output_bb (rtx *operands ATTRIBUTE_UNUSED, int negated, rtx insn, int which)
|
6302 |
|
|
{
|
6303 |
|
|
static char buf[100];
|
6304 |
|
|
int useskip = 0;
|
6305 |
|
|
int nullify = INSN_ANNULLED_BRANCH_P (insn);
|
6306 |
|
|
int length = get_attr_length (insn);
|
6307 |
|
|
int xdelay;
|
6308 |
|
|
|
6309 |
|
|
/* A conditional branch to the following instruction (e.g. the delay slot) is
|
6310 |
|
|
asking for a disaster. I do not think this can happen as this pattern
|
6311 |
|
|
is only used when optimizing; jump optimization should eliminate the
|
6312 |
|
|
jump. But be prepared just in case. */
|
6313 |
|
|
|
6314 |
|
|
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
|
6315 |
|
|
return "nop";
|
6316 |
|
|
|
6317 |
|
|
/* If this is a long branch with its delay slot unfilled, set `nullify'
|
6318 |
|
|
as it can nullify the delay slot and save a nop. */
|
6319 |
|
|
if (length == 8 && dbr_sequence_length () == 0)
|
6320 |
|
|
nullify = 1;
|
6321 |
|
|
|
6322 |
|
|
/* If this is a short forward conditional branch which did not get
|
6323 |
|
|
its delay slot filled, the delay slot can still be nullified. */
|
6324 |
|
|
if (! nullify && length == 4 && dbr_sequence_length () == 0)
|
6325 |
|
|
nullify = forward_branch_p (insn);
|
6326 |
|
|
|
6327 |
|
|
/* A forward branch over a single nullified insn can be done with a
|
6328 |
|
|
extrs instruction. This avoids a single cycle penalty due to
|
6329 |
|
|
mis-predicted branch if we fall through (branch not taken). */
|
6330 |
|
|
|
6331 |
|
|
if (length == 4
|
6332 |
|
|
&& next_real_insn (insn) != 0
|
6333 |
|
|
&& get_attr_length (next_real_insn (insn)) == 4
|
6334 |
|
|
&& JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn))
|
6335 |
|
|
&& nullify)
|
6336 |
|
|
useskip = 1;
|
6337 |
|
|
|
6338 |
|
|
switch (length)
|
6339 |
|
|
{
|
6340 |
|
|
|
6341 |
|
|
/* All short conditional branches except backwards with an unfilled
|
6342 |
|
|
delay slot. */
|
6343 |
|
|
case 4:
|
6344 |
|
|
if (useskip)
|
6345 |
|
|
strcpy (buf, "{extrs,|extrw,s,}");
|
6346 |
|
|
else
|
6347 |
|
|
strcpy (buf, "bb,");
|
6348 |
|
|
if (useskip && GET_MODE (operands[0]) == DImode)
|
6349 |
|
|
strcpy (buf, "extrd,s,*");
|
6350 |
|
|
else if (GET_MODE (operands[0]) == DImode)
|
6351 |
|
|
strcpy (buf, "bb,*");
|
6352 |
|
|
if ((which == 0 && negated)
|
6353 |
|
|
|| (which == 1 && ! negated))
|
6354 |
|
|
strcat (buf, ">=");
|
6355 |
|
|
else
|
6356 |
|
|
strcat (buf, "<");
|
6357 |
|
|
if (useskip)
|
6358 |
|
|
strcat (buf, " %0,%1,1,%%r0");
|
6359 |
|
|
else if (nullify && negated)
|
6360 |
|
|
strcat (buf, ",n %0,%1,%3");
|
6361 |
|
|
else if (nullify && ! negated)
|
6362 |
|
|
strcat (buf, ",n %0,%1,%2");
|
6363 |
|
|
else if (! nullify && negated)
|
6364 |
|
|
strcat (buf, "%0,%1,%3");
|
6365 |
|
|
else if (! nullify && ! negated)
|
6366 |
|
|
strcat (buf, " %0,%1,%2");
|
6367 |
|
|
break;
|
6368 |
|
|
|
6369 |
|
|
/* All long conditionals. Note a short backward branch with an
|
6370 |
|
|
unfilled delay slot is treated just like a long backward branch
|
6371 |
|
|
with an unfilled delay slot. */
|
6372 |
|
|
case 8:
|
6373 |
|
|
/* Handle weird backwards branch with a filled delay slot
|
6374 |
|
|
which is nullified. */
|
6375 |
|
|
if (dbr_sequence_length () != 0
|
6376 |
|
|
&& ! forward_branch_p (insn)
|
6377 |
|
|
&& nullify)
|
6378 |
|
|
{
|
6379 |
|
|
strcpy (buf, "bb,");
|
6380 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6381 |
|
|
strcat (buf, "*");
|
6382 |
|
|
if ((which == 0 && negated)
|
6383 |
|
|
|| (which == 1 && ! negated))
|
6384 |
|
|
strcat (buf, "<");
|
6385 |
|
|
else
|
6386 |
|
|
strcat (buf, ">=");
|
6387 |
|
|
if (negated)
|
6388 |
|
|
strcat (buf, ",n %0,%1,.+12\n\tb %3");
|
6389 |
|
|
else
|
6390 |
|
|
strcat (buf, ",n %0,%1,.+12\n\tb %2");
|
6391 |
|
|
}
|
6392 |
|
|
/* Handle short backwards branch with an unfilled delay slot.
|
6393 |
|
|
Using a bb;nop rather than extrs;bl saves 1 cycle for both
|
6394 |
|
|
taken and untaken branches. */
|
6395 |
|
|
else if (dbr_sequence_length () == 0
|
6396 |
|
|
&& ! forward_branch_p (insn)
|
6397 |
|
|
&& INSN_ADDRESSES_SET_P ()
|
6398 |
|
|
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
|
6399 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
|
6400 |
|
|
{
|
6401 |
|
|
strcpy (buf, "bb,");
|
6402 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6403 |
|
|
strcat (buf, "*");
|
6404 |
|
|
if ((which == 0 && negated)
|
6405 |
|
|
|| (which == 1 && ! negated))
|
6406 |
|
|
strcat (buf, ">=");
|
6407 |
|
|
else
|
6408 |
|
|
strcat (buf, "<");
|
6409 |
|
|
if (negated)
|
6410 |
|
|
strcat (buf, " %0,%1,%3%#");
|
6411 |
|
|
else
|
6412 |
|
|
strcat (buf, " %0,%1,%2%#");
|
6413 |
|
|
}
|
6414 |
|
|
else
|
6415 |
|
|
{
|
6416 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6417 |
|
|
strcpy (buf, "extrd,s,*");
|
6418 |
|
|
else
|
6419 |
|
|
strcpy (buf, "{extrs,|extrw,s,}");
|
6420 |
|
|
if ((which == 0 && negated)
|
6421 |
|
|
|| (which == 1 && ! negated))
|
6422 |
|
|
strcat (buf, "<");
|
6423 |
|
|
else
|
6424 |
|
|
strcat (buf, ">=");
|
6425 |
|
|
if (nullify && negated)
|
6426 |
|
|
strcat (buf, " %0,%1,1,%%r0\n\tb,n %3");
|
6427 |
|
|
else if (nullify && ! negated)
|
6428 |
|
|
strcat (buf, " %0,%1,1,%%r0\n\tb,n %2");
|
6429 |
|
|
else if (negated)
|
6430 |
|
|
strcat (buf, " %0,%1,1,%%r0\n\tb %3");
|
6431 |
|
|
else
|
6432 |
|
|
strcat (buf, " %0,%1,1,%%r0\n\tb %2");
|
6433 |
|
|
}
|
6434 |
|
|
break;
|
6435 |
|
|
|
6436 |
|
|
default:
|
6437 |
|
|
/* The reversed conditional branch must branch over one additional
|
6438 |
|
|
instruction if the delay slot is filled and needs to be extracted
|
6439 |
|
|
by output_lbranch. If the delay slot is empty or this is a
|
6440 |
|
|
nullified forward branch, the instruction after the reversed
|
6441 |
|
|
condition branch must be nullified. */
|
6442 |
|
|
if (dbr_sequence_length () == 0
|
6443 |
|
|
|| (nullify && forward_branch_p (insn)))
|
6444 |
|
|
{
|
6445 |
|
|
nullify = 1;
|
6446 |
|
|
xdelay = 0;
|
6447 |
|
|
operands[4] = GEN_INT (length);
|
6448 |
|
|
}
|
6449 |
|
|
else
|
6450 |
|
|
{
|
6451 |
|
|
xdelay = 1;
|
6452 |
|
|
operands[4] = GEN_INT (length + 4);
|
6453 |
|
|
}
|
6454 |
|
|
|
6455 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6456 |
|
|
strcpy (buf, "bb,*");
|
6457 |
|
|
else
|
6458 |
|
|
strcpy (buf, "bb,");
|
6459 |
|
|
if ((which == 0 && negated)
|
6460 |
|
|
|| (which == 1 && !negated))
|
6461 |
|
|
strcat (buf, "<");
|
6462 |
|
|
else
|
6463 |
|
|
strcat (buf, ">=");
|
6464 |
|
|
if (nullify)
|
6465 |
|
|
strcat (buf, ",n %0,%1,.+%4");
|
6466 |
|
|
else
|
6467 |
|
|
strcat (buf, " %0,%1,.+%4");
|
6468 |
|
|
output_asm_insn (buf, operands);
|
6469 |
|
|
return output_lbranch (negated ? operands[3] : operands[2],
|
6470 |
|
|
insn, xdelay);
|
6471 |
|
|
}
|
6472 |
|
|
return buf;
|
6473 |
|
|
}
|
6474 |
|
|
|
6475 |
|
|
/* This routine handles all the branch-on-variable-bit conditional branch
|
6476 |
|
|
sequences we might need to generate. It handles nullification of delay
|
6477 |
|
|
slots, varying length branches, negated branches and all combinations
|
6478 |
|
|
of the above. it returns the appropriate output template to emit the
|
6479 |
|
|
branch. */
|
6480 |
|
|
|
6481 |
|
|
const char *
|
6482 |
|
|
output_bvb (rtx *operands ATTRIBUTE_UNUSED, int negated, rtx insn, int which)
|
6483 |
|
|
{
|
6484 |
|
|
static char buf[100];
|
6485 |
|
|
int useskip = 0;
|
6486 |
|
|
int nullify = INSN_ANNULLED_BRANCH_P (insn);
|
6487 |
|
|
int length = get_attr_length (insn);
|
6488 |
|
|
int xdelay;
|
6489 |
|
|
|
6490 |
|
|
/* A conditional branch to the following instruction (e.g. the delay slot) is
|
6491 |
|
|
asking for a disaster. I do not think this can happen as this pattern
|
6492 |
|
|
is only used when optimizing; jump optimization should eliminate the
|
6493 |
|
|
jump. But be prepared just in case. */
|
6494 |
|
|
|
6495 |
|
|
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
|
6496 |
|
|
return "nop";
|
6497 |
|
|
|
6498 |
|
|
/* If this is a long branch with its delay slot unfilled, set `nullify'
|
6499 |
|
|
as it can nullify the delay slot and save a nop. */
|
6500 |
|
|
if (length == 8 && dbr_sequence_length () == 0)
|
6501 |
|
|
nullify = 1;
|
6502 |
|
|
|
6503 |
|
|
/* If this is a short forward conditional branch which did not get
|
6504 |
|
|
its delay slot filled, the delay slot can still be nullified. */
|
6505 |
|
|
if (! nullify && length == 4 && dbr_sequence_length () == 0)
|
6506 |
|
|
nullify = forward_branch_p (insn);
|
6507 |
|
|
|
6508 |
|
|
/* A forward branch over a single nullified insn can be done with a
|
6509 |
|
|
extrs instruction. This avoids a single cycle penalty due to
|
6510 |
|
|
mis-predicted branch if we fall through (branch not taken). */
|
6511 |
|
|
|
6512 |
|
|
if (length == 4
|
6513 |
|
|
&& next_real_insn (insn) != 0
|
6514 |
|
|
&& get_attr_length (next_real_insn (insn)) == 4
|
6515 |
|
|
&& JUMP_LABEL (insn) == next_nonnote_insn (next_real_insn (insn))
|
6516 |
|
|
&& nullify)
|
6517 |
|
|
useskip = 1;
|
6518 |
|
|
|
6519 |
|
|
switch (length)
|
6520 |
|
|
{
|
6521 |
|
|
|
6522 |
|
|
/* All short conditional branches except backwards with an unfilled
|
6523 |
|
|
delay slot. */
|
6524 |
|
|
case 4:
|
6525 |
|
|
if (useskip)
|
6526 |
|
|
strcpy (buf, "{vextrs,|extrw,s,}");
|
6527 |
|
|
else
|
6528 |
|
|
strcpy (buf, "{bvb,|bb,}");
|
6529 |
|
|
if (useskip && GET_MODE (operands[0]) == DImode)
|
6530 |
|
|
strcpy (buf, "extrd,s,*");
|
6531 |
|
|
else if (GET_MODE (operands[0]) == DImode)
|
6532 |
|
|
strcpy (buf, "bb,*");
|
6533 |
|
|
if ((which == 0 && negated)
|
6534 |
|
|
|| (which == 1 && ! negated))
|
6535 |
|
|
strcat (buf, ">=");
|
6536 |
|
|
else
|
6537 |
|
|
strcat (buf, "<");
|
6538 |
|
|
if (useskip)
|
6539 |
|
|
strcat (buf, "{ %0,1,%%r0| %0,%%sar,1,%%r0}");
|
6540 |
|
|
else if (nullify && negated)
|
6541 |
|
|
strcat (buf, "{,n %0,%3|,n %0,%%sar,%3}");
|
6542 |
|
|
else if (nullify && ! negated)
|
6543 |
|
|
strcat (buf, "{,n %0,%2|,n %0,%%sar,%2}");
|
6544 |
|
|
else if (! nullify && negated)
|
6545 |
|
|
strcat (buf, "{%0,%3|%0,%%sar,%3}");
|
6546 |
|
|
else if (! nullify && ! negated)
|
6547 |
|
|
strcat (buf, "{ %0,%2| %0,%%sar,%2}");
|
6548 |
|
|
break;
|
6549 |
|
|
|
6550 |
|
|
/* All long conditionals. Note a short backward branch with an
|
6551 |
|
|
unfilled delay slot is treated just like a long backward branch
|
6552 |
|
|
with an unfilled delay slot. */
|
6553 |
|
|
case 8:
|
6554 |
|
|
/* Handle weird backwards branch with a filled delay slot
|
6555 |
|
|
which is nullified. */
|
6556 |
|
|
if (dbr_sequence_length () != 0
|
6557 |
|
|
&& ! forward_branch_p (insn)
|
6558 |
|
|
&& nullify)
|
6559 |
|
|
{
|
6560 |
|
|
strcpy (buf, "{bvb,|bb,}");
|
6561 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6562 |
|
|
strcat (buf, "*");
|
6563 |
|
|
if ((which == 0 && negated)
|
6564 |
|
|
|| (which == 1 && ! negated))
|
6565 |
|
|
strcat (buf, "<");
|
6566 |
|
|
else
|
6567 |
|
|
strcat (buf, ">=");
|
6568 |
|
|
if (negated)
|
6569 |
|
|
strcat (buf, "{,n %0,.+12\n\tb %3|,n %0,%%sar,.+12\n\tb %3}");
|
6570 |
|
|
else
|
6571 |
|
|
strcat (buf, "{,n %0,.+12\n\tb %2|,n %0,%%sar,.+12\n\tb %2}");
|
6572 |
|
|
}
|
6573 |
|
|
/* Handle short backwards branch with an unfilled delay slot.
|
6574 |
|
|
Using a bb;nop rather than extrs;bl saves 1 cycle for both
|
6575 |
|
|
taken and untaken branches. */
|
6576 |
|
|
else if (dbr_sequence_length () == 0
|
6577 |
|
|
&& ! forward_branch_p (insn)
|
6578 |
|
|
&& INSN_ADDRESSES_SET_P ()
|
6579 |
|
|
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
|
6580 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
|
6581 |
|
|
{
|
6582 |
|
|
strcpy (buf, "{bvb,|bb,}");
|
6583 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6584 |
|
|
strcat (buf, "*");
|
6585 |
|
|
if ((which == 0 && negated)
|
6586 |
|
|
|| (which == 1 && ! negated))
|
6587 |
|
|
strcat (buf, ">=");
|
6588 |
|
|
else
|
6589 |
|
|
strcat (buf, "<");
|
6590 |
|
|
if (negated)
|
6591 |
|
|
strcat (buf, "{ %0,%3%#| %0,%%sar,%3%#}");
|
6592 |
|
|
else
|
6593 |
|
|
strcat (buf, "{ %0,%2%#| %0,%%sar,%2%#}");
|
6594 |
|
|
}
|
6595 |
|
|
else
|
6596 |
|
|
{
|
6597 |
|
|
strcpy (buf, "{vextrs,|extrw,s,}");
|
6598 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6599 |
|
|
strcpy (buf, "extrd,s,*");
|
6600 |
|
|
if ((which == 0 && negated)
|
6601 |
|
|
|| (which == 1 && ! negated))
|
6602 |
|
|
strcat (buf, "<");
|
6603 |
|
|
else
|
6604 |
|
|
strcat (buf, ">=");
|
6605 |
|
|
if (nullify && negated)
|
6606 |
|
|
strcat (buf, "{ %0,1,%%r0\n\tb,n %3| %0,%%sar,1,%%r0\n\tb,n %3}");
|
6607 |
|
|
else if (nullify && ! negated)
|
6608 |
|
|
strcat (buf, "{ %0,1,%%r0\n\tb,n %2| %0,%%sar,1,%%r0\n\tb,n %2}");
|
6609 |
|
|
else if (negated)
|
6610 |
|
|
strcat (buf, "{ %0,1,%%r0\n\tb %3| %0,%%sar,1,%%r0\n\tb %3}");
|
6611 |
|
|
else
|
6612 |
|
|
strcat (buf, "{ %0,1,%%r0\n\tb %2| %0,%%sar,1,%%r0\n\tb %2}");
|
6613 |
|
|
}
|
6614 |
|
|
break;
|
6615 |
|
|
|
6616 |
|
|
default:
|
6617 |
|
|
/* The reversed conditional branch must branch over one additional
|
6618 |
|
|
instruction if the delay slot is filled and needs to be extracted
|
6619 |
|
|
by output_lbranch. If the delay slot is empty or this is a
|
6620 |
|
|
nullified forward branch, the instruction after the reversed
|
6621 |
|
|
condition branch must be nullified. */
|
6622 |
|
|
if (dbr_sequence_length () == 0
|
6623 |
|
|
|| (nullify && forward_branch_p (insn)))
|
6624 |
|
|
{
|
6625 |
|
|
nullify = 1;
|
6626 |
|
|
xdelay = 0;
|
6627 |
|
|
operands[4] = GEN_INT (length);
|
6628 |
|
|
}
|
6629 |
|
|
else
|
6630 |
|
|
{
|
6631 |
|
|
xdelay = 1;
|
6632 |
|
|
operands[4] = GEN_INT (length + 4);
|
6633 |
|
|
}
|
6634 |
|
|
|
6635 |
|
|
if (GET_MODE (operands[0]) == DImode)
|
6636 |
|
|
strcpy (buf, "bb,*");
|
6637 |
|
|
else
|
6638 |
|
|
strcpy (buf, "{bvb,|bb,}");
|
6639 |
|
|
if ((which == 0 && negated)
|
6640 |
|
|
|| (which == 1 && !negated))
|
6641 |
|
|
strcat (buf, "<");
|
6642 |
|
|
else
|
6643 |
|
|
strcat (buf, ">=");
|
6644 |
|
|
if (nullify)
|
6645 |
|
|
strcat (buf, ",n {%0,.+%4|%0,%%sar,.+%4}");
|
6646 |
|
|
else
|
6647 |
|
|
strcat (buf, " {%0,.+%4|%0,%%sar,.+%4}");
|
6648 |
|
|
output_asm_insn (buf, operands);
|
6649 |
|
|
return output_lbranch (negated ? operands[3] : operands[2],
|
6650 |
|
|
insn, xdelay);
|
6651 |
|
|
}
|
6652 |
|
|
return buf;
|
6653 |
|
|
}
|
6654 |
|
|
|
6655 |
|
|
/* Return the output template for emitting a dbra type insn.
|
6656 |
|
|
|
6657 |
|
|
Note it may perform some output operations on its own before
|
6658 |
|
|
returning the final output string. */
|
6659 |
|
|
const char *
|
6660 |
|
|
output_dbra (rtx *operands, rtx insn, int which_alternative)
|
6661 |
|
|
{
|
6662 |
|
|
int length = get_attr_length (insn);
|
6663 |
|
|
|
6664 |
|
|
/* A conditional branch to the following instruction (e.g. the delay slot) is
|
6665 |
|
|
asking for a disaster. Be prepared! */
|
6666 |
|
|
|
6667 |
|
|
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
|
6668 |
|
|
{
|
6669 |
|
|
if (which_alternative == 0)
|
6670 |
|
|
return "ldo %1(%0),%0";
|
6671 |
|
|
else if (which_alternative == 1)
|
6672 |
|
|
{
|
6673 |
|
|
output_asm_insn ("{fstws|fstw} %0,-16(%%r30)", operands);
|
6674 |
|
|
output_asm_insn ("ldw -16(%%r30),%4", operands);
|
6675 |
|
|
output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands);
|
6676 |
|
|
return "{fldws|fldw} -16(%%r30),%0";
|
6677 |
|
|
}
|
6678 |
|
|
else
|
6679 |
|
|
{
|
6680 |
|
|
output_asm_insn ("ldw %0,%4", operands);
|
6681 |
|
|
return "ldo %1(%4),%4\n\tstw %4,%0";
|
6682 |
|
|
}
|
6683 |
|
|
}
|
6684 |
|
|
|
6685 |
|
|
if (which_alternative == 0)
|
6686 |
|
|
{
|
6687 |
|
|
int nullify = INSN_ANNULLED_BRANCH_P (insn);
|
6688 |
|
|
int xdelay;
|
6689 |
|
|
|
6690 |
|
|
/* If this is a long branch with its delay slot unfilled, set `nullify'
|
6691 |
|
|
as it can nullify the delay slot and save a nop. */
|
6692 |
|
|
if (length == 8 && dbr_sequence_length () == 0)
|
6693 |
|
|
nullify = 1;
|
6694 |
|
|
|
6695 |
|
|
/* If this is a short forward conditional branch which did not get
|
6696 |
|
|
its delay slot filled, the delay slot can still be nullified. */
|
6697 |
|
|
if (! nullify && length == 4 && dbr_sequence_length () == 0)
|
6698 |
|
|
nullify = forward_branch_p (insn);
|
6699 |
|
|
|
6700 |
|
|
switch (length)
|
6701 |
|
|
{
|
6702 |
|
|
case 4:
|
6703 |
|
|
if (nullify)
|
6704 |
|
|
return "addib,%C2,n %1,%0,%3";
|
6705 |
|
|
else
|
6706 |
|
|
return "addib,%C2 %1,%0,%3";
|
6707 |
|
|
|
6708 |
|
|
case 8:
|
6709 |
|
|
/* Handle weird backwards branch with a fulled delay slot
|
6710 |
|
|
which is nullified. */
|
6711 |
|
|
if (dbr_sequence_length () != 0
|
6712 |
|
|
&& ! forward_branch_p (insn)
|
6713 |
|
|
&& nullify)
|
6714 |
|
|
return "addib,%N2,n %1,%0,.+12\n\tb %3";
|
6715 |
|
|
/* Handle short backwards branch with an unfilled delay slot.
|
6716 |
|
|
Using a addb;nop rather than addi;bl saves 1 cycle for both
|
6717 |
|
|
taken and untaken branches. */
|
6718 |
|
|
else if (dbr_sequence_length () == 0
|
6719 |
|
|
&& ! forward_branch_p (insn)
|
6720 |
|
|
&& INSN_ADDRESSES_SET_P ()
|
6721 |
|
|
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
|
6722 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
|
6723 |
|
|
return "addib,%C2 %1,%0,%3%#";
|
6724 |
|
|
|
6725 |
|
|
/* Handle normal cases. */
|
6726 |
|
|
if (nullify)
|
6727 |
|
|
return "addi,%N2 %1,%0,%0\n\tb,n %3";
|
6728 |
|
|
else
|
6729 |
|
|
return "addi,%N2 %1,%0,%0\n\tb %3";
|
6730 |
|
|
|
6731 |
|
|
default:
|
6732 |
|
|
/* The reversed conditional branch must branch over one additional
|
6733 |
|
|
instruction if the delay slot is filled and needs to be extracted
|
6734 |
|
|
by output_lbranch. If the delay slot is empty or this is a
|
6735 |
|
|
nullified forward branch, the instruction after the reversed
|
6736 |
|
|
condition branch must be nullified. */
|
6737 |
|
|
if (dbr_sequence_length () == 0
|
6738 |
|
|
|| (nullify && forward_branch_p (insn)))
|
6739 |
|
|
{
|
6740 |
|
|
nullify = 1;
|
6741 |
|
|
xdelay = 0;
|
6742 |
|
|
operands[4] = GEN_INT (length);
|
6743 |
|
|
}
|
6744 |
|
|
else
|
6745 |
|
|
{
|
6746 |
|
|
xdelay = 1;
|
6747 |
|
|
operands[4] = GEN_INT (length + 4);
|
6748 |
|
|
}
|
6749 |
|
|
|
6750 |
|
|
if (nullify)
|
6751 |
|
|
output_asm_insn ("addib,%N2,n %1,%0,.+%4", operands);
|
6752 |
|
|
else
|
6753 |
|
|
output_asm_insn ("addib,%N2 %1,%0,.+%4", operands);
|
6754 |
|
|
|
6755 |
|
|
return output_lbranch (operands[3], insn, xdelay);
|
6756 |
|
|
}
|
6757 |
|
|
|
6758 |
|
|
}
|
6759 |
|
|
/* Deal with gross reload from FP register case. */
|
6760 |
|
|
else if (which_alternative == 1)
|
6761 |
|
|
{
|
6762 |
|
|
/* Move loop counter from FP register to MEM then into a GR,
|
6763 |
|
|
increment the GR, store the GR into MEM, and finally reload
|
6764 |
|
|
the FP register from MEM from within the branch's delay slot. */
|
6765 |
|
|
output_asm_insn ("{fstws|fstw} %0,-16(%%r30)\n\tldw -16(%%r30),%4",
|
6766 |
|
|
operands);
|
6767 |
|
|
output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands);
|
6768 |
|
|
if (length == 24)
|
6769 |
|
|
return "{comb|cmpb},%S2 %%r0,%4,%3\n\t{fldws|fldw} -16(%%r30),%0";
|
6770 |
|
|
else if (length == 28)
|
6771 |
|
|
return "{comclr|cmpclr},%B2 %%r0,%4,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0";
|
6772 |
|
|
else
|
6773 |
|
|
{
|
6774 |
|
|
operands[5] = GEN_INT (length - 16);
|
6775 |
|
|
output_asm_insn ("{comb|cmpb},%B2 %%r0,%4,.+%5", operands);
|
6776 |
|
|
output_asm_insn ("{fldws|fldw} -16(%%r30),%0", operands);
|
6777 |
|
|
return output_lbranch (operands[3], insn, 0);
|
6778 |
|
|
}
|
6779 |
|
|
}
|
6780 |
|
|
/* Deal with gross reload from memory case. */
|
6781 |
|
|
else
|
6782 |
|
|
{
|
6783 |
|
|
/* Reload loop counter from memory, the store back to memory
|
6784 |
|
|
happens in the branch's delay slot. */
|
6785 |
|
|
output_asm_insn ("ldw %0,%4", operands);
|
6786 |
|
|
if (length == 12)
|
6787 |
|
|
return "addib,%C2 %1,%4,%3\n\tstw %4,%0";
|
6788 |
|
|
else if (length == 16)
|
6789 |
|
|
return "addi,%N2 %1,%4,%4\n\tb %3\n\tstw %4,%0";
|
6790 |
|
|
else
|
6791 |
|
|
{
|
6792 |
|
|
operands[5] = GEN_INT (length - 4);
|
6793 |
|
|
output_asm_insn ("addib,%N2 %1,%4,.+%5\n\tstw %4,%0", operands);
|
6794 |
|
|
return output_lbranch (operands[3], insn, 0);
|
6795 |
|
|
}
|
6796 |
|
|
}
|
6797 |
|
|
}
|
6798 |
|
|
|
6799 |
|
|
/* Return the output template for emitting a movb type insn.
|
6800 |
|
|
|
6801 |
|
|
Note it may perform some output operations on its own before
|
6802 |
|
|
returning the final output string. */
|
6803 |
|
|
const char *
|
6804 |
|
|
output_movb (rtx *operands, rtx insn, int which_alternative,
|
6805 |
|
|
int reverse_comparison)
|
6806 |
|
|
{
|
6807 |
|
|
int length = get_attr_length (insn);
|
6808 |
|
|
|
6809 |
|
|
/* A conditional branch to the following instruction (e.g. the delay slot) is
|
6810 |
|
|
asking for a disaster. Be prepared! */
|
6811 |
|
|
|
6812 |
|
|
if (next_real_insn (JUMP_LABEL (insn)) == next_real_insn (insn))
|
6813 |
|
|
{
|
6814 |
|
|
if (which_alternative == 0)
|
6815 |
|
|
return "copy %1,%0";
|
6816 |
|
|
else if (which_alternative == 1)
|
6817 |
|
|
{
|
6818 |
|
|
output_asm_insn ("stw %1,-16(%%r30)", operands);
|
6819 |
|
|
return "{fldws|fldw} -16(%%r30),%0";
|
6820 |
|
|
}
|
6821 |
|
|
else if (which_alternative == 2)
|
6822 |
|
|
return "stw %1,%0";
|
6823 |
|
|
else
|
6824 |
|
|
return "mtsar %r1";
|
6825 |
|
|
}
|
6826 |
|
|
|
6827 |
|
|
/* Support the second variant. */
|
6828 |
|
|
if (reverse_comparison)
|
6829 |
|
|
PUT_CODE (operands[2], reverse_condition (GET_CODE (operands[2])));
|
6830 |
|
|
|
6831 |
|
|
if (which_alternative == 0)
|
6832 |
|
|
{
|
6833 |
|
|
int nullify = INSN_ANNULLED_BRANCH_P (insn);
|
6834 |
|
|
int xdelay;
|
6835 |
|
|
|
6836 |
|
|
/* If this is a long branch with its delay slot unfilled, set `nullify'
|
6837 |
|
|
as it can nullify the delay slot and save a nop. */
|
6838 |
|
|
if (length == 8 && dbr_sequence_length () == 0)
|
6839 |
|
|
nullify = 1;
|
6840 |
|
|
|
6841 |
|
|
/* If this is a short forward conditional branch which did not get
|
6842 |
|
|
its delay slot filled, the delay slot can still be nullified. */
|
6843 |
|
|
if (! nullify && length == 4 && dbr_sequence_length () == 0)
|
6844 |
|
|
nullify = forward_branch_p (insn);
|
6845 |
|
|
|
6846 |
|
|
switch (length)
|
6847 |
|
|
{
|
6848 |
|
|
case 4:
|
6849 |
|
|
if (nullify)
|
6850 |
|
|
return "movb,%C2,n %1,%0,%3";
|
6851 |
|
|
else
|
6852 |
|
|
return "movb,%C2 %1,%0,%3";
|
6853 |
|
|
|
6854 |
|
|
case 8:
|
6855 |
|
|
/* Handle weird backwards branch with a filled delay slot
|
6856 |
|
|
which is nullified. */
|
6857 |
|
|
if (dbr_sequence_length () != 0
|
6858 |
|
|
&& ! forward_branch_p (insn)
|
6859 |
|
|
&& nullify)
|
6860 |
|
|
return "movb,%N2,n %1,%0,.+12\n\tb %3";
|
6861 |
|
|
|
6862 |
|
|
/* Handle short backwards branch with an unfilled delay slot.
|
6863 |
|
|
Using a movb;nop rather than or;bl saves 1 cycle for both
|
6864 |
|
|
taken and untaken branches. */
|
6865 |
|
|
else if (dbr_sequence_length () == 0
|
6866 |
|
|
&& ! forward_branch_p (insn)
|
6867 |
|
|
&& INSN_ADDRESSES_SET_P ()
|
6868 |
|
|
&& VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
|
6869 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) - 8))
|
6870 |
|
|
return "movb,%C2 %1,%0,%3%#";
|
6871 |
|
|
/* Handle normal cases. */
|
6872 |
|
|
if (nullify)
|
6873 |
|
|
return "or,%N2 %1,%%r0,%0\n\tb,n %3";
|
6874 |
|
|
else
|
6875 |
|
|
return "or,%N2 %1,%%r0,%0\n\tb %3";
|
6876 |
|
|
|
6877 |
|
|
default:
|
6878 |
|
|
/* The reversed conditional branch must branch over one additional
|
6879 |
|
|
instruction if the delay slot is filled and needs to be extracted
|
6880 |
|
|
by output_lbranch. If the delay slot is empty or this is a
|
6881 |
|
|
nullified forward branch, the instruction after the reversed
|
6882 |
|
|
condition branch must be nullified. */
|
6883 |
|
|
if (dbr_sequence_length () == 0
|
6884 |
|
|
|| (nullify && forward_branch_p (insn)))
|
6885 |
|
|
{
|
6886 |
|
|
nullify = 1;
|
6887 |
|
|
xdelay = 0;
|
6888 |
|
|
operands[4] = GEN_INT (length);
|
6889 |
|
|
}
|
6890 |
|
|
else
|
6891 |
|
|
{
|
6892 |
|
|
xdelay = 1;
|
6893 |
|
|
operands[4] = GEN_INT (length + 4);
|
6894 |
|
|
}
|
6895 |
|
|
|
6896 |
|
|
if (nullify)
|
6897 |
|
|
output_asm_insn ("movb,%N2,n %1,%0,.+%4", operands);
|
6898 |
|
|
else
|
6899 |
|
|
output_asm_insn ("movb,%N2 %1,%0,.+%4", operands);
|
6900 |
|
|
|
6901 |
|
|
return output_lbranch (operands[3], insn, xdelay);
|
6902 |
|
|
}
|
6903 |
|
|
}
|
6904 |
|
|
/* Deal with gross reload for FP destination register case. */
|
6905 |
|
|
else if (which_alternative == 1)
|
6906 |
|
|
{
|
6907 |
|
|
/* Move source register to MEM, perform the branch test, then
|
6908 |
|
|
finally load the FP register from MEM from within the branch's
|
6909 |
|
|
delay slot. */
|
6910 |
|
|
output_asm_insn ("stw %1,-16(%%r30)", operands);
|
6911 |
|
|
if (length == 12)
|
6912 |
|
|
return "{comb|cmpb},%S2 %%r0,%1,%3\n\t{fldws|fldw} -16(%%r30),%0";
|
6913 |
|
|
else if (length == 16)
|
6914 |
|
|
return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0";
|
6915 |
|
|
else
|
6916 |
|
|
{
|
6917 |
|
|
operands[4] = GEN_INT (length - 4);
|
6918 |
|
|
output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4", operands);
|
6919 |
|
|
output_asm_insn ("{fldws|fldw} -16(%%r30),%0", operands);
|
6920 |
|
|
return output_lbranch (operands[3], insn, 0);
|
6921 |
|
|
}
|
6922 |
|
|
}
|
6923 |
|
|
/* Deal with gross reload from memory case. */
|
6924 |
|
|
else if (which_alternative == 2)
|
6925 |
|
|
{
|
6926 |
|
|
/* Reload loop counter from memory, the store back to memory
|
6927 |
|
|
happens in the branch's delay slot. */
|
6928 |
|
|
if (length == 8)
|
6929 |
|
|
return "{comb|cmpb},%S2 %%r0,%1,%3\n\tstw %1,%0";
|
6930 |
|
|
else if (length == 12)
|
6931 |
|
|
return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tstw %1,%0";
|
6932 |
|
|
else
|
6933 |
|
|
{
|
6934 |
|
|
operands[4] = GEN_INT (length);
|
6935 |
|
|
output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4\n\tstw %1,%0",
|
6936 |
|
|
operands);
|
6937 |
|
|
return output_lbranch (operands[3], insn, 0);
|
6938 |
|
|
}
|
6939 |
|
|
}
|
6940 |
|
|
/* Handle SAR as a destination. */
|
6941 |
|
|
else
|
6942 |
|
|
{
|
6943 |
|
|
if (length == 8)
|
6944 |
|
|
return "{comb|cmpb},%S2 %%r0,%1,%3\n\tmtsar %r1";
|
6945 |
|
|
else if (length == 12)
|
6946 |
|
|
return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tmtsar %r1";
|
6947 |
|
|
else
|
6948 |
|
|
{
|
6949 |
|
|
operands[4] = GEN_INT (length);
|
6950 |
|
|
output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4\n\tmtsar %r1",
|
6951 |
|
|
operands);
|
6952 |
|
|
return output_lbranch (operands[3], insn, 0);
|
6953 |
|
|
}
|
6954 |
|
|
}
|
6955 |
|
|
}
|
6956 |
|
|
|
6957 |
|
|
/* Copy any FP arguments in INSN into integer registers. */
|
6958 |
|
|
static void
|
6959 |
|
|
copy_fp_args (rtx insn)
|
6960 |
|
|
{
|
6961 |
|
|
rtx link;
|
6962 |
|
|
rtx xoperands[2];
|
6963 |
|
|
|
6964 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
|
6965 |
|
|
{
|
6966 |
|
|
int arg_mode, regno;
|
6967 |
|
|
rtx use = XEXP (link, 0);
|
6968 |
|
|
|
6969 |
|
|
if (! (GET_CODE (use) == USE
|
6970 |
|
|
&& GET_CODE (XEXP (use, 0)) == REG
|
6971 |
|
|
&& FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
|
6972 |
|
|
continue;
|
6973 |
|
|
|
6974 |
|
|
arg_mode = GET_MODE (XEXP (use, 0));
|
6975 |
|
|
regno = REGNO (XEXP (use, 0));
|
6976 |
|
|
|
6977 |
|
|
/* Is it a floating point register? */
|
6978 |
|
|
if (regno >= 32 && regno <= 39)
|
6979 |
|
|
{
|
6980 |
|
|
/* Copy the FP register into an integer register via memory. */
|
6981 |
|
|
if (arg_mode == SFmode)
|
6982 |
|
|
{
|
6983 |
|
|
xoperands[0] = XEXP (use, 0);
|
6984 |
|
|
xoperands[1] = gen_rtx_REG (SImode, 26 - (regno - 32) / 2);
|
6985 |
|
|
output_asm_insn ("{fstws|fstw} %0,-16(%%sr0,%%r30)", xoperands);
|
6986 |
|
|
output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands);
|
6987 |
|
|
}
|
6988 |
|
|
else
|
6989 |
|
|
{
|
6990 |
|
|
xoperands[0] = XEXP (use, 0);
|
6991 |
|
|
xoperands[1] = gen_rtx_REG (DImode, 25 - (regno - 34) / 2);
|
6992 |
|
|
output_asm_insn ("{fstds|fstd} %0,-16(%%sr0,%%r30)", xoperands);
|
6993 |
|
|
output_asm_insn ("ldw -12(%%sr0,%%r30),%R1", xoperands);
|
6994 |
|
|
output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands);
|
6995 |
|
|
}
|
6996 |
|
|
}
|
6997 |
|
|
}
|
6998 |
|
|
}
|
6999 |
|
|
|
7000 |
|
|
/* Compute length of the FP argument copy sequence for INSN. */
|
7001 |
|
|
static int
|
7002 |
|
|
length_fp_args (rtx insn)
|
7003 |
|
|
{
|
7004 |
|
|
int length = 0;
|
7005 |
|
|
rtx link;
|
7006 |
|
|
|
7007 |
|
|
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
|
7008 |
|
|
{
|
7009 |
|
|
int arg_mode, regno;
|
7010 |
|
|
rtx use = XEXP (link, 0);
|
7011 |
|
|
|
7012 |
|
|
if (! (GET_CODE (use) == USE
|
7013 |
|
|
&& GET_CODE (XEXP (use, 0)) == REG
|
7014 |
|
|
&& FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
|
7015 |
|
|
continue;
|
7016 |
|
|
|
7017 |
|
|
arg_mode = GET_MODE (XEXP (use, 0));
|
7018 |
|
|
regno = REGNO (XEXP (use, 0));
|
7019 |
|
|
|
7020 |
|
|
/* Is it a floating point register? */
|
7021 |
|
|
if (regno >= 32 && regno <= 39)
|
7022 |
|
|
{
|
7023 |
|
|
if (arg_mode == SFmode)
|
7024 |
|
|
length += 8;
|
7025 |
|
|
else
|
7026 |
|
|
length += 12;
|
7027 |
|
|
}
|
7028 |
|
|
}
|
7029 |
|
|
|
7030 |
|
|
return length;
|
7031 |
|
|
}
|
7032 |
|
|
|
7033 |
|
|
/* Return the attribute length for the millicode call instruction INSN.
|
7034 |
|
|
The length must match the code generated by output_millicode_call.
|
7035 |
|
|
We include the delay slot in the returned length as it is better to
|
7036 |
|
|
over estimate the length than to under estimate it. */
|
7037 |
|
|
|
7038 |
|
|
int
|
7039 |
|
|
attr_length_millicode_call (rtx insn)
|
7040 |
|
|
{
|
7041 |
|
|
unsigned long distance = -1;
|
7042 |
|
|
unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
|
7043 |
|
|
|
7044 |
|
|
if (INSN_ADDRESSES_SET_P ())
|
7045 |
|
|
{
|
7046 |
|
|
distance = (total + insn_current_reference_address (insn));
|
7047 |
|
|
if (distance < total)
|
7048 |
|
|
distance = -1;
|
7049 |
|
|
}
|
7050 |
|
|
|
7051 |
|
|
if (TARGET_64BIT)
|
7052 |
|
|
{
|
7053 |
|
|
if (!TARGET_LONG_CALLS && distance < 7600000)
|
7054 |
|
|
return 8;
|
7055 |
|
|
|
7056 |
|
|
return 20;
|
7057 |
|
|
}
|
7058 |
|
|
else if (TARGET_PORTABLE_RUNTIME)
|
7059 |
|
|
return 24;
|
7060 |
|
|
else
|
7061 |
|
|
{
|
7062 |
|
|
if (!TARGET_LONG_CALLS && distance < 240000)
|
7063 |
|
|
return 8;
|
7064 |
|
|
|
7065 |
|
|
if (TARGET_LONG_ABS_CALL && !flag_pic)
|
7066 |
|
|
return 12;
|
7067 |
|
|
|
7068 |
|
|
return 24;
|
7069 |
|
|
}
|
7070 |
|
|
}
|
7071 |
|
|
|
7072 |
|
|
/* INSN is a function call. It may have an unconditional jump
|
7073 |
|
|
in its delay slot.
|
7074 |
|
|
|
7075 |
|
|
CALL_DEST is the routine we are calling. */
|
7076 |
|
|
|
7077 |
|
|
const char *
|
7078 |
|
|
output_millicode_call (rtx insn, rtx call_dest)
|
7079 |
|
|
{
|
7080 |
|
|
int attr_length = get_attr_length (insn);
|
7081 |
|
|
int seq_length = dbr_sequence_length ();
|
7082 |
|
|
int distance;
|
7083 |
|
|
rtx seq_insn;
|
7084 |
|
|
rtx xoperands[3];
|
7085 |
|
|
|
7086 |
|
|
xoperands[0] = call_dest;
|
7087 |
|
|
xoperands[2] = gen_rtx_REG (Pmode, TARGET_64BIT ? 2 : 31);
|
7088 |
|
|
|
7089 |
|
|
/* Handle the common case where we are sure that the branch will
|
7090 |
|
|
reach the beginning of the $CODE$ subspace. The within reach
|
7091 |
|
|
form of the $$sh_func_adrs call has a length of 28. Because
|
7092 |
|
|
it has an attribute type of multi, it never has a nonzero
|
7093 |
|
|
sequence length. The length of the $$sh_func_adrs is the same
|
7094 |
|
|
as certain out of reach PIC calls to other routines. */
|
7095 |
|
|
if (!TARGET_LONG_CALLS
|
7096 |
|
|
&& ((seq_length == 0
|
7097 |
|
|
&& (attr_length == 12
|
7098 |
|
|
|| (attr_length == 28 && get_attr_type (insn) == TYPE_MULTI)))
|
7099 |
|
|
|| (seq_length != 0 && attr_length == 8)))
|
7100 |
|
|
{
|
7101 |
|
|
output_asm_insn ("{bl|b,l} %0,%2", xoperands);
|
7102 |
|
|
}
|
7103 |
|
|
else
|
7104 |
|
|
{
|
7105 |
|
|
if (TARGET_64BIT)
|
7106 |
|
|
{
|
7107 |
|
|
/* It might seem that one insn could be saved by accessing
|
7108 |
|
|
the millicode function using the linkage table. However,
|
7109 |
|
|
this doesn't work in shared libraries and other dynamically
|
7110 |
|
|
loaded objects. Using a pc-relative sequence also avoids
|
7111 |
|
|
problems related to the implicit use of the gp register. */
|
7112 |
|
|
output_asm_insn ("b,l .+8,%%r1", xoperands);
|
7113 |
|
|
|
7114 |
|
|
if (TARGET_GAS)
|
7115 |
|
|
{
|
7116 |
|
|
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands);
|
7117 |
|
|
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands);
|
7118 |
|
|
}
|
7119 |
|
|
else
|
7120 |
|
|
{
|
7121 |
|
|
xoperands[1] = gen_label_rtx ();
|
7122 |
|
|
output_asm_insn ("addil L'%0-%l1,%%r1", xoperands);
|
7123 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
7124 |
|
|
CODE_LABEL_NUMBER (xoperands[1]));
|
7125 |
|
|
output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands);
|
7126 |
|
|
}
|
7127 |
|
|
|
7128 |
|
|
output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
|
7129 |
|
|
}
|
7130 |
|
|
else if (TARGET_PORTABLE_RUNTIME)
|
7131 |
|
|
{
|
7132 |
|
|
/* Pure portable runtime doesn't allow be/ble; we also don't
|
7133 |
|
|
have PIC support in the assembler/linker, so this sequence
|
7134 |
|
|
is needed. */
|
7135 |
|
|
|
7136 |
|
|
/* Get the address of our target into %r1. */
|
7137 |
|
|
output_asm_insn ("ldil L'%0,%%r1", xoperands);
|
7138 |
|
|
output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands);
|
7139 |
|
|
|
7140 |
|
|
/* Get our return address into %r31. */
|
7141 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r31", xoperands);
|
7142 |
|
|
output_asm_insn ("addi 8,%%r31,%%r31", xoperands);
|
7143 |
|
|
|
7144 |
|
|
/* Jump to our target address in %r1. */
|
7145 |
|
|
output_asm_insn ("bv %%r0(%%r1)", xoperands);
|
7146 |
|
|
}
|
7147 |
|
|
else if (!flag_pic)
|
7148 |
|
|
{
|
7149 |
|
|
output_asm_insn ("ldil L'%0,%%r1", xoperands);
|
7150 |
|
|
if (TARGET_PA_20)
|
7151 |
|
|
output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31", xoperands);
|
7152 |
|
|
else
|
7153 |
|
|
output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands);
|
7154 |
|
|
}
|
7155 |
|
|
else
|
7156 |
|
|
{
|
7157 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
|
7158 |
|
|
output_asm_insn ("addi 16,%%r1,%%r31", xoperands);
|
7159 |
|
|
|
7160 |
|
|
if (TARGET_SOM || !TARGET_GAS)
|
7161 |
|
|
{
|
7162 |
|
|
/* The HP assembler can generate relocations for the
|
7163 |
|
|
difference of two symbols. GAS can do this for a
|
7164 |
|
|
millicode symbol but not an arbitrary external
|
7165 |
|
|
symbol when generating SOM output. */
|
7166 |
|
|
xoperands[1] = gen_label_rtx ();
|
7167 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
7168 |
|
|
CODE_LABEL_NUMBER (xoperands[1]));
|
7169 |
|
|
output_asm_insn ("addil L'%0-%l1,%%r1", xoperands);
|
7170 |
|
|
output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands);
|
7171 |
|
|
}
|
7172 |
|
|
else
|
7173 |
|
|
{
|
7174 |
|
|
output_asm_insn ("addil L'%0-$PIC_pcrel$0+8,%%r1", xoperands);
|
7175 |
|
|
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+12(%%r1),%%r1",
|
7176 |
|
|
xoperands);
|
7177 |
|
|
}
|
7178 |
|
|
|
7179 |
|
|
/* Jump to our target address in %r1. */
|
7180 |
|
|
output_asm_insn ("bv %%r0(%%r1)", xoperands);
|
7181 |
|
|
}
|
7182 |
|
|
}
|
7183 |
|
|
|
7184 |
|
|
if (seq_length == 0)
|
7185 |
|
|
output_asm_insn ("nop", xoperands);
|
7186 |
|
|
|
7187 |
|
|
/* We are done if there isn't a jump in the delay slot. */
|
7188 |
|
|
if (seq_length == 0 || GET_CODE (NEXT_INSN (insn)) != JUMP_INSN)
|
7189 |
|
|
return "";
|
7190 |
|
|
|
7191 |
|
|
/* This call has an unconditional jump in its delay slot. */
|
7192 |
|
|
xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1);
|
7193 |
|
|
|
7194 |
|
|
/* See if the return address can be adjusted. Use the containing
|
7195 |
|
|
sequence insn's address. */
|
7196 |
|
|
if (INSN_ADDRESSES_SET_P ())
|
7197 |
|
|
{
|
7198 |
|
|
seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0)));
|
7199 |
|
|
distance = (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (NEXT_INSN (insn))))
|
7200 |
|
|
- INSN_ADDRESSES (INSN_UID (seq_insn)) - 8);
|
7201 |
|
|
|
7202 |
|
|
if (VAL_14_BITS_P (distance))
|
7203 |
|
|
{
|
7204 |
|
|
xoperands[1] = gen_label_rtx ();
|
7205 |
|
|
output_asm_insn ("ldo %0-%1(%2),%2", xoperands);
|
7206 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
7207 |
|
|
CODE_LABEL_NUMBER (xoperands[1]));
|
7208 |
|
|
}
|
7209 |
|
|
else
|
7210 |
|
|
/* ??? This branch may not reach its target. */
|
7211 |
|
|
output_asm_insn ("nop\n\tb,n %0", xoperands);
|
7212 |
|
|
}
|
7213 |
|
|
else
|
7214 |
|
|
/* ??? This branch may not reach its target. */
|
7215 |
|
|
output_asm_insn ("nop\n\tb,n %0", xoperands);
|
7216 |
|
|
|
7217 |
|
|
/* Delete the jump. */
|
7218 |
|
|
PUT_CODE (NEXT_INSN (insn), NOTE);
|
7219 |
|
|
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
|
7220 |
|
|
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
|
7221 |
|
|
|
7222 |
|
|
return "";
|
7223 |
|
|
}
|
7224 |
|
|
|
7225 |
|
|
/* Return the attribute length of the call instruction INSN. The SIBCALL
|
7226 |
|
|
flag indicates whether INSN is a regular call or a sibling call. The
|
7227 |
|
|
length returned must be longer than the code actually generated by
|
7228 |
|
|
output_call. Since branch shortening is done before delay branch
|
7229 |
|
|
sequencing, there is no way to determine whether or not the delay
|
7230 |
|
|
slot will be filled during branch shortening. Even when the delay
|
7231 |
|
|
slot is filled, we may have to add a nop if the delay slot contains
|
7232 |
|
|
a branch that can't reach its target. Thus, we always have to include
|
7233 |
|
|
the delay slot in the length estimate. This used to be done in
|
7234 |
|
|
pa_adjust_insn_length but we do it here now as some sequences always
|
7235 |
|
|
fill the delay slot and we can save four bytes in the estimate for
|
7236 |
|
|
these sequences. */
|
7237 |
|
|
|
7238 |
|
|
int
|
7239 |
|
|
attr_length_call (rtx insn, int sibcall)
|
7240 |
|
|
{
|
7241 |
|
|
int local_call;
|
7242 |
|
|
rtx call_dest;
|
7243 |
|
|
tree call_decl;
|
7244 |
|
|
int length = 0;
|
7245 |
|
|
rtx pat = PATTERN (insn);
|
7246 |
|
|
unsigned long distance = -1;
|
7247 |
|
|
|
7248 |
|
|
if (INSN_ADDRESSES_SET_P ())
|
7249 |
|
|
{
|
7250 |
|
|
unsigned long total;
|
7251 |
|
|
|
7252 |
|
|
total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
|
7253 |
|
|
distance = (total + insn_current_reference_address (insn));
|
7254 |
|
|
if (distance < total)
|
7255 |
|
|
distance = -1;
|
7256 |
|
|
}
|
7257 |
|
|
|
7258 |
|
|
/* Determine if this is a local call. */
|
7259 |
|
|
if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL)
|
7260 |
|
|
call_dest = XEXP (XEXP (XVECEXP (pat, 0, 0), 0), 0);
|
7261 |
|
|
else
|
7262 |
|
|
call_dest = XEXP (XEXP (XEXP (XVECEXP (pat, 0, 0), 1), 0), 0);
|
7263 |
|
|
|
7264 |
|
|
call_decl = SYMBOL_REF_DECL (call_dest);
|
7265 |
|
|
local_call = call_decl && (*targetm.binds_local_p) (call_decl);
|
7266 |
|
|
|
7267 |
|
|
/* pc-relative branch. */
|
7268 |
|
|
if (!TARGET_LONG_CALLS
|
7269 |
|
|
&& ((TARGET_PA_20 && !sibcall && distance < 7600000)
|
7270 |
|
|
|| distance < 240000))
|
7271 |
|
|
length += 8;
|
7272 |
|
|
|
7273 |
|
|
/* 64-bit plabel sequence. */
|
7274 |
|
|
else if (TARGET_64BIT && !local_call)
|
7275 |
|
|
length += sibcall ? 28 : 24;
|
7276 |
|
|
|
7277 |
|
|
/* non-pic long absolute branch sequence. */
|
7278 |
|
|
else if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
|
7279 |
|
|
length += 12;
|
7280 |
|
|
|
7281 |
|
|
/* long pc-relative branch sequence. */
|
7282 |
|
|
else if ((TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL)
|
7283 |
|
|
|| (TARGET_64BIT && !TARGET_GAS)
|
7284 |
|
|
|| (TARGET_GAS && !TARGET_SOM
|
7285 |
|
|
&& (TARGET_LONG_PIC_PCREL_CALL || local_call)))
|
7286 |
|
|
{
|
7287 |
|
|
length += 20;
|
7288 |
|
|
|
7289 |
|
|
if (!TARGET_PA_20 && !TARGET_NO_SPACE_REGS)
|
7290 |
|
|
length += 8;
|
7291 |
|
|
}
|
7292 |
|
|
|
7293 |
|
|
/* 32-bit plabel sequence. */
|
7294 |
|
|
else
|
7295 |
|
|
{
|
7296 |
|
|
length += 32;
|
7297 |
|
|
|
7298 |
|
|
if (TARGET_SOM)
|
7299 |
|
|
length += length_fp_args (insn);
|
7300 |
|
|
|
7301 |
|
|
if (flag_pic)
|
7302 |
|
|
length += 4;
|
7303 |
|
|
|
7304 |
|
|
if (!TARGET_PA_20)
|
7305 |
|
|
{
|
7306 |
|
|
if (!sibcall)
|
7307 |
|
|
length += 8;
|
7308 |
|
|
|
7309 |
|
|
if (!TARGET_NO_SPACE_REGS)
|
7310 |
|
|
length += 8;
|
7311 |
|
|
}
|
7312 |
|
|
}
|
7313 |
|
|
|
7314 |
|
|
return length;
|
7315 |
|
|
}
|
7316 |
|
|
|
7317 |
|
|
/* INSN is a function call. It may have an unconditional jump
|
7318 |
|
|
in its delay slot.
|
7319 |
|
|
|
7320 |
|
|
CALL_DEST is the routine we are calling. */
|
7321 |
|
|
|
7322 |
|
|
const char *
|
7323 |
|
|
output_call (rtx insn, rtx call_dest, int sibcall)
|
7324 |
|
|
{
|
7325 |
|
|
int delay_insn_deleted = 0;
|
7326 |
|
|
int delay_slot_filled = 0;
|
7327 |
|
|
int seq_length = dbr_sequence_length ();
|
7328 |
|
|
tree call_decl = SYMBOL_REF_DECL (call_dest);
|
7329 |
|
|
int local_call = call_decl && (*targetm.binds_local_p) (call_decl);
|
7330 |
|
|
rtx xoperands[2];
|
7331 |
|
|
|
7332 |
|
|
xoperands[0] = call_dest;
|
7333 |
|
|
|
7334 |
|
|
/* Handle the common case where we're sure that the branch will reach
|
7335 |
|
|
the beginning of the "$CODE$" subspace. This is the beginning of
|
7336 |
|
|
the current function if we are in a named section. */
|
7337 |
|
|
if (!TARGET_LONG_CALLS && attr_length_call (insn, sibcall) == 8)
|
7338 |
|
|
{
|
7339 |
|
|
xoperands[1] = gen_rtx_REG (word_mode, sibcall ? 0 : 2);
|
7340 |
|
|
output_asm_insn ("{bl|b,l} %0,%1", xoperands);
|
7341 |
|
|
}
|
7342 |
|
|
else
|
7343 |
|
|
{
|
7344 |
|
|
if (TARGET_64BIT && !local_call)
|
7345 |
|
|
{
|
7346 |
|
|
/* ??? As far as I can tell, the HP linker doesn't support the
|
7347 |
|
|
long pc-relative sequence described in the 64-bit runtime
|
7348 |
|
|
architecture. So, we use a slightly longer indirect call. */
|
7349 |
|
|
xoperands[0] = get_deferred_plabel (call_dest);
|
7350 |
|
|
xoperands[1] = gen_label_rtx ();
|
7351 |
|
|
|
7352 |
|
|
/* If this isn't a sibcall, we put the load of %r27 into the
|
7353 |
|
|
delay slot. We can't do this in a sibcall as we don't
|
7354 |
|
|
have a second call-clobbered scratch register available. */
|
7355 |
|
|
if (seq_length != 0
|
7356 |
|
|
&& GET_CODE (NEXT_INSN (insn)) != JUMP_INSN
|
7357 |
|
|
&& !sibcall)
|
7358 |
|
|
{
|
7359 |
|
|
final_scan_insn (NEXT_INSN (insn), asm_out_file,
|
7360 |
|
|
optimize, 0, NULL);
|
7361 |
|
|
|
7362 |
|
|
/* Now delete the delay insn. */
|
7363 |
|
|
PUT_CODE (NEXT_INSN (insn), NOTE);
|
7364 |
|
|
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
|
7365 |
|
|
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
|
7366 |
|
|
delay_insn_deleted = 1;
|
7367 |
|
|
}
|
7368 |
|
|
|
7369 |
|
|
output_asm_insn ("addil LT'%0,%%r27", xoperands);
|
7370 |
|
|
output_asm_insn ("ldd RT'%0(%%r1),%%r1", xoperands);
|
7371 |
|
|
output_asm_insn ("ldd 0(%%r1),%%r1", xoperands);
|
7372 |
|
|
|
7373 |
|
|
if (sibcall)
|
7374 |
|
|
{
|
7375 |
|
|
output_asm_insn ("ldd 24(%%r1),%%r27", xoperands);
|
7376 |
|
|
output_asm_insn ("ldd 16(%%r1),%%r1", xoperands);
|
7377 |
|
|
output_asm_insn ("bve (%%r1)", xoperands);
|
7378 |
|
|
}
|
7379 |
|
|
else
|
7380 |
|
|
{
|
7381 |
|
|
output_asm_insn ("ldd 16(%%r1),%%r2", xoperands);
|
7382 |
|
|
output_asm_insn ("bve,l (%%r2),%%r2", xoperands);
|
7383 |
|
|
output_asm_insn ("ldd 24(%%r1),%%r27", xoperands);
|
7384 |
|
|
delay_slot_filled = 1;
|
7385 |
|
|
}
|
7386 |
|
|
}
|
7387 |
|
|
else
|
7388 |
|
|
{
|
7389 |
|
|
int indirect_call = 0;
|
7390 |
|
|
|
7391 |
|
|
/* Emit a long call. There are several different sequences
|
7392 |
|
|
of increasing length and complexity. In most cases,
|
7393 |
|
|
they don't allow an instruction in the delay slot. */
|
7394 |
|
|
if (!((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
|
7395 |
|
|
&& !(TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL)
|
7396 |
|
|
&& !(TARGET_GAS && !TARGET_SOM
|
7397 |
|
|
&& (TARGET_LONG_PIC_PCREL_CALL || local_call))
|
7398 |
|
|
&& !TARGET_64BIT)
|
7399 |
|
|
indirect_call = 1;
|
7400 |
|
|
|
7401 |
|
|
if (seq_length != 0
|
7402 |
|
|
&& GET_CODE (NEXT_INSN (insn)) != JUMP_INSN
|
7403 |
|
|
&& !sibcall
|
7404 |
|
|
&& (!TARGET_PA_20 || indirect_call))
|
7405 |
|
|
{
|
7406 |
|
|
/* A non-jump insn in the delay slot. By definition we can
|
7407 |
|
|
emit this insn before the call (and in fact before argument
|
7408 |
|
|
relocating. */
|
7409 |
|
|
final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0,
|
7410 |
|
|
NULL);
|
7411 |
|
|
|
7412 |
|
|
/* Now delete the delay insn. */
|
7413 |
|
|
PUT_CODE (NEXT_INSN (insn), NOTE);
|
7414 |
|
|
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
|
7415 |
|
|
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
|
7416 |
|
|
delay_insn_deleted = 1;
|
7417 |
|
|
}
|
7418 |
|
|
|
7419 |
|
|
if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
|
7420 |
|
|
{
|
7421 |
|
|
/* This is the best sequence for making long calls in
|
7422 |
|
|
non-pic code. Unfortunately, GNU ld doesn't provide
|
7423 |
|
|
the stub needed for external calls, and GAS's support
|
7424 |
|
|
for this with the SOM linker is buggy. It is safe
|
7425 |
|
|
to use this for local calls. */
|
7426 |
|
|
output_asm_insn ("ldil L'%0,%%r1", xoperands);
|
7427 |
|
|
if (sibcall)
|
7428 |
|
|
output_asm_insn ("be R'%0(%%sr4,%%r1)", xoperands);
|
7429 |
|
|
else
|
7430 |
|
|
{
|
7431 |
|
|
if (TARGET_PA_20)
|
7432 |
|
|
output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31",
|
7433 |
|
|
xoperands);
|
7434 |
|
|
else
|
7435 |
|
|
output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands);
|
7436 |
|
|
|
7437 |
|
|
output_asm_insn ("copy %%r31,%%r2", xoperands);
|
7438 |
|
|
delay_slot_filled = 1;
|
7439 |
|
|
}
|
7440 |
|
|
}
|
7441 |
|
|
else
|
7442 |
|
|
{
|
7443 |
|
|
if ((TARGET_SOM && TARGET_LONG_PIC_SDIFF_CALL)
|
7444 |
|
|
|| (TARGET_64BIT && !TARGET_GAS))
|
7445 |
|
|
{
|
7446 |
|
|
/* The HP assembler and linker can handle relocations
|
7447 |
|
|
for the difference of two symbols. GAS and the HP
|
7448 |
|
|
linker can't do this when one of the symbols is
|
7449 |
|
|
external. */
|
7450 |
|
|
xoperands[1] = gen_label_rtx ();
|
7451 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
|
7452 |
|
|
output_asm_insn ("addil L'%0-%l1,%%r1", xoperands);
|
7453 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
7454 |
|
|
CODE_LABEL_NUMBER (xoperands[1]));
|
7455 |
|
|
output_asm_insn ("ldo R'%0-%l1(%%r1),%%r1", xoperands);
|
7456 |
|
|
}
|
7457 |
|
|
else if (TARGET_GAS && !TARGET_SOM
|
7458 |
|
|
&& (TARGET_LONG_PIC_PCREL_CALL || local_call))
|
7459 |
|
|
{
|
7460 |
|
|
/* GAS currently can't generate the relocations that
|
7461 |
|
|
are needed for the SOM linker under HP-UX using this
|
7462 |
|
|
sequence. The GNU linker doesn't generate the stubs
|
7463 |
|
|
that are needed for external calls on TARGET_ELF32
|
7464 |
|
|
with this sequence. For now, we have to use a
|
7465 |
|
|
longer plabel sequence when using GAS. */
|
7466 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
|
7467 |
|
|
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1",
|
7468 |
|
|
xoperands);
|
7469 |
|
|
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1",
|
7470 |
|
|
xoperands);
|
7471 |
|
|
}
|
7472 |
|
|
else
|
7473 |
|
|
{
|
7474 |
|
|
/* Emit a long plabel-based call sequence. This is
|
7475 |
|
|
essentially an inline implementation of $$dyncall.
|
7476 |
|
|
We don't actually try to call $$dyncall as this is
|
7477 |
|
|
as difficult as calling the function itself. */
|
7478 |
|
|
xoperands[0] = get_deferred_plabel (call_dest);
|
7479 |
|
|
xoperands[1] = gen_label_rtx ();
|
7480 |
|
|
|
7481 |
|
|
/* Since the call is indirect, FP arguments in registers
|
7482 |
|
|
need to be copied to the general registers. Then, the
|
7483 |
|
|
argument relocation stub will copy them back. */
|
7484 |
|
|
if (TARGET_SOM)
|
7485 |
|
|
copy_fp_args (insn);
|
7486 |
|
|
|
7487 |
|
|
if (flag_pic)
|
7488 |
|
|
{
|
7489 |
|
|
output_asm_insn ("addil LT'%0,%%r19", xoperands);
|
7490 |
|
|
output_asm_insn ("ldw RT'%0(%%r1),%%r1", xoperands);
|
7491 |
|
|
output_asm_insn ("ldw 0(%%r1),%%r1", xoperands);
|
7492 |
|
|
}
|
7493 |
|
|
else
|
7494 |
|
|
{
|
7495 |
|
|
output_asm_insn ("addil LR'%0-$global$,%%r27",
|
7496 |
|
|
xoperands);
|
7497 |
|
|
output_asm_insn ("ldw RR'%0-$global$(%%r1),%%r1",
|
7498 |
|
|
xoperands);
|
7499 |
|
|
}
|
7500 |
|
|
|
7501 |
|
|
output_asm_insn ("bb,>=,n %%r1,30,.+16", xoperands);
|
7502 |
|
|
output_asm_insn ("depi 0,31,2,%%r1", xoperands);
|
7503 |
|
|
output_asm_insn ("ldw 4(%%sr0,%%r1),%%r19", xoperands);
|
7504 |
|
|
output_asm_insn ("ldw 0(%%sr0,%%r1),%%r1", xoperands);
|
7505 |
|
|
|
7506 |
|
|
if (!sibcall && !TARGET_PA_20)
|
7507 |
|
|
{
|
7508 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r2", xoperands);
|
7509 |
|
|
if (TARGET_NO_SPACE_REGS)
|
7510 |
|
|
output_asm_insn ("addi 8,%%r2,%%r2", xoperands);
|
7511 |
|
|
else
|
7512 |
|
|
output_asm_insn ("addi 16,%%r2,%%r2", xoperands);
|
7513 |
|
|
}
|
7514 |
|
|
}
|
7515 |
|
|
|
7516 |
|
|
if (TARGET_PA_20)
|
7517 |
|
|
{
|
7518 |
|
|
if (sibcall)
|
7519 |
|
|
output_asm_insn ("bve (%%r1)", xoperands);
|
7520 |
|
|
else
|
7521 |
|
|
{
|
7522 |
|
|
if (indirect_call)
|
7523 |
|
|
{
|
7524 |
|
|
output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
|
7525 |
|
|
output_asm_insn ("stw %%r2,-24(%%sp)", xoperands);
|
7526 |
|
|
delay_slot_filled = 1;
|
7527 |
|
|
}
|
7528 |
|
|
else
|
7529 |
|
|
output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
|
7530 |
|
|
}
|
7531 |
|
|
}
|
7532 |
|
|
else
|
7533 |
|
|
{
|
7534 |
|
|
if (!TARGET_NO_SPACE_REGS)
|
7535 |
|
|
output_asm_insn ("ldsid (%%r1),%%r31\n\tmtsp %%r31,%%sr0",
|
7536 |
|
|
xoperands);
|
7537 |
|
|
|
7538 |
|
|
if (sibcall)
|
7539 |
|
|
{
|
7540 |
|
|
if (TARGET_NO_SPACE_REGS)
|
7541 |
|
|
output_asm_insn ("be 0(%%sr4,%%r1)", xoperands);
|
7542 |
|
|
else
|
7543 |
|
|
output_asm_insn ("be 0(%%sr0,%%r1)", xoperands);
|
7544 |
|
|
}
|
7545 |
|
|
else
|
7546 |
|
|
{
|
7547 |
|
|
if (TARGET_NO_SPACE_REGS)
|
7548 |
|
|
output_asm_insn ("ble 0(%%sr4,%%r1)", xoperands);
|
7549 |
|
|
else
|
7550 |
|
|
output_asm_insn ("ble 0(%%sr0,%%r1)", xoperands);
|
7551 |
|
|
|
7552 |
|
|
if (indirect_call)
|
7553 |
|
|
output_asm_insn ("stw %%r31,-24(%%sp)", xoperands);
|
7554 |
|
|
else
|
7555 |
|
|
output_asm_insn ("copy %%r31,%%r2", xoperands);
|
7556 |
|
|
delay_slot_filled = 1;
|
7557 |
|
|
}
|
7558 |
|
|
}
|
7559 |
|
|
}
|
7560 |
|
|
}
|
7561 |
|
|
}
|
7562 |
|
|
|
7563 |
|
|
if (!delay_slot_filled && (seq_length == 0 || delay_insn_deleted))
|
7564 |
|
|
output_asm_insn ("nop", xoperands);
|
7565 |
|
|
|
7566 |
|
|
/* We are done if there isn't a jump in the delay slot. */
|
7567 |
|
|
if (seq_length == 0
|
7568 |
|
|
|| delay_insn_deleted
|
7569 |
|
|
|| GET_CODE (NEXT_INSN (insn)) != JUMP_INSN)
|
7570 |
|
|
return "";
|
7571 |
|
|
|
7572 |
|
|
/* A sibcall should never have a branch in the delay slot. */
|
7573 |
|
|
gcc_assert (!sibcall);
|
7574 |
|
|
|
7575 |
|
|
/* This call has an unconditional jump in its delay slot. */
|
7576 |
|
|
xoperands[0] = XEXP (PATTERN (NEXT_INSN (insn)), 1);
|
7577 |
|
|
|
7578 |
|
|
if (!delay_slot_filled && INSN_ADDRESSES_SET_P ())
|
7579 |
|
|
{
|
7580 |
|
|
/* See if the return address can be adjusted. Use the containing
|
7581 |
|
|
sequence insn's address. */
|
7582 |
|
|
rtx seq_insn = NEXT_INSN (PREV_INSN (XVECEXP (final_sequence, 0, 0)));
|
7583 |
|
|
int distance = (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (NEXT_INSN (insn))))
|
7584 |
|
|
- INSN_ADDRESSES (INSN_UID (seq_insn)) - 8);
|
7585 |
|
|
|
7586 |
|
|
if (VAL_14_BITS_P (distance))
|
7587 |
|
|
{
|
7588 |
|
|
xoperands[1] = gen_label_rtx ();
|
7589 |
|
|
output_asm_insn ("ldo %0-%1(%%r2),%%r2", xoperands);
|
7590 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
7591 |
|
|
CODE_LABEL_NUMBER (xoperands[1]));
|
7592 |
|
|
}
|
7593 |
|
|
else
|
7594 |
|
|
output_asm_insn ("nop\n\tb,n %0", xoperands);
|
7595 |
|
|
}
|
7596 |
|
|
else
|
7597 |
|
|
output_asm_insn ("b,n %0", xoperands);
|
7598 |
|
|
|
7599 |
|
|
/* Delete the jump. */
|
7600 |
|
|
PUT_CODE (NEXT_INSN (insn), NOTE);
|
7601 |
|
|
NOTE_LINE_NUMBER (NEXT_INSN (insn)) = NOTE_INSN_DELETED;
|
7602 |
|
|
NOTE_SOURCE_FILE (NEXT_INSN (insn)) = 0;
|
7603 |
|
|
|
7604 |
|
|
return "";
|
7605 |
|
|
}
|
7606 |
|
|
|
7607 |
|
|
/* Return the attribute length of the indirect call instruction INSN.
|
7608 |
|
|
The length must match the code generated by output_indirect call.
|
7609 |
|
|
The returned length includes the delay slot. Currently, the delay
|
7610 |
|
|
slot of an indirect call sequence is not exposed and it is used by
|
7611 |
|
|
the sequence itself. */
|
7612 |
|
|
|
7613 |
|
|
int
|
7614 |
|
|
attr_length_indirect_call (rtx insn)
|
7615 |
|
|
{
|
7616 |
|
|
unsigned long distance = -1;
|
7617 |
|
|
unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
|
7618 |
|
|
|
7619 |
|
|
if (INSN_ADDRESSES_SET_P ())
|
7620 |
|
|
{
|
7621 |
|
|
distance = (total + insn_current_reference_address (insn));
|
7622 |
|
|
if (distance < total)
|
7623 |
|
|
distance = -1;
|
7624 |
|
|
}
|
7625 |
|
|
|
7626 |
|
|
if (TARGET_64BIT)
|
7627 |
|
|
return 12;
|
7628 |
|
|
|
7629 |
|
|
if (TARGET_FAST_INDIRECT_CALLS
|
7630 |
|
|
|| (!TARGET_PORTABLE_RUNTIME
|
7631 |
|
|
&& ((TARGET_PA_20 && !TARGET_SOM && distance < 7600000)
|
7632 |
|
|
|| distance < 240000)))
|
7633 |
|
|
return 8;
|
7634 |
|
|
|
7635 |
|
|
if (flag_pic)
|
7636 |
|
|
return 24;
|
7637 |
|
|
|
7638 |
|
|
if (TARGET_PORTABLE_RUNTIME)
|
7639 |
|
|
return 20;
|
7640 |
|
|
|
7641 |
|
|
/* Out of reach, can use ble. */
|
7642 |
|
|
return 12;
|
7643 |
|
|
}
|
7644 |
|
|
|
7645 |
|
|
const char *
|
7646 |
|
|
output_indirect_call (rtx insn, rtx call_dest)
|
7647 |
|
|
{
|
7648 |
|
|
rtx xoperands[1];
|
7649 |
|
|
|
7650 |
|
|
if (TARGET_64BIT)
|
7651 |
|
|
{
|
7652 |
|
|
xoperands[0] = call_dest;
|
7653 |
|
|
output_asm_insn ("ldd 16(%0),%%r2", xoperands);
|
7654 |
|
|
output_asm_insn ("bve,l (%%r2),%%r2\n\tldd 24(%0),%%r27", xoperands);
|
7655 |
|
|
return "";
|
7656 |
|
|
}
|
7657 |
|
|
|
7658 |
|
|
/* First the special case for kernels, level 0 systems, etc. */
|
7659 |
|
|
if (TARGET_FAST_INDIRECT_CALLS)
|
7660 |
|
|
return "ble 0(%%sr4,%%r22)\n\tcopy %%r31,%%r2";
|
7661 |
|
|
|
7662 |
|
|
/* Now the normal case -- we can reach $$dyncall directly or
|
7663 |
|
|
we're sure that we can get there via a long-branch stub.
|
7664 |
|
|
|
7665 |
|
|
No need to check target flags as the length uniquely identifies
|
7666 |
|
|
the remaining cases. */
|
7667 |
|
|
if (attr_length_indirect_call (insn) == 8)
|
7668 |
|
|
{
|
7669 |
|
|
/* The HP linker sometimes substitutes a BLE for BL/B,L calls to
|
7670 |
|
|
$$dyncall. Since BLE uses %r31 as the link register, the 22-bit
|
7671 |
|
|
variant of the B,L instruction can't be used on the SOM target. */
|
7672 |
|
|
if (TARGET_PA_20 && !TARGET_SOM)
|
7673 |
|
|
return ".CALL\tARGW0=GR\n\tb,l $$dyncall,%%r2\n\tcopy %%r2,%%r31";
|
7674 |
|
|
else
|
7675 |
|
|
return ".CALL\tARGW0=GR\n\tbl $$dyncall,%%r31\n\tcopy %%r31,%%r2";
|
7676 |
|
|
}
|
7677 |
|
|
|
7678 |
|
|
/* Long millicode call, but we are not generating PIC or portable runtime
|
7679 |
|
|
code. */
|
7680 |
|
|
if (attr_length_indirect_call (insn) == 12)
|
7681 |
|
|
return ".CALL\tARGW0=GR\n\tldil L'$$dyncall,%%r2\n\tble R'$$dyncall(%%sr4,%%r2)\n\tcopy %%r31,%%r2";
|
7682 |
|
|
|
7683 |
|
|
/* Long millicode call for portable runtime. */
|
7684 |
|
|
if (attr_length_indirect_call (insn) == 20)
|
7685 |
|
|
return "ldil L'$$dyncall,%%r31\n\tldo R'$$dyncall(%%r31),%%r31\n\tblr %%r0,%%r2\n\tbv,n %%r0(%%r31)\n\tnop";
|
7686 |
|
|
|
7687 |
|
|
/* We need a long PIC call to $$dyncall. */
|
7688 |
|
|
xoperands[0] = NULL_RTX;
|
7689 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
|
7690 |
|
|
if (TARGET_SOM || !TARGET_GAS)
|
7691 |
|
|
{
|
7692 |
|
|
xoperands[0] = gen_label_rtx ();
|
7693 |
|
|
output_asm_insn ("addil L'$$dyncall-%0,%%r1", xoperands);
|
7694 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
7695 |
|
|
CODE_LABEL_NUMBER (xoperands[0]));
|
7696 |
|
|
output_asm_insn ("ldo R'$$dyncall-%0(%%r1),%%r1", xoperands);
|
7697 |
|
|
}
|
7698 |
|
|
else
|
7699 |
|
|
{
|
7700 |
|
|
output_asm_insn ("addil L'$$dyncall-$PIC_pcrel$0+4,%%r1", xoperands);
|
7701 |
|
|
output_asm_insn ("ldo R'$$dyncall-$PIC_pcrel$0+8(%%r1),%%r1",
|
7702 |
|
|
xoperands);
|
7703 |
|
|
}
|
7704 |
|
|
output_asm_insn ("blr %%r0,%%r2", xoperands);
|
7705 |
|
|
output_asm_insn ("bv,n %%r0(%%r1)\n\tnop", xoperands);
|
7706 |
|
|
return "";
|
7707 |
|
|
}
|
7708 |
|
|
|
7709 |
|
|
/* Return the total length of the save and restore instructions needed for
|
7710 |
|
|
the data linkage table pointer (i.e., the PIC register) across the call
|
7711 |
|
|
instruction INSN. No-return calls do not require a save and restore.
|
7712 |
|
|
In addition, we may be able to avoid the save and restore for calls
|
7713 |
|
|
within the same translation unit. */
|
7714 |
|
|
|
7715 |
|
|
int
|
7716 |
|
|
attr_length_save_restore_dltp (rtx insn)
|
7717 |
|
|
{
|
7718 |
|
|
if (find_reg_note (insn, REG_NORETURN, NULL_RTX))
|
7719 |
|
|
return 0;
|
7720 |
|
|
|
7721 |
|
|
return 8;
|
7722 |
|
|
}
|
7723 |
|
|
|
7724 |
|
|
/* In HPUX 8.0's shared library scheme, special relocations are needed
|
7725 |
|
|
for function labels if they might be passed to a function
|
7726 |
|
|
in a shared library (because shared libraries don't live in code
|
7727 |
|
|
space), and special magic is needed to construct their address. */
|
7728 |
|
|
|
7729 |
|
|
void
|
7730 |
|
|
hppa_encode_label (rtx sym)
|
7731 |
|
|
{
|
7732 |
|
|
const char *str = XSTR (sym, 0);
|
7733 |
|
|
int len = strlen (str) + 1;
|
7734 |
|
|
char *newstr, *p;
|
7735 |
|
|
|
7736 |
|
|
p = newstr = alloca (len + 1);
|
7737 |
|
|
*p++ = '@';
|
7738 |
|
|
strcpy (p, str);
|
7739 |
|
|
|
7740 |
|
|
XSTR (sym, 0) = ggc_alloc_string (newstr, len);
|
7741 |
|
|
}
|
7742 |
|
|
|
7743 |
|
|
static void
|
7744 |
|
|
pa_encode_section_info (tree decl, rtx rtl, int first)
|
7745 |
|
|
{
|
7746 |
|
|
default_encode_section_info (decl, rtl, first);
|
7747 |
|
|
|
7748 |
|
|
if (first && TEXT_SPACE_P (decl))
|
7749 |
|
|
{
|
7750 |
|
|
SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
|
7751 |
|
|
if (TREE_CODE (decl) == FUNCTION_DECL)
|
7752 |
|
|
hppa_encode_label (XEXP (rtl, 0));
|
7753 |
|
|
}
|
7754 |
|
|
}
|
7755 |
|
|
|
7756 |
|
|
/* This is sort of inverse to pa_encode_section_info. */
|
7757 |
|
|
|
7758 |
|
|
static const char *
|
7759 |
|
|
pa_strip_name_encoding (const char *str)
|
7760 |
|
|
{
|
7761 |
|
|
str += (*str == '@');
|
7762 |
|
|
str += (*str == '*');
|
7763 |
|
|
return str;
|
7764 |
|
|
}
|
7765 |
|
|
|
7766 |
|
|
int
|
7767 |
|
|
function_label_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
7768 |
|
|
{
|
7769 |
|
|
return GET_CODE (op) == SYMBOL_REF && FUNCTION_NAME_P (XSTR (op, 0));
|
7770 |
|
|
}
|
7771 |
|
|
|
7772 |
|
|
/* Returns 1 if OP is a function label involved in a simple addition
|
7773 |
|
|
with a constant. Used to keep certain patterns from matching
|
7774 |
|
|
during instruction combination. */
|
7775 |
|
|
int
|
7776 |
|
|
is_function_label_plus_const (rtx op)
|
7777 |
|
|
{
|
7778 |
|
|
/* Strip off any CONST. */
|
7779 |
|
|
if (GET_CODE (op) == CONST)
|
7780 |
|
|
op = XEXP (op, 0);
|
7781 |
|
|
|
7782 |
|
|
return (GET_CODE (op) == PLUS
|
7783 |
|
|
&& function_label_operand (XEXP (op, 0), Pmode)
|
7784 |
|
|
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
|
7785 |
|
|
}
|
7786 |
|
|
|
7787 |
|
|
/* Output assembly code for a thunk to FUNCTION. */
|
7788 |
|
|
|
7789 |
|
|
static void
|
7790 |
|
|
pa_asm_output_mi_thunk (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta,
|
7791 |
|
|
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
|
7792 |
|
|
tree function)
|
7793 |
|
|
{
|
7794 |
|
|
static unsigned int current_thunk_number;
|
7795 |
|
|
int val_14 = VAL_14_BITS_P (delta);
|
7796 |
|
|
int nbytes = 0;
|
7797 |
|
|
char label[16];
|
7798 |
|
|
rtx xoperands[4];
|
7799 |
|
|
|
7800 |
|
|
xoperands[0] = XEXP (DECL_RTL (function), 0);
|
7801 |
|
|
xoperands[1] = XEXP (DECL_RTL (thunk_fndecl), 0);
|
7802 |
|
|
xoperands[2] = GEN_INT (delta);
|
7803 |
|
|
|
7804 |
|
|
ASM_OUTPUT_LABEL (file, XSTR (xoperands[1], 0));
|
7805 |
|
|
fprintf (file, "\t.PROC\n\t.CALLINFO FRAME=0,NO_CALLS\n\t.ENTRY\n");
|
7806 |
|
|
|
7807 |
|
|
/* Output the thunk. We know that the function is in the same
|
7808 |
|
|
translation unit (i.e., the same space) as the thunk, and that
|
7809 |
|
|
thunks are output after their method. Thus, we don't need an
|
7810 |
|
|
external branch to reach the function. With SOM and GAS,
|
7811 |
|
|
functions and thunks are effectively in different sections.
|
7812 |
|
|
Thus, we can always use a IA-relative branch and the linker
|
7813 |
|
|
will add a long branch stub if necessary.
|
7814 |
|
|
|
7815 |
|
|
However, we have to be careful when generating PIC code on the
|
7816 |
|
|
SOM port to ensure that the sequence does not transfer to an
|
7817 |
|
|
import stub for the target function as this could clobber the
|
7818 |
|
|
return value saved at SP-24. This would also apply to the
|
7819 |
|
|
32-bit linux port if the multi-space model is implemented. */
|
7820 |
|
|
if ((!TARGET_LONG_CALLS && TARGET_SOM && !TARGET_PORTABLE_RUNTIME
|
7821 |
|
|
&& !(flag_pic && TREE_PUBLIC (function))
|
7822 |
|
|
&& (TARGET_GAS || last_address < 262132))
|
7823 |
|
|
|| (!TARGET_LONG_CALLS && !TARGET_SOM && !TARGET_PORTABLE_RUNTIME
|
7824 |
|
|
&& ((targetm.have_named_sections
|
7825 |
|
|
&& DECL_SECTION_NAME (thunk_fndecl) != NULL
|
7826 |
|
|
/* The GNU 64-bit linker has rather poor stub management.
|
7827 |
|
|
So, we use a long branch from thunks that aren't in
|
7828 |
|
|
the same section as the target function. */
|
7829 |
|
|
&& ((!TARGET_64BIT
|
7830 |
|
|
&& (DECL_SECTION_NAME (thunk_fndecl)
|
7831 |
|
|
!= DECL_SECTION_NAME (function)))
|
7832 |
|
|
|| ((DECL_SECTION_NAME (thunk_fndecl)
|
7833 |
|
|
== DECL_SECTION_NAME (function))
|
7834 |
|
|
&& last_address < 262132)))
|
7835 |
|
|
|| (!targetm.have_named_sections && last_address < 262132))))
|
7836 |
|
|
{
|
7837 |
|
|
if (!val_14)
|
7838 |
|
|
output_asm_insn ("addil L'%2,%%r26", xoperands);
|
7839 |
|
|
|
7840 |
|
|
output_asm_insn ("b %0", xoperands);
|
7841 |
|
|
|
7842 |
|
|
if (val_14)
|
7843 |
|
|
{
|
7844 |
|
|
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
|
7845 |
|
|
nbytes += 8;
|
7846 |
|
|
}
|
7847 |
|
|
else
|
7848 |
|
|
{
|
7849 |
|
|
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
|
7850 |
|
|
nbytes += 12;
|
7851 |
|
|
}
|
7852 |
|
|
}
|
7853 |
|
|
else if (TARGET_64BIT)
|
7854 |
|
|
{
|
7855 |
|
|
/* We only have one call-clobbered scratch register, so we can't
|
7856 |
|
|
make use of the delay slot if delta doesn't fit in 14 bits. */
|
7857 |
|
|
if (!val_14)
|
7858 |
|
|
{
|
7859 |
|
|
output_asm_insn ("addil L'%2,%%r26", xoperands);
|
7860 |
|
|
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
|
7861 |
|
|
}
|
7862 |
|
|
|
7863 |
|
|
output_asm_insn ("b,l .+8,%%r1", xoperands);
|
7864 |
|
|
|
7865 |
|
|
if (TARGET_GAS)
|
7866 |
|
|
{
|
7867 |
|
|
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands);
|
7868 |
|
|
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r1", xoperands);
|
7869 |
|
|
}
|
7870 |
|
|
else
|
7871 |
|
|
{
|
7872 |
|
|
xoperands[3] = GEN_INT (val_14 ? 8 : 16);
|
7873 |
|
|
output_asm_insn ("addil L'%0-%1-%3,%%r1", xoperands);
|
7874 |
|
|
}
|
7875 |
|
|
|
7876 |
|
|
if (val_14)
|
7877 |
|
|
{
|
7878 |
|
|
output_asm_insn ("bv %%r0(%%r1)", xoperands);
|
7879 |
|
|
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
|
7880 |
|
|
nbytes += 20;
|
7881 |
|
|
}
|
7882 |
|
|
else
|
7883 |
|
|
{
|
7884 |
|
|
output_asm_insn ("bv,n %%r0(%%r1)", xoperands);
|
7885 |
|
|
nbytes += 24;
|
7886 |
|
|
}
|
7887 |
|
|
}
|
7888 |
|
|
else if (TARGET_PORTABLE_RUNTIME)
|
7889 |
|
|
{
|
7890 |
|
|
output_asm_insn ("ldil L'%0,%%r1", xoperands);
|
7891 |
|
|
output_asm_insn ("ldo R'%0(%%r1),%%r22", xoperands);
|
7892 |
|
|
|
7893 |
|
|
if (!val_14)
|
7894 |
|
|
output_asm_insn ("addil L'%2,%%r26", xoperands);
|
7895 |
|
|
|
7896 |
|
|
output_asm_insn ("bv %%r0(%%r22)", xoperands);
|
7897 |
|
|
|
7898 |
|
|
if (val_14)
|
7899 |
|
|
{
|
7900 |
|
|
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
|
7901 |
|
|
nbytes += 16;
|
7902 |
|
|
}
|
7903 |
|
|
else
|
7904 |
|
|
{
|
7905 |
|
|
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
|
7906 |
|
|
nbytes += 20;
|
7907 |
|
|
}
|
7908 |
|
|
}
|
7909 |
|
|
else if (TARGET_SOM && flag_pic && TREE_PUBLIC (function))
|
7910 |
|
|
{
|
7911 |
|
|
/* The function is accessible from outside this module. The only
|
7912 |
|
|
way to avoid an import stub between the thunk and function is to
|
7913 |
|
|
call the function directly with an indirect sequence similar to
|
7914 |
|
|
that used by $$dyncall. This is possible because $$dyncall acts
|
7915 |
|
|
as the import stub in an indirect call. */
|
7916 |
|
|
ASM_GENERATE_INTERNAL_LABEL (label, "LTHN", current_thunk_number);
|
7917 |
|
|
xoperands[3] = gen_rtx_SYMBOL_REF (Pmode, label);
|
7918 |
|
|
output_asm_insn ("addil LT'%3,%%r19", xoperands);
|
7919 |
|
|
output_asm_insn ("ldw RT'%3(%%r1),%%r22", xoperands);
|
7920 |
|
|
output_asm_insn ("ldw 0(%%sr0,%%r22),%%r22", xoperands);
|
7921 |
|
|
output_asm_insn ("bb,>=,n %%r22,30,.+16", xoperands);
|
7922 |
|
|
output_asm_insn ("depi 0,31,2,%%r22", xoperands);
|
7923 |
|
|
output_asm_insn ("ldw 4(%%sr0,%%r22),%%r19", xoperands);
|
7924 |
|
|
output_asm_insn ("ldw 0(%%sr0,%%r22),%%r22", xoperands);
|
7925 |
|
|
|
7926 |
|
|
if (!val_14)
|
7927 |
|
|
{
|
7928 |
|
|
output_asm_insn ("addil L'%2,%%r26", xoperands);
|
7929 |
|
|
nbytes += 4;
|
7930 |
|
|
}
|
7931 |
|
|
|
7932 |
|
|
if (TARGET_PA_20)
|
7933 |
|
|
{
|
7934 |
|
|
output_asm_insn ("bve (%%r22)", xoperands);
|
7935 |
|
|
nbytes += 36;
|
7936 |
|
|
}
|
7937 |
|
|
else if (TARGET_NO_SPACE_REGS)
|
7938 |
|
|
{
|
7939 |
|
|
output_asm_insn ("be 0(%%sr4,%%r22)", xoperands);
|
7940 |
|
|
nbytes += 36;
|
7941 |
|
|
}
|
7942 |
|
|
else
|
7943 |
|
|
{
|
7944 |
|
|
output_asm_insn ("ldsid (%%sr0,%%r22),%%r21", xoperands);
|
7945 |
|
|
output_asm_insn ("mtsp %%r21,%%sr0", xoperands);
|
7946 |
|
|
output_asm_insn ("be 0(%%sr0,%%r22)", xoperands);
|
7947 |
|
|
nbytes += 44;
|
7948 |
|
|
}
|
7949 |
|
|
|
7950 |
|
|
if (val_14)
|
7951 |
|
|
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
|
7952 |
|
|
else
|
7953 |
|
|
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
|
7954 |
|
|
}
|
7955 |
|
|
else if (flag_pic)
|
7956 |
|
|
{
|
7957 |
|
|
output_asm_insn ("{bl|b,l} .+8,%%r1", xoperands);
|
7958 |
|
|
|
7959 |
|
|
if (TARGET_SOM || !TARGET_GAS)
|
7960 |
|
|
{
|
7961 |
|
|
output_asm_insn ("addil L'%0-%1-8,%%r1", xoperands);
|
7962 |
|
|
output_asm_insn ("ldo R'%0-%1-8(%%r1),%%r22", xoperands);
|
7963 |
|
|
}
|
7964 |
|
|
else
|
7965 |
|
|
{
|
7966 |
|
|
output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%%r1", xoperands);
|
7967 |
|
|
output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%%r22", xoperands);
|
7968 |
|
|
}
|
7969 |
|
|
|
7970 |
|
|
if (!val_14)
|
7971 |
|
|
output_asm_insn ("addil L'%2,%%r26", xoperands);
|
7972 |
|
|
|
7973 |
|
|
output_asm_insn ("bv %%r0(%%r22)", xoperands);
|
7974 |
|
|
|
7975 |
|
|
if (val_14)
|
7976 |
|
|
{
|
7977 |
|
|
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
|
7978 |
|
|
nbytes += 20;
|
7979 |
|
|
}
|
7980 |
|
|
else
|
7981 |
|
|
{
|
7982 |
|
|
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
|
7983 |
|
|
nbytes += 24;
|
7984 |
|
|
}
|
7985 |
|
|
}
|
7986 |
|
|
else
|
7987 |
|
|
{
|
7988 |
|
|
if (!val_14)
|
7989 |
|
|
output_asm_insn ("addil L'%2,%%r26", xoperands);
|
7990 |
|
|
|
7991 |
|
|
output_asm_insn ("ldil L'%0,%%r22", xoperands);
|
7992 |
|
|
output_asm_insn ("be R'%0(%%sr4,%%r22)", xoperands);
|
7993 |
|
|
|
7994 |
|
|
if (val_14)
|
7995 |
|
|
{
|
7996 |
|
|
output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
|
7997 |
|
|
nbytes += 12;
|
7998 |
|
|
}
|
7999 |
|
|
else
|
8000 |
|
|
{
|
8001 |
|
|
output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
|
8002 |
|
|
nbytes += 16;
|
8003 |
|
|
}
|
8004 |
|
|
}
|
8005 |
|
|
|
8006 |
|
|
fprintf (file, "\t.EXIT\n\t.PROCEND\n");
|
8007 |
|
|
|
8008 |
|
|
if (TARGET_SOM && TARGET_GAS)
|
8009 |
|
|
{
|
8010 |
|
|
/* We done with this subspace except possibly for some additional
|
8011 |
|
|
debug information. Forget that we are in this subspace to ensure
|
8012 |
|
|
that the next function is output in its own subspace. */
|
8013 |
|
|
in_section = NULL;
|
8014 |
|
|
cfun->machine->in_nsubspa = 2;
|
8015 |
|
|
}
|
8016 |
|
|
|
8017 |
|
|
if (TARGET_SOM && flag_pic && TREE_PUBLIC (function))
|
8018 |
|
|
{
|
8019 |
|
|
switch_to_section (data_section);
|
8020 |
|
|
output_asm_insn (".align 4", xoperands);
|
8021 |
|
|
ASM_OUTPUT_LABEL (file, label);
|
8022 |
|
|
output_asm_insn (".word P'%0", xoperands);
|
8023 |
|
|
}
|
8024 |
|
|
|
8025 |
|
|
current_thunk_number++;
|
8026 |
|
|
nbytes = ((nbytes + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)
|
8027 |
|
|
& ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1));
|
8028 |
|
|
last_address += nbytes;
|
8029 |
|
|
update_total_code_bytes (nbytes);
|
8030 |
|
|
}
|
8031 |
|
|
|
8032 |
|
|
/* Only direct calls to static functions are allowed to be sibling (tail)
|
8033 |
|
|
call optimized.
|
8034 |
|
|
|
8035 |
|
|
This restriction is necessary because some linker generated stubs will
|
8036 |
|
|
store return pointers into rp' in some cases which might clobber a
|
8037 |
|
|
live value already in rp'.
|
8038 |
|
|
|
8039 |
|
|
In a sibcall the current function and the target function share stack
|
8040 |
|
|
space. Thus if the path to the current function and the path to the
|
8041 |
|
|
target function save a value in rp', they save the value into the
|
8042 |
|
|
same stack slot, which has undesirable consequences.
|
8043 |
|
|
|
8044 |
|
|
Because of the deferred binding nature of shared libraries any function
|
8045 |
|
|
with external scope could be in a different load module and thus require
|
8046 |
|
|
rp' to be saved when calling that function. So sibcall optimizations
|
8047 |
|
|
can only be safe for static function.
|
8048 |
|
|
|
8049 |
|
|
Note that GCC never needs return value relocations, so we don't have to
|
8050 |
|
|
worry about static calls with return value relocations (which require
|
8051 |
|
|
saving rp').
|
8052 |
|
|
|
8053 |
|
|
It is safe to perform a sibcall optimization when the target function
|
8054 |
|
|
will never return. */
|
8055 |
|
|
static bool
|
8056 |
|
|
pa_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
|
8057 |
|
|
{
|
8058 |
|
|
if (TARGET_PORTABLE_RUNTIME)
|
8059 |
|
|
return false;
|
8060 |
|
|
|
8061 |
|
|
/* Sibcalls are ok for TARGET_ELF32 as along as the linker is used in
|
8062 |
|
|
single subspace mode and the call is not indirect. As far as I know,
|
8063 |
|
|
there is no operating system support for the multiple subspace mode.
|
8064 |
|
|
It might be possible to support indirect calls if we didn't use
|
8065 |
|
|
$$dyncall (see the indirect sequence generated in output_call). */
|
8066 |
|
|
if (TARGET_ELF32)
|
8067 |
|
|
return (decl != NULL_TREE);
|
8068 |
|
|
|
8069 |
|
|
/* Sibcalls are not ok because the arg pointer register is not a fixed
|
8070 |
|
|
register. This prevents the sibcall optimization from occurring. In
|
8071 |
|
|
addition, there are problems with stub placement using GNU ld. This
|
8072 |
|
|
is because a normal sibcall branch uses a 17-bit relocation while
|
8073 |
|
|
a regular call branch uses a 22-bit relocation. As a result, more
|
8074 |
|
|
care needs to be taken in the placement of long-branch stubs. */
|
8075 |
|
|
if (TARGET_64BIT)
|
8076 |
|
|
return false;
|
8077 |
|
|
|
8078 |
|
|
/* Sibcalls are only ok within a translation unit. */
|
8079 |
|
|
return (decl && !TREE_PUBLIC (decl));
|
8080 |
|
|
}
|
8081 |
|
|
|
8082 |
|
|
/* ??? Addition is not commutative on the PA due to the weird implicit
|
8083 |
|
|
space register selection rules for memory addresses. Therefore, we
|
8084 |
|
|
don't consider a + b == b + a, as this might be inside a MEM. */
|
8085 |
|
|
static bool
|
8086 |
|
|
pa_commutative_p (rtx x, int outer_code)
|
8087 |
|
|
{
|
8088 |
|
|
return (COMMUTATIVE_P (x)
|
8089 |
|
|
&& (TARGET_NO_SPACE_REGS
|
8090 |
|
|
|| (outer_code != UNKNOWN && outer_code != MEM)
|
8091 |
|
|
|| GET_CODE (x) != PLUS));
|
8092 |
|
|
}
|
8093 |
|
|
|
8094 |
|
|
/* Returns 1 if the 6 operands specified in OPERANDS are suitable for
|
8095 |
|
|
use in fmpyadd instructions. */
|
8096 |
|
|
int
|
8097 |
|
|
fmpyaddoperands (rtx *operands)
|
8098 |
|
|
{
|
8099 |
|
|
enum machine_mode mode = GET_MODE (operands[0]);
|
8100 |
|
|
|
8101 |
|
|
/* Must be a floating point mode. */
|
8102 |
|
|
if (mode != SFmode && mode != DFmode)
|
8103 |
|
|
return 0;
|
8104 |
|
|
|
8105 |
|
|
/* All modes must be the same. */
|
8106 |
|
|
if (! (mode == GET_MODE (operands[1])
|
8107 |
|
|
&& mode == GET_MODE (operands[2])
|
8108 |
|
|
&& mode == GET_MODE (operands[3])
|
8109 |
|
|
&& mode == GET_MODE (operands[4])
|
8110 |
|
|
&& mode == GET_MODE (operands[5])))
|
8111 |
|
|
return 0;
|
8112 |
|
|
|
8113 |
|
|
/* All operands must be registers. */
|
8114 |
|
|
if (! (GET_CODE (operands[1]) == REG
|
8115 |
|
|
&& GET_CODE (operands[2]) == REG
|
8116 |
|
|
&& GET_CODE (operands[3]) == REG
|
8117 |
|
|
&& GET_CODE (operands[4]) == REG
|
8118 |
|
|
&& GET_CODE (operands[5]) == REG))
|
8119 |
|
|
return 0;
|
8120 |
|
|
|
8121 |
|
|
/* Only 2 real operands to the addition. One of the input operands must
|
8122 |
|
|
be the same as the output operand. */
|
8123 |
|
|
if (! rtx_equal_p (operands[3], operands[4])
|
8124 |
|
|
&& ! rtx_equal_p (operands[3], operands[5]))
|
8125 |
|
|
return 0;
|
8126 |
|
|
|
8127 |
|
|
/* Inout operand of add cannot conflict with any operands from multiply. */
|
8128 |
|
|
if (rtx_equal_p (operands[3], operands[0])
|
8129 |
|
|
|| rtx_equal_p (operands[3], operands[1])
|
8130 |
|
|
|| rtx_equal_p (operands[3], operands[2]))
|
8131 |
|
|
return 0;
|
8132 |
|
|
|
8133 |
|
|
/* multiply cannot feed into addition operands. */
|
8134 |
|
|
if (rtx_equal_p (operands[4], operands[0])
|
8135 |
|
|
|| rtx_equal_p (operands[5], operands[0]))
|
8136 |
|
|
return 0;
|
8137 |
|
|
|
8138 |
|
|
/* SFmode limits the registers to the upper 32 of the 32bit FP regs. */
|
8139 |
|
|
if (mode == SFmode
|
8140 |
|
|
&& (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS
|
8141 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS
|
8142 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS
|
8143 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS
|
8144 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS
|
8145 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS))
|
8146 |
|
|
return 0;
|
8147 |
|
|
|
8148 |
|
|
/* Passed. Operands are suitable for fmpyadd. */
|
8149 |
|
|
return 1;
|
8150 |
|
|
}
|
8151 |
|
|
|
8152 |
|
|
#if !defined(USE_COLLECT2)
|
8153 |
|
|
static void
|
8154 |
|
|
pa_asm_out_constructor (rtx symbol, int priority)
|
8155 |
|
|
{
|
8156 |
|
|
if (!function_label_operand (symbol, VOIDmode))
|
8157 |
|
|
hppa_encode_label (symbol);
|
8158 |
|
|
|
8159 |
|
|
#ifdef CTORS_SECTION_ASM_OP
|
8160 |
|
|
default_ctor_section_asm_out_constructor (symbol, priority);
|
8161 |
|
|
#else
|
8162 |
|
|
# ifdef TARGET_ASM_NAMED_SECTION
|
8163 |
|
|
default_named_section_asm_out_constructor (symbol, priority);
|
8164 |
|
|
# else
|
8165 |
|
|
default_stabs_asm_out_constructor (symbol, priority);
|
8166 |
|
|
# endif
|
8167 |
|
|
#endif
|
8168 |
|
|
}
|
8169 |
|
|
|
8170 |
|
|
static void
|
8171 |
|
|
pa_asm_out_destructor (rtx symbol, int priority)
|
8172 |
|
|
{
|
8173 |
|
|
if (!function_label_operand (symbol, VOIDmode))
|
8174 |
|
|
hppa_encode_label (symbol);
|
8175 |
|
|
|
8176 |
|
|
#ifdef DTORS_SECTION_ASM_OP
|
8177 |
|
|
default_dtor_section_asm_out_destructor (symbol, priority);
|
8178 |
|
|
#else
|
8179 |
|
|
# ifdef TARGET_ASM_NAMED_SECTION
|
8180 |
|
|
default_named_section_asm_out_destructor (symbol, priority);
|
8181 |
|
|
# else
|
8182 |
|
|
default_stabs_asm_out_destructor (symbol, priority);
|
8183 |
|
|
# endif
|
8184 |
|
|
#endif
|
8185 |
|
|
}
|
8186 |
|
|
#endif
|
8187 |
|
|
|
8188 |
|
|
/* This function places uninitialized global data in the bss section.
|
8189 |
|
|
The ASM_OUTPUT_ALIGNED_BSS macro needs to be defined to call this
|
8190 |
|
|
function on the SOM port to prevent uninitialized global data from
|
8191 |
|
|
being placed in the data section. */
|
8192 |
|
|
|
8193 |
|
|
void
|
8194 |
|
|
pa_asm_output_aligned_bss (FILE *stream,
|
8195 |
|
|
const char *name,
|
8196 |
|
|
unsigned HOST_WIDE_INT size,
|
8197 |
|
|
unsigned int align)
|
8198 |
|
|
{
|
8199 |
|
|
switch_to_section (bss_section);
|
8200 |
|
|
fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
|
8201 |
|
|
|
8202 |
|
|
#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
|
8203 |
|
|
ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
|
8204 |
|
|
#endif
|
8205 |
|
|
|
8206 |
|
|
#ifdef ASM_OUTPUT_SIZE_DIRECTIVE
|
8207 |
|
|
ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
|
8208 |
|
|
#endif
|
8209 |
|
|
|
8210 |
|
|
fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
|
8211 |
|
|
ASM_OUTPUT_LABEL (stream, name);
|
8212 |
|
|
fprintf (stream, "\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n", size);
|
8213 |
|
|
}
|
8214 |
|
|
|
8215 |
|
|
/* Both the HP and GNU assemblers under HP-UX provide a .comm directive
|
8216 |
|
|
that doesn't allow the alignment of global common storage to be directly
|
8217 |
|
|
specified. The SOM linker aligns common storage based on the rounded
|
8218 |
|
|
value of the NUM_BYTES parameter in the .comm directive. It's not
|
8219 |
|
|
possible to use the .align directive as it doesn't affect the alignment
|
8220 |
|
|
of the label associated with a .comm directive. */
|
8221 |
|
|
|
8222 |
|
|
void
|
8223 |
|
|
pa_asm_output_aligned_common (FILE *stream,
|
8224 |
|
|
const char *name,
|
8225 |
|
|
unsigned HOST_WIDE_INT size,
|
8226 |
|
|
unsigned int align)
|
8227 |
|
|
{
|
8228 |
|
|
unsigned int max_common_align;
|
8229 |
|
|
|
8230 |
|
|
max_common_align = TARGET_64BIT ? 128 : (size >= 4096 ? 256 : 64);
|
8231 |
|
|
if (align > max_common_align)
|
8232 |
|
|
{
|
8233 |
|
|
warning (0, "alignment (%u) for %s exceeds maximum alignment "
|
8234 |
|
|
"for global common data. Using %u",
|
8235 |
|
|
align / BITS_PER_UNIT, name, max_common_align / BITS_PER_UNIT);
|
8236 |
|
|
align = max_common_align;
|
8237 |
|
|
}
|
8238 |
|
|
|
8239 |
|
|
switch_to_section (bss_section);
|
8240 |
|
|
|
8241 |
|
|
assemble_name (stream, name);
|
8242 |
|
|
fprintf (stream, "\t.comm "HOST_WIDE_INT_PRINT_UNSIGNED"\n",
|
8243 |
|
|
MAX (size, align / BITS_PER_UNIT));
|
8244 |
|
|
}
|
8245 |
|
|
|
8246 |
|
|
/* We can't use .comm for local common storage as the SOM linker effectively
|
8247 |
|
|
treats the symbol as universal and uses the same storage for local symbols
|
8248 |
|
|
with the same name in different object files. The .block directive
|
8249 |
|
|
reserves an uninitialized block of storage. However, it's not common
|
8250 |
|
|
storage. Fortunately, GCC never requests common storage with the same
|
8251 |
|
|
name in any given translation unit. */
|
8252 |
|
|
|
8253 |
|
|
void
|
8254 |
|
|
pa_asm_output_aligned_local (FILE *stream,
|
8255 |
|
|
const char *name,
|
8256 |
|
|
unsigned HOST_WIDE_INT size,
|
8257 |
|
|
unsigned int align)
|
8258 |
|
|
{
|
8259 |
|
|
switch_to_section (bss_section);
|
8260 |
|
|
fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
|
8261 |
|
|
|
8262 |
|
|
#ifdef LOCAL_ASM_OP
|
8263 |
|
|
fprintf (stream, "%s", LOCAL_ASM_OP);
|
8264 |
|
|
assemble_name (stream, name);
|
8265 |
|
|
fprintf (stream, "\n");
|
8266 |
|
|
#endif
|
8267 |
|
|
|
8268 |
|
|
ASM_OUTPUT_LABEL (stream, name);
|
8269 |
|
|
fprintf (stream, "\t.block "HOST_WIDE_INT_PRINT_UNSIGNED"\n", size);
|
8270 |
|
|
}
|
8271 |
|
|
|
8272 |
|
|
/* Returns 1 if the 6 operands specified in OPERANDS are suitable for
|
8273 |
|
|
use in fmpysub instructions. */
|
8274 |
|
|
int
|
8275 |
|
|
fmpysuboperands (rtx *operands)
|
8276 |
|
|
{
|
8277 |
|
|
enum machine_mode mode = GET_MODE (operands[0]);
|
8278 |
|
|
|
8279 |
|
|
/* Must be a floating point mode. */
|
8280 |
|
|
if (mode != SFmode && mode != DFmode)
|
8281 |
|
|
return 0;
|
8282 |
|
|
|
8283 |
|
|
/* All modes must be the same. */
|
8284 |
|
|
if (! (mode == GET_MODE (operands[1])
|
8285 |
|
|
&& mode == GET_MODE (operands[2])
|
8286 |
|
|
&& mode == GET_MODE (operands[3])
|
8287 |
|
|
&& mode == GET_MODE (operands[4])
|
8288 |
|
|
&& mode == GET_MODE (operands[5])))
|
8289 |
|
|
return 0;
|
8290 |
|
|
|
8291 |
|
|
/* All operands must be registers. */
|
8292 |
|
|
if (! (GET_CODE (operands[1]) == REG
|
8293 |
|
|
&& GET_CODE (operands[2]) == REG
|
8294 |
|
|
&& GET_CODE (operands[3]) == REG
|
8295 |
|
|
&& GET_CODE (operands[4]) == REG
|
8296 |
|
|
&& GET_CODE (operands[5]) == REG))
|
8297 |
|
|
return 0;
|
8298 |
|
|
|
8299 |
|
|
/* Only 2 real operands to the subtraction. Subtraction is not a commutative
|
8300 |
|
|
operation, so operands[4] must be the same as operand[3]. */
|
8301 |
|
|
if (! rtx_equal_p (operands[3], operands[4]))
|
8302 |
|
|
return 0;
|
8303 |
|
|
|
8304 |
|
|
/* multiply cannot feed into subtraction. */
|
8305 |
|
|
if (rtx_equal_p (operands[5], operands[0]))
|
8306 |
|
|
return 0;
|
8307 |
|
|
|
8308 |
|
|
/* Inout operand of sub cannot conflict with any operands from multiply. */
|
8309 |
|
|
if (rtx_equal_p (operands[3], operands[0])
|
8310 |
|
|
|| rtx_equal_p (operands[3], operands[1])
|
8311 |
|
|
|| rtx_equal_p (operands[3], operands[2]))
|
8312 |
|
|
return 0;
|
8313 |
|
|
|
8314 |
|
|
/* SFmode limits the registers to the upper 32 of the 32bit FP regs. */
|
8315 |
|
|
if (mode == SFmode
|
8316 |
|
|
&& (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS
|
8317 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS
|
8318 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS
|
8319 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS
|
8320 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS
|
8321 |
|
|
|| REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS))
|
8322 |
|
|
return 0;
|
8323 |
|
|
|
8324 |
|
|
/* Passed. Operands are suitable for fmpysub. */
|
8325 |
|
|
return 1;
|
8326 |
|
|
}
|
8327 |
|
|
|
8328 |
|
|
/* Return 1 if the given constant is 2, 4, or 8. These are the valid
|
8329 |
|
|
constants for shadd instructions. */
|
8330 |
|
|
int
|
8331 |
|
|
shadd_constant_p (int val)
|
8332 |
|
|
{
|
8333 |
|
|
if (val == 2 || val == 4 || val == 8)
|
8334 |
|
|
return 1;
|
8335 |
|
|
else
|
8336 |
|
|
return 0;
|
8337 |
|
|
}
|
8338 |
|
|
|
8339 |
|
|
/* Return 1 if OP is valid as a base or index register in a
|
8340 |
|
|
REG+REG address. */
|
8341 |
|
|
|
8342 |
|
|
int
|
8343 |
|
|
borx_reg_operand (rtx op, enum machine_mode mode)
|
8344 |
|
|
{
|
8345 |
|
|
if (GET_CODE (op) != REG)
|
8346 |
|
|
return 0;
|
8347 |
|
|
|
8348 |
|
|
/* We must reject virtual registers as the only expressions that
|
8349 |
|
|
can be instantiated are REG and REG+CONST. */
|
8350 |
|
|
if (op == virtual_incoming_args_rtx
|
8351 |
|
|
|| op == virtual_stack_vars_rtx
|
8352 |
|
|
|| op == virtual_stack_dynamic_rtx
|
8353 |
|
|
|| op == virtual_outgoing_args_rtx
|
8354 |
|
|
|| op == virtual_cfa_rtx)
|
8355 |
|
|
return 0;
|
8356 |
|
|
|
8357 |
|
|
/* While it's always safe to index off the frame pointer, it's not
|
8358 |
|
|
profitable to do so when the frame pointer is being eliminated. */
|
8359 |
|
|
if (!reload_completed
|
8360 |
|
|
&& flag_omit_frame_pointer
|
8361 |
|
|
&& !current_function_calls_alloca
|
8362 |
|
|
&& op == frame_pointer_rtx)
|
8363 |
|
|
return 0;
|
8364 |
|
|
|
8365 |
|
|
return register_operand (op, mode);
|
8366 |
|
|
}
|
8367 |
|
|
|
8368 |
|
|
/* Return 1 if this operand is anything other than a hard register. */
|
8369 |
|
|
|
8370 |
|
|
int
|
8371 |
|
|
non_hard_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
8372 |
|
|
{
|
8373 |
|
|
return ! (GET_CODE (op) == REG && REGNO (op) < FIRST_PSEUDO_REGISTER);
|
8374 |
|
|
}
|
8375 |
|
|
|
8376 |
|
|
/* Return 1 if INSN branches forward. Should be using insn_addresses
|
8377 |
|
|
to avoid walking through all the insns... */
|
8378 |
|
|
static int
|
8379 |
|
|
forward_branch_p (rtx insn)
|
8380 |
|
|
{
|
8381 |
|
|
rtx label = JUMP_LABEL (insn);
|
8382 |
|
|
|
8383 |
|
|
while (insn)
|
8384 |
|
|
{
|
8385 |
|
|
if (insn == label)
|
8386 |
|
|
break;
|
8387 |
|
|
else
|
8388 |
|
|
insn = NEXT_INSN (insn);
|
8389 |
|
|
}
|
8390 |
|
|
|
8391 |
|
|
return (insn == label);
|
8392 |
|
|
}
|
8393 |
|
|
|
8394 |
|
|
/* Return 1 if OP is an equality comparison, else return 0. */
|
8395 |
|
|
int
|
8396 |
|
|
eq_neq_comparison_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
8397 |
|
|
{
|
8398 |
|
|
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
|
8399 |
|
|
}
|
8400 |
|
|
|
8401 |
|
|
/* Return 1 if INSN is in the delay slot of a call instruction. */
|
8402 |
|
|
int
|
8403 |
|
|
jump_in_call_delay (rtx insn)
|
8404 |
|
|
{
|
8405 |
|
|
|
8406 |
|
|
if (GET_CODE (insn) != JUMP_INSN)
|
8407 |
|
|
return 0;
|
8408 |
|
|
|
8409 |
|
|
if (PREV_INSN (insn)
|
8410 |
|
|
&& PREV_INSN (PREV_INSN (insn))
|
8411 |
|
|
&& GET_CODE (next_real_insn (PREV_INSN (PREV_INSN (insn)))) == INSN)
|
8412 |
|
|
{
|
8413 |
|
|
rtx test_insn = next_real_insn (PREV_INSN (PREV_INSN (insn)));
|
8414 |
|
|
|
8415 |
|
|
return (GET_CODE (PATTERN (test_insn)) == SEQUENCE
|
8416 |
|
|
&& XVECEXP (PATTERN (test_insn), 0, 1) == insn);
|
8417 |
|
|
|
8418 |
|
|
}
|
8419 |
|
|
else
|
8420 |
|
|
return 0;
|
8421 |
|
|
}
|
8422 |
|
|
|
8423 |
|
|
/* Output an unconditional move and branch insn. */
|
8424 |
|
|
|
8425 |
|
|
const char *
|
8426 |
|
|
output_parallel_movb (rtx *operands, rtx insn)
|
8427 |
|
|
{
|
8428 |
|
|
int length = get_attr_length (insn);
|
8429 |
|
|
|
8430 |
|
|
/* These are the cases in which we win. */
|
8431 |
|
|
if (length == 4)
|
8432 |
|
|
return "mov%I1b,tr %1,%0,%2";
|
8433 |
|
|
|
8434 |
|
|
/* None of the following cases win, but they don't lose either. */
|
8435 |
|
|
if (length == 8)
|
8436 |
|
|
{
|
8437 |
|
|
if (dbr_sequence_length () == 0)
|
8438 |
|
|
{
|
8439 |
|
|
/* Nothing in the delay slot, fake it by putting the combined
|
8440 |
|
|
insn (the copy or add) in the delay slot of a bl. */
|
8441 |
|
|
if (GET_CODE (operands[1]) == CONST_INT)
|
8442 |
|
|
return "b %2\n\tldi %1,%0";
|
8443 |
|
|
else
|
8444 |
|
|
return "b %2\n\tcopy %1,%0";
|
8445 |
|
|
}
|
8446 |
|
|
else
|
8447 |
|
|
{
|
8448 |
|
|
/* Something in the delay slot, but we've got a long branch. */
|
8449 |
|
|
if (GET_CODE (operands[1]) == CONST_INT)
|
8450 |
|
|
return "ldi %1,%0\n\tb %2";
|
8451 |
|
|
else
|
8452 |
|
|
return "copy %1,%0\n\tb %2";
|
8453 |
|
|
}
|
8454 |
|
|
}
|
8455 |
|
|
|
8456 |
|
|
if (GET_CODE (operands[1]) == CONST_INT)
|
8457 |
|
|
output_asm_insn ("ldi %1,%0", operands);
|
8458 |
|
|
else
|
8459 |
|
|
output_asm_insn ("copy %1,%0", operands);
|
8460 |
|
|
return output_lbranch (operands[2], insn, 1);
|
8461 |
|
|
}
|
8462 |
|
|
|
8463 |
|
|
/* Output an unconditional add and branch insn. */
|
8464 |
|
|
|
8465 |
|
|
const char *
|
8466 |
|
|
output_parallel_addb (rtx *operands, rtx insn)
|
8467 |
|
|
{
|
8468 |
|
|
int length = get_attr_length (insn);
|
8469 |
|
|
|
8470 |
|
|
/* To make life easy we want operand0 to be the shared input/output
|
8471 |
|
|
operand and operand1 to be the readonly operand. */
|
8472 |
|
|
if (operands[0] == operands[1])
|
8473 |
|
|
operands[1] = operands[2];
|
8474 |
|
|
|
8475 |
|
|
/* These are the cases in which we win. */
|
8476 |
|
|
if (length == 4)
|
8477 |
|
|
return "add%I1b,tr %1,%0,%3";
|
8478 |
|
|
|
8479 |
|
|
/* None of the following cases win, but they don't lose either. */
|
8480 |
|
|
if (length == 8)
|
8481 |
|
|
{
|
8482 |
|
|
if (dbr_sequence_length () == 0)
|
8483 |
|
|
/* Nothing in the delay slot, fake it by putting the combined
|
8484 |
|
|
insn (the copy or add) in the delay slot of a bl. */
|
8485 |
|
|
return "b %3\n\tadd%I1 %1,%0,%0";
|
8486 |
|
|
else
|
8487 |
|
|
/* Something in the delay slot, but we've got a long branch. */
|
8488 |
|
|
return "add%I1 %1,%0,%0\n\tb %3";
|
8489 |
|
|
}
|
8490 |
|
|
|
8491 |
|
|
output_asm_insn ("add%I1 %1,%0,%0", operands);
|
8492 |
|
|
return output_lbranch (operands[3], insn, 1);
|
8493 |
|
|
}
|
8494 |
|
|
|
8495 |
|
|
/* Return nonzero if INSN (a jump insn) immediately follows a call
|
8496 |
|
|
to a named function. This is used to avoid filling the delay slot
|
8497 |
|
|
of the jump since it can usually be eliminated by modifying RP in
|
8498 |
|
|
the delay slot of the call. */
|
8499 |
|
|
|
8500 |
|
|
int
|
8501 |
|
|
following_call (rtx insn)
|
8502 |
|
|
{
|
8503 |
|
|
if (! TARGET_JUMP_IN_DELAY)
|
8504 |
|
|
return 0;
|
8505 |
|
|
|
8506 |
|
|
/* Find the previous real insn, skipping NOTEs. */
|
8507 |
|
|
insn = PREV_INSN (insn);
|
8508 |
|
|
while (insn && GET_CODE (insn) == NOTE)
|
8509 |
|
|
insn = PREV_INSN (insn);
|
8510 |
|
|
|
8511 |
|
|
/* Check for CALL_INSNs and millicode calls. */
|
8512 |
|
|
if (insn
|
8513 |
|
|
&& ((GET_CODE (insn) == CALL_INSN
|
8514 |
|
|
&& get_attr_type (insn) != TYPE_DYNCALL)
|
8515 |
|
|
|| (GET_CODE (insn) == INSN
|
8516 |
|
|
&& GET_CODE (PATTERN (insn)) != SEQUENCE
|
8517 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
8518 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER
|
8519 |
|
|
&& get_attr_type (insn) == TYPE_MILLI)))
|
8520 |
|
|
return 1;
|
8521 |
|
|
|
8522 |
|
|
return 0;
|
8523 |
|
|
}
|
8524 |
|
|
|
8525 |
|
|
/* We use this hook to perform a PA specific optimization which is difficult
|
8526 |
|
|
to do in earlier passes.
|
8527 |
|
|
|
8528 |
|
|
We want the delay slots of branches within jump tables to be filled.
|
8529 |
|
|
None of the compiler passes at the moment even has the notion that a
|
8530 |
|
|
PA jump table doesn't contain addresses, but instead contains actual
|
8531 |
|
|
instructions!
|
8532 |
|
|
|
8533 |
|
|
Because we actually jump into the table, the addresses of each entry
|
8534 |
|
|
must stay constant in relation to the beginning of the table (which
|
8535 |
|
|
itself must stay constant relative to the instruction to jump into
|
8536 |
|
|
it). I don't believe we can guarantee earlier passes of the compiler
|
8537 |
|
|
will adhere to those rules.
|
8538 |
|
|
|
8539 |
|
|
So, late in the compilation process we find all the jump tables, and
|
8540 |
|
|
expand them into real code -- e.g. each entry in the jump table vector
|
8541 |
|
|
will get an appropriate label followed by a jump to the final target.
|
8542 |
|
|
|
8543 |
|
|
Reorg and the final jump pass can then optimize these branches and
|
8544 |
|
|
fill their delay slots. We end up with smaller, more efficient code.
|
8545 |
|
|
|
8546 |
|
|
The jump instructions within the table are special; we must be able
|
8547 |
|
|
to identify them during assembly output (if the jumps don't get filled
|
8548 |
|
|
we need to emit a nop rather than nullifying the delay slot)). We
|
8549 |
|
|
identify jumps in switch tables by using insns with the attribute
|
8550 |
|
|
type TYPE_BTABLE_BRANCH.
|
8551 |
|
|
|
8552 |
|
|
We also surround the jump table itself with BEGIN_BRTAB and END_BRTAB
|
8553 |
|
|
insns. This serves two purposes, first it prevents jump.c from
|
8554 |
|
|
noticing that the last N entries in the table jump to the instruction
|
8555 |
|
|
immediately after the table and deleting the jumps. Second, those
|
8556 |
|
|
insns mark where we should emit .begin_brtab and .end_brtab directives
|
8557 |
|
|
when using GAS (allows for better link time optimizations). */
|
8558 |
|
|
|
8559 |
|
|
static void
|
8560 |
|
|
pa_reorg (void)
|
8561 |
|
|
{
|
8562 |
|
|
rtx insn;
|
8563 |
|
|
|
8564 |
|
|
remove_useless_addtr_insns (1);
|
8565 |
|
|
|
8566 |
|
|
if (pa_cpu < PROCESSOR_8000)
|
8567 |
|
|
pa_combine_instructions ();
|
8568 |
|
|
|
8569 |
|
|
|
8570 |
|
|
/* This is fairly cheap, so always run it if optimizing. */
|
8571 |
|
|
if (optimize > 0 && !TARGET_BIG_SWITCH)
|
8572 |
|
|
{
|
8573 |
|
|
/* Find and explode all ADDR_VEC or ADDR_DIFF_VEC insns. */
|
8574 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
8575 |
|
|
{
|
8576 |
|
|
rtx pattern, tmp, location, label;
|
8577 |
|
|
unsigned int length, i;
|
8578 |
|
|
|
8579 |
|
|
/* Find an ADDR_VEC or ADDR_DIFF_VEC insn to explode. */
|
8580 |
|
|
if (GET_CODE (insn) != JUMP_INSN
|
8581 |
|
|
|| (GET_CODE (PATTERN (insn)) != ADDR_VEC
|
8582 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC))
|
8583 |
|
|
continue;
|
8584 |
|
|
|
8585 |
|
|
/* Emit marker for the beginning of the branch table. */
|
8586 |
|
|
emit_insn_before (gen_begin_brtab (), insn);
|
8587 |
|
|
|
8588 |
|
|
pattern = PATTERN (insn);
|
8589 |
|
|
location = PREV_INSN (insn);
|
8590 |
|
|
length = XVECLEN (pattern, GET_CODE (pattern) == ADDR_DIFF_VEC);
|
8591 |
|
|
|
8592 |
|
|
for (i = 0; i < length; i++)
|
8593 |
|
|
{
|
8594 |
|
|
/* Emit a label before each jump to keep jump.c from
|
8595 |
|
|
removing this code. */
|
8596 |
|
|
tmp = gen_label_rtx ();
|
8597 |
|
|
LABEL_NUSES (tmp) = 1;
|
8598 |
|
|
emit_label_after (tmp, location);
|
8599 |
|
|
location = NEXT_INSN (location);
|
8600 |
|
|
|
8601 |
|
|
if (GET_CODE (pattern) == ADDR_VEC)
|
8602 |
|
|
label = XEXP (XVECEXP (pattern, 0, i), 0);
|
8603 |
|
|
else
|
8604 |
|
|
label = XEXP (XVECEXP (pattern, 1, i), 0);
|
8605 |
|
|
|
8606 |
|
|
tmp = gen_short_jump (label);
|
8607 |
|
|
|
8608 |
|
|
/* Emit the jump itself. */
|
8609 |
|
|
tmp = emit_jump_insn_after (tmp, location);
|
8610 |
|
|
JUMP_LABEL (tmp) = label;
|
8611 |
|
|
LABEL_NUSES (label)++;
|
8612 |
|
|
location = NEXT_INSN (location);
|
8613 |
|
|
|
8614 |
|
|
/* Emit a BARRIER after the jump. */
|
8615 |
|
|
emit_barrier_after (location);
|
8616 |
|
|
location = NEXT_INSN (location);
|
8617 |
|
|
}
|
8618 |
|
|
|
8619 |
|
|
/* Emit marker for the end of the branch table. */
|
8620 |
|
|
emit_insn_before (gen_end_brtab (), location);
|
8621 |
|
|
location = NEXT_INSN (location);
|
8622 |
|
|
emit_barrier_after (location);
|
8623 |
|
|
|
8624 |
|
|
/* Delete the ADDR_VEC or ADDR_DIFF_VEC. */
|
8625 |
|
|
delete_insn (insn);
|
8626 |
|
|
}
|
8627 |
|
|
}
|
8628 |
|
|
else
|
8629 |
|
|
{
|
8630 |
|
|
/* Still need brtab marker insns. FIXME: the presence of these
|
8631 |
|
|
markers disables output of the branch table to readonly memory,
|
8632 |
|
|
and any alignment directives that might be needed. Possibly,
|
8633 |
|
|
the begin_brtab insn should be output before the label for the
|
8634 |
|
|
table. This doesn't matter at the moment since the tables are
|
8635 |
|
|
always output in the text section. */
|
8636 |
|
|
for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
|
8637 |
|
|
{
|
8638 |
|
|
/* Find an ADDR_VEC insn. */
|
8639 |
|
|
if (GET_CODE (insn) != JUMP_INSN
|
8640 |
|
|
|| (GET_CODE (PATTERN (insn)) != ADDR_VEC
|
8641 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC))
|
8642 |
|
|
continue;
|
8643 |
|
|
|
8644 |
|
|
/* Now generate markers for the beginning and end of the
|
8645 |
|
|
branch table. */
|
8646 |
|
|
emit_insn_before (gen_begin_brtab (), insn);
|
8647 |
|
|
emit_insn_after (gen_end_brtab (), insn);
|
8648 |
|
|
}
|
8649 |
|
|
}
|
8650 |
|
|
}
|
8651 |
|
|
|
8652 |
|
|
/* The PA has a number of odd instructions which can perform multiple
|
8653 |
|
|
tasks at once. On first generation PA machines (PA1.0 and PA1.1)
|
8654 |
|
|
it may be profitable to combine two instructions into one instruction
|
8655 |
|
|
with two outputs. It's not profitable PA2.0 machines because the
|
8656 |
|
|
two outputs would take two slots in the reorder buffers.
|
8657 |
|
|
|
8658 |
|
|
This routine finds instructions which can be combined and combines
|
8659 |
|
|
them. We only support some of the potential combinations, and we
|
8660 |
|
|
only try common ways to find suitable instructions.
|
8661 |
|
|
|
8662 |
|
|
* addb can add two registers or a register and a small integer
|
8663 |
|
|
and jump to a nearby (+-8k) location. Normally the jump to the
|
8664 |
|
|
nearby location is conditional on the result of the add, but by
|
8665 |
|
|
using the "true" condition we can make the jump unconditional.
|
8666 |
|
|
Thus addb can perform two independent operations in one insn.
|
8667 |
|
|
|
8668 |
|
|
* movb is similar to addb in that it can perform a reg->reg
|
8669 |
|
|
or small immediate->reg copy and jump to a nearby (+-8k location).
|
8670 |
|
|
|
8671 |
|
|
* fmpyadd and fmpysub can perform a FP multiply and either an
|
8672 |
|
|
FP add or FP sub if the operands of the multiply and add/sub are
|
8673 |
|
|
independent (there are other minor restrictions). Note both
|
8674 |
|
|
the fmpy and fadd/fsub can in theory move to better spots according
|
8675 |
|
|
to data dependencies, but for now we require the fmpy stay at a
|
8676 |
|
|
fixed location.
|
8677 |
|
|
|
8678 |
|
|
* Many of the memory operations can perform pre & post updates
|
8679 |
|
|
of index registers. GCC's pre/post increment/decrement addressing
|
8680 |
|
|
is far too simple to take advantage of all the possibilities. This
|
8681 |
|
|
pass may not be suitable since those insns may not be independent.
|
8682 |
|
|
|
8683 |
|
|
* comclr can compare two ints or an int and a register, nullify
|
8684 |
|
|
the following instruction and zero some other register. This
|
8685 |
|
|
is more difficult to use as it's harder to find an insn which
|
8686 |
|
|
will generate a comclr than finding something like an unconditional
|
8687 |
|
|
branch. (conditional moves & long branches create comclr insns).
|
8688 |
|
|
|
8689 |
|
|
* Most arithmetic operations can conditionally skip the next
|
8690 |
|
|
instruction. They can be viewed as "perform this operation
|
8691 |
|
|
and conditionally jump to this nearby location" (where nearby
|
8692 |
|
|
is an insns away). These are difficult to use due to the
|
8693 |
|
|
branch length restrictions. */
|
8694 |
|
|
|
8695 |
|
|
static void
|
8696 |
|
|
pa_combine_instructions (void)
|
8697 |
|
|
{
|
8698 |
|
|
rtx anchor, new;
|
8699 |
|
|
|
8700 |
|
|
/* This can get expensive since the basic algorithm is on the
|
8701 |
|
|
order of O(n^2) (or worse). Only do it for -O2 or higher
|
8702 |
|
|
levels of optimization. */
|
8703 |
|
|
if (optimize < 2)
|
8704 |
|
|
return;
|
8705 |
|
|
|
8706 |
|
|
/* Walk down the list of insns looking for "anchor" insns which
|
8707 |
|
|
may be combined with "floating" insns. As the name implies,
|
8708 |
|
|
"anchor" instructions don't move, while "floating" insns may
|
8709 |
|
|
move around. */
|
8710 |
|
|
new = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, NULL_RTX, NULL_RTX));
|
8711 |
|
|
new = make_insn_raw (new);
|
8712 |
|
|
|
8713 |
|
|
for (anchor = get_insns (); anchor; anchor = NEXT_INSN (anchor))
|
8714 |
|
|
{
|
8715 |
|
|
enum attr_pa_combine_type anchor_attr;
|
8716 |
|
|
enum attr_pa_combine_type floater_attr;
|
8717 |
|
|
|
8718 |
|
|
/* We only care about INSNs, JUMP_INSNs, and CALL_INSNs.
|
8719 |
|
|
Also ignore any special USE insns. */
|
8720 |
|
|
if ((GET_CODE (anchor) != INSN
|
8721 |
|
|
&& GET_CODE (anchor) != JUMP_INSN
|
8722 |
|
|
&& GET_CODE (anchor) != CALL_INSN)
|
8723 |
|
|
|| GET_CODE (PATTERN (anchor)) == USE
|
8724 |
|
|
|| GET_CODE (PATTERN (anchor)) == CLOBBER
|
8725 |
|
|
|| GET_CODE (PATTERN (anchor)) == ADDR_VEC
|
8726 |
|
|
|| GET_CODE (PATTERN (anchor)) == ADDR_DIFF_VEC)
|
8727 |
|
|
continue;
|
8728 |
|
|
|
8729 |
|
|
anchor_attr = get_attr_pa_combine_type (anchor);
|
8730 |
|
|
/* See if anchor is an insn suitable for combination. */
|
8731 |
|
|
if (anchor_attr == PA_COMBINE_TYPE_FMPY
|
8732 |
|
|
|| anchor_attr == PA_COMBINE_TYPE_FADDSUB
|
8733 |
|
|
|| (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH
|
8734 |
|
|
&& ! forward_branch_p (anchor)))
|
8735 |
|
|
{
|
8736 |
|
|
rtx floater;
|
8737 |
|
|
|
8738 |
|
|
for (floater = PREV_INSN (anchor);
|
8739 |
|
|
floater;
|
8740 |
|
|
floater = PREV_INSN (floater))
|
8741 |
|
|
{
|
8742 |
|
|
if (GET_CODE (floater) == NOTE
|
8743 |
|
|
|| (GET_CODE (floater) == INSN
|
8744 |
|
|
&& (GET_CODE (PATTERN (floater)) == USE
|
8745 |
|
|
|| GET_CODE (PATTERN (floater)) == CLOBBER)))
|
8746 |
|
|
continue;
|
8747 |
|
|
|
8748 |
|
|
/* Anything except a regular INSN will stop our search. */
|
8749 |
|
|
if (GET_CODE (floater) != INSN
|
8750 |
|
|
|| GET_CODE (PATTERN (floater)) == ADDR_VEC
|
8751 |
|
|
|| GET_CODE (PATTERN (floater)) == ADDR_DIFF_VEC)
|
8752 |
|
|
{
|
8753 |
|
|
floater = NULL_RTX;
|
8754 |
|
|
break;
|
8755 |
|
|
}
|
8756 |
|
|
|
8757 |
|
|
/* See if FLOATER is suitable for combination with the
|
8758 |
|
|
anchor. */
|
8759 |
|
|
floater_attr = get_attr_pa_combine_type (floater);
|
8760 |
|
|
if ((anchor_attr == PA_COMBINE_TYPE_FMPY
|
8761 |
|
|
&& floater_attr == PA_COMBINE_TYPE_FADDSUB)
|
8762 |
|
|
|| (anchor_attr == PA_COMBINE_TYPE_FADDSUB
|
8763 |
|
|
&& floater_attr == PA_COMBINE_TYPE_FMPY))
|
8764 |
|
|
{
|
8765 |
|
|
/* If ANCHOR and FLOATER can be combined, then we're
|
8766 |
|
|
done with this pass. */
|
8767 |
|
|
if (pa_can_combine_p (new, anchor, floater, 0,
|
8768 |
|
|
SET_DEST (PATTERN (floater)),
|
8769 |
|
|
XEXP (SET_SRC (PATTERN (floater)), 0),
|
8770 |
|
|
XEXP (SET_SRC (PATTERN (floater)), 1)))
|
8771 |
|
|
break;
|
8772 |
|
|
}
|
8773 |
|
|
|
8774 |
|
|
else if (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH
|
8775 |
|
|
&& floater_attr == PA_COMBINE_TYPE_ADDMOVE)
|
8776 |
|
|
{
|
8777 |
|
|
if (GET_CODE (SET_SRC (PATTERN (floater))) == PLUS)
|
8778 |
|
|
{
|
8779 |
|
|
if (pa_can_combine_p (new, anchor, floater, 0,
|
8780 |
|
|
SET_DEST (PATTERN (floater)),
|
8781 |
|
|
XEXP (SET_SRC (PATTERN (floater)), 0),
|
8782 |
|
|
XEXP (SET_SRC (PATTERN (floater)), 1)))
|
8783 |
|
|
break;
|
8784 |
|
|
}
|
8785 |
|
|
else
|
8786 |
|
|
{
|
8787 |
|
|
if (pa_can_combine_p (new, anchor, floater, 0,
|
8788 |
|
|
SET_DEST (PATTERN (floater)),
|
8789 |
|
|
SET_SRC (PATTERN (floater)),
|
8790 |
|
|
SET_SRC (PATTERN (floater))))
|
8791 |
|
|
break;
|
8792 |
|
|
}
|
8793 |
|
|
}
|
8794 |
|
|
}
|
8795 |
|
|
|
8796 |
|
|
/* If we didn't find anything on the backwards scan try forwards. */
|
8797 |
|
|
if (!floater
|
8798 |
|
|
&& (anchor_attr == PA_COMBINE_TYPE_FMPY
|
8799 |
|
|
|| anchor_attr == PA_COMBINE_TYPE_FADDSUB))
|
8800 |
|
|
{
|
8801 |
|
|
for (floater = anchor; floater; floater = NEXT_INSN (floater))
|
8802 |
|
|
{
|
8803 |
|
|
if (GET_CODE (floater) == NOTE
|
8804 |
|
|
|| (GET_CODE (floater) == INSN
|
8805 |
|
|
&& (GET_CODE (PATTERN (floater)) == USE
|
8806 |
|
|
|| GET_CODE (PATTERN (floater)) == CLOBBER)))
|
8807 |
|
|
|
8808 |
|
|
continue;
|
8809 |
|
|
|
8810 |
|
|
/* Anything except a regular INSN will stop our search. */
|
8811 |
|
|
if (GET_CODE (floater) != INSN
|
8812 |
|
|
|| GET_CODE (PATTERN (floater)) == ADDR_VEC
|
8813 |
|
|
|| GET_CODE (PATTERN (floater)) == ADDR_DIFF_VEC)
|
8814 |
|
|
{
|
8815 |
|
|
floater = NULL_RTX;
|
8816 |
|
|
break;
|
8817 |
|
|
}
|
8818 |
|
|
|
8819 |
|
|
/* See if FLOATER is suitable for combination with the
|
8820 |
|
|
anchor. */
|
8821 |
|
|
floater_attr = get_attr_pa_combine_type (floater);
|
8822 |
|
|
if ((anchor_attr == PA_COMBINE_TYPE_FMPY
|
8823 |
|
|
&& floater_attr == PA_COMBINE_TYPE_FADDSUB)
|
8824 |
|
|
|| (anchor_attr == PA_COMBINE_TYPE_FADDSUB
|
8825 |
|
|
&& floater_attr == PA_COMBINE_TYPE_FMPY))
|
8826 |
|
|
{
|
8827 |
|
|
/* If ANCHOR and FLOATER can be combined, then we're
|
8828 |
|
|
done with this pass. */
|
8829 |
|
|
if (pa_can_combine_p (new, anchor, floater, 1,
|
8830 |
|
|
SET_DEST (PATTERN (floater)),
|
8831 |
|
|
XEXP (SET_SRC (PATTERN (floater)),
|
8832 |
|
|
0),
|
8833 |
|
|
XEXP (SET_SRC (PATTERN (floater)),
|
8834 |
|
|
1)))
|
8835 |
|
|
break;
|
8836 |
|
|
}
|
8837 |
|
|
}
|
8838 |
|
|
}
|
8839 |
|
|
|
8840 |
|
|
/* FLOATER will be nonzero if we found a suitable floating
|
8841 |
|
|
insn for combination with ANCHOR. */
|
8842 |
|
|
if (floater
|
8843 |
|
|
&& (anchor_attr == PA_COMBINE_TYPE_FADDSUB
|
8844 |
|
|
|| anchor_attr == PA_COMBINE_TYPE_FMPY))
|
8845 |
|
|
{
|
8846 |
|
|
/* Emit the new instruction and delete the old anchor. */
|
8847 |
|
|
emit_insn_before (gen_rtx_PARALLEL
|
8848 |
|
|
(VOIDmode,
|
8849 |
|
|
gen_rtvec (2, PATTERN (anchor),
|
8850 |
|
|
PATTERN (floater))),
|
8851 |
|
|
anchor);
|
8852 |
|
|
|
8853 |
|
|
PUT_CODE (anchor, NOTE);
|
8854 |
|
|
NOTE_LINE_NUMBER (anchor) = NOTE_INSN_DELETED;
|
8855 |
|
|
NOTE_SOURCE_FILE (anchor) = 0;
|
8856 |
|
|
|
8857 |
|
|
/* Emit a special USE insn for FLOATER, then delete
|
8858 |
|
|
the floating insn. */
|
8859 |
|
|
emit_insn_before (gen_rtx_USE (VOIDmode, floater), floater);
|
8860 |
|
|
delete_insn (floater);
|
8861 |
|
|
|
8862 |
|
|
continue;
|
8863 |
|
|
}
|
8864 |
|
|
else if (floater
|
8865 |
|
|
&& anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH)
|
8866 |
|
|
{
|
8867 |
|
|
rtx temp;
|
8868 |
|
|
/* Emit the new_jump instruction and delete the old anchor. */
|
8869 |
|
|
temp
|
8870 |
|
|
= emit_jump_insn_before (gen_rtx_PARALLEL
|
8871 |
|
|
(VOIDmode,
|
8872 |
|
|
gen_rtvec (2, PATTERN (anchor),
|
8873 |
|
|
PATTERN (floater))),
|
8874 |
|
|
anchor);
|
8875 |
|
|
|
8876 |
|
|
JUMP_LABEL (temp) = JUMP_LABEL (anchor);
|
8877 |
|
|
PUT_CODE (anchor, NOTE);
|
8878 |
|
|
NOTE_LINE_NUMBER (anchor) = NOTE_INSN_DELETED;
|
8879 |
|
|
NOTE_SOURCE_FILE (anchor) = 0;
|
8880 |
|
|
|
8881 |
|
|
/* Emit a special USE insn for FLOATER, then delete
|
8882 |
|
|
the floating insn. */
|
8883 |
|
|
emit_insn_before (gen_rtx_USE (VOIDmode, floater), floater);
|
8884 |
|
|
delete_insn (floater);
|
8885 |
|
|
continue;
|
8886 |
|
|
}
|
8887 |
|
|
}
|
8888 |
|
|
}
|
8889 |
|
|
}
|
8890 |
|
|
|
8891 |
|
|
static int
|
8892 |
|
|
pa_can_combine_p (rtx new, rtx anchor, rtx floater, int reversed, rtx dest,
|
8893 |
|
|
rtx src1, rtx src2)
|
8894 |
|
|
{
|
8895 |
|
|
int insn_code_number;
|
8896 |
|
|
rtx start, end;
|
8897 |
|
|
|
8898 |
|
|
/* Create a PARALLEL with the patterns of ANCHOR and
|
8899 |
|
|
FLOATER, try to recognize it, then test constraints
|
8900 |
|
|
for the resulting pattern.
|
8901 |
|
|
|
8902 |
|
|
If the pattern doesn't match or the constraints
|
8903 |
|
|
aren't met keep searching for a suitable floater
|
8904 |
|
|
insn. */
|
8905 |
|
|
XVECEXP (PATTERN (new), 0, 0) = PATTERN (anchor);
|
8906 |
|
|
XVECEXP (PATTERN (new), 0, 1) = PATTERN (floater);
|
8907 |
|
|
INSN_CODE (new) = -1;
|
8908 |
|
|
insn_code_number = recog_memoized (new);
|
8909 |
|
|
if (insn_code_number < 0
|
8910 |
|
|
|| (extract_insn (new), ! constrain_operands (1)))
|
8911 |
|
|
return 0;
|
8912 |
|
|
|
8913 |
|
|
if (reversed)
|
8914 |
|
|
{
|
8915 |
|
|
start = anchor;
|
8916 |
|
|
end = floater;
|
8917 |
|
|
}
|
8918 |
|
|
else
|
8919 |
|
|
{
|
8920 |
|
|
start = floater;
|
8921 |
|
|
end = anchor;
|
8922 |
|
|
}
|
8923 |
|
|
|
8924 |
|
|
/* There's up to three operands to consider. One
|
8925 |
|
|
output and two inputs.
|
8926 |
|
|
|
8927 |
|
|
The output must not be used between FLOATER & ANCHOR
|
8928 |
|
|
exclusive. The inputs must not be set between
|
8929 |
|
|
FLOATER and ANCHOR exclusive. */
|
8930 |
|
|
|
8931 |
|
|
if (reg_used_between_p (dest, start, end))
|
8932 |
|
|
return 0;
|
8933 |
|
|
|
8934 |
|
|
if (reg_set_between_p (src1, start, end))
|
8935 |
|
|
return 0;
|
8936 |
|
|
|
8937 |
|
|
if (reg_set_between_p (src2, start, end))
|
8938 |
|
|
return 0;
|
8939 |
|
|
|
8940 |
|
|
/* If we get here, then everything is good. */
|
8941 |
|
|
return 1;
|
8942 |
|
|
}
|
8943 |
|
|
|
8944 |
|
|
/* Return nonzero if references for INSN are delayed.
|
8945 |
|
|
|
8946 |
|
|
Millicode insns are actually function calls with some special
|
8947 |
|
|
constraints on arguments and register usage.
|
8948 |
|
|
|
8949 |
|
|
Millicode calls always expect their arguments in the integer argument
|
8950 |
|
|
registers, and always return their result in %r29 (ret1). They
|
8951 |
|
|
are expected to clobber their arguments, %r1, %r29, and the return
|
8952 |
|
|
pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
|
8953 |
|
|
|
8954 |
|
|
This function tells reorg that the references to arguments and
|
8955 |
|
|
millicode calls do not appear to happen until after the millicode call.
|
8956 |
|
|
This allows reorg to put insns which set the argument registers into the
|
8957 |
|
|
delay slot of the millicode call -- thus they act more like traditional
|
8958 |
|
|
CALL_INSNs.
|
8959 |
|
|
|
8960 |
|
|
Note we cannot consider side effects of the insn to be delayed because
|
8961 |
|
|
the branch and link insn will clobber the return pointer. If we happened
|
8962 |
|
|
to use the return pointer in the delay slot of the call, then we lose.
|
8963 |
|
|
|
8964 |
|
|
get_attr_type will try to recognize the given insn, so make sure to
|
8965 |
|
|
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
|
8966 |
|
|
in particular. */
|
8967 |
|
|
int
|
8968 |
|
|
insn_refs_are_delayed (rtx insn)
|
8969 |
|
|
{
|
8970 |
|
|
return ((GET_CODE (insn) == INSN
|
8971 |
|
|
&& GET_CODE (PATTERN (insn)) != SEQUENCE
|
8972 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
8973 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER
|
8974 |
|
|
&& get_attr_type (insn) == TYPE_MILLI));
|
8975 |
|
|
}
|
8976 |
|
|
|
8977 |
|
|
/* On the HP-PA the value is found in register(s) 28(-29), unless
|
8978 |
|
|
the mode is SF or DF. Then the value is returned in fr4 (32).
|
8979 |
|
|
|
8980 |
|
|
This must perform the same promotions as PROMOTE_MODE, else
|
8981 |
|
|
TARGET_PROMOTE_FUNCTION_RETURN will not work correctly.
|
8982 |
|
|
|
8983 |
|
|
Small structures must be returned in a PARALLEL on PA64 in order
|
8984 |
|
|
to match the HP Compiler ABI. */
|
8985 |
|
|
|
8986 |
|
|
rtx
|
8987 |
|
|
function_value (tree valtype, tree func ATTRIBUTE_UNUSED)
|
8988 |
|
|
{
|
8989 |
|
|
enum machine_mode valmode;
|
8990 |
|
|
|
8991 |
|
|
if (AGGREGATE_TYPE_P (valtype)
|
8992 |
|
|
|| TREE_CODE (valtype) == COMPLEX_TYPE
|
8993 |
|
|
|| TREE_CODE (valtype) == VECTOR_TYPE)
|
8994 |
|
|
{
|
8995 |
|
|
if (TARGET_64BIT)
|
8996 |
|
|
{
|
8997 |
|
|
/* Aggregates with a size less than or equal to 128 bits are
|
8998 |
|
|
returned in GR 28(-29). They are left justified. The pad
|
8999 |
|
|
bits are undefined. Larger aggregates are returned in
|
9000 |
|
|
memory. */
|
9001 |
|
|
rtx loc[2];
|
9002 |
|
|
int i, offset = 0;
|
9003 |
|
|
int ub = int_size_in_bytes (valtype) <= UNITS_PER_WORD ? 1 : 2;
|
9004 |
|
|
|
9005 |
|
|
for (i = 0; i < ub; i++)
|
9006 |
|
|
{
|
9007 |
|
|
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
|
9008 |
|
|
gen_rtx_REG (DImode, 28 + i),
|
9009 |
|
|
GEN_INT (offset));
|
9010 |
|
|
offset += 8;
|
9011 |
|
|
}
|
9012 |
|
|
|
9013 |
|
|
return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (ub, loc));
|
9014 |
|
|
}
|
9015 |
|
|
else if (int_size_in_bytes (valtype) > UNITS_PER_WORD)
|
9016 |
|
|
{
|
9017 |
|
|
/* Aggregates 5 to 8 bytes in size are returned in general
|
9018 |
|
|
registers r28-r29 in the same manner as other non
|
9019 |
|
|
floating-point objects. The data is right-justified and
|
9020 |
|
|
zero-extended to 64 bits. This is opposite to the normal
|
9021 |
|
|
justification used on big endian targets and requires
|
9022 |
|
|
special treatment. */
|
9023 |
|
|
rtx loc = gen_rtx_EXPR_LIST (VOIDmode,
|
9024 |
|
|
gen_rtx_REG (DImode, 28), const0_rtx);
|
9025 |
|
|
return gen_rtx_PARALLEL (BLKmode, gen_rtvec (1, loc));
|
9026 |
|
|
}
|
9027 |
|
|
}
|
9028 |
|
|
|
9029 |
|
|
if ((INTEGRAL_TYPE_P (valtype)
|
9030 |
|
|
&& TYPE_PRECISION (valtype) < BITS_PER_WORD)
|
9031 |
|
|
|| POINTER_TYPE_P (valtype))
|
9032 |
|
|
valmode = word_mode;
|
9033 |
|
|
else
|
9034 |
|
|
valmode = TYPE_MODE (valtype);
|
9035 |
|
|
|
9036 |
|
|
if (TREE_CODE (valtype) == REAL_TYPE
|
9037 |
|
|
&& !AGGREGATE_TYPE_P (valtype)
|
9038 |
|
|
&& TYPE_MODE (valtype) != TFmode
|
9039 |
|
|
&& !TARGET_SOFT_FLOAT)
|
9040 |
|
|
return gen_rtx_REG (valmode, 32);
|
9041 |
|
|
|
9042 |
|
|
return gen_rtx_REG (valmode, 28);
|
9043 |
|
|
}
|
9044 |
|
|
|
9045 |
|
|
/* Return the location of a parameter that is passed in a register or NULL
|
9046 |
|
|
if the parameter has any component that is passed in memory.
|
9047 |
|
|
|
9048 |
|
|
This is new code and will be pushed to into the net sources after
|
9049 |
|
|
further testing.
|
9050 |
|
|
|
9051 |
|
|
??? We might want to restructure this so that it looks more like other
|
9052 |
|
|
ports. */
|
9053 |
|
|
rtx
|
9054 |
|
|
function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
|
9055 |
|
|
int named ATTRIBUTE_UNUSED)
|
9056 |
|
|
{
|
9057 |
|
|
int max_arg_words = (TARGET_64BIT ? 8 : 4);
|
9058 |
|
|
int alignment = 0;
|
9059 |
|
|
int arg_size;
|
9060 |
|
|
int fpr_reg_base;
|
9061 |
|
|
int gpr_reg_base;
|
9062 |
|
|
rtx retval;
|
9063 |
|
|
|
9064 |
|
|
if (mode == VOIDmode)
|
9065 |
|
|
return NULL_RTX;
|
9066 |
|
|
|
9067 |
|
|
arg_size = FUNCTION_ARG_SIZE (mode, type);
|
9068 |
|
|
|
9069 |
|
|
/* If this arg would be passed partially or totally on the stack, then
|
9070 |
|
|
this routine should return zero. pa_arg_partial_bytes will
|
9071 |
|
|
handle arguments which are split between regs and stack slots if
|
9072 |
|
|
the ABI mandates split arguments. */
|
9073 |
|
|
if (!TARGET_64BIT)
|
9074 |
|
|
{
|
9075 |
|
|
/* The 32-bit ABI does not split arguments. */
|
9076 |
|
|
if (cum->words + arg_size > max_arg_words)
|
9077 |
|
|
return NULL_RTX;
|
9078 |
|
|
}
|
9079 |
|
|
else
|
9080 |
|
|
{
|
9081 |
|
|
if (arg_size > 1)
|
9082 |
|
|
alignment = cum->words & 1;
|
9083 |
|
|
if (cum->words + alignment >= max_arg_words)
|
9084 |
|
|
return NULL_RTX;
|
9085 |
|
|
}
|
9086 |
|
|
|
9087 |
|
|
/* The 32bit ABIs and the 64bit ABIs are rather different,
|
9088 |
|
|
particularly in their handling of FP registers. We might
|
9089 |
|
|
be able to cleverly share code between them, but I'm not
|
9090 |
|
|
going to bother in the hope that splitting them up results
|
9091 |
|
|
in code that is more easily understood. */
|
9092 |
|
|
|
9093 |
|
|
if (TARGET_64BIT)
|
9094 |
|
|
{
|
9095 |
|
|
/* Advance the base registers to their current locations.
|
9096 |
|
|
|
9097 |
|
|
Remember, gprs grow towards smaller register numbers while
|
9098 |
|
|
fprs grow to higher register numbers. Also remember that
|
9099 |
|
|
although FP regs are 32-bit addressable, we pretend that
|
9100 |
|
|
the registers are 64-bits wide. */
|
9101 |
|
|
gpr_reg_base = 26 - cum->words;
|
9102 |
|
|
fpr_reg_base = 32 + cum->words;
|
9103 |
|
|
|
9104 |
|
|
/* Arguments wider than one word and small aggregates need special
|
9105 |
|
|
treatment. */
|
9106 |
|
|
if (arg_size > 1
|
9107 |
|
|
|| mode == BLKmode
|
9108 |
|
|
|| (type && (AGGREGATE_TYPE_P (type)
|
9109 |
|
|
|| TREE_CODE (type) == COMPLEX_TYPE
|
9110 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE)))
|
9111 |
|
|
{
|
9112 |
|
|
/* Double-extended precision (80-bit), quad-precision (128-bit)
|
9113 |
|
|
and aggregates including complex numbers are aligned on
|
9114 |
|
|
128-bit boundaries. The first eight 64-bit argument slots
|
9115 |
|
|
are associated one-to-one, with general registers r26
|
9116 |
|
|
through r19, and also with floating-point registers fr4
|
9117 |
|
|
through fr11. Arguments larger than one word are always
|
9118 |
|
|
passed in general registers.
|
9119 |
|
|
|
9120 |
|
|
Using a PARALLEL with a word mode register results in left
|
9121 |
|
|
justified data on a big-endian target. */
|
9122 |
|
|
|
9123 |
|
|
rtx loc[8];
|
9124 |
|
|
int i, offset = 0, ub = arg_size;
|
9125 |
|
|
|
9126 |
|
|
/* Align the base register. */
|
9127 |
|
|
gpr_reg_base -= alignment;
|
9128 |
|
|
|
9129 |
|
|
ub = MIN (ub, max_arg_words - cum->words - alignment);
|
9130 |
|
|
for (i = 0; i < ub; i++)
|
9131 |
|
|
{
|
9132 |
|
|
loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
|
9133 |
|
|
gen_rtx_REG (DImode, gpr_reg_base),
|
9134 |
|
|
GEN_INT (offset));
|
9135 |
|
|
gpr_reg_base -= 1;
|
9136 |
|
|
offset += 8;
|
9137 |
|
|
}
|
9138 |
|
|
|
9139 |
|
|
return gen_rtx_PARALLEL (mode, gen_rtvec_v (ub, loc));
|
9140 |
|
|
}
|
9141 |
|
|
}
|
9142 |
|
|
else
|
9143 |
|
|
{
|
9144 |
|
|
/* If the argument is larger than a word, then we know precisely
|
9145 |
|
|
which registers we must use. */
|
9146 |
|
|
if (arg_size > 1)
|
9147 |
|
|
{
|
9148 |
|
|
if (cum->words)
|
9149 |
|
|
{
|
9150 |
|
|
gpr_reg_base = 23;
|
9151 |
|
|
fpr_reg_base = 38;
|
9152 |
|
|
}
|
9153 |
|
|
else
|
9154 |
|
|
{
|
9155 |
|
|
gpr_reg_base = 25;
|
9156 |
|
|
fpr_reg_base = 34;
|
9157 |
|
|
}
|
9158 |
|
|
|
9159 |
|
|
/* Structures 5 to 8 bytes in size are passed in the general
|
9160 |
|
|
registers in the same manner as other non floating-point
|
9161 |
|
|
objects. The data is right-justified and zero-extended
|
9162 |
|
|
to 64 bits. This is opposite to the normal justification
|
9163 |
|
|
used on big endian targets and requires special treatment.
|
9164 |
|
|
We now define BLOCK_REG_PADDING to pad these objects.
|
9165 |
|
|
Aggregates, complex and vector types are passed in the same
|
9166 |
|
|
manner as structures. */
|
9167 |
|
|
if (mode == BLKmode
|
9168 |
|
|
|| (type && (AGGREGATE_TYPE_P (type)
|
9169 |
|
|
|| TREE_CODE (type) == COMPLEX_TYPE
|
9170 |
|
|
|| TREE_CODE (type) == VECTOR_TYPE)))
|
9171 |
|
|
{
|
9172 |
|
|
rtx loc = gen_rtx_EXPR_LIST (VOIDmode,
|
9173 |
|
|
gen_rtx_REG (DImode, gpr_reg_base),
|
9174 |
|
|
const0_rtx);
|
9175 |
|
|
return gen_rtx_PARALLEL (BLKmode, gen_rtvec (1, loc));
|
9176 |
|
|
}
|
9177 |
|
|
}
|
9178 |
|
|
else
|
9179 |
|
|
{
|
9180 |
|
|
/* We have a single word (32 bits). A simple computation
|
9181 |
|
|
will get us the register #s we need. */
|
9182 |
|
|
gpr_reg_base = 26 - cum->words;
|
9183 |
|
|
fpr_reg_base = 32 + 2 * cum->words;
|
9184 |
|
|
}
|
9185 |
|
|
}
|
9186 |
|
|
|
9187 |
|
|
/* Determine if the argument needs to be passed in both general and
|
9188 |
|
|
floating point registers. */
|
9189 |
|
|
if (((TARGET_PORTABLE_RUNTIME || TARGET_64BIT || TARGET_ELF32)
|
9190 |
|
|
/* If we are doing soft-float with portable runtime, then there
|
9191 |
|
|
is no need to worry about FP regs. */
|
9192 |
|
|
&& !TARGET_SOFT_FLOAT
|
9193 |
|
|
/* The parameter must be some kind of scalar float, else we just
|
9194 |
|
|
pass it in integer registers. */
|
9195 |
|
|
&& GET_MODE_CLASS (mode) == MODE_FLOAT
|
9196 |
|
|
/* The target function must not have a prototype. */
|
9197 |
|
|
&& cum->nargs_prototype <= 0
|
9198 |
|
|
/* libcalls do not need to pass items in both FP and general
|
9199 |
|
|
registers. */
|
9200 |
|
|
&& type != NULL_TREE
|
9201 |
|
|
/* All this hair applies to "outgoing" args only. This includes
|
9202 |
|
|
sibcall arguments setup with FUNCTION_INCOMING_ARG. */
|
9203 |
|
|
&& !cum->incoming)
|
9204 |
|
|
/* Also pass outgoing floating arguments in both registers in indirect
|
9205 |
|
|
calls with the 32 bit ABI and the HP assembler since there is no
|
9206 |
|
|
way to the specify argument locations in static functions. */
|
9207 |
|
|
|| (!TARGET_64BIT
|
9208 |
|
|
&& !TARGET_GAS
|
9209 |
|
|
&& !cum->incoming
|
9210 |
|
|
&& cum->indirect
|
9211 |
|
|
&& GET_MODE_CLASS (mode) == MODE_FLOAT))
|
9212 |
|
|
{
|
9213 |
|
|
retval
|
9214 |
|
|
= gen_rtx_PARALLEL
|
9215 |
|
|
(mode,
|
9216 |
|
|
gen_rtvec (2,
|
9217 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
9218 |
|
|
gen_rtx_REG (mode, fpr_reg_base),
|
9219 |
|
|
const0_rtx),
|
9220 |
|
|
gen_rtx_EXPR_LIST (VOIDmode,
|
9221 |
|
|
gen_rtx_REG (mode, gpr_reg_base),
|
9222 |
|
|
const0_rtx)));
|
9223 |
|
|
}
|
9224 |
|
|
else
|
9225 |
|
|
{
|
9226 |
|
|
/* See if we should pass this parameter in a general register. */
|
9227 |
|
|
if (TARGET_SOFT_FLOAT
|
9228 |
|
|
/* Indirect calls in the normal 32bit ABI require all arguments
|
9229 |
|
|
to be passed in general registers. */
|
9230 |
|
|
|| (!TARGET_PORTABLE_RUNTIME
|
9231 |
|
|
&& !TARGET_64BIT
|
9232 |
|
|
&& !TARGET_ELF32
|
9233 |
|
|
&& cum->indirect)
|
9234 |
|
|
/* If the parameter is not a scalar floating-point parameter,
|
9235 |
|
|
then it belongs in GPRs. */
|
9236 |
|
|
|| GET_MODE_CLASS (mode) != MODE_FLOAT
|
9237 |
|
|
/* Structure with single SFmode field belongs in GPR. */
|
9238 |
|
|
|| (type && AGGREGATE_TYPE_P (type)))
|
9239 |
|
|
retval = gen_rtx_REG (mode, gpr_reg_base);
|
9240 |
|
|
else
|
9241 |
|
|
retval = gen_rtx_REG (mode, fpr_reg_base);
|
9242 |
|
|
}
|
9243 |
|
|
return retval;
|
9244 |
|
|
}
|
9245 |
|
|
|
9246 |
|
|
|
9247 |
|
|
/* If this arg would be passed totally in registers or totally on the stack,
|
9248 |
|
|
then this routine should return zero. */
|
9249 |
|
|
|
9250 |
|
|
static int
|
9251 |
|
|
pa_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
9252 |
|
|
tree type, bool named ATTRIBUTE_UNUSED)
|
9253 |
|
|
{
|
9254 |
|
|
unsigned int max_arg_words = 8;
|
9255 |
|
|
unsigned int offset = 0;
|
9256 |
|
|
|
9257 |
|
|
if (!TARGET_64BIT)
|
9258 |
|
|
return 0;
|
9259 |
|
|
|
9260 |
|
|
if (FUNCTION_ARG_SIZE (mode, type) > 1 && (cum->words & 1))
|
9261 |
|
|
offset = 1;
|
9262 |
|
|
|
9263 |
|
|
if (cum->words + offset + FUNCTION_ARG_SIZE (mode, type) <= max_arg_words)
|
9264 |
|
|
/* Arg fits fully into registers. */
|
9265 |
|
|
return 0;
|
9266 |
|
|
else if (cum->words + offset >= max_arg_words)
|
9267 |
|
|
/* Arg fully on the stack. */
|
9268 |
|
|
return 0;
|
9269 |
|
|
else
|
9270 |
|
|
/* Arg is split. */
|
9271 |
|
|
return (max_arg_words - cum->words - offset) * UNITS_PER_WORD;
|
9272 |
|
|
}
|
9273 |
|
|
|
9274 |
|
|
|
9275 |
|
|
/* A get_unnamed_section callback for switching to the text section.
|
9276 |
|
|
|
9277 |
|
|
This function is only used with SOM. Because we don't support
|
9278 |
|
|
named subspaces, we can only create a new subspace or switch back
|
9279 |
|
|
to the default text subspace. */
|
9280 |
|
|
|
9281 |
|
|
static void
|
9282 |
|
|
som_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED)
|
9283 |
|
|
{
|
9284 |
|
|
gcc_assert (TARGET_SOM);
|
9285 |
|
|
if (TARGET_GAS)
|
9286 |
|
|
{
|
9287 |
|
|
if (cfun && cfun->machine && !cfun->machine->in_nsubspa)
|
9288 |
|
|
{
|
9289 |
|
|
/* We only want to emit a .nsubspa directive once at the
|
9290 |
|
|
start of the function. */
|
9291 |
|
|
cfun->machine->in_nsubspa = 1;
|
9292 |
|
|
|
9293 |
|
|
/* Create a new subspace for the text. This provides
|
9294 |
|
|
better stub placement and one-only functions. */
|
9295 |
|
|
if (cfun->decl
|
9296 |
|
|
&& DECL_ONE_ONLY (cfun->decl)
|
9297 |
|
|
&& !DECL_WEAK (cfun->decl))
|
9298 |
|
|
{
|
9299 |
|
|
output_section_asm_op ("\t.SPACE $TEXT$\n"
|
9300 |
|
|
"\t.NSUBSPA $CODE$,QUAD=0,ALIGN=8,"
|
9301 |
|
|
"ACCESS=44,SORT=24,COMDAT");
|
9302 |
|
|
return;
|
9303 |
|
|
}
|
9304 |
|
|
}
|
9305 |
|
|
else
|
9306 |
|
|
{
|
9307 |
|
|
/* There isn't a current function or the body of the current
|
9308 |
|
|
function has been completed. So, we are changing to the
|
9309 |
|
|
text section to output debugging information. Thus, we
|
9310 |
|
|
need to forget that we are in the text section so that
|
9311 |
|
|
varasm.c will call us when text_section is selected again. */
|
9312 |
|
|
gcc_assert (!cfun || !cfun->machine
|
9313 |
|
|
|| cfun->machine->in_nsubspa == 2);
|
9314 |
|
|
in_section = NULL;
|
9315 |
|
|
}
|
9316 |
|
|
output_section_asm_op ("\t.SPACE $TEXT$\n\t.NSUBSPA $CODE$");
|
9317 |
|
|
return;
|
9318 |
|
|
}
|
9319 |
|
|
output_section_asm_op ("\t.SPACE $TEXT$\n\t.SUBSPA $CODE$");
|
9320 |
|
|
}
|
9321 |
|
|
|
9322 |
|
|
/* A get_unnamed_section callback for switching to comdat data
|
9323 |
|
|
sections. This function is only used with SOM. */
|
9324 |
|
|
|
9325 |
|
|
static void
|
9326 |
|
|
som_output_comdat_data_section_asm_op (const void *data)
|
9327 |
|
|
{
|
9328 |
|
|
in_section = NULL;
|
9329 |
|
|
output_section_asm_op (data);
|
9330 |
|
|
}
|
9331 |
|
|
|
9332 |
|
|
/* Implement TARGET_ASM_INITIALIZE_SECTIONS */
|
9333 |
|
|
|
9334 |
|
|
static void
|
9335 |
|
|
pa_som_asm_init_sections (void)
|
9336 |
|
|
{
|
9337 |
|
|
text_section
|
9338 |
|
|
= get_unnamed_section (0, som_output_text_section_asm_op, NULL);
|
9339 |
|
|
|
9340 |
|
|
/* SOM puts readonly data in the default $LIT$ subspace when PIC code
|
9341 |
|
|
is not being generated. */
|
9342 |
|
|
som_readonly_data_section
|
9343 |
|
|
= get_unnamed_section (0, output_section_asm_op,
|
9344 |
|
|
"\t.SPACE $TEXT$\n\t.SUBSPA $LIT$");
|
9345 |
|
|
|
9346 |
|
|
/* When secondary definitions are not supported, SOM makes readonly
|
9347 |
|
|
data one-only by creating a new $LIT$ subspace in $TEXT$ with
|
9348 |
|
|
the comdat flag. */
|
9349 |
|
|
som_one_only_readonly_data_section
|
9350 |
|
|
= get_unnamed_section (0, som_output_comdat_data_section_asm_op,
|
9351 |
|
|
"\t.SPACE $TEXT$\n"
|
9352 |
|
|
"\t.NSUBSPA $LIT$,QUAD=0,ALIGN=8,"
|
9353 |
|
|
"ACCESS=0x2c,SORT=16,COMDAT");
|
9354 |
|
|
|
9355 |
|
|
|
9356 |
|
|
/* When secondary definitions are not supported, SOM makes data one-only
|
9357 |
|
|
by creating a new $DATA$ subspace in $PRIVATE$ with the comdat flag. */
|
9358 |
|
|
som_one_only_data_section
|
9359 |
|
|
= get_unnamed_section (SECTION_WRITE,
|
9360 |
|
|
som_output_comdat_data_section_asm_op,
|
9361 |
|
|
"\t.SPACE $PRIVATE$\n"
|
9362 |
|
|
"\t.NSUBSPA $DATA$,QUAD=1,ALIGN=8,"
|
9363 |
|
|
"ACCESS=31,SORT=24,COMDAT");
|
9364 |
|
|
|
9365 |
|
|
/* FIXME: HPUX ld generates incorrect GOT entries for "T" fixups
|
9366 |
|
|
which reference data within the $TEXT$ space (for example constant
|
9367 |
|
|
strings in the $LIT$ subspace).
|
9368 |
|
|
|
9369 |
|
|
The assemblers (GAS and HP as) both have problems with handling
|
9370 |
|
|
the difference of two symbols which is the other correct way to
|
9371 |
|
|
reference constant data during PIC code generation.
|
9372 |
|
|
|
9373 |
|
|
So, there's no way to reference constant data which is in the
|
9374 |
|
|
$TEXT$ space during PIC generation. Instead place all constant
|
9375 |
|
|
data into the $PRIVATE$ subspace (this reduces sharing, but it
|
9376 |
|
|
works correctly). */
|
9377 |
|
|
readonly_data_section = flag_pic ? data_section : som_readonly_data_section;
|
9378 |
|
|
|
9379 |
|
|
/* We must not have a reference to an external symbol defined in a
|
9380 |
|
|
shared library in a readonly section, else the SOM linker will
|
9381 |
|
|
complain.
|
9382 |
|
|
|
9383 |
|
|
So, we force exception information into the data section. */
|
9384 |
|
|
exception_section = data_section;
|
9385 |
|
|
}
|
9386 |
|
|
|
9387 |
|
|
/* On hpux10, the linker will give an error if we have a reference
|
9388 |
|
|
in the read-only data section to a symbol defined in a shared
|
9389 |
|
|
library. Therefore, expressions that might require a reloc can
|
9390 |
|
|
not be placed in the read-only data section. */
|
9391 |
|
|
|
9392 |
|
|
static section *
|
9393 |
|
|
pa_select_section (tree exp, int reloc,
|
9394 |
|
|
unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
|
9395 |
|
|
{
|
9396 |
|
|
if (TREE_CODE (exp) == VAR_DECL
|
9397 |
|
|
&& TREE_READONLY (exp)
|
9398 |
|
|
&& !TREE_THIS_VOLATILE (exp)
|
9399 |
|
|
&& DECL_INITIAL (exp)
|
9400 |
|
|
&& (DECL_INITIAL (exp) == error_mark_node
|
9401 |
|
|
|| TREE_CONSTANT (DECL_INITIAL (exp)))
|
9402 |
|
|
&& !reloc)
|
9403 |
|
|
{
|
9404 |
|
|
if (TARGET_SOM
|
9405 |
|
|
&& DECL_ONE_ONLY (exp)
|
9406 |
|
|
&& !DECL_WEAK (exp))
|
9407 |
|
|
return som_one_only_readonly_data_section;
|
9408 |
|
|
else
|
9409 |
|
|
return readonly_data_section;
|
9410 |
|
|
}
|
9411 |
|
|
else if (CONSTANT_CLASS_P (exp) && !reloc)
|
9412 |
|
|
return readonly_data_section;
|
9413 |
|
|
else if (TARGET_SOM
|
9414 |
|
|
&& TREE_CODE (exp) == VAR_DECL
|
9415 |
|
|
&& DECL_ONE_ONLY (exp)
|
9416 |
|
|
&& !DECL_WEAK (exp))
|
9417 |
|
|
return som_one_only_data_section;
|
9418 |
|
|
else
|
9419 |
|
|
return data_section;
|
9420 |
|
|
}
|
9421 |
|
|
|
9422 |
|
|
static void
|
9423 |
|
|
pa_globalize_label (FILE *stream, const char *name)
|
9424 |
|
|
{
|
9425 |
|
|
/* We only handle DATA objects here, functions are globalized in
|
9426 |
|
|
ASM_DECLARE_FUNCTION_NAME. */
|
9427 |
|
|
if (! FUNCTION_NAME_P (name))
|
9428 |
|
|
{
|
9429 |
|
|
fputs ("\t.EXPORT ", stream);
|
9430 |
|
|
assemble_name (stream, name);
|
9431 |
|
|
fputs (",DATA\n", stream);
|
9432 |
|
|
}
|
9433 |
|
|
}
|
9434 |
|
|
|
9435 |
|
|
/* Worker function for TARGET_STRUCT_VALUE_RTX. */
|
9436 |
|
|
|
9437 |
|
|
static rtx
|
9438 |
|
|
pa_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
|
9439 |
|
|
int incoming ATTRIBUTE_UNUSED)
|
9440 |
|
|
{
|
9441 |
|
|
return gen_rtx_REG (Pmode, PA_STRUCT_VALUE_REGNUM);
|
9442 |
|
|
}
|
9443 |
|
|
|
9444 |
|
|
/* Worker function for TARGET_RETURN_IN_MEMORY. */
|
9445 |
|
|
|
9446 |
|
|
bool
|
9447 |
|
|
pa_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
|
9448 |
|
|
{
|
9449 |
|
|
/* SOM ABI says that objects larger than 64 bits are returned in memory.
|
9450 |
|
|
PA64 ABI says that objects larger than 128 bits are returned in memory.
|
9451 |
|
|
Note, int_size_in_bytes can return -1 if the size of the object is
|
9452 |
|
|
variable or larger than the maximum value that can be expressed as
|
9453 |
|
|
a HOST_WIDE_INT. It can also return zero for an empty type. The
|
9454 |
|
|
simplest way to handle variable and empty types is to pass them in
|
9455 |
|
|
memory. This avoids problems in defining the boundaries of argument
|
9456 |
|
|
slots, allocating registers, etc. */
|
9457 |
|
|
return (int_size_in_bytes (type) > (TARGET_64BIT ? 16 : 8)
|
9458 |
|
|
|| int_size_in_bytes (type) <= 0);
|
9459 |
|
|
}
|
9460 |
|
|
|
9461 |
|
|
/* Structure to hold declaration and name of external symbols that are
|
9462 |
|
|
emitted by GCC. We generate a vector of these symbols and output them
|
9463 |
|
|
at the end of the file if and only if SYMBOL_REF_REFERENCED_P is true.
|
9464 |
|
|
This avoids putting out names that are never really used. */
|
9465 |
|
|
|
9466 |
|
|
typedef struct extern_symbol GTY(())
|
9467 |
|
|
{
|
9468 |
|
|
tree decl;
|
9469 |
|
|
const char *name;
|
9470 |
|
|
} extern_symbol;
|
9471 |
|
|
|
9472 |
|
|
/* Define gc'd vector type for extern_symbol. */
|
9473 |
|
|
DEF_VEC_O(extern_symbol);
|
9474 |
|
|
DEF_VEC_ALLOC_O(extern_symbol,gc);
|
9475 |
|
|
|
9476 |
|
|
/* Vector of extern_symbol pointers. */
|
9477 |
|
|
static GTY(()) VEC(extern_symbol,gc) *extern_symbols;
|
9478 |
|
|
|
9479 |
|
|
#ifdef ASM_OUTPUT_EXTERNAL_REAL
|
9480 |
|
|
/* Mark DECL (name NAME) as an external reference (assembler output
|
9481 |
|
|
file FILE). This saves the names to output at the end of the file
|
9482 |
|
|
if actually referenced. */
|
9483 |
|
|
|
9484 |
|
|
void
|
9485 |
|
|
pa_hpux_asm_output_external (FILE *file, tree decl, const char *name)
|
9486 |
|
|
{
|
9487 |
|
|
extern_symbol * p = VEC_safe_push (extern_symbol, gc, extern_symbols, NULL);
|
9488 |
|
|
|
9489 |
|
|
gcc_assert (file == asm_out_file);
|
9490 |
|
|
p->decl = decl;
|
9491 |
|
|
p->name = name;
|
9492 |
|
|
}
|
9493 |
|
|
|
9494 |
|
|
/* Output text required at the end of an assembler file.
|
9495 |
|
|
This includes deferred plabels and .import directives for
|
9496 |
|
|
all external symbols that were actually referenced. */
|
9497 |
|
|
|
9498 |
|
|
static void
|
9499 |
|
|
pa_hpux_file_end (void)
|
9500 |
|
|
{
|
9501 |
|
|
unsigned int i;
|
9502 |
|
|
extern_symbol *p;
|
9503 |
|
|
|
9504 |
|
|
if (!NO_DEFERRED_PROFILE_COUNTERS)
|
9505 |
|
|
output_deferred_profile_counters ();
|
9506 |
|
|
|
9507 |
|
|
output_deferred_plabels ();
|
9508 |
|
|
|
9509 |
|
|
for (i = 0; VEC_iterate (extern_symbol, extern_symbols, i, p); i++)
|
9510 |
|
|
{
|
9511 |
|
|
tree decl = p->decl;
|
9512 |
|
|
|
9513 |
|
|
if (!TREE_ASM_WRITTEN (decl)
|
9514 |
|
|
&& SYMBOL_REF_REFERENCED_P (XEXP (DECL_RTL (decl), 0)))
|
9515 |
|
|
ASM_OUTPUT_EXTERNAL_REAL (asm_out_file, decl, p->name);
|
9516 |
|
|
}
|
9517 |
|
|
|
9518 |
|
|
VEC_free (extern_symbol, gc, extern_symbols);
|
9519 |
|
|
}
|
9520 |
|
|
#endif
|
9521 |
|
|
|
9522 |
|
|
#include "gt-pa.h"
|