1 |
38 |
julius |
/* Output routines for GCC for Renesas / SuperH SH.
|
2 |
|
|
Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
3 |
|
|
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Steve Chamberlain (sac@cygnus.com).
|
5 |
|
|
Improved by Jim Wilson (wilson@cygnus.com).
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#include "config.h"
|
24 |
|
|
#include "system.h"
|
25 |
|
|
#include "coretypes.h"
|
26 |
|
|
#include "tm.h"
|
27 |
|
|
#include "insn-config.h"
|
28 |
|
|
#include "rtl.h"
|
29 |
|
|
#include "tree.h"
|
30 |
|
|
#include "flags.h"
|
31 |
|
|
#include "expr.h"
|
32 |
|
|
#include "optabs.h"
|
33 |
|
|
#include "function.h"
|
34 |
|
|
#include "regs.h"
|
35 |
|
|
#include "hard-reg-set.h"
|
36 |
|
|
#include "output.h"
|
37 |
|
|
#include "insn-attr.h"
|
38 |
|
|
#include "toplev.h"
|
39 |
|
|
#include "recog.h"
|
40 |
|
|
#include "c-pragma.h"
|
41 |
|
|
#include "integrate.h"
|
42 |
|
|
#include "dwarf2.h"
|
43 |
|
|
#include "tm_p.h"
|
44 |
|
|
#include "target.h"
|
45 |
|
|
#include "target-def.h"
|
46 |
|
|
#include "real.h"
|
47 |
|
|
#include "langhooks.h"
|
48 |
|
|
#include "basic-block.h"
|
49 |
|
|
#include "cfglayout.h"
|
50 |
|
|
#include "intl.h"
|
51 |
|
|
#include "sched-int.h"
|
52 |
|
|
#include "ggc.h"
|
53 |
|
|
#include "tree-gimple.h"
|
54 |
|
|
#include "cfgloop.h"
|
55 |
|
|
#include "alloc-pool.h"
|
56 |
|
|
|
57 |
|
|
|
58 |
|
|
int code_for_indirect_jump_scratch = CODE_FOR_indirect_jump_scratch;
|
59 |
|
|
|
60 |
|
|
#define MSW (TARGET_LITTLE_ENDIAN ? 1 : 0)
|
61 |
|
|
#define LSW (TARGET_LITTLE_ENDIAN ? 0 : 1)
|
62 |
|
|
|
63 |
|
|
/* These are some macros to abstract register modes. */
|
64 |
|
|
#define CONST_OK_FOR_ADD(size) \
|
65 |
|
|
(TARGET_SHMEDIA ? CONST_OK_FOR_I10 (size) : CONST_OK_FOR_I08 (size))
|
66 |
|
|
#define GEN_MOV (*(TARGET_SHMEDIA64 ? gen_movdi : gen_movsi))
|
67 |
|
|
#define GEN_ADD3 (*(TARGET_SHMEDIA64 ? gen_adddi3 : gen_addsi3))
|
68 |
|
|
#define GEN_SUB3 (*(TARGET_SHMEDIA64 ? gen_subdi3 : gen_subsi3))
|
69 |
|
|
|
70 |
|
|
/* Set to 1 by expand_prologue() when the function is an interrupt handler. */
|
71 |
|
|
int current_function_interrupt;
|
72 |
|
|
|
73 |
|
|
tree sh_deferred_function_attributes;
|
74 |
|
|
tree *sh_deferred_function_attributes_tail = &sh_deferred_function_attributes;
|
75 |
|
|
|
76 |
|
|
/* Global variables for machine-dependent things. */
|
77 |
|
|
|
78 |
|
|
/* Which cpu are we scheduling for. */
|
79 |
|
|
enum processor_type sh_cpu;
|
80 |
|
|
|
81 |
|
|
/* Definitions used in ready queue reordering for first scheduling pass. */
|
82 |
|
|
|
83 |
|
|
/* Reg weights arrays for modes SFmode and SImode, indexed by insn LUID. */
|
84 |
|
|
static short *regmode_weight[2];
|
85 |
|
|
|
86 |
|
|
/* Total SFmode and SImode weights of scheduled insns. */
|
87 |
|
|
static int curr_regmode_pressure[2];
|
88 |
|
|
|
89 |
|
|
/* If true, skip cycles for Q -> R movement. */
|
90 |
|
|
static int skip_cycles = 0;
|
91 |
|
|
|
92 |
|
|
/* Cached value of can_issue_more. This is cached in sh_variable_issue hook
|
93 |
|
|
and returned from sh_reorder2. */
|
94 |
|
|
static short cached_can_issue_more;
|
95 |
|
|
|
96 |
|
|
/* Saved operands from the last compare to use when we generate an scc
|
97 |
|
|
or bcc insn. */
|
98 |
|
|
|
99 |
|
|
rtx sh_compare_op0;
|
100 |
|
|
rtx sh_compare_op1;
|
101 |
|
|
|
102 |
|
|
/* Provides the class number of the smallest class containing
|
103 |
|
|
reg number. */
|
104 |
|
|
|
105 |
|
|
enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER] =
|
106 |
|
|
{
|
107 |
|
|
R0_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
108 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
109 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
110 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
111 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
112 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
113 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
114 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
115 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
116 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
117 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
118 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
119 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
120 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
121 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
122 |
|
|
GENERAL_REGS, GENERAL_REGS, GENERAL_REGS, GENERAL_REGS,
|
123 |
|
|
FP0_REGS,FP_REGS, FP_REGS, FP_REGS,
|
124 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
125 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
126 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
127 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
128 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
129 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
130 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
131 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
132 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
133 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
134 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
135 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
136 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
137 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
138 |
|
|
FP_REGS, FP_REGS, FP_REGS, FP_REGS,
|
139 |
|
|
TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS,
|
140 |
|
|
TARGET_REGS, TARGET_REGS, TARGET_REGS, TARGET_REGS,
|
141 |
|
|
DF_REGS, DF_REGS, DF_REGS, DF_REGS,
|
142 |
|
|
DF_REGS, DF_REGS, DF_REGS, DF_REGS,
|
143 |
|
|
NO_REGS, GENERAL_REGS, PR_REGS, T_REGS,
|
144 |
|
|
MAC_REGS, MAC_REGS, FPUL_REGS, FPSCR_REGS,
|
145 |
|
|
GENERAL_REGS, GENERAL_REGS,
|
146 |
|
|
};
|
147 |
|
|
|
148 |
|
|
char sh_register_names[FIRST_PSEUDO_REGISTER] \
|
149 |
|
|
[MAX_REGISTER_NAME_LENGTH + 1] = SH_REGISTER_NAMES_INITIALIZER;
|
150 |
|
|
|
151 |
|
|
char sh_additional_register_names[ADDREGNAMES_SIZE] \
|
152 |
|
|
[MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1]
|
153 |
|
|
= SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER;
|
154 |
|
|
|
155 |
|
|
/* Provide reg_class from a letter such as appears in the machine
|
156 |
|
|
description. *: target independently reserved letter.
|
157 |
|
|
reg_class_from_letter['e' - 'a'] is set to NO_REGS for TARGET_FMOVD. */
|
158 |
|
|
|
159 |
|
|
enum reg_class reg_class_from_letter[] =
|
160 |
|
|
{
|
161 |
|
|
/* a */ ALL_REGS, /* b */ TARGET_REGS, /* c */ FPSCR_REGS, /* d */ DF_REGS,
|
162 |
|
|
/* e */ FP_REGS, /* f */ FP_REGS, /* g **/ NO_REGS, /* h */ NO_REGS,
|
163 |
|
|
/* i **/ NO_REGS, /* j */ NO_REGS, /* k */ SIBCALL_REGS, /* l */ PR_REGS,
|
164 |
|
|
/* m **/ NO_REGS, /* n **/ NO_REGS, /* o **/ NO_REGS, /* p **/ NO_REGS,
|
165 |
|
|
/* q */ NO_REGS, /* r **/ NO_REGS, /* s **/ NO_REGS, /* t */ T_REGS,
|
166 |
|
|
/* u */ NO_REGS, /* v */ NO_REGS, /* w */ FP0_REGS, /* x */ MAC_REGS,
|
167 |
|
|
/* y */ FPUL_REGS, /* z */ R0_REGS
|
168 |
|
|
};
|
169 |
|
|
|
170 |
|
|
int assembler_dialect;
|
171 |
|
|
|
172 |
|
|
static bool shmedia_space_reserved_for_target_registers;
|
173 |
|
|
|
174 |
|
|
static bool sh_handle_option (size_t, const char *, int);
|
175 |
|
|
static void split_branches (rtx);
|
176 |
|
|
static int branch_dest (rtx);
|
177 |
|
|
static void force_into (rtx, rtx);
|
178 |
|
|
static void print_slot (rtx);
|
179 |
|
|
static rtx add_constant (rtx, enum machine_mode, rtx);
|
180 |
|
|
static void dump_table (rtx, rtx);
|
181 |
|
|
static int hi_const (rtx);
|
182 |
|
|
static int broken_move (rtx);
|
183 |
|
|
static int mova_p (rtx);
|
184 |
|
|
static rtx find_barrier (int, rtx, rtx);
|
185 |
|
|
static int noncall_uses_reg (rtx, rtx, rtx *);
|
186 |
|
|
static rtx gen_block_redirect (rtx, int, int);
|
187 |
|
|
static void sh_reorg (void);
|
188 |
|
|
static void output_stack_adjust (int, rtx, int, HARD_REG_SET *);
|
189 |
|
|
static rtx frame_insn (rtx);
|
190 |
|
|
static rtx push (int);
|
191 |
|
|
static void pop (int);
|
192 |
|
|
static void push_regs (HARD_REG_SET *, int);
|
193 |
|
|
static int calc_live_regs (HARD_REG_SET *);
|
194 |
|
|
static void mark_use (rtx, rtx *);
|
195 |
|
|
static HOST_WIDE_INT rounded_frame_size (int);
|
196 |
|
|
static rtx mark_constant_pool_use (rtx);
|
197 |
|
|
const struct attribute_spec sh_attribute_table[];
|
198 |
|
|
static tree sh_handle_interrupt_handler_attribute (tree *, tree, tree, int, bool *);
|
199 |
|
|
static tree sh_handle_sp_switch_attribute (tree *, tree, tree, int, bool *);
|
200 |
|
|
static tree sh_handle_trap_exit_attribute (tree *, tree, tree, int, bool *);
|
201 |
|
|
static tree sh_handle_renesas_attribute (tree *, tree, tree, int, bool *);
|
202 |
|
|
static void sh_output_function_epilogue (FILE *, HOST_WIDE_INT);
|
203 |
|
|
static void sh_insert_attributes (tree, tree *);
|
204 |
|
|
static const char *sh_check_pch_target_flags (int);
|
205 |
|
|
static int sh_adjust_cost (rtx, rtx, rtx, int);
|
206 |
|
|
static int sh_issue_rate (void);
|
207 |
|
|
static int sh_dfa_new_cycle (FILE *, int, rtx, int, int, int *sort_p);
|
208 |
|
|
static short find_set_regmode_weight (rtx, enum machine_mode);
|
209 |
|
|
static short find_insn_regmode_weight (rtx, enum machine_mode);
|
210 |
|
|
static void find_regmode_weight (basic_block, enum machine_mode);
|
211 |
|
|
static void sh_md_init_global (FILE *, int, int);
|
212 |
|
|
static void sh_md_finish_global (FILE *, int);
|
213 |
|
|
static int rank_for_reorder (const void *, const void *);
|
214 |
|
|
static void swap_reorder (rtx *, int);
|
215 |
|
|
static void ready_reorder (rtx *, int);
|
216 |
|
|
static short high_pressure (enum machine_mode);
|
217 |
|
|
static int sh_reorder (FILE *, int, rtx *, int *, int);
|
218 |
|
|
static int sh_reorder2 (FILE *, int, rtx *, int *, int);
|
219 |
|
|
static void sh_md_init (FILE *, int, int);
|
220 |
|
|
static int sh_variable_issue (FILE *, int, rtx, int);
|
221 |
|
|
|
222 |
|
|
static bool sh_function_ok_for_sibcall (tree, tree);
|
223 |
|
|
|
224 |
|
|
static bool sh_cannot_modify_jumps_p (void);
|
225 |
|
|
static int sh_target_reg_class (void);
|
226 |
|
|
static bool sh_optimize_target_register_callee_saved (bool);
|
227 |
|
|
static bool sh_ms_bitfield_layout_p (tree);
|
228 |
|
|
|
229 |
|
|
static void sh_init_builtins (void);
|
230 |
|
|
static void sh_media_init_builtins (void);
|
231 |
|
|
static rtx sh_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
|
232 |
|
|
static void sh_output_mi_thunk (FILE *, tree, HOST_WIDE_INT, HOST_WIDE_INT, tree);
|
233 |
|
|
static void sh_file_start (void);
|
234 |
|
|
static int flow_dependent_p (rtx, rtx);
|
235 |
|
|
static void flow_dependent_p_1 (rtx, rtx, void *);
|
236 |
|
|
static int shiftcosts (rtx);
|
237 |
|
|
static int andcosts (rtx);
|
238 |
|
|
static int addsubcosts (rtx);
|
239 |
|
|
static int multcosts (rtx);
|
240 |
|
|
static bool unspec_caller_rtx_p (rtx);
|
241 |
|
|
static bool sh_cannot_copy_insn_p (rtx);
|
242 |
|
|
static bool sh_rtx_costs (rtx, int, int, int *);
|
243 |
|
|
static int sh_address_cost (rtx);
|
244 |
|
|
#ifdef TARGET_ADJUST_UNROLL_MAX
|
245 |
|
|
static int sh_adjust_unroll_max (struct loop *, int, int, int, int);
|
246 |
|
|
#endif
|
247 |
|
|
static int sh_pr_n_sets (void);
|
248 |
|
|
static rtx sh_allocate_initial_value (rtx);
|
249 |
|
|
static int shmedia_target_regs_stack_space (HARD_REG_SET *);
|
250 |
|
|
static int shmedia_reserve_space_for_target_registers_p (int, HARD_REG_SET *);
|
251 |
|
|
static int shmedia_target_regs_stack_adjust (HARD_REG_SET *);
|
252 |
|
|
static int scavenge_reg (HARD_REG_SET *s);
|
253 |
|
|
struct save_schedule_s;
|
254 |
|
|
static struct save_entry_s *sh5_schedule_saves (HARD_REG_SET *,
|
255 |
|
|
struct save_schedule_s *, int);
|
256 |
|
|
|
257 |
|
|
static rtx sh_struct_value_rtx (tree, int);
|
258 |
|
|
static bool sh_return_in_memory (tree, tree);
|
259 |
|
|
static rtx sh_builtin_saveregs (void);
|
260 |
|
|
static void sh_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode, tree, int *, int);
|
261 |
|
|
static bool sh_strict_argument_naming (CUMULATIVE_ARGS *);
|
262 |
|
|
static bool sh_pretend_outgoing_varargs_named (CUMULATIVE_ARGS *);
|
263 |
|
|
static tree sh_build_builtin_va_list (void);
|
264 |
|
|
static tree sh_gimplify_va_arg_expr (tree, tree, tree *, tree *);
|
265 |
|
|
static bool sh_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
|
266 |
|
|
tree, bool);
|
267 |
|
|
static bool sh_callee_copies (CUMULATIVE_ARGS *, enum machine_mode,
|
268 |
|
|
tree, bool);
|
269 |
|
|
static int sh_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
|
270 |
|
|
tree, bool);
|
271 |
|
|
static int sh_dwarf_calling_convention (tree);
|
272 |
|
|
static int hard_regs_intersect_p (HARD_REG_SET *, HARD_REG_SET *);
|
273 |
|
|
|
274 |
|
|
|
275 |
|
|
/* Initialize the GCC target structure. */
|
276 |
|
|
#undef TARGET_ATTRIBUTE_TABLE
|
277 |
|
|
#define TARGET_ATTRIBUTE_TABLE sh_attribute_table
|
278 |
|
|
|
279 |
|
|
/* The next two are used for debug info when compiling with -gdwarf. */
|
280 |
|
|
#undef TARGET_ASM_UNALIGNED_HI_OP
|
281 |
|
|
#define TARGET_ASM_UNALIGNED_HI_OP "\t.uaword\t"
|
282 |
|
|
#undef TARGET_ASM_UNALIGNED_SI_OP
|
283 |
|
|
#define TARGET_ASM_UNALIGNED_SI_OP "\t.ualong\t"
|
284 |
|
|
|
285 |
|
|
/* These are NULLed out on non-SH5 in OVERRIDE_OPTIONS. */
|
286 |
|
|
#undef TARGET_ASM_UNALIGNED_DI_OP
|
287 |
|
|
#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaquad\t"
|
288 |
|
|
#undef TARGET_ASM_ALIGNED_DI_OP
|
289 |
|
|
#define TARGET_ASM_ALIGNED_DI_OP "\t.quad\t"
|
290 |
|
|
|
291 |
|
|
#undef TARGET_ASM_FUNCTION_EPILOGUE
|
292 |
|
|
#define TARGET_ASM_FUNCTION_EPILOGUE sh_output_function_epilogue
|
293 |
|
|
|
294 |
|
|
#undef TARGET_ASM_OUTPUT_MI_THUNK
|
295 |
|
|
#define TARGET_ASM_OUTPUT_MI_THUNK sh_output_mi_thunk
|
296 |
|
|
|
297 |
|
|
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
|
298 |
|
|
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_tree_hwi_hwi_tree_true
|
299 |
|
|
|
300 |
|
|
#undef TARGET_ASM_FILE_START
|
301 |
|
|
#define TARGET_ASM_FILE_START sh_file_start
|
302 |
|
|
#undef TARGET_ASM_FILE_START_FILE_DIRECTIVE
|
303 |
|
|
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true
|
304 |
|
|
|
305 |
|
|
#undef TARGET_DEFAULT_TARGET_FLAGS
|
306 |
|
|
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
|
307 |
|
|
#undef TARGET_HANDLE_OPTION
|
308 |
|
|
#define TARGET_HANDLE_OPTION sh_handle_option
|
309 |
|
|
|
310 |
|
|
#undef TARGET_INSERT_ATTRIBUTES
|
311 |
|
|
#define TARGET_INSERT_ATTRIBUTES sh_insert_attributes
|
312 |
|
|
|
313 |
|
|
#undef TARGET_SCHED_ADJUST_COST
|
314 |
|
|
#define TARGET_SCHED_ADJUST_COST sh_adjust_cost
|
315 |
|
|
|
316 |
|
|
#undef TARGET_SCHED_ISSUE_RATE
|
317 |
|
|
#define TARGET_SCHED_ISSUE_RATE sh_issue_rate
|
318 |
|
|
|
319 |
|
|
/* The next 5 hooks have been implemented for reenabling sched1. With the
|
320 |
|
|
help of these macros we are limiting the movement of insns in sched1 to
|
321 |
|
|
reduce the register pressure. The overall idea is to keep count of SImode
|
322 |
|
|
and SFmode regs required by already scheduled insns. When these counts
|
323 |
|
|
cross some threshold values; give priority to insns that free registers.
|
324 |
|
|
The insn that frees registers is most likely to be the insn with lowest
|
325 |
|
|
LUID (original insn order); but such an insn might be there in the stalled
|
326 |
|
|
queue (Q) instead of the ready queue (R). To solve this, we skip cycles
|
327 |
|
|
upto a max of 8 cycles so that such insns may move from Q -> R.
|
328 |
|
|
|
329 |
|
|
The description of the hooks are as below:
|
330 |
|
|
|
331 |
|
|
TARGET_SCHED_INIT_GLOBAL: Added a new target hook in the generic
|
332 |
|
|
scheduler; it is called inside the sched_init function just after
|
333 |
|
|
find_insn_reg_weights function call. It is used to calculate the SImode
|
334 |
|
|
and SFmode weights of insns of basic blocks; much similar to what
|
335 |
|
|
find_insn_reg_weights does.
|
336 |
|
|
TARGET_SCHED_FINISH_GLOBAL: Corresponding cleanup hook.
|
337 |
|
|
|
338 |
|
|
TARGET_SCHED_DFA_NEW_CYCLE: Skip cycles if high register pressure is
|
339 |
|
|
indicated by TARGET_SCHED_REORDER2; doing this may move insns from
|
340 |
|
|
(Q)->(R).
|
341 |
|
|
|
342 |
|
|
TARGET_SCHED_REORDER: If the register pressure for SImode or SFmode is
|
343 |
|
|
high; reorder the ready queue so that the insn with lowest LUID will be
|
344 |
|
|
issued next.
|
345 |
|
|
|
346 |
|
|
TARGET_SCHED_REORDER2: If the register pressure is high, indicate to
|
347 |
|
|
TARGET_SCHED_DFA_NEW_CYCLE to skip cycles.
|
348 |
|
|
|
349 |
|
|
TARGET_SCHED_VARIABLE_ISSUE: Cache the value of can_issue_more so that it
|
350 |
|
|
can be returned from TARGET_SCHED_REORDER2.
|
351 |
|
|
|
352 |
|
|
TARGET_SCHED_INIT: Reset the register pressure counting variables. */
|
353 |
|
|
|
354 |
|
|
#undef TARGET_SCHED_DFA_NEW_CYCLE
|
355 |
|
|
#define TARGET_SCHED_DFA_NEW_CYCLE sh_dfa_new_cycle
|
356 |
|
|
|
357 |
|
|
#undef TARGET_SCHED_INIT_GLOBAL
|
358 |
|
|
#define TARGET_SCHED_INIT_GLOBAL sh_md_init_global
|
359 |
|
|
|
360 |
|
|
#undef TARGET_SCHED_FINISH_GLOBAL
|
361 |
|
|
#define TARGET_SCHED_FINISH_GLOBAL sh_md_finish_global
|
362 |
|
|
|
363 |
|
|
#undef TARGET_SCHED_VARIABLE_ISSUE
|
364 |
|
|
#define TARGET_SCHED_VARIABLE_ISSUE sh_variable_issue
|
365 |
|
|
|
366 |
|
|
#undef TARGET_SCHED_REORDER
|
367 |
|
|
#define TARGET_SCHED_REORDER sh_reorder
|
368 |
|
|
|
369 |
|
|
#undef TARGET_SCHED_REORDER2
|
370 |
|
|
#define TARGET_SCHED_REORDER2 sh_reorder2
|
371 |
|
|
|
372 |
|
|
#undef TARGET_SCHED_INIT
|
373 |
|
|
#define TARGET_SCHED_INIT sh_md_init
|
374 |
|
|
|
375 |
|
|
#undef TARGET_CANNOT_MODIFY_JUMPS_P
|
376 |
|
|
#define TARGET_CANNOT_MODIFY_JUMPS_P sh_cannot_modify_jumps_p
|
377 |
|
|
#undef TARGET_BRANCH_TARGET_REGISTER_CLASS
|
378 |
|
|
#define TARGET_BRANCH_TARGET_REGISTER_CLASS sh_target_reg_class
|
379 |
|
|
#undef TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED
|
380 |
|
|
#define TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED \
|
381 |
|
|
sh_optimize_target_register_callee_saved
|
382 |
|
|
|
383 |
|
|
#undef TARGET_MS_BITFIELD_LAYOUT_P
|
384 |
|
|
#define TARGET_MS_BITFIELD_LAYOUT_P sh_ms_bitfield_layout_p
|
385 |
|
|
|
386 |
|
|
#undef TARGET_INIT_BUILTINS
|
387 |
|
|
#define TARGET_INIT_BUILTINS sh_init_builtins
|
388 |
|
|
#undef TARGET_EXPAND_BUILTIN
|
389 |
|
|
#define TARGET_EXPAND_BUILTIN sh_expand_builtin
|
390 |
|
|
|
391 |
|
|
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
|
392 |
|
|
#define TARGET_FUNCTION_OK_FOR_SIBCALL sh_function_ok_for_sibcall
|
393 |
|
|
|
394 |
|
|
#undef TARGET_CANNOT_COPY_INSN_P
|
395 |
|
|
#define TARGET_CANNOT_COPY_INSN_P sh_cannot_copy_insn_p
|
396 |
|
|
#undef TARGET_RTX_COSTS
|
397 |
|
|
#define TARGET_RTX_COSTS sh_rtx_costs
|
398 |
|
|
#undef TARGET_ADDRESS_COST
|
399 |
|
|
#define TARGET_ADDRESS_COST sh_address_cost
|
400 |
|
|
#undef TARGET_ALLOCATE_INITIAL_VALUE
|
401 |
|
|
#define TARGET_ALLOCATE_INITIAL_VALUE sh_allocate_initial_value
|
402 |
|
|
|
403 |
|
|
#undef TARGET_MACHINE_DEPENDENT_REORG
|
404 |
|
|
#define TARGET_MACHINE_DEPENDENT_REORG sh_reorg
|
405 |
|
|
|
406 |
|
|
#ifdef HAVE_AS_TLS
|
407 |
|
|
#undef TARGET_HAVE_TLS
|
408 |
|
|
#define TARGET_HAVE_TLS true
|
409 |
|
|
#endif
|
410 |
|
|
|
411 |
|
|
#undef TARGET_PROMOTE_PROTOTYPES
|
412 |
|
|
#define TARGET_PROMOTE_PROTOTYPES sh_promote_prototypes
|
413 |
|
|
#undef TARGET_PROMOTE_FUNCTION_ARGS
|
414 |
|
|
#define TARGET_PROMOTE_FUNCTION_ARGS sh_promote_prototypes
|
415 |
|
|
#undef TARGET_PROMOTE_FUNCTION_RETURN
|
416 |
|
|
#define TARGET_PROMOTE_FUNCTION_RETURN sh_promote_prototypes
|
417 |
|
|
|
418 |
|
|
#undef TARGET_STRUCT_VALUE_RTX
|
419 |
|
|
#define TARGET_STRUCT_VALUE_RTX sh_struct_value_rtx
|
420 |
|
|
#undef TARGET_RETURN_IN_MEMORY
|
421 |
|
|
#define TARGET_RETURN_IN_MEMORY sh_return_in_memory
|
422 |
|
|
|
423 |
|
|
#undef TARGET_EXPAND_BUILTIN_SAVEREGS
|
424 |
|
|
#define TARGET_EXPAND_BUILTIN_SAVEREGS sh_builtin_saveregs
|
425 |
|
|
#undef TARGET_SETUP_INCOMING_VARARGS
|
426 |
|
|
#define TARGET_SETUP_INCOMING_VARARGS sh_setup_incoming_varargs
|
427 |
|
|
#undef TARGET_STRICT_ARGUMENT_NAMING
|
428 |
|
|
#define TARGET_STRICT_ARGUMENT_NAMING sh_strict_argument_naming
|
429 |
|
|
#undef TARGET_PRETEND_OUTGOING_VARARGS_NAMED
|
430 |
|
|
#define TARGET_PRETEND_OUTGOING_VARARGS_NAMED sh_pretend_outgoing_varargs_named
|
431 |
|
|
#undef TARGET_MUST_PASS_IN_STACK
|
432 |
|
|
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
|
433 |
|
|
#undef TARGET_PASS_BY_REFERENCE
|
434 |
|
|
#define TARGET_PASS_BY_REFERENCE sh_pass_by_reference
|
435 |
|
|
#undef TARGET_CALLEE_COPIES
|
436 |
|
|
#define TARGET_CALLEE_COPIES sh_callee_copies
|
437 |
|
|
#undef TARGET_ARG_PARTIAL_BYTES
|
438 |
|
|
#define TARGET_ARG_PARTIAL_BYTES sh_arg_partial_bytes
|
439 |
|
|
|
440 |
|
|
#undef TARGET_BUILD_BUILTIN_VA_LIST
|
441 |
|
|
#define TARGET_BUILD_BUILTIN_VA_LIST sh_build_builtin_va_list
|
442 |
|
|
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
|
443 |
|
|
#define TARGET_GIMPLIFY_VA_ARG_EXPR sh_gimplify_va_arg_expr
|
444 |
|
|
|
445 |
|
|
#undef TARGET_VECTOR_MODE_SUPPORTED_P
|
446 |
|
|
#define TARGET_VECTOR_MODE_SUPPORTED_P sh_vector_mode_supported_p
|
447 |
|
|
|
448 |
|
|
#undef TARGET_CHECK_PCH_TARGET_FLAGS
|
449 |
|
|
#define TARGET_CHECK_PCH_TARGET_FLAGS sh_check_pch_target_flags
|
450 |
|
|
|
451 |
|
|
#undef TARGET_DWARF_CALLING_CONVENTION
|
452 |
|
|
#define TARGET_DWARF_CALLING_CONVENTION sh_dwarf_calling_convention
|
453 |
|
|
|
454 |
|
|
/* Return regmode weight for insn. */
|
455 |
|
|
#define INSN_REGMODE_WEIGHT(INSN, MODE) regmode_weight[((MODE) == SImode) ? 0 : 1][INSN_UID (INSN)]
|
456 |
|
|
|
457 |
|
|
/* Return current register pressure for regmode. */
|
458 |
|
|
#define CURR_REGMODE_PRESSURE(MODE) curr_regmode_pressure[((MODE) == SImode) ? 0 : 1]
|
459 |
|
|
|
460 |
|
|
#ifdef SYMBIAN
|
461 |
|
|
|
462 |
|
|
#undef TARGET_ENCODE_SECTION_INFO
|
463 |
|
|
#define TARGET_ENCODE_SECTION_INFO sh_symbian_encode_section_info
|
464 |
|
|
#undef TARGET_STRIP_NAME_ENCODING
|
465 |
|
|
#define TARGET_STRIP_NAME_ENCODING sh_symbian_strip_name_encoding
|
466 |
|
|
#undef TARGET_CXX_IMPORT_EXPORT_CLASS
|
467 |
|
|
#define TARGET_CXX_IMPORT_EXPORT_CLASS symbian_import_export_class
|
468 |
|
|
|
469 |
|
|
#endif /* SYMBIAN */
|
470 |
|
|
|
471 |
|
|
#ifdef TARGET_ADJUST_UNROLL_MAX
|
472 |
|
|
#undef TARGET_ADJUST_UNROLL_MAX
|
473 |
|
|
#define TARGET_ADJUST_UNROLL_MAX sh_adjust_unroll_max
|
474 |
|
|
#endif
|
475 |
|
|
|
476 |
|
|
#undef TARGET_SECONDARY_RELOAD
|
477 |
|
|
#define TARGET_SECONDARY_RELOAD sh_secondary_reload
|
478 |
|
|
|
479 |
|
|
struct gcc_target targetm = TARGET_INITIALIZER;
|
480 |
|
|
|
481 |
|
|
/* Implement TARGET_HANDLE_OPTION. */
|
482 |
|
|
|
483 |
|
|
static bool
|
484 |
|
|
sh_handle_option (size_t code, const char *arg ATTRIBUTE_UNUSED,
|
485 |
|
|
int value ATTRIBUTE_UNUSED)
|
486 |
|
|
{
|
487 |
|
|
switch (code)
|
488 |
|
|
{
|
489 |
|
|
case OPT_m1:
|
490 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH1;
|
491 |
|
|
return true;
|
492 |
|
|
|
493 |
|
|
case OPT_m2:
|
494 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2;
|
495 |
|
|
return true;
|
496 |
|
|
|
497 |
|
|
case OPT_m2a:
|
498 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A;
|
499 |
|
|
return true;
|
500 |
|
|
|
501 |
|
|
case OPT_m2a_nofpu:
|
502 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A_NOFPU;
|
503 |
|
|
return true;
|
504 |
|
|
|
505 |
|
|
case OPT_m2a_single:
|
506 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A_SINGLE;
|
507 |
|
|
return true;
|
508 |
|
|
|
509 |
|
|
case OPT_m2a_single_only:
|
510 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2A_SINGLE_ONLY;
|
511 |
|
|
return true;
|
512 |
|
|
|
513 |
|
|
case OPT_m2e:
|
514 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH2E;
|
515 |
|
|
return true;
|
516 |
|
|
|
517 |
|
|
case OPT_m3:
|
518 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH3;
|
519 |
|
|
return true;
|
520 |
|
|
|
521 |
|
|
case OPT_m3e:
|
522 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH3E;
|
523 |
|
|
return true;
|
524 |
|
|
|
525 |
|
|
case OPT_m4:
|
526 |
|
|
case OPT_m4_100:
|
527 |
|
|
case OPT_m4_200:
|
528 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4;
|
529 |
|
|
return true;
|
530 |
|
|
|
531 |
|
|
case OPT_m4_nofpu:
|
532 |
|
|
case OPT_m4_400:
|
533 |
|
|
case OPT_m4_500:
|
534 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4_NOFPU;
|
535 |
|
|
return true;
|
536 |
|
|
|
537 |
|
|
case OPT_m4_single:
|
538 |
|
|
case OPT_m4_100_single:
|
539 |
|
|
case OPT_m4_200_single:
|
540 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4_SINGLE;
|
541 |
|
|
return true;
|
542 |
|
|
|
543 |
|
|
case OPT_m4_single_only:
|
544 |
|
|
case OPT_m4_100_single_only:
|
545 |
|
|
case OPT_m4_200_single_only:
|
546 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4_SINGLE_ONLY;
|
547 |
|
|
return true;
|
548 |
|
|
|
549 |
|
|
case OPT_m4a:
|
550 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A;
|
551 |
|
|
return true;
|
552 |
|
|
|
553 |
|
|
case OPT_m4a_nofpu:
|
554 |
|
|
case OPT_m4al:
|
555 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A_NOFPU;
|
556 |
|
|
return true;
|
557 |
|
|
|
558 |
|
|
case OPT_m4a_single:
|
559 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A_SINGLE;
|
560 |
|
|
return true;
|
561 |
|
|
|
562 |
|
|
case OPT_m4a_single_only:
|
563 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH4A_SINGLE_ONLY;
|
564 |
|
|
return true;
|
565 |
|
|
|
566 |
|
|
case OPT_m5_32media:
|
567 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_32MEDIA;
|
568 |
|
|
return true;
|
569 |
|
|
|
570 |
|
|
case OPT_m5_32media_nofpu:
|
571 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_32MEDIA_NOFPU;
|
572 |
|
|
return true;
|
573 |
|
|
|
574 |
|
|
case OPT_m5_64media:
|
575 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_64MEDIA;
|
576 |
|
|
return true;
|
577 |
|
|
|
578 |
|
|
case OPT_m5_64media_nofpu:
|
579 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_64MEDIA_NOFPU;
|
580 |
|
|
return true;
|
581 |
|
|
|
582 |
|
|
case OPT_m5_compact:
|
583 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_COMPACT;
|
584 |
|
|
return true;
|
585 |
|
|
|
586 |
|
|
case OPT_m5_compact_nofpu:
|
587 |
|
|
target_flags = (target_flags & ~MASK_ARCH) | SELECT_SH5_COMPACT_NOFPU;
|
588 |
|
|
return true;
|
589 |
|
|
|
590 |
|
|
default:
|
591 |
|
|
return true;
|
592 |
|
|
}
|
593 |
|
|
}
|
594 |
|
|
|
595 |
|
|
/* Print the operand address in x to the stream. */
|
596 |
|
|
|
597 |
|
|
void
|
598 |
|
|
print_operand_address (FILE *stream, rtx x)
|
599 |
|
|
{
|
600 |
|
|
switch (GET_CODE (x))
|
601 |
|
|
{
|
602 |
|
|
case REG:
|
603 |
|
|
case SUBREG:
|
604 |
|
|
fprintf (stream, "@%s", reg_names[true_regnum (x)]);
|
605 |
|
|
break;
|
606 |
|
|
|
607 |
|
|
case PLUS:
|
608 |
|
|
{
|
609 |
|
|
rtx base = XEXP (x, 0);
|
610 |
|
|
rtx index = XEXP (x, 1);
|
611 |
|
|
|
612 |
|
|
switch (GET_CODE (index))
|
613 |
|
|
{
|
614 |
|
|
case CONST_INT:
|
615 |
|
|
fprintf (stream, "@(%d,%s)", (int) INTVAL (index),
|
616 |
|
|
reg_names[true_regnum (base)]);
|
617 |
|
|
break;
|
618 |
|
|
|
619 |
|
|
case REG:
|
620 |
|
|
case SUBREG:
|
621 |
|
|
{
|
622 |
|
|
int base_num = true_regnum (base);
|
623 |
|
|
int index_num = true_regnum (index);
|
624 |
|
|
|
625 |
|
|
fprintf (stream, "@(r0,%s)",
|
626 |
|
|
reg_names[MAX (base_num, index_num)]);
|
627 |
|
|
break;
|
628 |
|
|
}
|
629 |
|
|
|
630 |
|
|
default:
|
631 |
|
|
gcc_unreachable ();
|
632 |
|
|
}
|
633 |
|
|
}
|
634 |
|
|
break;
|
635 |
|
|
|
636 |
|
|
case PRE_DEC:
|
637 |
|
|
fprintf (stream, "@-%s", reg_names[true_regnum (XEXP (x, 0))]);
|
638 |
|
|
break;
|
639 |
|
|
|
640 |
|
|
case POST_INC:
|
641 |
|
|
fprintf (stream, "@%s+", reg_names[true_regnum (XEXP (x, 0))]);
|
642 |
|
|
break;
|
643 |
|
|
|
644 |
|
|
default:
|
645 |
|
|
x = mark_constant_pool_use (x);
|
646 |
|
|
output_addr_const (stream, x);
|
647 |
|
|
break;
|
648 |
|
|
}
|
649 |
|
|
}
|
650 |
|
|
|
651 |
|
|
/* Print operand x (an rtx) in assembler syntax to file stream
|
652 |
|
|
according to modifier code.
|
653 |
|
|
|
654 |
|
|
'.' print a .s if insn needs delay slot
|
655 |
|
|
',' print LOCAL_LABEL_PREFIX
|
656 |
|
|
'@' print trap, rte or rts depending upon pragma interruptness
|
657 |
|
|
'#' output a nop if there is nothing to put in the delay slot
|
658 |
|
|
''' print likelihood suffix (/u for unlikely).
|
659 |
|
|
'>' print branch target if -fverbose-asm
|
660 |
|
|
'O' print a constant without the #
|
661 |
|
|
'R' print the LSW of a dp value - changes if in little endian
|
662 |
|
|
'S' print the MSW of a dp value - changes if in little endian
|
663 |
|
|
'T' print the next word of a dp value - same as 'R' in big endian mode.
|
664 |
|
|
'M' SHMEDIA: print an `x' if `m' will print `base,index'.
|
665 |
|
|
otherwise: print .b / .w / .l / .s / .d suffix if operand is a MEM.
|
666 |
|
|
'N' print 'r63' if the operand is (const_int 0).
|
667 |
|
|
'd' print a V2SF reg as dN instead of fpN.
|
668 |
|
|
'm' print a pair `base,offset' or `base,index', for LD and ST.
|
669 |
|
|
'U' Likewise for {LD,ST}{HI,LO}.
|
670 |
|
|
'u' prints the lowest 16 bits of CONST_INT, as an unsigned value.
|
671 |
|
|
'o' output an operator. */
|
672 |
|
|
|
673 |
|
|
void
|
674 |
|
|
print_operand (FILE *stream, rtx x, int code)
|
675 |
|
|
{
|
676 |
|
|
int regno;
|
677 |
|
|
enum machine_mode mode;
|
678 |
|
|
|
679 |
|
|
switch (code)
|
680 |
|
|
{
|
681 |
|
|
tree trapa_attr;
|
682 |
|
|
|
683 |
|
|
case '.':
|
684 |
|
|
if (final_sequence
|
685 |
|
|
&& ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))
|
686 |
|
|
&& get_attr_length (XVECEXP (final_sequence, 0, 1)))
|
687 |
|
|
fprintf (stream, ASSEMBLER_DIALECT ? "/s" : ".s");
|
688 |
|
|
break;
|
689 |
|
|
case ',':
|
690 |
|
|
fprintf (stream, "%s", LOCAL_LABEL_PREFIX);
|
691 |
|
|
break;
|
692 |
|
|
case '@':
|
693 |
|
|
trapa_attr = lookup_attribute ("trap_exit",
|
694 |
|
|
DECL_ATTRIBUTES (current_function_decl));
|
695 |
|
|
if (trapa_attr)
|
696 |
|
|
fprintf (stream, "trapa #%ld",
|
697 |
|
|
(long) TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (trapa_attr))));
|
698 |
|
|
else if (sh_cfun_interrupt_handler_p ())
|
699 |
|
|
fprintf (stream, "rte");
|
700 |
|
|
else
|
701 |
|
|
fprintf (stream, "rts");
|
702 |
|
|
break;
|
703 |
|
|
case '#':
|
704 |
|
|
/* Output a nop if there's nothing in the delay slot. */
|
705 |
|
|
if (dbr_sequence_length () == 0)
|
706 |
|
|
fprintf (stream, "\n\tnop");
|
707 |
|
|
break;
|
708 |
|
|
case '\'':
|
709 |
|
|
{
|
710 |
|
|
rtx note = find_reg_note (current_output_insn, REG_BR_PROB, 0);
|
711 |
|
|
|
712 |
|
|
if (note && INTVAL (XEXP (note, 0)) * 2 < REG_BR_PROB_BASE)
|
713 |
|
|
fputs ("/u", stream);
|
714 |
|
|
break;
|
715 |
|
|
}
|
716 |
|
|
case '>':
|
717 |
|
|
if (flag_verbose_asm && JUMP_LABEL (current_output_insn))
|
718 |
|
|
{
|
719 |
|
|
fputs ("\t! target: ", stream);
|
720 |
|
|
output_addr_const (stream, JUMP_LABEL (current_output_insn));
|
721 |
|
|
}
|
722 |
|
|
break;
|
723 |
|
|
case 'O':
|
724 |
|
|
x = mark_constant_pool_use (x);
|
725 |
|
|
output_addr_const (stream, x);
|
726 |
|
|
break;
|
727 |
|
|
/* N.B.: %R / %S / %T adjust memory addresses by four.
|
728 |
|
|
For SHMEDIA, that means they can be used to access the first and
|
729 |
|
|
second 32 bit part of a 64 bit (or larger) value that
|
730 |
|
|
might be held in floating point registers or memory.
|
731 |
|
|
While they can be used to access 64 bit parts of a larger value
|
732 |
|
|
held in general purpose registers, that won't work with memory -
|
733 |
|
|
neither for fp registers, since the frxx names are used. */
|
734 |
|
|
case 'R':
|
735 |
|
|
if (REG_P (x) || GET_CODE (x) == SUBREG)
|
736 |
|
|
{
|
737 |
|
|
regno = true_regnum (x);
|
738 |
|
|
regno += FP_REGISTER_P (regno) ? 1 : LSW;
|
739 |
|
|
fputs (reg_names[regno], (stream));
|
740 |
|
|
}
|
741 |
|
|
else if (MEM_P (x))
|
742 |
|
|
{
|
743 |
|
|
x = adjust_address (x, SImode, 4 * LSW);
|
744 |
|
|
print_operand_address (stream, XEXP (x, 0));
|
745 |
|
|
}
|
746 |
|
|
else
|
747 |
|
|
{
|
748 |
|
|
rtx sub = NULL_RTX;
|
749 |
|
|
|
750 |
|
|
mode = GET_MODE (x);
|
751 |
|
|
if (mode == VOIDmode)
|
752 |
|
|
mode = DImode;
|
753 |
|
|
if (GET_MODE_SIZE (mode) >= 8)
|
754 |
|
|
sub = simplify_subreg (SImode, x, mode, 4 * LSW);
|
755 |
|
|
if (sub)
|
756 |
|
|
print_operand (stream, sub, 0);
|
757 |
|
|
else
|
758 |
|
|
output_operand_lossage ("invalid operand to %%R");
|
759 |
|
|
}
|
760 |
|
|
break;
|
761 |
|
|
case 'S':
|
762 |
|
|
if (REG_P (x) || GET_CODE (x) == SUBREG)
|
763 |
|
|
{
|
764 |
|
|
regno = true_regnum (x);
|
765 |
|
|
regno += FP_REGISTER_P (regno) ? 0 : MSW;
|
766 |
|
|
fputs (reg_names[regno], (stream));
|
767 |
|
|
}
|
768 |
|
|
else if (MEM_P (x))
|
769 |
|
|
{
|
770 |
|
|
x = adjust_address (x, SImode, 4 * MSW);
|
771 |
|
|
print_operand_address (stream, XEXP (x, 0));
|
772 |
|
|
}
|
773 |
|
|
else
|
774 |
|
|
{
|
775 |
|
|
rtx sub = NULL_RTX;
|
776 |
|
|
|
777 |
|
|
mode = GET_MODE (x);
|
778 |
|
|
if (mode == VOIDmode)
|
779 |
|
|
mode = DImode;
|
780 |
|
|
if (GET_MODE_SIZE (mode) >= 8)
|
781 |
|
|
sub = simplify_subreg (SImode, x, mode, 4 * MSW);
|
782 |
|
|
if (sub)
|
783 |
|
|
print_operand (stream, sub, 0);
|
784 |
|
|
else
|
785 |
|
|
output_operand_lossage ("invalid operand to %%S");
|
786 |
|
|
}
|
787 |
|
|
break;
|
788 |
|
|
case 'T':
|
789 |
|
|
/* Next word of a double. */
|
790 |
|
|
switch (GET_CODE (x))
|
791 |
|
|
{
|
792 |
|
|
case REG:
|
793 |
|
|
fputs (reg_names[REGNO (x) + 1], (stream));
|
794 |
|
|
break;
|
795 |
|
|
case MEM:
|
796 |
|
|
if (GET_CODE (XEXP (x, 0)) != PRE_DEC
|
797 |
|
|
&& GET_CODE (XEXP (x, 0)) != POST_INC)
|
798 |
|
|
x = adjust_address (x, SImode, 4);
|
799 |
|
|
print_operand_address (stream, XEXP (x, 0));
|
800 |
|
|
break;
|
801 |
|
|
default:
|
802 |
|
|
break;
|
803 |
|
|
}
|
804 |
|
|
break;
|
805 |
|
|
case 'o':
|
806 |
|
|
switch (GET_CODE (x))
|
807 |
|
|
{
|
808 |
|
|
case PLUS: fputs ("add", stream); break;
|
809 |
|
|
case MINUS: fputs ("sub", stream); break;
|
810 |
|
|
case MULT: fputs ("mul", stream); break;
|
811 |
|
|
case DIV: fputs ("div", stream); break;
|
812 |
|
|
case EQ: fputs ("eq", stream); break;
|
813 |
|
|
case NE: fputs ("ne", stream); break;
|
814 |
|
|
case GT: case LT: fputs ("gt", stream); break;
|
815 |
|
|
case GE: case LE: fputs ("ge", stream); break;
|
816 |
|
|
case GTU: case LTU: fputs ("gtu", stream); break;
|
817 |
|
|
case GEU: case LEU: fputs ("geu", stream); break;
|
818 |
|
|
default:
|
819 |
|
|
break;
|
820 |
|
|
}
|
821 |
|
|
break;
|
822 |
|
|
case 'M':
|
823 |
|
|
if (TARGET_SHMEDIA)
|
824 |
|
|
{
|
825 |
|
|
if (GET_CODE (x) == MEM
|
826 |
|
|
&& GET_CODE (XEXP (x, 0)) == PLUS
|
827 |
|
|
&& (GET_CODE (XEXP (XEXP (x, 0), 1)) == REG
|
828 |
|
|
|| GET_CODE (XEXP (XEXP (x, 0), 1)) == SUBREG))
|
829 |
|
|
fputc ('x', stream);
|
830 |
|
|
}
|
831 |
|
|
else
|
832 |
|
|
{
|
833 |
|
|
if (GET_CODE (x) == MEM)
|
834 |
|
|
{
|
835 |
|
|
switch (GET_MODE (x))
|
836 |
|
|
{
|
837 |
|
|
case QImode: fputs (".b", stream); break;
|
838 |
|
|
case HImode: fputs (".w", stream); break;
|
839 |
|
|
case SImode: fputs (".l", stream); break;
|
840 |
|
|
case SFmode: fputs (".s", stream); break;
|
841 |
|
|
case DFmode: fputs (".d", stream); break;
|
842 |
|
|
default: gcc_unreachable ();
|
843 |
|
|
}
|
844 |
|
|
}
|
845 |
|
|
}
|
846 |
|
|
break;
|
847 |
|
|
|
848 |
|
|
case 'm':
|
849 |
|
|
gcc_assert (GET_CODE (x) == MEM);
|
850 |
|
|
x = XEXP (x, 0);
|
851 |
|
|
/* Fall through. */
|
852 |
|
|
case 'U':
|
853 |
|
|
switch (GET_CODE (x))
|
854 |
|
|
{
|
855 |
|
|
case REG:
|
856 |
|
|
case SUBREG:
|
857 |
|
|
print_operand (stream, x, 0);
|
858 |
|
|
fputs (", 0", stream);
|
859 |
|
|
break;
|
860 |
|
|
|
861 |
|
|
case PLUS:
|
862 |
|
|
print_operand (stream, XEXP (x, 0), 0);
|
863 |
|
|
fputs (", ", stream);
|
864 |
|
|
print_operand (stream, XEXP (x, 1), 0);
|
865 |
|
|
break;
|
866 |
|
|
|
867 |
|
|
default:
|
868 |
|
|
gcc_unreachable ();
|
869 |
|
|
}
|
870 |
|
|
break;
|
871 |
|
|
|
872 |
|
|
case 'd':
|
873 |
|
|
gcc_assert (GET_CODE (x) == REG && GET_MODE (x) == V2SFmode);
|
874 |
|
|
|
875 |
|
|
fprintf ((stream), "d%s", reg_names[REGNO (x)] + 1);
|
876 |
|
|
break;
|
877 |
|
|
|
878 |
|
|
case 'N':
|
879 |
|
|
if (x == CONST0_RTX (GET_MODE (x)))
|
880 |
|
|
{
|
881 |
|
|
fprintf ((stream), "r63");
|
882 |
|
|
break;
|
883 |
|
|
}
|
884 |
|
|
goto default_output;
|
885 |
|
|
case 'u':
|
886 |
|
|
if (GET_CODE (x) == CONST_INT)
|
887 |
|
|
{
|
888 |
|
|
fprintf ((stream), "%u", (unsigned) INTVAL (x) & (0x10000 - 1));
|
889 |
|
|
break;
|
890 |
|
|
}
|
891 |
|
|
/* Fall through. */
|
892 |
|
|
|
893 |
|
|
default_output:
|
894 |
|
|
default:
|
895 |
|
|
regno = 0;
|
896 |
|
|
mode = GET_MODE (x);
|
897 |
|
|
|
898 |
|
|
switch (GET_CODE (x))
|
899 |
|
|
{
|
900 |
|
|
case TRUNCATE:
|
901 |
|
|
{
|
902 |
|
|
rtx inner = XEXP (x, 0);
|
903 |
|
|
int offset = 0;
|
904 |
|
|
enum machine_mode inner_mode;
|
905 |
|
|
|
906 |
|
|
/* We might see SUBREGs with vector mode registers inside. */
|
907 |
|
|
if (GET_CODE (inner) == SUBREG
|
908 |
|
|
&& (GET_MODE_SIZE (GET_MODE (inner))
|
909 |
|
|
== GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
|
910 |
|
|
&& subreg_lowpart_p (inner))
|
911 |
|
|
inner = SUBREG_REG (inner);
|
912 |
|
|
if (GET_CODE (inner) == CONST_INT)
|
913 |
|
|
{
|
914 |
|
|
x = GEN_INT (trunc_int_for_mode (INTVAL (inner), GET_MODE (x)));
|
915 |
|
|
goto default_output;
|
916 |
|
|
}
|
917 |
|
|
inner_mode = GET_MODE (inner);
|
918 |
|
|
if (GET_CODE (inner) == SUBREG
|
919 |
|
|
&& (GET_MODE_SIZE (GET_MODE (inner))
|
920 |
|
|
< GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner))))
|
921 |
|
|
&& GET_CODE (SUBREG_REG (inner)) == REG)
|
922 |
|
|
{
|
923 |
|
|
offset = subreg_regno_offset (REGNO (SUBREG_REG (inner)),
|
924 |
|
|
GET_MODE (SUBREG_REG (inner)),
|
925 |
|
|
SUBREG_BYTE (inner),
|
926 |
|
|
GET_MODE (inner));
|
927 |
|
|
inner = SUBREG_REG (inner);
|
928 |
|
|
}
|
929 |
|
|
if (GET_CODE (inner) != REG || GET_MODE_SIZE (inner_mode) > 8)
|
930 |
|
|
abort ();
|
931 |
|
|
/* Floating point register pairs are always big endian;
|
932 |
|
|
general purpose registers are 64 bit wide. */
|
933 |
|
|
regno = REGNO (inner);
|
934 |
|
|
regno = (HARD_REGNO_NREGS (regno, inner_mode)
|
935 |
|
|
- HARD_REGNO_NREGS (regno, mode))
|
936 |
|
|
+ offset;
|
937 |
|
|
x = inner;
|
938 |
|
|
goto reg;
|
939 |
|
|
}
|
940 |
|
|
case SIGN_EXTEND:
|
941 |
|
|
x = XEXP (x, 0);
|
942 |
|
|
goto reg;
|
943 |
|
|
/* FIXME: We need this on SHmedia32 because reload generates
|
944 |
|
|
some sign-extended HI or QI loads into DImode registers
|
945 |
|
|
but, because Pmode is SImode, the address ends up with a
|
946 |
|
|
subreg:SI of the DImode register. Maybe reload should be
|
947 |
|
|
fixed so as to apply alter_subreg to such loads? */
|
948 |
|
|
case IF_THEN_ELSE:
|
949 |
|
|
gcc_assert (trapping_target_operand (x, VOIDmode));
|
950 |
|
|
x = XEXP (XEXP (x, 2), 0);
|
951 |
|
|
goto default_output;
|
952 |
|
|
case SUBREG:
|
953 |
|
|
gcc_assert (SUBREG_BYTE (x) == 0
|
954 |
|
|
&& GET_CODE (SUBREG_REG (x)) == REG);
|
955 |
|
|
|
956 |
|
|
x = SUBREG_REG (x);
|
957 |
|
|
/* Fall through. */
|
958 |
|
|
|
959 |
|
|
reg:
|
960 |
|
|
case REG:
|
961 |
|
|
regno += REGNO (x);
|
962 |
|
|
if (FP_REGISTER_P (regno)
|
963 |
|
|
&& mode == V16SFmode)
|
964 |
|
|
fprintf ((stream), "mtrx%s", reg_names[regno] + 2);
|
965 |
|
|
else if (FP_REGISTER_P (REGNO (x))
|
966 |
|
|
&& mode == V4SFmode)
|
967 |
|
|
fprintf ((stream), "fv%s", reg_names[regno] + 2);
|
968 |
|
|
else if (GET_CODE (x) == REG
|
969 |
|
|
&& mode == V2SFmode)
|
970 |
|
|
fprintf ((stream), "fp%s", reg_names[regno] + 2);
|
971 |
|
|
else if (FP_REGISTER_P (REGNO (x))
|
972 |
|
|
&& GET_MODE_SIZE (mode) > 4)
|
973 |
|
|
fprintf ((stream), "d%s", reg_names[regno] + 1);
|
974 |
|
|
else
|
975 |
|
|
fputs (reg_names[regno], (stream));
|
976 |
|
|
break;
|
977 |
|
|
|
978 |
|
|
case MEM:
|
979 |
|
|
output_address (XEXP (x, 0));
|
980 |
|
|
break;
|
981 |
|
|
|
982 |
|
|
case CONST:
|
983 |
|
|
if (TARGET_SHMEDIA
|
984 |
|
|
&& (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
|
985 |
|
|
|| GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
|
986 |
|
|
&& (GET_MODE (XEXP (x, 0)) == DImode
|
987 |
|
|
|| GET_MODE (XEXP (x, 0)) == SImode)
|
988 |
|
|
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == TRUNCATE
|
989 |
|
|
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode)
|
990 |
|
|
{
|
991 |
|
|
rtx val = XEXP (XEXP (XEXP (x, 0), 0), 0);
|
992 |
|
|
rtx val2 = val;
|
993 |
|
|
bool nested_expr = false;
|
994 |
|
|
|
995 |
|
|
fputc ('(', stream);
|
996 |
|
|
if (GET_CODE (val) == ASHIFTRT)
|
997 |
|
|
{
|
998 |
|
|
fputc ('(', stream);
|
999 |
|
|
val2 = XEXP (val, 0);
|
1000 |
|
|
}
|
1001 |
|
|
if (GET_CODE (val2) == CONST
|
1002 |
|
|
|| GET_RTX_CLASS (GET_CODE (val2)) != RTX_OBJ)
|
1003 |
|
|
{
|
1004 |
|
|
fputc ('(', stream);
|
1005 |
|
|
nested_expr = true;
|
1006 |
|
|
}
|
1007 |
|
|
output_addr_const (stream, val2);
|
1008 |
|
|
if (nested_expr)
|
1009 |
|
|
fputc (')', stream);
|
1010 |
|
|
if (GET_CODE (val) == ASHIFTRT)
|
1011 |
|
|
{
|
1012 |
|
|
fputs (" >> ", stream);
|
1013 |
|
|
output_addr_const (stream, XEXP (val, 1));
|
1014 |
|
|
fputc (')', stream);
|
1015 |
|
|
}
|
1016 |
|
|
fputs (" & 65535)", stream);
|
1017 |
|
|
break;
|
1018 |
|
|
}
|
1019 |
|
|
|
1020 |
|
|
/* Fall through. */
|
1021 |
|
|
default:
|
1022 |
|
|
if (TARGET_SH1)
|
1023 |
|
|
fputc ('#', stream);
|
1024 |
|
|
output_addr_const (stream, x);
|
1025 |
|
|
break;
|
1026 |
|
|
}
|
1027 |
|
|
break;
|
1028 |
|
|
}
|
1029 |
|
|
}
|
1030 |
|
|
|
1031 |
|
|
/* Like force_operand, but guarantees that VALUE ends up in TARGET. */
|
1032 |
|
|
static void
|
1033 |
|
|
force_into (rtx value, rtx target)
|
1034 |
|
|
{
|
1035 |
|
|
value = force_operand (value, target);
|
1036 |
|
|
if (! rtx_equal_p (value, target))
|
1037 |
|
|
emit_insn (gen_move_insn (target, value));
|
1038 |
|
|
}
|
1039 |
|
|
|
1040 |
|
|
/* Emit code to perform a block move. Choose the best method.
|
1041 |
|
|
|
1042 |
|
|
OPERANDS[0] is the destination.
|
1043 |
|
|
OPERANDS[1] is the source.
|
1044 |
|
|
OPERANDS[2] is the size.
|
1045 |
|
|
OPERANDS[3] is the alignment safe to use. */
|
1046 |
|
|
|
1047 |
|
|
int
|
1048 |
|
|
expand_block_move (rtx *operands)
|
1049 |
|
|
{
|
1050 |
|
|
int align = INTVAL (operands[3]);
|
1051 |
|
|
int constp = (GET_CODE (operands[2]) == CONST_INT);
|
1052 |
|
|
int bytes = (constp ? INTVAL (operands[2]) : 0);
|
1053 |
|
|
|
1054 |
|
|
if (! constp)
|
1055 |
|
|
return 0;
|
1056 |
|
|
|
1057 |
|
|
/* If we could use mov.l to move words and dest is word-aligned, we
|
1058 |
|
|
can use movua.l for loads and still generate a relatively short
|
1059 |
|
|
and efficient sequence. */
|
1060 |
|
|
if (TARGET_SH4A_ARCH && align < 4
|
1061 |
|
|
&& MEM_ALIGN (operands[0]) >= 32
|
1062 |
|
|
&& can_move_by_pieces (bytes, 32))
|
1063 |
|
|
{
|
1064 |
|
|
rtx dest = copy_rtx (operands[0]);
|
1065 |
|
|
rtx src = copy_rtx (operands[1]);
|
1066 |
|
|
/* We could use different pseudos for each copied word, but
|
1067 |
|
|
since movua can only load into r0, it's kind of
|
1068 |
|
|
pointless. */
|
1069 |
|
|
rtx temp = gen_reg_rtx (SImode);
|
1070 |
|
|
rtx src_addr = copy_addr_to_reg (XEXP (src, 0));
|
1071 |
|
|
int copied = 0;
|
1072 |
|
|
|
1073 |
|
|
while (copied + 4 <= bytes)
|
1074 |
|
|
{
|
1075 |
|
|
rtx to = adjust_address (dest, SImode, copied);
|
1076 |
|
|
rtx from = adjust_automodify_address (src, SImode, src_addr, copied);
|
1077 |
|
|
|
1078 |
|
|
emit_insn (gen_movua (temp, from));
|
1079 |
|
|
emit_move_insn (src_addr, plus_constant (src_addr, 4));
|
1080 |
|
|
emit_move_insn (to, temp);
|
1081 |
|
|
copied += 4;
|
1082 |
|
|
}
|
1083 |
|
|
|
1084 |
|
|
if (copied < bytes)
|
1085 |
|
|
move_by_pieces (adjust_address (dest, BLKmode, copied),
|
1086 |
|
|
adjust_automodify_address (src, BLKmode,
|
1087 |
|
|
src_addr, copied),
|
1088 |
|
|
bytes - copied, align, 0);
|
1089 |
|
|
|
1090 |
|
|
return 1;
|
1091 |
|
|
}
|
1092 |
|
|
|
1093 |
|
|
/* If it isn't a constant number of bytes, or if it doesn't have 4 byte
|
1094 |
|
|
alignment, or if it isn't a multiple of 4 bytes, then fail. */
|
1095 |
|
|
if (align < 4 || (bytes % 4 != 0))
|
1096 |
|
|
return 0;
|
1097 |
|
|
|
1098 |
|
|
if (TARGET_HARD_SH4)
|
1099 |
|
|
{
|
1100 |
|
|
if (bytes < 12)
|
1101 |
|
|
return 0;
|
1102 |
|
|
else if (bytes == 12)
|
1103 |
|
|
{
|
1104 |
|
|
rtx func_addr_rtx = gen_reg_rtx (Pmode);
|
1105 |
|
|
rtx r4 = gen_rtx_REG (SImode, 4);
|
1106 |
|
|
rtx r5 = gen_rtx_REG (SImode, 5);
|
1107 |
|
|
|
1108 |
|
|
function_symbol (func_addr_rtx, "__movmemSI12_i4", SFUNC_STATIC);
|
1109 |
|
|
force_into (XEXP (operands[0], 0), r4);
|
1110 |
|
|
force_into (XEXP (operands[1], 0), r5);
|
1111 |
|
|
emit_insn (gen_block_move_real_i4 (func_addr_rtx));
|
1112 |
|
|
return 1;
|
1113 |
|
|
}
|
1114 |
|
|
else if (! TARGET_SMALLCODE)
|
1115 |
|
|
{
|
1116 |
|
|
const char *entry_name;
|
1117 |
|
|
rtx func_addr_rtx = gen_reg_rtx (Pmode);
|
1118 |
|
|
int dwords;
|
1119 |
|
|
rtx r4 = gen_rtx_REG (SImode, 4);
|
1120 |
|
|
rtx r5 = gen_rtx_REG (SImode, 5);
|
1121 |
|
|
rtx r6 = gen_rtx_REG (SImode, 6);
|
1122 |
|
|
|
1123 |
|
|
entry_name = (bytes & 4 ? "__movmem_i4_odd" : "__movmem_i4_even");
|
1124 |
|
|
function_symbol (func_addr_rtx, entry_name, SFUNC_STATIC);
|
1125 |
|
|
force_into (XEXP (operands[0], 0), r4);
|
1126 |
|
|
force_into (XEXP (operands[1], 0), r5);
|
1127 |
|
|
|
1128 |
|
|
dwords = bytes >> 3;
|
1129 |
|
|
emit_insn (gen_move_insn (r6, GEN_INT (dwords - 1)));
|
1130 |
|
|
emit_insn (gen_block_lump_real_i4 (func_addr_rtx));
|
1131 |
|
|
return 1;
|
1132 |
|
|
}
|
1133 |
|
|
else
|
1134 |
|
|
return 0;
|
1135 |
|
|
}
|
1136 |
|
|
if (bytes < 64)
|
1137 |
|
|
{
|
1138 |
|
|
char entry[30];
|
1139 |
|
|
rtx func_addr_rtx = gen_reg_rtx (Pmode);
|
1140 |
|
|
rtx r4 = gen_rtx_REG (SImode, 4);
|
1141 |
|
|
rtx r5 = gen_rtx_REG (SImode, 5);
|
1142 |
|
|
|
1143 |
|
|
sprintf (entry, "__movmemSI%d", bytes);
|
1144 |
|
|
function_symbol (func_addr_rtx, entry, SFUNC_STATIC);
|
1145 |
|
|
force_into (XEXP (operands[0], 0), r4);
|
1146 |
|
|
force_into (XEXP (operands[1], 0), r5);
|
1147 |
|
|
emit_insn (gen_block_move_real (func_addr_rtx));
|
1148 |
|
|
return 1;
|
1149 |
|
|
}
|
1150 |
|
|
|
1151 |
|
|
/* This is the same number of bytes as a memcpy call, but to a different
|
1152 |
|
|
less common function name, so this will occasionally use more space. */
|
1153 |
|
|
if (! TARGET_SMALLCODE)
|
1154 |
|
|
{
|
1155 |
|
|
rtx func_addr_rtx = gen_reg_rtx (Pmode);
|
1156 |
|
|
int final_switch, while_loop;
|
1157 |
|
|
rtx r4 = gen_rtx_REG (SImode, 4);
|
1158 |
|
|
rtx r5 = gen_rtx_REG (SImode, 5);
|
1159 |
|
|
rtx r6 = gen_rtx_REG (SImode, 6);
|
1160 |
|
|
|
1161 |
|
|
function_symbol (func_addr_rtx, "__movmem", SFUNC_STATIC);
|
1162 |
|
|
force_into (XEXP (operands[0], 0), r4);
|
1163 |
|
|
force_into (XEXP (operands[1], 0), r5);
|
1164 |
|
|
|
1165 |
|
|
/* r6 controls the size of the move. 16 is decremented from it
|
1166 |
|
|
for each 64 bytes moved. Then the negative bit left over is used
|
1167 |
|
|
as an index into a list of move instructions. e.g., a 72 byte move
|
1168 |
|
|
would be set up with size(r6) = 14, for one iteration through the
|
1169 |
|
|
big while loop, and a switch of -2 for the last part. */
|
1170 |
|
|
|
1171 |
|
|
final_switch = 16 - ((bytes / 4) % 16);
|
1172 |
|
|
while_loop = ((bytes / 4) / 16 - 1) * 16;
|
1173 |
|
|
emit_insn (gen_move_insn (r6, GEN_INT (while_loop + final_switch)));
|
1174 |
|
|
emit_insn (gen_block_lump_real (func_addr_rtx));
|
1175 |
|
|
return 1;
|
1176 |
|
|
}
|
1177 |
|
|
|
1178 |
|
|
return 0;
|
1179 |
|
|
}
|
1180 |
|
|
|
1181 |
|
|
/* Prepare operands for a move define_expand; specifically, one of the
|
1182 |
|
|
operands must be in a register. */
|
1183 |
|
|
|
1184 |
|
|
int
|
1185 |
|
|
prepare_move_operands (rtx operands[], enum machine_mode mode)
|
1186 |
|
|
{
|
1187 |
|
|
if ((mode == SImode || mode == DImode)
|
1188 |
|
|
&& flag_pic
|
1189 |
|
|
&& ! ((mode == Pmode || mode == ptr_mode)
|
1190 |
|
|
&& tls_symbolic_operand (operands[1], Pmode) != 0))
|
1191 |
|
|
{
|
1192 |
|
|
rtx temp;
|
1193 |
|
|
if (SYMBOLIC_CONST_P (operands[1]))
|
1194 |
|
|
{
|
1195 |
|
|
if (GET_CODE (operands[0]) == MEM)
|
1196 |
|
|
operands[1] = force_reg (Pmode, operands[1]);
|
1197 |
|
|
else if (TARGET_SHMEDIA
|
1198 |
|
|
&& GET_CODE (operands[1]) == LABEL_REF
|
1199 |
|
|
&& target_reg_operand (operands[0], mode))
|
1200 |
|
|
/* It's ok. */;
|
1201 |
|
|
else
|
1202 |
|
|
{
|
1203 |
|
|
temp = no_new_pseudos ? operands[0] : gen_reg_rtx (Pmode);
|
1204 |
|
|
operands[1] = legitimize_pic_address (operands[1], mode, temp);
|
1205 |
|
|
}
|
1206 |
|
|
}
|
1207 |
|
|
else if (GET_CODE (operands[1]) == CONST
|
1208 |
|
|
&& GET_CODE (XEXP (operands[1], 0)) == PLUS
|
1209 |
|
|
&& SYMBOLIC_CONST_P (XEXP (XEXP (operands[1], 0), 0)))
|
1210 |
|
|
{
|
1211 |
|
|
temp = no_new_pseudos ? operands[0] : gen_reg_rtx (Pmode);
|
1212 |
|
|
temp = legitimize_pic_address (XEXP (XEXP (operands[1], 0), 0),
|
1213 |
|
|
mode, temp);
|
1214 |
|
|
operands[1] = expand_binop (mode, add_optab, temp,
|
1215 |
|
|
XEXP (XEXP (operands[1], 0), 1),
|
1216 |
|
|
no_new_pseudos ? temp
|
1217 |
|
|
: gen_reg_rtx (Pmode),
|
1218 |
|
|
0, OPTAB_LIB_WIDEN);
|
1219 |
|
|
}
|
1220 |
|
|
}
|
1221 |
|
|
|
1222 |
|
|
if (! reload_in_progress && ! reload_completed)
|
1223 |
|
|
{
|
1224 |
|
|
/* Copy the source to a register if both operands aren't registers. */
|
1225 |
|
|
if (! register_operand (operands[0], mode)
|
1226 |
|
|
&& ! sh_register_operand (operands[1], mode))
|
1227 |
|
|
operands[1] = copy_to_mode_reg (mode, operands[1]);
|
1228 |
|
|
|
1229 |
|
|
if (GET_CODE (operands[0]) == MEM && ! memory_operand (operands[0], mode))
|
1230 |
|
|
{
|
1231 |
|
|
/* This is like change_address_1 (operands[0], mode, 0, 1) ,
|
1232 |
|
|
except that we can't use that function because it is static. */
|
1233 |
|
|
rtx new = change_address (operands[0], mode, 0);
|
1234 |
|
|
MEM_COPY_ATTRIBUTES (new, operands[0]);
|
1235 |
|
|
operands[0] = new;
|
1236 |
|
|
}
|
1237 |
|
|
|
1238 |
|
|
/* This case can happen while generating code to move the result
|
1239 |
|
|
of a library call to the target. Reject `st r0,@(rX,rY)' because
|
1240 |
|
|
reload will fail to find a spill register for rX, since r0 is already
|
1241 |
|
|
being used for the source. */
|
1242 |
|
|
else if (TARGET_SH1
|
1243 |
|
|
&& refers_to_regno_p (R0_REG, R0_REG + 1, operands[1], (rtx *)0)
|
1244 |
|
|
&& GET_CODE (operands[0]) == MEM
|
1245 |
|
|
&& GET_CODE (XEXP (operands[0], 0)) == PLUS
|
1246 |
|
|
&& GET_CODE (XEXP (XEXP (operands[0], 0), 1)) == REG)
|
1247 |
|
|
operands[1] = copy_to_mode_reg (mode, operands[1]);
|
1248 |
|
|
}
|
1249 |
|
|
|
1250 |
|
|
if (mode == Pmode || mode == ptr_mode)
|
1251 |
|
|
{
|
1252 |
|
|
rtx op0, op1, opc;
|
1253 |
|
|
enum tls_model tls_kind;
|
1254 |
|
|
|
1255 |
|
|
op0 = operands[0];
|
1256 |
|
|
op1 = operands[1];
|
1257 |
|
|
if (GET_CODE (op1) == CONST
|
1258 |
|
|
&& GET_CODE (XEXP (op1, 0)) == PLUS
|
1259 |
|
|
&& tls_symbolic_operand (XEXP (XEXP (op1, 0), 0), Pmode))
|
1260 |
|
|
{
|
1261 |
|
|
opc = XEXP (XEXP (op1, 0), 1);
|
1262 |
|
|
op1 = XEXP (XEXP (op1, 0), 0);
|
1263 |
|
|
}
|
1264 |
|
|
else
|
1265 |
|
|
opc = NULL_RTX;
|
1266 |
|
|
|
1267 |
|
|
if ((tls_kind = tls_symbolic_operand (op1, Pmode)))
|
1268 |
|
|
{
|
1269 |
|
|
rtx tga_op1, tga_ret, tmp, tmp2;
|
1270 |
|
|
|
1271 |
|
|
switch (tls_kind)
|
1272 |
|
|
{
|
1273 |
|
|
case TLS_MODEL_GLOBAL_DYNAMIC:
|
1274 |
|
|
tga_ret = gen_rtx_REG (Pmode, R0_REG);
|
1275 |
|
|
emit_call_insn (gen_tls_global_dynamic (tga_ret, op1));
|
1276 |
|
|
op1 = tga_ret;
|
1277 |
|
|
break;
|
1278 |
|
|
|
1279 |
|
|
case TLS_MODEL_LOCAL_DYNAMIC:
|
1280 |
|
|
tga_ret = gen_rtx_REG (Pmode, R0_REG);
|
1281 |
|
|
emit_call_insn (gen_tls_local_dynamic (tga_ret, op1));
|
1282 |
|
|
|
1283 |
|
|
tmp = gen_reg_rtx (Pmode);
|
1284 |
|
|
emit_move_insn (tmp, tga_ret);
|
1285 |
|
|
|
1286 |
|
|
if (register_operand (op0, Pmode))
|
1287 |
|
|
tmp2 = op0;
|
1288 |
|
|
else
|
1289 |
|
|
tmp2 = gen_reg_rtx (Pmode);
|
1290 |
|
|
|
1291 |
|
|
emit_insn (gen_symDTPOFF2reg (tmp2, op1, tmp));
|
1292 |
|
|
op1 = tmp2;
|
1293 |
|
|
break;
|
1294 |
|
|
|
1295 |
|
|
case TLS_MODEL_INITIAL_EXEC:
|
1296 |
|
|
if (! flag_pic)
|
1297 |
|
|
{
|
1298 |
|
|
/* Don't schedule insns for getting GOT address when
|
1299 |
|
|
the first scheduling is enabled, to avoid spill
|
1300 |
|
|
failures for R0. */
|
1301 |
|
|
if (flag_schedule_insns)
|
1302 |
|
|
emit_insn (gen_blockage ());
|
1303 |
|
|
emit_insn (gen_GOTaddr2picreg ());
|
1304 |
|
|
emit_insn (gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode,
|
1305 |
|
|
PIC_REG)));
|
1306 |
|
|
if (flag_schedule_insns)
|
1307 |
|
|
emit_insn (gen_blockage ());
|
1308 |
|
|
}
|
1309 |
|
|
tga_op1 = no_new_pseudos ? op0 : gen_reg_rtx (Pmode);
|
1310 |
|
|
tmp = gen_sym2GOTTPOFF (op1);
|
1311 |
|
|
emit_insn (gen_tls_initial_exec (tga_op1, tmp));
|
1312 |
|
|
op1 = tga_op1;
|
1313 |
|
|
break;
|
1314 |
|
|
|
1315 |
|
|
case TLS_MODEL_LOCAL_EXEC:
|
1316 |
|
|
tmp2 = gen_reg_rtx (Pmode);
|
1317 |
|
|
emit_insn (gen_load_gbr (tmp2));
|
1318 |
|
|
tmp = gen_reg_rtx (Pmode);
|
1319 |
|
|
emit_insn (gen_symTPOFF2reg (tmp, op1));
|
1320 |
|
|
|
1321 |
|
|
if (register_operand (op0, Pmode))
|
1322 |
|
|
op1 = op0;
|
1323 |
|
|
else
|
1324 |
|
|
op1 = gen_reg_rtx (Pmode);
|
1325 |
|
|
|
1326 |
|
|
emit_insn (gen_addsi3 (op1, tmp, tmp2));
|
1327 |
|
|
break;
|
1328 |
|
|
|
1329 |
|
|
default:
|
1330 |
|
|
gcc_unreachable ();
|
1331 |
|
|
}
|
1332 |
|
|
if (opc)
|
1333 |
|
|
emit_insn (gen_addsi3 (op1, op1, force_reg (SImode, opc)));
|
1334 |
|
|
operands[1] = op1;
|
1335 |
|
|
}
|
1336 |
|
|
}
|
1337 |
|
|
|
1338 |
|
|
return 0;
|
1339 |
|
|
}
|
1340 |
|
|
|
1341 |
|
|
/* Prepare the operands for an scc instruction; make sure that the
|
1342 |
|
|
compare has been done. */
|
1343 |
|
|
rtx
|
1344 |
|
|
prepare_scc_operands (enum rtx_code code)
|
1345 |
|
|
{
|
1346 |
|
|
rtx t_reg = gen_rtx_REG (SImode, T_REG);
|
1347 |
|
|
enum rtx_code oldcode = code;
|
1348 |
|
|
enum machine_mode mode;
|
1349 |
|
|
|
1350 |
|
|
/* First need a compare insn. */
|
1351 |
|
|
switch (code)
|
1352 |
|
|
{
|
1353 |
|
|
case NE:
|
1354 |
|
|
/* It isn't possible to handle this case. */
|
1355 |
|
|
gcc_unreachable ();
|
1356 |
|
|
case LT:
|
1357 |
|
|
code = GT;
|
1358 |
|
|
break;
|
1359 |
|
|
case LE:
|
1360 |
|
|
code = GE;
|
1361 |
|
|
break;
|
1362 |
|
|
case LTU:
|
1363 |
|
|
code = GTU;
|
1364 |
|
|
break;
|
1365 |
|
|
case LEU:
|
1366 |
|
|
code = GEU;
|
1367 |
|
|
break;
|
1368 |
|
|
default:
|
1369 |
|
|
break;
|
1370 |
|
|
}
|
1371 |
|
|
if (code != oldcode)
|
1372 |
|
|
{
|
1373 |
|
|
rtx tmp = sh_compare_op0;
|
1374 |
|
|
sh_compare_op0 = sh_compare_op1;
|
1375 |
|
|
sh_compare_op1 = tmp;
|
1376 |
|
|
}
|
1377 |
|
|
|
1378 |
|
|
mode = GET_MODE (sh_compare_op0);
|
1379 |
|
|
if (mode == VOIDmode)
|
1380 |
|
|
mode = GET_MODE (sh_compare_op1);
|
1381 |
|
|
|
1382 |
|
|
sh_compare_op0 = force_reg (mode, sh_compare_op0);
|
1383 |
|
|
if ((code != EQ && code != NE
|
1384 |
|
|
&& (sh_compare_op1 != const0_rtx
|
1385 |
|
|
|| code == GTU || code == GEU || code == LTU || code == LEU))
|
1386 |
|
|
|| (mode == DImode && sh_compare_op1 != const0_rtx)
|
1387 |
|
|
|| (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
|
1388 |
|
|
sh_compare_op1 = force_reg (mode, sh_compare_op1);
|
1389 |
|
|
|
1390 |
|
|
if ((TARGET_SH4 || TARGET_SH2A) && GET_MODE_CLASS (mode) == MODE_FLOAT)
|
1391 |
|
|
(mode == SFmode ? emit_sf_insn : emit_df_insn)
|
1392 |
|
|
(gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2,
|
1393 |
|
|
gen_rtx_SET (VOIDmode, t_reg,
|
1394 |
|
|
gen_rtx_fmt_ee (code, SImode,
|
1395 |
|
|
sh_compare_op0, sh_compare_op1)),
|
1396 |
|
|
gen_rtx_USE (VOIDmode, get_fpscr_rtx ()))));
|
1397 |
|
|
else
|
1398 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, t_reg,
|
1399 |
|
|
gen_rtx_fmt_ee (code, SImode,
|
1400 |
|
|
sh_compare_op0, sh_compare_op1)));
|
1401 |
|
|
|
1402 |
|
|
return t_reg;
|
1403 |
|
|
}
|
1404 |
|
|
|
1405 |
|
|
/* Called from the md file, set up the operands of a compare instruction. */
|
1406 |
|
|
|
1407 |
|
|
void
|
1408 |
|
|
from_compare (rtx *operands, int code)
|
1409 |
|
|
{
|
1410 |
|
|
enum machine_mode mode = GET_MODE (sh_compare_op0);
|
1411 |
|
|
rtx insn;
|
1412 |
|
|
if (mode == VOIDmode)
|
1413 |
|
|
mode = GET_MODE (sh_compare_op1);
|
1414 |
|
|
if (code != EQ
|
1415 |
|
|
|| mode == DImode
|
1416 |
|
|
|| (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
|
1417 |
|
|
{
|
1418 |
|
|
/* Force args into regs, since we can't use constants here. */
|
1419 |
|
|
sh_compare_op0 = force_reg (mode, sh_compare_op0);
|
1420 |
|
|
if (sh_compare_op1 != const0_rtx
|
1421 |
|
|
|| code == GTU || code == GEU
|
1422 |
|
|
|| (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT))
|
1423 |
|
|
sh_compare_op1 = force_reg (mode, sh_compare_op1);
|
1424 |
|
|
}
|
1425 |
|
|
if (TARGET_SH2E && GET_MODE_CLASS (mode) == MODE_FLOAT && code == GE)
|
1426 |
|
|
{
|
1427 |
|
|
from_compare (operands, GT);
|
1428 |
|
|
insn = gen_ieee_ccmpeqsf_t (sh_compare_op0, sh_compare_op1);
|
1429 |
|
|
}
|
1430 |
|
|
else
|
1431 |
|
|
insn = gen_rtx_SET (VOIDmode,
|
1432 |
|
|
gen_rtx_REG (SImode, T_REG),
|
1433 |
|
|
gen_rtx_fmt_ee (code, SImode,
|
1434 |
|
|
sh_compare_op0, sh_compare_op1));
|
1435 |
|
|
if ((TARGET_SH4 || TARGET_SH2A) && GET_MODE_CLASS (mode) == MODE_FLOAT)
|
1436 |
|
|
{
|
1437 |
|
|
insn = gen_rtx_PARALLEL (VOIDmode,
|
1438 |
|
|
gen_rtvec (2, insn,
|
1439 |
|
|
gen_rtx_USE (VOIDmode, get_fpscr_rtx ())));
|
1440 |
|
|
(mode == SFmode ? emit_sf_insn : emit_df_insn) (insn);
|
1441 |
|
|
}
|
1442 |
|
|
else
|
1443 |
|
|
emit_insn (insn);
|
1444 |
|
|
}
|
1445 |
|
|
|
1446 |
|
|
/* Functions to output assembly code. */
|
1447 |
|
|
|
1448 |
|
|
/* Return a sequence of instructions to perform DI or DF move.
|
1449 |
|
|
|
1450 |
|
|
Since the SH cannot move a DI or DF in one instruction, we have
|
1451 |
|
|
to take care when we see overlapping source and dest registers. */
|
1452 |
|
|
|
1453 |
|
|
const char *
|
1454 |
|
|
output_movedouble (rtx insn ATTRIBUTE_UNUSED, rtx operands[],
|
1455 |
|
|
enum machine_mode mode)
|
1456 |
|
|
{
|
1457 |
|
|
rtx dst = operands[0];
|
1458 |
|
|
rtx src = operands[1];
|
1459 |
|
|
|
1460 |
|
|
if (GET_CODE (dst) == MEM
|
1461 |
|
|
&& GET_CODE (XEXP (dst, 0)) == PRE_DEC)
|
1462 |
|
|
return "mov.l %T1,%0\n\tmov.l %1,%0";
|
1463 |
|
|
|
1464 |
|
|
if (register_operand (dst, mode)
|
1465 |
|
|
&& register_operand (src, mode))
|
1466 |
|
|
{
|
1467 |
|
|
if (REGNO (src) == MACH_REG)
|
1468 |
|
|
return "sts mach,%S0\n\tsts macl,%R0";
|
1469 |
|
|
|
1470 |
|
|
/* When mov.d r1,r2 do r2->r3 then r1->r2;
|
1471 |
|
|
when mov.d r1,r0 do r1->r0 then r2->r1. */
|
1472 |
|
|
|
1473 |
|
|
if (REGNO (src) + 1 == REGNO (dst))
|
1474 |
|
|
return "mov %T1,%T0\n\tmov %1,%0";
|
1475 |
|
|
else
|
1476 |
|
|
return "mov %1,%0\n\tmov %T1,%T0";
|
1477 |
|
|
}
|
1478 |
|
|
else if (GET_CODE (src) == CONST_INT)
|
1479 |
|
|
{
|
1480 |
|
|
if (INTVAL (src) < 0)
|
1481 |
|
|
output_asm_insn ("mov #-1,%S0", operands);
|
1482 |
|
|
else
|
1483 |
|
|
output_asm_insn ("mov #0,%S0", operands);
|
1484 |
|
|
|
1485 |
|
|
return "mov %1,%R0";
|
1486 |
|
|
}
|
1487 |
|
|
else if (GET_CODE (src) == MEM)
|
1488 |
|
|
{
|
1489 |
|
|
int ptrreg = -1;
|
1490 |
|
|
int dreg = REGNO (dst);
|
1491 |
|
|
rtx inside = XEXP (src, 0);
|
1492 |
|
|
|
1493 |
|
|
switch (GET_CODE (inside))
|
1494 |
|
|
{
|
1495 |
|
|
case REG:
|
1496 |
|
|
ptrreg = REGNO (inside);
|
1497 |
|
|
break;
|
1498 |
|
|
|
1499 |
|
|
case SUBREG:
|
1500 |
|
|
ptrreg = subreg_regno (inside);
|
1501 |
|
|
break;
|
1502 |
|
|
|
1503 |
|
|
case PLUS:
|
1504 |
|
|
ptrreg = REGNO (XEXP (inside, 0));
|
1505 |
|
|
/* ??? A r0+REG address shouldn't be possible here, because it isn't
|
1506 |
|
|
an offsettable address. Unfortunately, offsettable addresses use
|
1507 |
|
|
QImode to check the offset, and a QImode offsettable address
|
1508 |
|
|
requires r0 for the other operand, which is not currently
|
1509 |
|
|
supported, so we can't use the 'o' constraint.
|
1510 |
|
|
Thus we must check for and handle r0+REG addresses here.
|
1511 |
|
|
We punt for now, since this is likely very rare. */
|
1512 |
|
|
gcc_assert (GET_CODE (XEXP (inside, 1)) != REG);
|
1513 |
|
|
break;
|
1514 |
|
|
|
1515 |
|
|
case LABEL_REF:
|
1516 |
|
|
return "mov.l %1,%0\n\tmov.l %1+4,%T0";
|
1517 |
|
|
case POST_INC:
|
1518 |
|
|
return "mov.l %1,%0\n\tmov.l %1,%T0";
|
1519 |
|
|
default:
|
1520 |
|
|
gcc_unreachable ();
|
1521 |
|
|
}
|
1522 |
|
|
|
1523 |
|
|
/* Work out the safe way to copy. Copy into the second half first. */
|
1524 |
|
|
if (dreg == ptrreg)
|
1525 |
|
|
return "mov.l %T1,%T0\n\tmov.l %1,%0";
|
1526 |
|
|
}
|
1527 |
|
|
|
1528 |
|
|
return "mov.l %1,%0\n\tmov.l %T1,%T0";
|
1529 |
|
|
}
|
1530 |
|
|
|
1531 |
|
|
/* Print an instruction which would have gone into a delay slot after
|
1532 |
|
|
another instruction, but couldn't because the other instruction expanded
|
1533 |
|
|
into a sequence where putting the slot insn at the end wouldn't work. */
|
1534 |
|
|
|
1535 |
|
|
static void
|
1536 |
|
|
print_slot (rtx insn)
|
1537 |
|
|
{
|
1538 |
|
|
final_scan_insn (XVECEXP (insn, 0, 1), asm_out_file, optimize, 1, NULL);
|
1539 |
|
|
|
1540 |
|
|
INSN_DELETED_P (XVECEXP (insn, 0, 1)) = 1;
|
1541 |
|
|
}
|
1542 |
|
|
|
1543 |
|
|
const char *
|
1544 |
|
|
output_far_jump (rtx insn, rtx op)
|
1545 |
|
|
{
|
1546 |
|
|
struct { rtx lab, reg, op; } this;
|
1547 |
|
|
rtx braf_base_lab = NULL_RTX;
|
1548 |
|
|
const char *jump;
|
1549 |
|
|
int far;
|
1550 |
|
|
int offset = branch_dest (insn) - INSN_ADDRESSES (INSN_UID (insn));
|
1551 |
|
|
rtx prev;
|
1552 |
|
|
|
1553 |
|
|
this.lab = gen_label_rtx ();
|
1554 |
|
|
|
1555 |
|
|
if (TARGET_SH2
|
1556 |
|
|
&& offset >= -32764
|
1557 |
|
|
&& offset - get_attr_length (insn) <= 32766)
|
1558 |
|
|
{
|
1559 |
|
|
far = 0;
|
1560 |
|
|
jump = "mov.w %O0,%1; braf %1";
|
1561 |
|
|
}
|
1562 |
|
|
else
|
1563 |
|
|
{
|
1564 |
|
|
far = 1;
|
1565 |
|
|
if (flag_pic)
|
1566 |
|
|
{
|
1567 |
|
|
if (TARGET_SH2)
|
1568 |
|
|
jump = "mov.l %O0,%1; braf %1";
|
1569 |
|
|
else
|
1570 |
|
|
jump = "mov.l r0,@-r15; mova %O0,r0; mov.l @r0,%1; add r0,%1; mov.l @r15+,r0; jmp @%1";
|
1571 |
|
|
}
|
1572 |
|
|
else
|
1573 |
|
|
jump = "mov.l %O0,%1; jmp @%1";
|
1574 |
|
|
}
|
1575 |
|
|
/* If we have a scratch register available, use it. */
|
1576 |
|
|
if (GET_CODE ((prev = prev_nonnote_insn (insn))) == INSN
|
1577 |
|
|
&& INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch)
|
1578 |
|
|
{
|
1579 |
|
|
this.reg = SET_DEST (XVECEXP (PATTERN (prev), 0, 0));
|
1580 |
|
|
if (REGNO (this.reg) == R0_REG && flag_pic && ! TARGET_SH2)
|
1581 |
|
|
jump = "mov.l r1,@-r15; mova %O0,r0; mov.l @r0,r1; add r1,r0; mov.l @r15+,r1; jmp @%1";
|
1582 |
|
|
output_asm_insn (jump, &this.lab);
|
1583 |
|
|
if (dbr_sequence_length ())
|
1584 |
|
|
print_slot (final_sequence);
|
1585 |
|
|
else
|
1586 |
|
|
output_asm_insn ("nop", 0);
|
1587 |
|
|
}
|
1588 |
|
|
else
|
1589 |
|
|
{
|
1590 |
|
|
/* Output the delay slot insn first if any. */
|
1591 |
|
|
if (dbr_sequence_length ())
|
1592 |
|
|
print_slot (final_sequence);
|
1593 |
|
|
|
1594 |
|
|
this.reg = gen_rtx_REG (SImode, 13);
|
1595 |
|
|
/* We must keep the stack aligned to 8-byte boundaries on SH5.
|
1596 |
|
|
Fortunately, MACL is fixed and call-clobbered, and we never
|
1597 |
|
|
need its value across jumps, so save r13 in it instead of in
|
1598 |
|
|
the stack. */
|
1599 |
|
|
if (TARGET_SH5)
|
1600 |
|
|
output_asm_insn ("lds r13, macl", 0);
|
1601 |
|
|
else
|
1602 |
|
|
output_asm_insn ("mov.l r13,@-r15", 0);
|
1603 |
|
|
output_asm_insn (jump, &this.lab);
|
1604 |
|
|
if (TARGET_SH5)
|
1605 |
|
|
output_asm_insn ("sts macl, r13", 0);
|
1606 |
|
|
else
|
1607 |
|
|
output_asm_insn ("mov.l @r15+,r13", 0);
|
1608 |
|
|
}
|
1609 |
|
|
if (far && flag_pic && TARGET_SH2)
|
1610 |
|
|
{
|
1611 |
|
|
braf_base_lab = gen_label_rtx ();
|
1612 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
1613 |
|
|
CODE_LABEL_NUMBER (braf_base_lab));
|
1614 |
|
|
}
|
1615 |
|
|
if (far)
|
1616 |
|
|
output_asm_insn (".align 2", 0);
|
1617 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (this.lab));
|
1618 |
|
|
this.op = op;
|
1619 |
|
|
if (far && flag_pic)
|
1620 |
|
|
{
|
1621 |
|
|
if (TARGET_SH2)
|
1622 |
|
|
this.lab = braf_base_lab;
|
1623 |
|
|
output_asm_insn (".long %O2-%O0", &this.lab);
|
1624 |
|
|
}
|
1625 |
|
|
else
|
1626 |
|
|
output_asm_insn (far ? ".long %O2" : ".word %O2-%O0", &this.lab);
|
1627 |
|
|
return "";
|
1628 |
|
|
}
|
1629 |
|
|
|
1630 |
|
|
/* Local label counter, used for constants in the pool and inside
|
1631 |
|
|
pattern branches. */
|
1632 |
|
|
|
1633 |
|
|
static int lf = 100;
|
1634 |
|
|
|
1635 |
|
|
/* Output code for ordinary branches. */
|
1636 |
|
|
|
1637 |
|
|
const char *
|
1638 |
|
|
output_branch (int logic, rtx insn, rtx *operands)
|
1639 |
|
|
{
|
1640 |
|
|
switch (get_attr_length (insn))
|
1641 |
|
|
{
|
1642 |
|
|
case 6:
|
1643 |
|
|
/* This can happen if filling the delay slot has caused a forward
|
1644 |
|
|
branch to exceed its range (we could reverse it, but only
|
1645 |
|
|
when we know we won't overextend other branches; this should
|
1646 |
|
|
best be handled by relaxation).
|
1647 |
|
|
It can also happen when other condbranches hoist delay slot insn
|
1648 |
|
|
from their destination, thus leading to code size increase.
|
1649 |
|
|
But the branch will still be in the range -4092..+4098 bytes. */
|
1650 |
|
|
|
1651 |
|
|
if (! TARGET_RELAX)
|
1652 |
|
|
{
|
1653 |
|
|
int label = lf++;
|
1654 |
|
|
/* The call to print_slot will clobber the operands. */
|
1655 |
|
|
rtx op0 = operands[0];
|
1656 |
|
|
|
1657 |
|
|
/* If the instruction in the delay slot is annulled (true), then
|
1658 |
|
|
there is no delay slot where we can put it now. The only safe
|
1659 |
|
|
place for it is after the label. final will do that by default. */
|
1660 |
|
|
|
1661 |
|
|
if (final_sequence
|
1662 |
|
|
&& ! INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))
|
1663 |
|
|
&& get_attr_length (XVECEXP (final_sequence, 0, 1)))
|
1664 |
|
|
{
|
1665 |
|
|
asm_fprintf (asm_out_file, "\tb%s%ss\t%LLF%d\n", logic ? "f" : "t",
|
1666 |
|
|
ASSEMBLER_DIALECT ? "/" : ".", label);
|
1667 |
|
|
print_slot (final_sequence);
|
1668 |
|
|
}
|
1669 |
|
|
else
|
1670 |
|
|
asm_fprintf (asm_out_file, "\tb%s\t%LLF%d\n", logic ? "f" : "t", label);
|
1671 |
|
|
|
1672 |
|
|
output_asm_insn ("bra\t%l0", &op0);
|
1673 |
|
|
fprintf (asm_out_file, "\tnop\n");
|
1674 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "LF", label);
|
1675 |
|
|
|
1676 |
|
|
return "";
|
1677 |
|
|
}
|
1678 |
|
|
/* When relaxing, handle this like a short branch. The linker
|
1679 |
|
|
will fix it up if it still doesn't fit after relaxation. */
|
1680 |
|
|
case 2:
|
1681 |
|
|
return logic ? "bt%.\t%l0" : "bf%.\t%l0";
|
1682 |
|
|
|
1683 |
|
|
/* These are for SH2e, in which we have to account for the
|
1684 |
|
|
extra nop because of the hardware bug in annulled branches. */
|
1685 |
|
|
case 8:
|
1686 |
|
|
if (! TARGET_RELAX)
|
1687 |
|
|
{
|
1688 |
|
|
int label = lf++;
|
1689 |
|
|
|
1690 |
|
|
gcc_assert (!final_sequence
|
1691 |
|
|
|| !(INSN_ANNULLED_BRANCH_P
|
1692 |
|
|
(XVECEXP (final_sequence, 0, 0))));
|
1693 |
|
|
asm_fprintf (asm_out_file, "b%s%ss\t%LLF%d\n",
|
1694 |
|
|
logic ? "f" : "t",
|
1695 |
|
|
ASSEMBLER_DIALECT ? "/" : ".", label);
|
1696 |
|
|
fprintf (asm_out_file, "\tnop\n");
|
1697 |
|
|
output_asm_insn ("bra\t%l0", operands);
|
1698 |
|
|
fprintf (asm_out_file, "\tnop\n");
|
1699 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "LF", label);
|
1700 |
|
|
|
1701 |
|
|
return "";
|
1702 |
|
|
}
|
1703 |
|
|
/* When relaxing, fall through. */
|
1704 |
|
|
case 4:
|
1705 |
|
|
{
|
1706 |
|
|
char buffer[10];
|
1707 |
|
|
|
1708 |
|
|
sprintf (buffer, "b%s%ss\t%%l0",
|
1709 |
|
|
logic ? "t" : "f",
|
1710 |
|
|
ASSEMBLER_DIALECT ? "/" : ".");
|
1711 |
|
|
output_asm_insn (buffer, &operands[0]);
|
1712 |
|
|
return "nop";
|
1713 |
|
|
}
|
1714 |
|
|
|
1715 |
|
|
default:
|
1716 |
|
|
/* There should be no longer branches now - that would
|
1717 |
|
|
indicate that something has destroyed the branches set
|
1718 |
|
|
up in machine_dependent_reorg. */
|
1719 |
|
|
gcc_unreachable ();
|
1720 |
|
|
}
|
1721 |
|
|
}
|
1722 |
|
|
|
1723 |
|
|
const char *
|
1724 |
|
|
output_branchy_insn (enum rtx_code code, const char *template,
|
1725 |
|
|
rtx insn, rtx *operands)
|
1726 |
|
|
{
|
1727 |
|
|
rtx next_insn = NEXT_INSN (insn);
|
1728 |
|
|
|
1729 |
|
|
if (next_insn && GET_CODE (next_insn) == JUMP_INSN && condjump_p (next_insn))
|
1730 |
|
|
{
|
1731 |
|
|
rtx src = SET_SRC (PATTERN (next_insn));
|
1732 |
|
|
if (GET_CODE (src) == IF_THEN_ELSE && GET_CODE (XEXP (src, 0)) != code)
|
1733 |
|
|
{
|
1734 |
|
|
/* Following branch not taken */
|
1735 |
|
|
operands[9] = gen_label_rtx ();
|
1736 |
|
|
emit_label_after (operands[9], next_insn);
|
1737 |
|
|
INSN_ADDRESSES_NEW (operands[9],
|
1738 |
|
|
INSN_ADDRESSES (INSN_UID (next_insn))
|
1739 |
|
|
+ get_attr_length (next_insn));
|
1740 |
|
|
return template;
|
1741 |
|
|
}
|
1742 |
|
|
else
|
1743 |
|
|
{
|
1744 |
|
|
int offset = (branch_dest (next_insn)
|
1745 |
|
|
- INSN_ADDRESSES (INSN_UID (next_insn)) + 4);
|
1746 |
|
|
if (offset >= -252 && offset <= 258)
|
1747 |
|
|
{
|
1748 |
|
|
if (GET_CODE (src) == IF_THEN_ELSE)
|
1749 |
|
|
/* branch_true */
|
1750 |
|
|
src = XEXP (src, 1);
|
1751 |
|
|
operands[9] = src;
|
1752 |
|
|
return template;
|
1753 |
|
|
}
|
1754 |
|
|
}
|
1755 |
|
|
}
|
1756 |
|
|
operands[9] = gen_label_rtx ();
|
1757 |
|
|
emit_label_after (operands[9], insn);
|
1758 |
|
|
INSN_ADDRESSES_NEW (operands[9],
|
1759 |
|
|
INSN_ADDRESSES (INSN_UID (insn))
|
1760 |
|
|
+ get_attr_length (insn));
|
1761 |
|
|
return template;
|
1762 |
|
|
}
|
1763 |
|
|
|
1764 |
|
|
const char *
|
1765 |
|
|
output_ieee_ccmpeq (rtx insn, rtx *operands)
|
1766 |
|
|
{
|
1767 |
|
|
return output_branchy_insn (NE, "bt\t%l9\n\tfcmp/eq\t%1,%0",
|
1768 |
|
|
insn, operands);
|
1769 |
|
|
}
|
1770 |
|
|
|
1771 |
|
|
/* Output the start of the assembler file. */
|
1772 |
|
|
|
1773 |
|
|
static void
|
1774 |
|
|
sh_file_start (void)
|
1775 |
|
|
{
|
1776 |
|
|
default_file_start ();
|
1777 |
|
|
|
1778 |
|
|
#ifdef SYMBIAN
|
1779 |
|
|
/* Declare the .directive section before it is used. */
|
1780 |
|
|
fputs ("\t.section .directive, \"SM\", @progbits, 1\n", asm_out_file);
|
1781 |
|
|
fputs ("\t.asciz \"#<SYMEDIT>#\\n\"\n", asm_out_file);
|
1782 |
|
|
#endif
|
1783 |
|
|
|
1784 |
|
|
if (TARGET_ELF)
|
1785 |
|
|
/* We need to show the text section with the proper
|
1786 |
|
|
attributes as in TEXT_SECTION_ASM_OP, before dwarf2out
|
1787 |
|
|
emits it without attributes in TEXT_SECTION_ASM_OP, else GAS
|
1788 |
|
|
will complain. We can teach GAS specifically about the
|
1789 |
|
|
default attributes for our choice of text section, but
|
1790 |
|
|
then we would have to change GAS again if/when we change
|
1791 |
|
|
the text section name. */
|
1792 |
|
|
fprintf (asm_out_file, "%s\n", TEXT_SECTION_ASM_OP);
|
1793 |
|
|
else
|
1794 |
|
|
/* Switch to the data section so that the coffsem symbol
|
1795 |
|
|
isn't in the text section. */
|
1796 |
|
|
switch_to_section (data_section);
|
1797 |
|
|
|
1798 |
|
|
if (TARGET_LITTLE_ENDIAN)
|
1799 |
|
|
fputs ("\t.little\n", asm_out_file);
|
1800 |
|
|
|
1801 |
|
|
if (!TARGET_ELF)
|
1802 |
|
|
{
|
1803 |
|
|
if (TARGET_SHCOMPACT)
|
1804 |
|
|
fputs ("\t.mode\tSHcompact\n", asm_out_file);
|
1805 |
|
|
else if (TARGET_SHMEDIA)
|
1806 |
|
|
fprintf (asm_out_file, "\t.mode\tSHmedia\n\t.abi\t%i\n",
|
1807 |
|
|
TARGET_SHMEDIA64 ? 64 : 32);
|
1808 |
|
|
}
|
1809 |
|
|
}
|
1810 |
|
|
|
1811 |
|
|
/* Check if PAT includes UNSPEC_CALLER unspec pattern. */
|
1812 |
|
|
|
1813 |
|
|
static bool
|
1814 |
|
|
unspec_caller_rtx_p (rtx pat)
|
1815 |
|
|
{
|
1816 |
|
|
switch (GET_CODE (pat))
|
1817 |
|
|
{
|
1818 |
|
|
case CONST:
|
1819 |
|
|
return unspec_caller_rtx_p (XEXP (pat, 0));
|
1820 |
|
|
case PLUS:
|
1821 |
|
|
case MINUS:
|
1822 |
|
|
if (unspec_caller_rtx_p (XEXP (pat, 0)))
|
1823 |
|
|
return true;
|
1824 |
|
|
return unspec_caller_rtx_p (XEXP (pat, 1));
|
1825 |
|
|
case UNSPEC:
|
1826 |
|
|
if (XINT (pat, 1) == UNSPEC_CALLER)
|
1827 |
|
|
return true;
|
1828 |
|
|
default:
|
1829 |
|
|
break;
|
1830 |
|
|
}
|
1831 |
|
|
|
1832 |
|
|
return false;
|
1833 |
|
|
}
|
1834 |
|
|
|
1835 |
|
|
/* Indicate that INSN cannot be duplicated. This is true for insn
|
1836 |
|
|
that generates a unique label. */
|
1837 |
|
|
|
1838 |
|
|
static bool
|
1839 |
|
|
sh_cannot_copy_insn_p (rtx insn)
|
1840 |
|
|
{
|
1841 |
|
|
rtx pat;
|
1842 |
|
|
|
1843 |
|
|
if (!reload_completed || !flag_pic)
|
1844 |
|
|
return false;
|
1845 |
|
|
|
1846 |
|
|
if (GET_CODE (insn) != INSN)
|
1847 |
|
|
return false;
|
1848 |
|
|
if (asm_noperands (insn) >= 0)
|
1849 |
|
|
return false;
|
1850 |
|
|
|
1851 |
|
|
pat = PATTERN (insn);
|
1852 |
|
|
if (GET_CODE (pat) != SET)
|
1853 |
|
|
return false;
|
1854 |
|
|
pat = SET_SRC (pat);
|
1855 |
|
|
|
1856 |
|
|
if (unspec_caller_rtx_p (pat))
|
1857 |
|
|
return true;
|
1858 |
|
|
|
1859 |
|
|
return false;
|
1860 |
|
|
}
|
1861 |
|
|
|
1862 |
|
|
/* Actual number of instructions used to make a shift by N. */
|
1863 |
|
|
static const char ashiftrt_insns[] =
|
1864 |
|
|
{ 0,1,2,3,4,5,8,8,8,8,8,8,8,8,8,8,2,3,4,5,8,8,8,8,8,8,8,8,8,8,8,2};
|
1865 |
|
|
|
1866 |
|
|
/* Left shift and logical right shift are the same. */
|
1867 |
|
|
static const char shift_insns[] =
|
1868 |
|
|
{ 0,1,1,2,2,3,3,4,1,2,2,3,3,4,3,3,1,2,2,3,3,4,3,3,2,3,3,4,4,4,3,3};
|
1869 |
|
|
|
1870 |
|
|
/* Individual shift amounts needed to get the above length sequences.
|
1871 |
|
|
One bit right shifts clobber the T bit, so when possible, put one bit
|
1872 |
|
|
shifts in the middle of the sequence, so the ends are eligible for
|
1873 |
|
|
branch delay slots. */
|
1874 |
|
|
static const short shift_amounts[32][5] = {
|
1875 |
|
|
{0}, {1}, {2}, {2, 1},
|
1876 |
|
|
{2, 2}, {2, 1, 2}, {2, 2, 2}, {2, 2, 1, 2},
|
1877 |
|
|
{8}, {8, 1}, {8, 2}, {8, 1, 2},
|
1878 |
|
|
{8, 2, 2}, {8, 2, 1, 2}, {8, -2, 8}, {8, -1, 8},
|
1879 |
|
|
{16}, {16, 1}, {16, 2}, {16, 1, 2},
|
1880 |
|
|
{16, 2, 2}, {16, 2, 1, 2}, {16, -2, 8}, {16, -1, 8},
|
1881 |
|
|
{16, 8}, {16, 1, 8}, {16, 8, 2}, {16, 8, 1, 2},
|
1882 |
|
|
{16, 8, 2, 2}, {16, -1, -2, 16}, {16, -2, 16}, {16, -1, 16}};
|
1883 |
|
|
|
1884 |
|
|
/* Likewise, but for shift amounts < 16, up to three highmost bits
|
1885 |
|
|
might be clobbered. This is typically used when combined with some
|
1886 |
|
|
kind of sign or zero extension. */
|
1887 |
|
|
|
1888 |
|
|
static const char ext_shift_insns[] =
|
1889 |
|
|
{ 0,1,1,2,2,3,2,2,1,2,2,3,3,3,2,2,1,2,2,3,3,4,3,3,2,3,3,4,4,4,3,3};
|
1890 |
|
|
|
1891 |
|
|
static const short ext_shift_amounts[32][4] = {
|
1892 |
|
|
{0}, {1}, {2}, {2, 1},
|
1893 |
|
|
{2, 2}, {2, 1, 2}, {8, -2}, {8, -1},
|
1894 |
|
|
{8}, {8, 1}, {8, 2}, {8, 1, 2},
|
1895 |
|
|
{8, 2, 2}, {16, -2, -1}, {16, -2}, {16, -1},
|
1896 |
|
|
{16}, {16, 1}, {16, 2}, {16, 1, 2},
|
1897 |
|
|
{16, 2, 2}, {16, 2, 1, 2}, {16, -2, 8}, {16, -1, 8},
|
1898 |
|
|
{16, 8}, {16, 1, 8}, {16, 8, 2}, {16, 8, 1, 2},
|
1899 |
|
|
{16, 8, 2, 2}, {16, -1, -2, 16}, {16, -2, 16}, {16, -1, 16}};
|
1900 |
|
|
|
1901 |
|
|
/* Assuming we have a value that has been sign-extended by at least one bit,
|
1902 |
|
|
can we use the ext_shift_amounts with the last shift turned to an arithmetic shift
|
1903 |
|
|
to shift it by N without data loss, and quicker than by other means? */
|
1904 |
|
|
#define EXT_SHIFT_SIGNED(n) (((n) | 8) == 15)
|
1905 |
|
|
|
1906 |
|
|
/* This is used in length attributes in sh.md to help compute the length
|
1907 |
|
|
of arbitrary constant shift instructions. */
|
1908 |
|
|
|
1909 |
|
|
int
|
1910 |
|
|
shift_insns_rtx (rtx insn)
|
1911 |
|
|
{
|
1912 |
|
|
rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
|
1913 |
|
|
int shift_count = INTVAL (XEXP (set_src, 1));
|
1914 |
|
|
enum rtx_code shift_code = GET_CODE (set_src);
|
1915 |
|
|
|
1916 |
|
|
switch (shift_code)
|
1917 |
|
|
{
|
1918 |
|
|
case ASHIFTRT:
|
1919 |
|
|
return ashiftrt_insns[shift_count];
|
1920 |
|
|
case LSHIFTRT:
|
1921 |
|
|
case ASHIFT:
|
1922 |
|
|
return shift_insns[shift_count];
|
1923 |
|
|
default:
|
1924 |
|
|
gcc_unreachable ();
|
1925 |
|
|
}
|
1926 |
|
|
}
|
1927 |
|
|
|
1928 |
|
|
/* Return the cost of a shift. */
|
1929 |
|
|
|
1930 |
|
|
static inline int
|
1931 |
|
|
shiftcosts (rtx x)
|
1932 |
|
|
{
|
1933 |
|
|
int value;
|
1934 |
|
|
|
1935 |
|
|
if (TARGET_SHMEDIA)
|
1936 |
|
|
return 1;
|
1937 |
|
|
|
1938 |
|
|
if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
|
1939 |
|
|
{
|
1940 |
|
|
if (GET_MODE (x) == DImode
|
1941 |
|
|
&& GET_CODE (XEXP (x, 1)) == CONST_INT
|
1942 |
|
|
&& INTVAL (XEXP (x, 1)) == 1)
|
1943 |
|
|
return 2;
|
1944 |
|
|
|
1945 |
|
|
/* Everything else is invalid, because there is no pattern for it. */
|
1946 |
|
|
return MAX_COST;
|
1947 |
|
|
}
|
1948 |
|
|
/* If shift by a non constant, then this will be expensive. */
|
1949 |
|
|
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
1950 |
|
|
return SH_DYNAMIC_SHIFT_COST;
|
1951 |
|
|
|
1952 |
|
|
value = INTVAL (XEXP (x, 1));
|
1953 |
|
|
|
1954 |
|
|
/* Otherwise, return the true cost in instructions. */
|
1955 |
|
|
if (GET_CODE (x) == ASHIFTRT)
|
1956 |
|
|
{
|
1957 |
|
|
int cost = ashiftrt_insns[value];
|
1958 |
|
|
/* If SH3, then we put the constant in a reg and use shad. */
|
1959 |
|
|
if (cost > 1 + SH_DYNAMIC_SHIFT_COST)
|
1960 |
|
|
cost = 1 + SH_DYNAMIC_SHIFT_COST;
|
1961 |
|
|
return cost;
|
1962 |
|
|
}
|
1963 |
|
|
else
|
1964 |
|
|
return shift_insns[value];
|
1965 |
|
|
}
|
1966 |
|
|
|
1967 |
|
|
/* Return the cost of an AND operation. */
|
1968 |
|
|
|
1969 |
|
|
static inline int
|
1970 |
|
|
andcosts (rtx x)
|
1971 |
|
|
{
|
1972 |
|
|
int i;
|
1973 |
|
|
|
1974 |
|
|
/* Anding with a register is a single cycle and instruction. */
|
1975 |
|
|
if (GET_CODE (XEXP (x, 1)) != CONST_INT)
|
1976 |
|
|
return 1;
|
1977 |
|
|
|
1978 |
|
|
i = INTVAL (XEXP (x, 1));
|
1979 |
|
|
|
1980 |
|
|
if (TARGET_SHMEDIA)
|
1981 |
|
|
{
|
1982 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
1983 |
|
|
&& (CONST_OK_FOR_I10 (INTVAL (XEXP (x, 1)))
|
1984 |
|
|
|| CONST_OK_FOR_J16 (INTVAL (XEXP (x, 1)))))
|
1985 |
|
|
return 1;
|
1986 |
|
|
else
|
1987 |
|
|
return 1 + rtx_cost (XEXP (x, 1), AND);
|
1988 |
|
|
}
|
1989 |
|
|
|
1990 |
|
|
/* These constants are single cycle extu.[bw] instructions. */
|
1991 |
|
|
if (i == 0xff || i == 0xffff)
|
1992 |
|
|
return 1;
|
1993 |
|
|
/* Constants that can be used in an and immediate instruction in a single
|
1994 |
|
|
cycle, but this requires r0, so make it a little more expensive. */
|
1995 |
|
|
if (CONST_OK_FOR_K08 (i))
|
1996 |
|
|
return 2;
|
1997 |
|
|
/* Constants that can be loaded with a mov immediate and an and.
|
1998 |
|
|
This case is probably unnecessary. */
|
1999 |
|
|
if (CONST_OK_FOR_I08 (i))
|
2000 |
|
|
return 2;
|
2001 |
|
|
/* Any other constants requires a 2 cycle pc-relative load plus an and.
|
2002 |
|
|
This case is probably unnecessary. */
|
2003 |
|
|
return 3;
|
2004 |
|
|
}
|
2005 |
|
|
|
2006 |
|
|
/* Return the cost of an addition or a subtraction. */
|
2007 |
|
|
|
2008 |
|
|
static inline int
|
2009 |
|
|
addsubcosts (rtx x)
|
2010 |
|
|
{
|
2011 |
|
|
/* Adding a register is a single cycle insn. */
|
2012 |
|
|
if (GET_CODE (XEXP (x, 1)) == REG
|
2013 |
|
|
|| GET_CODE (XEXP (x, 1)) == SUBREG)
|
2014 |
|
|
return 1;
|
2015 |
|
|
|
2016 |
|
|
/* Likewise for small constants. */
|
2017 |
|
|
if (GET_CODE (XEXP (x, 1)) == CONST_INT
|
2018 |
|
|
&& CONST_OK_FOR_ADD (INTVAL (XEXP (x, 1))))
|
2019 |
|
|
return 1;
|
2020 |
|
|
|
2021 |
|
|
if (TARGET_SHMEDIA)
|
2022 |
|
|
switch (GET_CODE (XEXP (x, 1)))
|
2023 |
|
|
{
|
2024 |
|
|
case CONST:
|
2025 |
|
|
case LABEL_REF:
|
2026 |
|
|
case SYMBOL_REF:
|
2027 |
|
|
return TARGET_SHMEDIA64 ? 5 : 3;
|
2028 |
|
|
|
2029 |
|
|
case CONST_INT:
|
2030 |
|
|
if (CONST_OK_FOR_I16 (INTVAL (XEXP (x, 1))))
|
2031 |
|
|
return 2;
|
2032 |
|
|
else if (CONST_OK_FOR_I16 (INTVAL (XEXP (x, 1)) >> 16))
|
2033 |
|
|
return 3;
|
2034 |
|
|
else if (CONST_OK_FOR_I16 ((INTVAL (XEXP (x, 1)) >> 16) >> 16))
|
2035 |
|
|
return 4;
|
2036 |
|
|
|
2037 |
|
|
/* Fall through. */
|
2038 |
|
|
default:
|
2039 |
|
|
return 5;
|
2040 |
|
|
}
|
2041 |
|
|
|
2042 |
|
|
/* Any other constant requires a 2 cycle pc-relative load plus an
|
2043 |
|
|
addition. */
|
2044 |
|
|
return 3;
|
2045 |
|
|
}
|
2046 |
|
|
|
2047 |
|
|
/* Return the cost of a multiply. */
|
2048 |
|
|
static inline int
|
2049 |
|
|
multcosts (rtx x ATTRIBUTE_UNUSED)
|
2050 |
|
|
{
|
2051 |
|
|
if (sh_multcost >= 0)
|
2052 |
|
|
return sh_multcost;
|
2053 |
|
|
if (TARGET_SHMEDIA)
|
2054 |
|
|
/* ??? We have a mul insn, but it has a latency of three, and doesn't
|
2055 |
|
|
accept constants. Ideally, we would use a cost of one or two and
|
2056 |
|
|
add the cost of the operand, but disregard the latter when inside loops
|
2057 |
|
|
and loop invariant code motion is still to follow.
|
2058 |
|
|
Using a multiply first and splitting it later if it's a loss
|
2059 |
|
|
doesn't work because of different sign / zero extension semantics
|
2060 |
|
|
of multiplies vs. shifts. */
|
2061 |
|
|
return TARGET_SMALLCODE ? 2 : 3;
|
2062 |
|
|
|
2063 |
|
|
if (TARGET_SH2)
|
2064 |
|
|
{
|
2065 |
|
|
/* We have a mul insn, so we can never take more than the mul and the
|
2066 |
|
|
read of the mac reg, but count more because of the latency and extra
|
2067 |
|
|
reg usage. */
|
2068 |
|
|
if (TARGET_SMALLCODE)
|
2069 |
|
|
return 2;
|
2070 |
|
|
return 3;
|
2071 |
|
|
}
|
2072 |
|
|
|
2073 |
|
|
/* If we're aiming at small code, then just count the number of
|
2074 |
|
|
insns in a multiply call sequence. */
|
2075 |
|
|
if (TARGET_SMALLCODE)
|
2076 |
|
|
return 5;
|
2077 |
|
|
|
2078 |
|
|
/* Otherwise count all the insns in the routine we'd be calling too. */
|
2079 |
|
|
return 20;
|
2080 |
|
|
}
|
2081 |
|
|
|
2082 |
|
|
/* Compute a (partial) cost for rtx X. Return true if the complete
|
2083 |
|
|
cost has been computed, and false if subexpressions should be
|
2084 |
|
|
scanned. In either case, *TOTAL contains the cost result. */
|
2085 |
|
|
|
2086 |
|
|
static bool
|
2087 |
|
|
sh_rtx_costs (rtx x, int code, int outer_code, int *total)
|
2088 |
|
|
{
|
2089 |
|
|
switch (code)
|
2090 |
|
|
{
|
2091 |
|
|
case CONST_INT:
|
2092 |
|
|
if (TARGET_SHMEDIA)
|
2093 |
|
|
{
|
2094 |
|
|
if (INTVAL (x) == 0)
|
2095 |
|
|
*total = 0;
|
2096 |
|
|
else if (outer_code == AND && and_operand ((x), DImode))
|
2097 |
|
|
*total = 0;
|
2098 |
|
|
else if ((outer_code == IOR || outer_code == XOR
|
2099 |
|
|
|| outer_code == PLUS)
|
2100 |
|
|
&& CONST_OK_FOR_I10 (INTVAL (x)))
|
2101 |
|
|
*total = 0;
|
2102 |
|
|
else if (CONST_OK_FOR_I16 (INTVAL (x)))
|
2103 |
|
|
*total = COSTS_N_INSNS (outer_code != SET);
|
2104 |
|
|
else if (CONST_OK_FOR_I16 (INTVAL (x) >> 16))
|
2105 |
|
|
*total = COSTS_N_INSNS ((outer_code != SET) + 1);
|
2106 |
|
|
else if (CONST_OK_FOR_I16 ((INTVAL (x) >> 16) >> 16))
|
2107 |
|
|
*total = COSTS_N_INSNS ((outer_code != SET) + 2);
|
2108 |
|
|
else
|
2109 |
|
|
*total = COSTS_N_INSNS ((outer_code != SET) + 3);
|
2110 |
|
|
return true;
|
2111 |
|
|
}
|
2112 |
|
|
if (CONST_OK_FOR_I08 (INTVAL (x)))
|
2113 |
|
|
*total = 0;
|
2114 |
|
|
else if ((outer_code == AND || outer_code == IOR || outer_code == XOR)
|
2115 |
|
|
&& CONST_OK_FOR_K08 (INTVAL (x)))
|
2116 |
|
|
*total = 1;
|
2117 |
|
|
else
|
2118 |
|
|
*total = 8;
|
2119 |
|
|
return true;
|
2120 |
|
|
|
2121 |
|
|
case CONST:
|
2122 |
|
|
case LABEL_REF:
|
2123 |
|
|
case SYMBOL_REF:
|
2124 |
|
|
if (TARGET_SHMEDIA64)
|
2125 |
|
|
*total = COSTS_N_INSNS (4);
|
2126 |
|
|
else if (TARGET_SHMEDIA32)
|
2127 |
|
|
*total = COSTS_N_INSNS (2);
|
2128 |
|
|
else
|
2129 |
|
|
*total = 5;
|
2130 |
|
|
return true;
|
2131 |
|
|
|
2132 |
|
|
case CONST_DOUBLE:
|
2133 |
|
|
if (TARGET_SHMEDIA)
|
2134 |
|
|
*total = COSTS_N_INSNS (4);
|
2135 |
|
|
else
|
2136 |
|
|
*total = 10;
|
2137 |
|
|
return true;
|
2138 |
|
|
case CONST_VECTOR:
|
2139 |
|
|
if (x == CONST0_RTX (GET_MODE (x)))
|
2140 |
|
|
*total = 0;
|
2141 |
|
|
else if (sh_1el_vec (x, VOIDmode))
|
2142 |
|
|
*total = outer_code != SET;
|
2143 |
|
|
if (sh_rep_vec (x, VOIDmode))
|
2144 |
|
|
*total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4
|
2145 |
|
|
+ (outer_code != SET));
|
2146 |
|
|
*total = COSTS_N_INSNS (3) + (outer_code != SET);
|
2147 |
|
|
return true;
|
2148 |
|
|
|
2149 |
|
|
case PLUS:
|
2150 |
|
|
case MINUS:
|
2151 |
|
|
*total = COSTS_N_INSNS (addsubcosts (x));
|
2152 |
|
|
return true;
|
2153 |
|
|
|
2154 |
|
|
case AND:
|
2155 |
|
|
*total = COSTS_N_INSNS (andcosts (x));
|
2156 |
|
|
return true;
|
2157 |
|
|
|
2158 |
|
|
case MULT:
|
2159 |
|
|
*total = COSTS_N_INSNS (multcosts (x));
|
2160 |
|
|
return true;
|
2161 |
|
|
|
2162 |
|
|
case ASHIFT:
|
2163 |
|
|
case ASHIFTRT:
|
2164 |
|
|
case LSHIFTRT:
|
2165 |
|
|
*total = COSTS_N_INSNS (shiftcosts (x));
|
2166 |
|
|
return true;
|
2167 |
|
|
|
2168 |
|
|
case DIV:
|
2169 |
|
|
case UDIV:
|
2170 |
|
|
case MOD:
|
2171 |
|
|
case UMOD:
|
2172 |
|
|
*total = COSTS_N_INSNS (20);
|
2173 |
|
|
return true;
|
2174 |
|
|
|
2175 |
|
|
case PARALLEL:
|
2176 |
|
|
if (sh_1el_vec (x, VOIDmode))
|
2177 |
|
|
*total = outer_code != SET;
|
2178 |
|
|
if (sh_rep_vec (x, VOIDmode))
|
2179 |
|
|
*total = ((GET_MODE_UNIT_SIZE (GET_MODE (x)) + 3) / 4
|
2180 |
|
|
+ (outer_code != SET));
|
2181 |
|
|
*total = COSTS_N_INSNS (3) + (outer_code != SET);
|
2182 |
|
|
return true;
|
2183 |
|
|
|
2184 |
|
|
case FLOAT:
|
2185 |
|
|
case FIX:
|
2186 |
|
|
*total = 100;
|
2187 |
|
|
return true;
|
2188 |
|
|
|
2189 |
|
|
default:
|
2190 |
|
|
return false;
|
2191 |
|
|
}
|
2192 |
|
|
}
|
2193 |
|
|
|
2194 |
|
|
/* Compute the cost of an address. For the SH, all valid addresses are
|
2195 |
|
|
the same cost. Use a slightly higher cost for reg + reg addressing,
|
2196 |
|
|
since it increases pressure on r0. */
|
2197 |
|
|
|
2198 |
|
|
static int
|
2199 |
|
|
sh_address_cost (rtx X)
|
2200 |
|
|
{
|
2201 |
|
|
return (GET_CODE (X) == PLUS
|
2202 |
|
|
&& ! CONSTANT_P (XEXP (X, 1))
|
2203 |
|
|
&& ! TARGET_SHMEDIA ? 1 : 0);
|
2204 |
|
|
}
|
2205 |
|
|
|
2206 |
|
|
/* Code to expand a shift. */
|
2207 |
|
|
|
2208 |
|
|
void
|
2209 |
|
|
gen_ashift (int type, int n, rtx reg)
|
2210 |
|
|
{
|
2211 |
|
|
/* Negative values here come from the shift_amounts array. */
|
2212 |
|
|
if (n < 0)
|
2213 |
|
|
{
|
2214 |
|
|
if (type == ASHIFT)
|
2215 |
|
|
type = LSHIFTRT;
|
2216 |
|
|
else
|
2217 |
|
|
type = ASHIFT;
|
2218 |
|
|
n = -n;
|
2219 |
|
|
}
|
2220 |
|
|
|
2221 |
|
|
switch (type)
|
2222 |
|
|
{
|
2223 |
|
|
case ASHIFTRT:
|
2224 |
|
|
emit_insn (gen_ashrsi3_k (reg, reg, GEN_INT (n)));
|
2225 |
|
|
break;
|
2226 |
|
|
case LSHIFTRT:
|
2227 |
|
|
if (n == 1)
|
2228 |
|
|
emit_insn (gen_lshrsi3_m (reg, reg, GEN_INT (n)));
|
2229 |
|
|
else
|
2230 |
|
|
emit_insn (gen_lshrsi3_k (reg, reg, GEN_INT (n)));
|
2231 |
|
|
break;
|
2232 |
|
|
case ASHIFT:
|
2233 |
|
|
emit_insn (gen_ashlsi3_std (reg, reg, GEN_INT (n)));
|
2234 |
|
|
break;
|
2235 |
|
|
}
|
2236 |
|
|
}
|
2237 |
|
|
|
2238 |
|
|
/* Same for HImode */
|
2239 |
|
|
|
2240 |
|
|
void
|
2241 |
|
|
gen_ashift_hi (int type, int n, rtx reg)
|
2242 |
|
|
{
|
2243 |
|
|
/* Negative values here come from the shift_amounts array. */
|
2244 |
|
|
if (n < 0)
|
2245 |
|
|
{
|
2246 |
|
|
if (type == ASHIFT)
|
2247 |
|
|
type = LSHIFTRT;
|
2248 |
|
|
else
|
2249 |
|
|
type = ASHIFT;
|
2250 |
|
|
n = -n;
|
2251 |
|
|
}
|
2252 |
|
|
|
2253 |
|
|
switch (type)
|
2254 |
|
|
{
|
2255 |
|
|
case ASHIFTRT:
|
2256 |
|
|
case LSHIFTRT:
|
2257 |
|
|
/* We don't have HImode right shift operations because using the
|
2258 |
|
|
ordinary 32 bit shift instructions for that doesn't generate proper
|
2259 |
|
|
zero/sign extension.
|
2260 |
|
|
gen_ashift_hi is only called in contexts where we know that the
|
2261 |
|
|
sign extension works out correctly. */
|
2262 |
|
|
{
|
2263 |
|
|
int offset = 0;
|
2264 |
|
|
if (GET_CODE (reg) == SUBREG)
|
2265 |
|
|
{
|
2266 |
|
|
offset = SUBREG_BYTE (reg);
|
2267 |
|
|
reg = SUBREG_REG (reg);
|
2268 |
|
|
}
|
2269 |
|
|
gen_ashift (type, n, gen_rtx_SUBREG (SImode, reg, offset));
|
2270 |
|
|
break;
|
2271 |
|
|
}
|
2272 |
|
|
case ASHIFT:
|
2273 |
|
|
emit_insn (gen_ashlhi3_k (reg, reg, GEN_INT (n)));
|
2274 |
|
|
break;
|
2275 |
|
|
}
|
2276 |
|
|
}
|
2277 |
|
|
|
2278 |
|
|
/* Output RTL to split a constant shift into its component SH constant
|
2279 |
|
|
shift instructions. */
|
2280 |
|
|
|
2281 |
|
|
void
|
2282 |
|
|
gen_shifty_op (int code, rtx *operands)
|
2283 |
|
|
{
|
2284 |
|
|
int value = INTVAL (operands[2]);
|
2285 |
|
|
int max, i;
|
2286 |
|
|
|
2287 |
|
|
/* Truncate the shift count in case it is out of bounds. */
|
2288 |
|
|
value = value & 0x1f;
|
2289 |
|
|
|
2290 |
|
|
if (value == 31)
|
2291 |
|
|
{
|
2292 |
|
|
if (code == LSHIFTRT)
|
2293 |
|
|
{
|
2294 |
|
|
emit_insn (gen_rotlsi3_1 (operands[0], operands[0]));
|
2295 |
|
|
emit_insn (gen_movt (operands[0]));
|
2296 |
|
|
return;
|
2297 |
|
|
}
|
2298 |
|
|
else if (code == ASHIFT)
|
2299 |
|
|
{
|
2300 |
|
|
/* There is a two instruction sequence for 31 bit left shifts,
|
2301 |
|
|
but it requires r0. */
|
2302 |
|
|
if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) == 0)
|
2303 |
|
|
{
|
2304 |
|
|
emit_insn (gen_andsi3 (operands[0], operands[0], const1_rtx));
|
2305 |
|
|
emit_insn (gen_rotlsi3_31 (operands[0], operands[0]));
|
2306 |
|
|
return;
|
2307 |
|
|
}
|
2308 |
|
|
}
|
2309 |
|
|
}
|
2310 |
|
|
else if (value == 0)
|
2311 |
|
|
{
|
2312 |
|
|
/* This can happen even when optimizing, if there were subregs before
|
2313 |
|
|
reload. Don't output a nop here, as this is never optimized away;
|
2314 |
|
|
use a no-op move instead. */
|
2315 |
|
|
emit_insn (gen_rtx_SET (VOIDmode, operands[0], operands[0]));
|
2316 |
|
|
return;
|
2317 |
|
|
}
|
2318 |
|
|
|
2319 |
|
|
max = shift_insns[value];
|
2320 |
|
|
for (i = 0; i < max; i++)
|
2321 |
|
|
gen_ashift (code, shift_amounts[value][i], operands[0]);
|
2322 |
|
|
}
|
2323 |
|
|
|
2324 |
|
|
/* Same as above, but optimized for values where the topmost bits don't
|
2325 |
|
|
matter. */
|
2326 |
|
|
|
2327 |
|
|
void
|
2328 |
|
|
gen_shifty_hi_op (int code, rtx *operands)
|
2329 |
|
|
{
|
2330 |
|
|
int value = INTVAL (operands[2]);
|
2331 |
|
|
int max, i;
|
2332 |
|
|
void (*gen_fun) (int, int, rtx);
|
2333 |
|
|
|
2334 |
|
|
/* This operation is used by and_shl for SImode values with a few
|
2335 |
|
|
high bits known to be cleared. */
|
2336 |
|
|
value &= 31;
|
2337 |
|
|
if (value == 0)
|
2338 |
|
|
{
|
2339 |
|
|
emit_insn (gen_nop ());
|
2340 |
|
|
return;
|
2341 |
|
|
}
|
2342 |
|
|
|
2343 |
|
|
gen_fun = GET_MODE (operands[0]) == HImode ? gen_ashift_hi : gen_ashift;
|
2344 |
|
|
if (code == ASHIFT)
|
2345 |
|
|
{
|
2346 |
|
|
max = ext_shift_insns[value];
|
2347 |
|
|
for (i = 0; i < max; i++)
|
2348 |
|
|
gen_fun (code, ext_shift_amounts[value][i], operands[0]);
|
2349 |
|
|
}
|
2350 |
|
|
else
|
2351 |
|
|
/* When shifting right, emit the shifts in reverse order, so that
|
2352 |
|
|
solitary negative values come first. */
|
2353 |
|
|
for (i = ext_shift_insns[value] - 1; i >= 0; i--)
|
2354 |
|
|
gen_fun (code, ext_shift_amounts[value][i], operands[0]);
|
2355 |
|
|
}
|
2356 |
|
|
|
2357 |
|
|
/* Output RTL for an arithmetic right shift. */
|
2358 |
|
|
|
2359 |
|
|
/* ??? Rewrite to use super-optimizer sequences. */
|
2360 |
|
|
|
2361 |
|
|
int
|
2362 |
|
|
expand_ashiftrt (rtx *operands)
|
2363 |
|
|
{
|
2364 |
|
|
rtx wrk;
|
2365 |
|
|
char func[18];
|
2366 |
|
|
int value;
|
2367 |
|
|
|
2368 |
|
|
if (TARGET_SH3)
|
2369 |
|
|
{
|
2370 |
|
|
if (GET_CODE (operands[2]) != CONST_INT)
|
2371 |
|
|
{
|
2372 |
|
|
rtx count = copy_to_mode_reg (SImode, operands[2]);
|
2373 |
|
|
emit_insn (gen_negsi2 (count, count));
|
2374 |
|
|
emit_insn (gen_ashrsi3_d (operands[0], operands[1], count));
|
2375 |
|
|
return 1;
|
2376 |
|
|
}
|
2377 |
|
|
else if (ashiftrt_insns[INTVAL (operands[2]) & 31]
|
2378 |
|
|
> 1 + SH_DYNAMIC_SHIFT_COST)
|
2379 |
|
|
{
|
2380 |
|
|
rtx count
|
2381 |
|
|
= force_reg (SImode, GEN_INT (- (INTVAL (operands[2]) & 31)));
|
2382 |
|
|
emit_insn (gen_ashrsi3_d (operands[0], operands[1], count));
|
2383 |
|
|
return 1;
|
2384 |
|
|
}
|
2385 |
|
|
}
|
2386 |
|
|
if (GET_CODE (operands[2]) != CONST_INT)
|
2387 |
|
|
return 0;
|
2388 |
|
|
|
2389 |
|
|
value = INTVAL (operands[2]) & 31;
|
2390 |
|
|
|
2391 |
|
|
if (value == 31)
|
2392 |
|
|
{
|
2393 |
|
|
/* If we are called from abs expansion, arrange things so that we
|
2394 |
|
|
we can use a single MT instruction that doesn't clobber the source,
|
2395 |
|
|
if LICM can hoist out the load of the constant zero. */
|
2396 |
|
|
if (currently_expanding_to_rtl)
|
2397 |
|
|
{
|
2398 |
|
|
emit_insn (gen_cmpgtsi_t (force_reg (SImode, CONST0_RTX (SImode)),
|
2399 |
|
|
operands[1]));
|
2400 |
|
|
emit_insn (gen_mov_neg_si_t (operands[0]));
|
2401 |
|
|
return 1;
|
2402 |
|
|
}
|
2403 |
|
|
emit_insn (gen_ashrsi2_31 (operands[0], operands[1]));
|
2404 |
|
|
return 1;
|
2405 |
|
|
}
|
2406 |
|
|
else if (value >= 16 && value <= 19)
|
2407 |
|
|
{
|
2408 |
|
|
wrk = gen_reg_rtx (SImode);
|
2409 |
|
|
emit_insn (gen_ashrsi2_16 (wrk, operands[1]));
|
2410 |
|
|
value -= 16;
|
2411 |
|
|
while (value--)
|
2412 |
|
|
gen_ashift (ASHIFTRT, 1, wrk);
|
2413 |
|
|
emit_move_insn (operands[0], wrk);
|
2414 |
|
|
return 1;
|
2415 |
|
|
}
|
2416 |
|
|
/* Expand a short sequence inline, longer call a magic routine. */
|
2417 |
|
|
else if (value <= 5)
|
2418 |
|
|
{
|
2419 |
|
|
wrk = gen_reg_rtx (SImode);
|
2420 |
|
|
emit_move_insn (wrk, operands[1]);
|
2421 |
|
|
while (value--)
|
2422 |
|
|
gen_ashift (ASHIFTRT, 1, wrk);
|
2423 |
|
|
emit_move_insn (operands[0], wrk);
|
2424 |
|
|
return 1;
|
2425 |
|
|
}
|
2426 |
|
|
|
2427 |
|
|
wrk = gen_reg_rtx (Pmode);
|
2428 |
|
|
|
2429 |
|
|
/* Load the value into an arg reg and call a helper. */
|
2430 |
|
|
emit_move_insn (gen_rtx_REG (SImode, 4), operands[1]);
|
2431 |
|
|
sprintf (func, "__ashiftrt_r4_%d", value);
|
2432 |
|
|
function_symbol (wrk, func, SFUNC_STATIC);
|
2433 |
|
|
emit_insn (gen_ashrsi3_n (GEN_INT (value), wrk));
|
2434 |
|
|
emit_move_insn (operands[0], gen_rtx_REG (SImode, 4));
|
2435 |
|
|
return 1;
|
2436 |
|
|
}
|
2437 |
|
|
|
2438 |
|
|
int
|
2439 |
|
|
sh_dynamicalize_shift_p (rtx count)
|
2440 |
|
|
{
|
2441 |
|
|
return shift_insns[INTVAL (count)] > 1 + SH_DYNAMIC_SHIFT_COST;
|
2442 |
|
|
}
|
2443 |
|
|
|
2444 |
|
|
/* Try to find a good way to implement the combiner pattern
|
2445 |
|
|
[(set (match_operand:SI 0 "register_operand" "r")
|
2446 |
|
|
(and:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
|
2447 |
|
|
(match_operand:SI 2 "const_int_operand" "n"))
|
2448 |
|
|
(match_operand:SI 3 "const_int_operand" "n"))) .
|
2449 |
|
|
LEFT_RTX is operand 2 in the above pattern, and MASK_RTX is operand 3.
|
2450 |
|
|
return 0 for simple right / left or left/right shift combination.
|
2451 |
|
|
return 1 for a combination of shifts with zero_extend.
|
2452 |
|
|
return 2 for a combination of shifts with an AND that needs r0.
|
2453 |
|
|
return 3 for a combination of shifts with an AND that needs an extra
|
2454 |
|
|
scratch register, when the three highmost bits of the AND mask are clear.
|
2455 |
|
|
return 4 for a combination of shifts with an AND that needs an extra
|
2456 |
|
|
scratch register, when any of the three highmost bits of the AND mask
|
2457 |
|
|
is set.
|
2458 |
|
|
If ATTRP is set, store an initial right shift width in ATTRP[0],
|
2459 |
|
|
and the instruction length in ATTRP[1] . These values are not valid
|
2460 |
|
|
when returning 0.
|
2461 |
|
|
When ATTRP is set and returning 1, ATTRP[2] gets set to the index into
|
2462 |
|
|
shift_amounts for the last shift value that is to be used before the
|
2463 |
|
|
sign extend. */
|
2464 |
|
|
int
|
2465 |
|
|
shl_and_kind (rtx left_rtx, rtx mask_rtx, int *attrp)
|
2466 |
|
|
{
|
2467 |
|
|
unsigned HOST_WIDE_INT mask, lsb, mask2, lsb2;
|
2468 |
|
|
int left = INTVAL (left_rtx), right;
|
2469 |
|
|
int best = 0;
|
2470 |
|
|
int cost, best_cost = 10000;
|
2471 |
|
|
int best_right = 0, best_len = 0;
|
2472 |
|
|
int i;
|
2473 |
|
|
int can_ext;
|
2474 |
|
|
|
2475 |
|
|
if (left < 0 || left > 31)
|
2476 |
|
|
return 0;
|
2477 |
|
|
if (GET_CODE (mask_rtx) == CONST_INT)
|
2478 |
|
|
mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> left;
|
2479 |
|
|
else
|
2480 |
|
|
mask = (unsigned HOST_WIDE_INT) GET_MODE_MASK (SImode) >> left;
|
2481 |
|
|
/* Can this be expressed as a right shift / left shift pair? */
|
2482 |
|
|
lsb = ((mask ^ (mask - 1)) >> 1) + 1;
|
2483 |
|
|
right = exact_log2 (lsb);
|
2484 |
|
|
mask2 = ~(mask + lsb - 1);
|
2485 |
|
|
lsb2 = ((mask2 ^ (mask2 - 1)) >> 1) + 1;
|
2486 |
|
|
/* mask has no zeroes but trailing zeroes <==> ! mask2 */
|
2487 |
|
|
if (! mask2)
|
2488 |
|
|
best_cost = shift_insns[right] + shift_insns[right + left];
|
2489 |
|
|
/* mask has no trailing zeroes <==> ! right */
|
2490 |
|
|
else if (! right && mask2 == ~(lsb2 - 1))
|
2491 |
|
|
{
|
2492 |
|
|
int late_right = exact_log2 (lsb2);
|
2493 |
|
|
best_cost = shift_insns[left + late_right] + shift_insns[late_right];
|
2494 |
|
|
}
|
2495 |
|
|
/* Try to use zero extend. */
|
2496 |
|
|
if (mask2 == ~(lsb2 - 1))
|
2497 |
|
|
{
|
2498 |
|
|
int width, first;
|
2499 |
|
|
|
2500 |
|
|
for (width = 8; width <= 16; width += 8)
|
2501 |
|
|
{
|
2502 |
|
|
/* Can we zero-extend right away? */
|
2503 |
|
|
if (lsb2 == (unsigned HOST_WIDE_INT) 1 << width)
|
2504 |
|
|
{
|
2505 |
|
|
cost
|
2506 |
|
|
= 1 + ext_shift_insns[right] + ext_shift_insns[left + right];
|
2507 |
|
|
if (cost < best_cost)
|
2508 |
|
|
{
|
2509 |
|
|
best = 1;
|
2510 |
|
|
best_cost = cost;
|
2511 |
|
|
best_right = right;
|
2512 |
|
|
best_len = cost;
|
2513 |
|
|
if (attrp)
|
2514 |
|
|
attrp[2] = -1;
|
2515 |
|
|
}
|
2516 |
|
|
continue;
|
2517 |
|
|
}
|
2518 |
|
|
/* ??? Could try to put zero extend into initial right shift,
|
2519 |
|
|
or even shift a bit left before the right shift. */
|
2520 |
|
|
/* Determine value of first part of left shift, to get to the
|
2521 |
|
|
zero extend cut-off point. */
|
2522 |
|
|
first = width - exact_log2 (lsb2) + right;
|
2523 |
|
|
if (first >= 0 && right + left - first >= 0)
|
2524 |
|
|
{
|
2525 |
|
|
cost = ext_shift_insns[right] + ext_shift_insns[first] + 1
|
2526 |
|
|
+ ext_shift_insns[right + left - first];
|
2527 |
|
|
if (cost < best_cost)
|
2528 |
|
|
{
|
2529 |
|
|
best = 1;
|
2530 |
|
|
best_cost = cost;
|
2531 |
|
|
best_right = right;
|
2532 |
|
|
best_len = cost;
|
2533 |
|
|
if (attrp)
|
2534 |
|
|
attrp[2] = first;
|
2535 |
|
|
}
|
2536 |
|
|
}
|
2537 |
|
|
}
|
2538 |
|
|
}
|
2539 |
|
|
/* Try to use r0 AND pattern */
|
2540 |
|
|
for (i = 0; i <= 2; i++)
|
2541 |
|
|
{
|
2542 |
|
|
if (i > right)
|
2543 |
|
|
break;
|
2544 |
|
|
if (! CONST_OK_FOR_K08 (mask >> i))
|
2545 |
|
|
continue;
|
2546 |
|
|
cost = (i != 0) + 2 + ext_shift_insns[left + i];
|
2547 |
|
|
if (cost < best_cost)
|
2548 |
|
|
{
|
2549 |
|
|
best = 2;
|
2550 |
|
|
best_cost = cost;
|
2551 |
|
|
best_right = i;
|
2552 |
|
|
best_len = cost - 1;
|
2553 |
|
|
}
|
2554 |
|
|
}
|
2555 |
|
|
/* Try to use a scratch register to hold the AND operand. */
|
2556 |
|
|
can_ext = ((mask << left) & ((unsigned HOST_WIDE_INT) 3 << 30)) == 0;
|
2557 |
|
|
for (i = 0; i <= 2; i++)
|
2558 |
|
|
{
|
2559 |
|
|
if (i > right)
|
2560 |
|
|
break;
|
2561 |
|
|
cost = (i != 0) + (CONST_OK_FOR_I08 (mask >> i) ? 2 : 3)
|
2562 |
|
|
+ (can_ext ? ext_shift_insns : shift_insns)[left + i];
|
2563 |
|
|
if (cost < best_cost)
|
2564 |
|
|
{
|
2565 |
|
|
best = 4 - can_ext;
|
2566 |
|
|
best_cost = cost;
|
2567 |
|
|
best_right = i;
|
2568 |
|
|
best_len = cost - 1 - ! CONST_OK_FOR_I08 (mask >> i);
|
2569 |
|
|
}
|
2570 |
|
|
}
|
2571 |
|
|
|
2572 |
|
|
if (attrp)
|
2573 |
|
|
{
|
2574 |
|
|
attrp[0] = best_right;
|
2575 |
|
|
attrp[1] = best_len;
|
2576 |
|
|
}
|
2577 |
|
|
return best;
|
2578 |
|
|
}
|
2579 |
|
|
|
2580 |
|
|
/* This is used in length attributes of the unnamed instructions
|
2581 |
|
|
corresponding to shl_and_kind return values of 1 and 2. */
|
2582 |
|
|
int
|
2583 |
|
|
shl_and_length (rtx insn)
|
2584 |
|
|
{
|
2585 |
|
|
rtx set_src, left_rtx, mask_rtx;
|
2586 |
|
|
int attributes[3];
|
2587 |
|
|
|
2588 |
|
|
set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
|
2589 |
|
|
left_rtx = XEXP (XEXP (set_src, 0), 1);
|
2590 |
|
|
mask_rtx = XEXP (set_src, 1);
|
2591 |
|
|
shl_and_kind (left_rtx, mask_rtx, attributes);
|
2592 |
|
|
return attributes[1];
|
2593 |
|
|
}
|
2594 |
|
|
|
2595 |
|
|
/* This is used in length attribute of the and_shl_scratch instruction. */
|
2596 |
|
|
|
2597 |
|
|
int
|
2598 |
|
|
shl_and_scr_length (rtx insn)
|
2599 |
|
|
{
|
2600 |
|
|
rtx set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
|
2601 |
|
|
int len = shift_insns[INTVAL (XEXP (set_src, 1))];
|
2602 |
|
|
rtx op = XEXP (set_src, 0);
|
2603 |
|
|
len += shift_insns[INTVAL (XEXP (op, 1))] + 1;
|
2604 |
|
|
op = XEXP (XEXP (op, 0), 0);
|
2605 |
|
|
return len + shift_insns[INTVAL (XEXP (op, 1))];
|
2606 |
|
|
}
|
2607 |
|
|
|
2608 |
|
|
/* Generate rtl for instructions for which shl_and_kind advised a particular
|
2609 |
|
|
method of generating them, i.e. returned zero. */
|
2610 |
|
|
|
2611 |
|
|
int
|
2612 |
|
|
gen_shl_and (rtx dest, rtx left_rtx, rtx mask_rtx, rtx source)
|
2613 |
|
|
{
|
2614 |
|
|
int attributes[3];
|
2615 |
|
|
unsigned HOST_WIDE_INT mask;
|
2616 |
|
|
int kind = shl_and_kind (left_rtx, mask_rtx, attributes);
|
2617 |
|
|
int right, total_shift;
|
2618 |
|
|
void (*shift_gen_fun) (int, rtx *) = gen_shifty_hi_op;
|
2619 |
|
|
|
2620 |
|
|
right = attributes[0];
|
2621 |
|
|
total_shift = INTVAL (left_rtx) + right;
|
2622 |
|
|
mask = (unsigned HOST_WIDE_INT) INTVAL (mask_rtx) >> total_shift;
|
2623 |
|
|
switch (kind)
|
2624 |
|
|
{
|
2625 |
|
|
default:
|
2626 |
|
|
return -1;
|
2627 |
|
|
case 1:
|
2628 |
|
|
{
|
2629 |
|
|
int first = attributes[2];
|
2630 |
|
|
rtx operands[3];
|
2631 |
|
|
|
2632 |
|
|
if (first < 0)
|
2633 |
|
|
{
|
2634 |
|
|
emit_insn ((mask << right) <= 0xff
|
2635 |
|
|
? gen_zero_extendqisi2 (dest,
|
2636 |
|
|
gen_lowpart (QImode, source))
|
2637 |
|
|
: gen_zero_extendhisi2 (dest,
|
2638 |
|
|
gen_lowpart (HImode, source)));
|
2639 |
|
|
source = dest;
|
2640 |
|
|
}
|
2641 |
|
|
if (source != dest)
|
2642 |
|
|
emit_insn (gen_movsi (dest, source));
|
2643 |
|
|
operands[0] = dest;
|
2644 |
|
|
if (right)
|
2645 |
|
|
{
|
2646 |
|
|
operands[2] = GEN_INT (right);
|
2647 |
|
|
gen_shifty_hi_op (LSHIFTRT, operands);
|
2648 |
|
|
}
|
2649 |
|
|
if (first > 0)
|
2650 |
|
|
{
|
2651 |
|
|
operands[2] = GEN_INT (first);
|
2652 |
|
|
gen_shifty_hi_op (ASHIFT, operands);
|
2653 |
|
|
total_shift -= first;
|
2654 |
|
|
mask <<= first;
|
2655 |
|
|
}
|
2656 |
|
|
if (first >= 0)
|
2657 |
|
|
emit_insn (mask <= 0xff
|
2658 |
|
|
? gen_zero_extendqisi2 (dest, gen_lowpart (QImode, dest))
|
2659 |
|
|
: gen_zero_extendhisi2 (dest, gen_lowpart (HImode, dest)));
|
2660 |
|
|
if (total_shift > 0)
|
2661 |
|
|
{
|
2662 |
|
|
operands[2] = GEN_INT (total_shift);
|
2663 |
|
|
gen_shifty_hi_op (ASHIFT, operands);
|
2664 |
|
|
}
|
2665 |
|
|
break;
|
2666 |
|
|
}
|
2667 |
|
|
case 4:
|
2668 |
|
|
shift_gen_fun = gen_shifty_op;
|
2669 |
|
|
case 3:
|
2670 |
|
|
/* If the topmost bit that matters is set, set the topmost bits
|
2671 |
|
|
that don't matter. This way, we might be able to get a shorter
|
2672 |
|
|
signed constant. */
|
2673 |
|
|
if (mask & ((HOST_WIDE_INT) 1 << (31 - total_shift)))
|
2674 |
|
|
mask |= (HOST_WIDE_INT) ~0 << (31 - total_shift);
|
2675 |
|
|
case 2:
|
2676 |
|
|
/* Don't expand fine-grained when combining, because that will
|
2677 |
|
|
make the pattern fail. */
|
2678 |
|
|
if (currently_expanding_to_rtl
|
2679 |
|
|
|| reload_in_progress || reload_completed)
|
2680 |
|
|
{
|
2681 |
|
|
rtx operands[3];
|
2682 |
|
|
|
2683 |
|
|
/* Cases 3 and 4 should be handled by this split
|
2684 |
|
|
only while combining */
|
2685 |
|
|
gcc_assert (kind <= 2);
|
2686 |
|
|
if (right)
|
2687 |
|
|
{
|
2688 |
|
|
emit_insn (gen_lshrsi3 (dest, source, GEN_INT (right)));
|
2689 |
|
|
source = dest;
|
2690 |
|
|
}
|
2691 |
|
|
emit_insn (gen_andsi3 (dest, source, GEN_INT (mask)));
|
2692 |
|
|
if (total_shift)
|
2693 |
|
|
{
|
2694 |
|
|
operands[0] = dest;
|
2695 |
|
|
operands[1] = dest;
|
2696 |
|
|
operands[2] = GEN_INT (total_shift);
|
2697 |
|
|
shift_gen_fun (ASHIFT, operands);
|
2698 |
|
|
}
|
2699 |
|
|
break;
|
2700 |
|
|
}
|
2701 |
|
|
else
|
2702 |
|
|
{
|
2703 |
|
|
int neg = 0;
|
2704 |
|
|
if (kind != 4 && total_shift < 16)
|
2705 |
|
|
{
|
2706 |
|
|
neg = -ext_shift_amounts[total_shift][1];
|
2707 |
|
|
if (neg > 0)
|
2708 |
|
|
neg -= ext_shift_amounts[total_shift][2];
|
2709 |
|
|
else
|
2710 |
|
|
neg = 0;
|
2711 |
|
|
}
|
2712 |
|
|
emit_insn (gen_and_shl_scratch (dest, source,
|
2713 |
|
|
GEN_INT (right),
|
2714 |
|
|
GEN_INT (mask),
|
2715 |
|
|
GEN_INT (total_shift + neg),
|
2716 |
|
|
GEN_INT (neg)));
|
2717 |
|
|
emit_insn (gen_movsi (dest, dest));
|
2718 |
|
|
break;
|
2719 |
|
|
}
|
2720 |
|
|
}
|
2721 |
|
|
return 0;
|
2722 |
|
|
}
|
2723 |
|
|
|
2724 |
|
|
/* Try to find a good way to implement the combiner pattern
|
2725 |
|
|
[(set (match_operand:SI 0 "register_operand" "=r")
|
2726 |
|
|
(sign_extract:SI (ashift:SI (match_operand:SI 1 "register_operand" "r")
|
2727 |
|
|
(match_operand:SI 2 "const_int_operand" "n")
|
2728 |
|
|
(match_operand:SI 3 "const_int_operand" "n")
|
2729 |
|
|
(const_int 0)))
|
2730 |
|
|
(clobber (reg:SI T_REG))]
|
2731 |
|
|
LEFT_RTX is operand 2 in the above pattern, and SIZE_RTX is operand 3.
|
2732 |
|
|
return 0 for simple left / right shift combination.
|
2733 |
|
|
return 1 for left shift / 8 bit sign extend / left shift.
|
2734 |
|
|
return 2 for left shift / 16 bit sign extend / left shift.
|
2735 |
|
|
return 3 for left shift / 8 bit sign extend / shift / sign extend.
|
2736 |
|
|
return 4 for left shift / 16 bit sign extend / shift / sign extend.
|
2737 |
|
|
return 5 for left shift / 16 bit sign extend / right shift
|
2738 |
|
|
return 6 for < 8 bit sign extend / left shift.
|
2739 |
|
|
return 7 for < 8 bit sign extend / left shift / single right shift.
|
2740 |
|
|
If COSTP is nonzero, assign the calculated cost to *COSTP. */
|
2741 |
|
|
|
2742 |
|
|
int
|
2743 |
|
|
shl_sext_kind (rtx left_rtx, rtx size_rtx, int *costp)
|
2744 |
|
|
{
|
2745 |
|
|
int left, size, insize, ext;
|
2746 |
|
|
int cost = 0, best_cost;
|
2747 |
|
|
int kind;
|
2748 |
|
|
|
2749 |
|
|
left = INTVAL (left_rtx);
|
2750 |
|
|
size = INTVAL (size_rtx);
|
2751 |
|
|
insize = size - left;
|
2752 |
|
|
gcc_assert (insize > 0);
|
2753 |
|
|
/* Default to left / right shift. */
|
2754 |
|
|
kind = 0;
|
2755 |
|
|
best_cost = shift_insns[32 - insize] + ashiftrt_insns[32 - size];
|
2756 |
|
|
if (size <= 16)
|
2757 |
|
|
{
|
2758 |
|
|
/* 16 bit shift / sign extend / 16 bit shift */
|
2759 |
|
|
cost = shift_insns[16 - insize] + 1 + ashiftrt_insns[16 - size];
|
2760 |
|
|
/* If ashiftrt_insns[16 - size] is 8, this choice will be overridden
|
2761 |
|
|
below, by alternative 3 or something even better. */
|
2762 |
|
|
if (cost < best_cost)
|
2763 |
|
|
{
|
2764 |
|
|
kind = 5;
|
2765 |
|
|
best_cost = cost;
|
2766 |
|
|
}
|
2767 |
|
|
}
|
2768 |
|
|
/* Try a plain sign extend between two shifts. */
|
2769 |
|
|
for (ext = 16; ext >= insize; ext -= 8)
|
2770 |
|
|
{
|
2771 |
|
|
if (ext <= size)
|
2772 |
|
|
{
|
2773 |
|
|
cost = ext_shift_insns[ext - insize] + 1 + shift_insns[size - ext];
|
2774 |
|
|
if (cost < best_cost)
|
2775 |
|
|
{
|
2776 |
|
|
kind = ext / (unsigned) 8;
|
2777 |
|
|
best_cost = cost;
|
2778 |
|
|
}
|
2779 |
|
|
}
|
2780 |
|
|
/* Check if we can do a sloppy shift with a final signed shift
|
2781 |
|
|
restoring the sign. */
|
2782 |
|
|
if (EXT_SHIFT_SIGNED (size - ext))
|
2783 |
|
|
cost = ext_shift_insns[ext - insize] + ext_shift_insns[size - ext] + 1;
|
2784 |
|
|
/* If not, maybe it's still cheaper to do the second shift sloppy,
|
2785 |
|
|
and do a final sign extend? */
|
2786 |
|
|
else if (size <= 16)
|
2787 |
|
|
cost = ext_shift_insns[ext - insize] + 1
|
2788 |
|
|
+ ext_shift_insns[size > ext ? size - ext : ext - size] + 1;
|
2789 |
|
|
else
|
2790 |
|
|
continue;
|
2791 |
|
|
if (cost < best_cost)
|
2792 |
|
|
{
|
2793 |
|
|
kind = ext / (unsigned) 8 + 2;
|
2794 |
|
|
best_cost = cost;
|
2795 |
|
|
}
|
2796 |
|
|
}
|
2797 |
|
|
/* Check if we can sign extend in r0 */
|
2798 |
|
|
if (insize < 8)
|
2799 |
|
|
{
|
2800 |
|
|
cost = 3 + shift_insns[left];
|
2801 |
|
|
if (cost < best_cost)
|
2802 |
|
|
{
|
2803 |
|
|
kind = 6;
|
2804 |
|
|
best_cost = cost;
|
2805 |
|
|
}
|
2806 |
|
|
/* Try the same with a final signed shift. */
|
2807 |
|
|
if (left < 31)
|
2808 |
|
|
{
|
2809 |
|
|
cost = 3 + ext_shift_insns[left + 1] + 1;
|
2810 |
|
|
if (cost < best_cost)
|
2811 |
|
|
{
|
2812 |
|
|
kind = 7;
|
2813 |
|
|
best_cost = cost;
|
2814 |
|
|
}
|
2815 |
|
|
}
|
2816 |
|
|
}
|
2817 |
|
|
if (TARGET_SH3)
|
2818 |
|
|
{
|
2819 |
|
|
/* Try to use a dynamic shift. */
|
2820 |
|
|
cost = shift_insns[32 - insize] + 1 + SH_DYNAMIC_SHIFT_COST;
|
2821 |
|
|
if (cost < best_cost)
|
2822 |
|
|
{
|
2823 |
|
|
kind = 0;
|
2824 |
|
|
best_cost = cost;
|
2825 |
|
|
}
|
2826 |
|
|
}
|
2827 |
|
|
if (costp)
|
2828 |
|
|
*costp = cost;
|
2829 |
|
|
return kind;
|
2830 |
|
|
}
|
2831 |
|
|
|
2832 |
|
|
/* Function to be used in the length attribute of the instructions
|
2833 |
|
|
implementing this pattern. */
|
2834 |
|
|
|
2835 |
|
|
int
|
2836 |
|
|
shl_sext_length (rtx insn)
|
2837 |
|
|
{
|
2838 |
|
|
rtx set_src, left_rtx, size_rtx;
|
2839 |
|
|
int cost;
|
2840 |
|
|
|
2841 |
|
|
set_src = SET_SRC (XVECEXP (PATTERN (insn), 0, 0));
|
2842 |
|
|
left_rtx = XEXP (XEXP (set_src, 0), 1);
|
2843 |
|
|
size_rtx = XEXP (set_src, 1);
|
2844 |
|
|
shl_sext_kind (left_rtx, size_rtx, &cost);
|
2845 |
|
|
return cost;
|
2846 |
|
|
}
|
2847 |
|
|
|
2848 |
|
|
/* Generate rtl for this pattern */
|
2849 |
|
|
|
2850 |
|
|
int
|
2851 |
|
|
gen_shl_sext (rtx dest, rtx left_rtx, rtx size_rtx, rtx source)
|
2852 |
|
|
{
|
2853 |
|
|
int kind;
|
2854 |
|
|
int left, size, insize, cost;
|
2855 |
|
|
rtx operands[3];
|
2856 |
|
|
|
2857 |
|
|
kind = shl_sext_kind (left_rtx, size_rtx, &cost);
|
2858 |
|
|
left = INTVAL (left_rtx);
|
2859 |
|
|
size = INTVAL (size_rtx);
|
2860 |
|
|
insize = size - left;
|
2861 |
|
|
switch (kind)
|
2862 |
|
|
{
|
2863 |
|
|
case 1:
|
2864 |
|
|
case 2:
|
2865 |
|
|
case 3:
|
2866 |
|
|
case 4:
|
2867 |
|
|
{
|
2868 |
|
|
int ext = kind & 1 ? 8 : 16;
|
2869 |
|
|
int shift2 = size - ext;
|
2870 |
|
|
|
2871 |
|
|
/* Don't expand fine-grained when combining, because that will
|
2872 |
|
|
make the pattern fail. */
|
2873 |
|
|
if (! currently_expanding_to_rtl
|
2874 |
|
|
&& ! reload_in_progress && ! reload_completed)
|
2875 |
|
|
{
|
2876 |
|
|
emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
|
2877 |
|
|
emit_insn (gen_movsi (dest, source));
|
2878 |
|
|
break;
|
2879 |
|
|
}
|
2880 |
|
|
if (dest != source)
|
2881 |
|
|
emit_insn (gen_movsi (dest, source));
|
2882 |
|
|
operands[0] = dest;
|
2883 |
|
|
if (ext - insize)
|
2884 |
|
|
{
|
2885 |
|
|
operands[2] = GEN_INT (ext - insize);
|
2886 |
|
|
gen_shifty_hi_op (ASHIFT, operands);
|
2887 |
|
|
}
|
2888 |
|
|
emit_insn (kind & 1
|
2889 |
|
|
? gen_extendqisi2 (dest, gen_lowpart (QImode, dest))
|
2890 |
|
|
: gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
|
2891 |
|
|
if (kind <= 2)
|
2892 |
|
|
{
|
2893 |
|
|
if (shift2)
|
2894 |
|
|
{
|
2895 |
|
|
operands[2] = GEN_INT (shift2);
|
2896 |
|
|
gen_shifty_op (ASHIFT, operands);
|
2897 |
|
|
}
|
2898 |
|
|
}
|
2899 |
|
|
else
|
2900 |
|
|
{
|
2901 |
|
|
if (shift2 > 0)
|
2902 |
|
|
{
|
2903 |
|
|
if (EXT_SHIFT_SIGNED (shift2))
|
2904 |
|
|
{
|
2905 |
|
|
operands[2] = GEN_INT (shift2 + 1);
|
2906 |
|
|
gen_shifty_op (ASHIFT, operands);
|
2907 |
|
|
operands[2] = const1_rtx;
|
2908 |
|
|
gen_shifty_op (ASHIFTRT, operands);
|
2909 |
|
|
break;
|
2910 |
|
|
}
|
2911 |
|
|
operands[2] = GEN_INT (shift2);
|
2912 |
|
|
gen_shifty_hi_op (ASHIFT, operands);
|
2913 |
|
|
}
|
2914 |
|
|
else if (shift2)
|
2915 |
|
|
{
|
2916 |
|
|
operands[2] = GEN_INT (-shift2);
|
2917 |
|
|
gen_shifty_hi_op (LSHIFTRT, operands);
|
2918 |
|
|
}
|
2919 |
|
|
emit_insn (size <= 8
|
2920 |
|
|
? gen_extendqisi2 (dest, gen_lowpart (QImode, dest))
|
2921 |
|
|
: gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
|
2922 |
|
|
}
|
2923 |
|
|
break;
|
2924 |
|
|
}
|
2925 |
|
|
case 5:
|
2926 |
|
|
{
|
2927 |
|
|
int i = 16 - size;
|
2928 |
|
|
if (! currently_expanding_to_rtl
|
2929 |
|
|
&& ! reload_in_progress && ! reload_completed)
|
2930 |
|
|
emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
|
2931 |
|
|
else
|
2932 |
|
|
{
|
2933 |
|
|
operands[0] = dest;
|
2934 |
|
|
operands[2] = GEN_INT (16 - insize);
|
2935 |
|
|
gen_shifty_hi_op (ASHIFT, operands);
|
2936 |
|
|
emit_insn (gen_extendhisi2 (dest, gen_lowpart (HImode, dest)));
|
2937 |
|
|
}
|
2938 |
|
|
/* Don't use gen_ashrsi3 because it generates new pseudos. */
|
2939 |
|
|
while (--i >= 0)
|
2940 |
|
|
gen_ashift (ASHIFTRT, 1, dest);
|
2941 |
|
|
break;
|
2942 |
|
|
}
|
2943 |
|
|
case 6:
|
2944 |
|
|
case 7:
|
2945 |
|
|
/* Don't expand fine-grained when combining, because that will
|
2946 |
|
|
make the pattern fail. */
|
2947 |
|
|
if (! currently_expanding_to_rtl
|
2948 |
|
|
&& ! reload_in_progress && ! reload_completed)
|
2949 |
|
|
{
|
2950 |
|
|
emit_insn (gen_shl_sext_ext (dest, source, left_rtx, size_rtx));
|
2951 |
|
|
emit_insn (gen_movsi (dest, source));
|
2952 |
|
|
break;
|
2953 |
|
|
}
|
2954 |
|
|
emit_insn (gen_andsi3 (dest, source, GEN_INT ((1 << insize) - 1)));
|
2955 |
|
|
emit_insn (gen_xorsi3 (dest, dest, GEN_INT (1 << (insize - 1))));
|
2956 |
|
|
emit_insn (gen_addsi3 (dest, dest, GEN_INT (-1 << (insize - 1))));
|
2957 |
|
|
operands[0] = dest;
|
2958 |
|
|
operands[2] = kind == 7 ? GEN_INT (left + 1) : left_rtx;
|
2959 |
|
|
gen_shifty_op (ASHIFT, operands);
|
2960 |
|
|
if (kind == 7)
|
2961 |
|
|
emit_insn (gen_ashrsi3_k (dest, dest, const1_rtx));
|
2962 |
|
|
break;
|
2963 |
|
|
default:
|
2964 |
|
|
return -1;
|
2965 |
|
|
}
|
2966 |
|
|
return 0;
|
2967 |
|
|
}
|
2968 |
|
|
|
2969 |
|
|
/* Prefix a symbol_ref name with "datalabel". */
|
2970 |
|
|
|
2971 |
|
|
rtx
|
2972 |
|
|
gen_datalabel_ref (rtx sym)
|
2973 |
|
|
{
|
2974 |
|
|
const char *str;
|
2975 |
|
|
|
2976 |
|
|
if (GET_CODE (sym) == LABEL_REF)
|
2977 |
|
|
return gen_rtx_CONST (GET_MODE (sym),
|
2978 |
|
|
gen_rtx_UNSPEC (GET_MODE (sym),
|
2979 |
|
|
gen_rtvec (1, sym),
|
2980 |
|
|
UNSPEC_DATALABEL));
|
2981 |
|
|
|
2982 |
|
|
gcc_assert (GET_CODE (sym) == SYMBOL_REF);
|
2983 |
|
|
|
2984 |
|
|
str = XSTR (sym, 0);
|
2985 |
|
|
/* Share all SYMBOL_REF strings with the same value - that is important
|
2986 |
|
|
for cse. */
|
2987 |
|
|
str = IDENTIFIER_POINTER (get_identifier (str));
|
2988 |
|
|
XSTR (sym, 0) = str;
|
2989 |
|
|
|
2990 |
|
|
return sym;
|
2991 |
|
|
}
|
2992 |
|
|
|
2993 |
|
|
|
2994 |
|
|
static alloc_pool label_ref_list_pool;
|
2995 |
|
|
|
2996 |
|
|
typedef struct label_ref_list_d
|
2997 |
|
|
{
|
2998 |
|
|
rtx label;
|
2999 |
|
|
struct label_ref_list_d *next;
|
3000 |
|
|
} *label_ref_list_t;
|
3001 |
|
|
|
3002 |
|
|
/* The SH cannot load a large constant into a register, constants have to
|
3003 |
|
|
come from a pc relative load. The reference of a pc relative load
|
3004 |
|
|
instruction must be less than 1k in front of the instruction. This
|
3005 |
|
|
means that we often have to dump a constant inside a function, and
|
3006 |
|
|
generate code to branch around it.
|
3007 |
|
|
|
3008 |
|
|
It is important to minimize this, since the branches will slow things
|
3009 |
|
|
down and make things bigger.
|
3010 |
|
|
|
3011 |
|
|
Worst case code looks like:
|
3012 |
|
|
|
3013 |
|
|
mov.l L1,rn
|
3014 |
|
|
bra L2
|
3015 |
|
|
nop
|
3016 |
|
|
align
|
3017 |
|
|
L1: .long value
|
3018 |
|
|
L2:
|
3019 |
|
|
..
|
3020 |
|
|
|
3021 |
|
|
mov.l L3,rn
|
3022 |
|
|
bra L4
|
3023 |
|
|
nop
|
3024 |
|
|
align
|
3025 |
|
|
L3: .long value
|
3026 |
|
|
L4:
|
3027 |
|
|
..
|
3028 |
|
|
|
3029 |
|
|
We fix this by performing a scan before scheduling, which notices which
|
3030 |
|
|
instructions need to have their operands fetched from the constant table
|
3031 |
|
|
and builds the table.
|
3032 |
|
|
|
3033 |
|
|
The algorithm is:
|
3034 |
|
|
|
3035 |
|
|
scan, find an instruction which needs a pcrel move. Look forward, find the
|
3036 |
|
|
last barrier which is within MAX_COUNT bytes of the requirement.
|
3037 |
|
|
If there isn't one, make one. Process all the instructions between
|
3038 |
|
|
the find and the barrier.
|
3039 |
|
|
|
3040 |
|
|
In the above example, we can tell that L3 is within 1k of L1, so
|
3041 |
|
|
the first move can be shrunk from the 3 insn+constant sequence into
|
3042 |
|
|
just 1 insn, and the constant moved to L3 to make:
|
3043 |
|
|
|
3044 |
|
|
mov.l L1,rn
|
3045 |
|
|
..
|
3046 |
|
|
mov.l L3,rn
|
3047 |
|
|
bra L4
|
3048 |
|
|
nop
|
3049 |
|
|
align
|
3050 |
|
|
L3:.long value
|
3051 |
|
|
L4:.long value
|
3052 |
|
|
|
3053 |
|
|
Then the second move becomes the target for the shortening process. */
|
3054 |
|
|
|
3055 |
|
|
typedef struct
|
3056 |
|
|
{
|
3057 |
|
|
rtx value; /* Value in table. */
|
3058 |
|
|
rtx label; /* Label of value. */
|
3059 |
|
|
label_ref_list_t wend; /* End of window. */
|
3060 |
|
|
enum machine_mode mode; /* Mode of value. */
|
3061 |
|
|
|
3062 |
|
|
/* True if this constant is accessed as part of a post-increment
|
3063 |
|
|
sequence. Note that HImode constants are never accessed in this way. */
|
3064 |
|
|
bool part_of_sequence_p;
|
3065 |
|
|
} pool_node;
|
3066 |
|
|
|
3067 |
|
|
/* The maximum number of constants that can fit into one pool, since
|
3068 |
|
|
constants in the range 0..510 are at least 2 bytes long, and in the
|
3069 |
|
|
range from there to 1018 at least 4 bytes. */
|
3070 |
|
|
|
3071 |
|
|
#define MAX_POOL_SIZE 372
|
3072 |
|
|
static pool_node pool_vector[MAX_POOL_SIZE];
|
3073 |
|
|
static int pool_size;
|
3074 |
|
|
static rtx pool_window_label;
|
3075 |
|
|
static int pool_window_last;
|
3076 |
|
|
|
3077 |
|
|
static int max_labelno_before_reorg;
|
3078 |
|
|
|
3079 |
|
|
/* ??? If we need a constant in HImode which is the truncated value of a
|
3080 |
|
|
constant we need in SImode, we could combine the two entries thus saving
|
3081 |
|
|
two bytes. Is this common enough to be worth the effort of implementing
|
3082 |
|
|
it? */
|
3083 |
|
|
|
3084 |
|
|
/* ??? This stuff should be done at the same time that we shorten branches.
|
3085 |
|
|
As it is now, we must assume that all branches are the maximum size, and
|
3086 |
|
|
this causes us to almost always output constant pools sooner than
|
3087 |
|
|
necessary. */
|
3088 |
|
|
|
3089 |
|
|
/* Add a constant to the pool and return its label. */
|
3090 |
|
|
|
3091 |
|
|
static rtx
|
3092 |
|
|
add_constant (rtx x, enum machine_mode mode, rtx last_value)
|
3093 |
|
|
{
|
3094 |
|
|
int i;
|
3095 |
|
|
rtx lab, new;
|
3096 |
|
|
label_ref_list_t ref, newref;
|
3097 |
|
|
|
3098 |
|
|
/* First see if we've already got it. */
|
3099 |
|
|
for (i = 0; i < pool_size; i++)
|
3100 |
|
|
{
|
3101 |
|
|
if (x->code == pool_vector[i].value->code
|
3102 |
|
|
&& mode == pool_vector[i].mode)
|
3103 |
|
|
{
|
3104 |
|
|
if (x->code == CODE_LABEL)
|
3105 |
|
|
{
|
3106 |
|
|
if (XINT (x, 3) != XINT (pool_vector[i].value, 3))
|
3107 |
|
|
continue;
|
3108 |
|
|
}
|
3109 |
|
|
if (rtx_equal_p (x, pool_vector[i].value))
|
3110 |
|
|
{
|
3111 |
|
|
lab = new = 0;
|
3112 |
|
|
if (! last_value
|
3113 |
|
|
|| ! i
|
3114 |
|
|
|| ! rtx_equal_p (last_value, pool_vector[i-1].value))
|
3115 |
|
|
{
|
3116 |
|
|
new = gen_label_rtx ();
|
3117 |
|
|
LABEL_REFS (new) = pool_vector[i].label;
|
3118 |
|
|
pool_vector[i].label = lab = new;
|
3119 |
|
|
}
|
3120 |
|
|
if (lab && pool_window_label)
|
3121 |
|
|
{
|
3122 |
|
|
newref = (label_ref_list_t) pool_alloc (label_ref_list_pool);
|
3123 |
|
|
newref->label = pool_window_label;
|
3124 |
|
|
ref = pool_vector[pool_window_last].wend;
|
3125 |
|
|
newref->next = ref;
|
3126 |
|
|
pool_vector[pool_window_last].wend = newref;
|
3127 |
|
|
}
|
3128 |
|
|
if (new)
|
3129 |
|
|
pool_window_label = new;
|
3130 |
|
|
pool_window_last = i;
|
3131 |
|
|
return lab;
|
3132 |
|
|
}
|
3133 |
|
|
}
|
3134 |
|
|
}
|
3135 |
|
|
|
3136 |
|
|
/* Need a new one. */
|
3137 |
|
|
pool_vector[pool_size].value = x;
|
3138 |
|
|
if (last_value && rtx_equal_p (last_value, pool_vector[pool_size - 1].value))
|
3139 |
|
|
{
|
3140 |
|
|
lab = 0;
|
3141 |
|
|
pool_vector[pool_size - 1].part_of_sequence_p = true;
|
3142 |
|
|
}
|
3143 |
|
|
else
|
3144 |
|
|
lab = gen_label_rtx ();
|
3145 |
|
|
pool_vector[pool_size].mode = mode;
|
3146 |
|
|
pool_vector[pool_size].label = lab;
|
3147 |
|
|
pool_vector[pool_size].wend = NULL;
|
3148 |
|
|
pool_vector[pool_size].part_of_sequence_p = (lab == 0);
|
3149 |
|
|
if (lab && pool_window_label)
|
3150 |
|
|
{
|
3151 |
|
|
newref = (label_ref_list_t) pool_alloc (label_ref_list_pool);
|
3152 |
|
|
newref->label = pool_window_label;
|
3153 |
|
|
ref = pool_vector[pool_window_last].wend;
|
3154 |
|
|
newref->next = ref;
|
3155 |
|
|
pool_vector[pool_window_last].wend = newref;
|
3156 |
|
|
}
|
3157 |
|
|
if (lab)
|
3158 |
|
|
pool_window_label = lab;
|
3159 |
|
|
pool_window_last = pool_size;
|
3160 |
|
|
pool_size++;
|
3161 |
|
|
return lab;
|
3162 |
|
|
}
|
3163 |
|
|
|
3164 |
|
|
/* Output the literal table. START, if nonzero, is the first instruction
|
3165 |
|
|
this table is needed for, and also indicates that there is at least one
|
3166 |
|
|
casesi_worker_2 instruction; We have to emit the operand3 labels from
|
3167 |
|
|
these insns at a 4-byte aligned position. BARRIER is the barrier
|
3168 |
|
|
after which we are to place the table. */
|
3169 |
|
|
|
3170 |
|
|
static void
|
3171 |
|
|
dump_table (rtx start, rtx barrier)
|
3172 |
|
|
{
|
3173 |
|
|
rtx scan = barrier;
|
3174 |
|
|
int i;
|
3175 |
|
|
int need_align = 1;
|
3176 |
|
|
rtx lab;
|
3177 |
|
|
label_ref_list_t ref;
|
3178 |
|
|
int have_df = 0;
|
3179 |
|
|
|
3180 |
|
|
/* Do two passes, first time dump out the HI sized constants. */
|
3181 |
|
|
|
3182 |
|
|
for (i = 0; i < pool_size; i++)
|
3183 |
|
|
{
|
3184 |
|
|
pool_node *p = &pool_vector[i];
|
3185 |
|
|
|
3186 |
|
|
if (p->mode == HImode)
|
3187 |
|
|
{
|
3188 |
|
|
if (need_align)
|
3189 |
|
|
{
|
3190 |
|
|
scan = emit_insn_after (gen_align_2 (), scan);
|
3191 |
|
|
need_align = 0;
|
3192 |
|
|
}
|
3193 |
|
|
for (lab = p->label; lab; lab = LABEL_REFS (lab))
|
3194 |
|
|
scan = emit_label_after (lab, scan);
|
3195 |
|
|
scan = emit_insn_after (gen_consttable_2 (p->value, const0_rtx),
|
3196 |
|
|
scan);
|
3197 |
|
|
for (ref = p->wend; ref; ref = ref->next)
|
3198 |
|
|
{
|
3199 |
|
|
lab = ref->label;
|
3200 |
|
|
scan = emit_insn_after (gen_consttable_window_end (lab), scan);
|
3201 |
|
|
}
|
3202 |
|
|
}
|
3203 |
|
|
else if (p->mode == DFmode)
|
3204 |
|
|
have_df = 1;
|
3205 |
|
|
}
|
3206 |
|
|
|
3207 |
|
|
need_align = 1;
|
3208 |
|
|
|
3209 |
|
|
if (start)
|
3210 |
|
|
{
|
3211 |
|
|
scan = emit_insn_after (gen_align_4 (), scan);
|
3212 |
|
|
need_align = 0;
|
3213 |
|
|
for (; start != barrier; start = NEXT_INSN (start))
|
3214 |
|
|
if (GET_CODE (start) == INSN
|
3215 |
|
|
&& recog_memoized (start) == CODE_FOR_casesi_worker_2)
|
3216 |
|
|
{
|
3217 |
|
|
rtx src = SET_SRC (XVECEXP (PATTERN (start), 0, 0));
|
3218 |
|
|
rtx lab = XEXP (XVECEXP (src, 0, 3), 0);
|
3219 |
|
|
|
3220 |
|
|
scan = emit_label_after (lab, scan);
|
3221 |
|
|
}
|
3222 |
|
|
}
|
3223 |
|
|
if (TARGET_FMOVD && TARGET_ALIGN_DOUBLE && have_df)
|
3224 |
|
|
{
|
3225 |
|
|
rtx align_insn = NULL_RTX;
|
3226 |
|
|
|
3227 |
|
|
scan = emit_label_after (gen_label_rtx (), scan);
|
3228 |
|
|
scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan);
|
3229 |
|
|
need_align = 0;
|
3230 |
|
|
|
3231 |
|
|
for (i = 0; i < pool_size; i++)
|
3232 |
|
|
{
|
3233 |
|
|
pool_node *p = &pool_vector[i];
|
3234 |
|
|
|
3235 |
|
|
switch (p->mode)
|
3236 |
|
|
{
|
3237 |
|
|
case HImode:
|
3238 |
|
|
break;
|
3239 |
|
|
case SImode:
|
3240 |
|
|
case SFmode:
|
3241 |
|
|
if (align_insn && !p->part_of_sequence_p)
|
3242 |
|
|
{
|
3243 |
|
|
for (lab = p->label; lab; lab = LABEL_REFS (lab))
|
3244 |
|
|
emit_label_before (lab, align_insn);
|
3245 |
|
|
emit_insn_before (gen_consttable_4 (p->value, const0_rtx),
|
3246 |
|
|
align_insn);
|
3247 |
|
|
for (ref = p->wend; ref; ref = ref->next)
|
3248 |
|
|
{
|
3249 |
|
|
lab = ref->label;
|
3250 |
|
|
emit_insn_before (gen_consttable_window_end (lab),
|
3251 |
|
|
align_insn);
|
3252 |
|
|
}
|
3253 |
|
|
delete_insn (align_insn);
|
3254 |
|
|
align_insn = NULL_RTX;
|
3255 |
|
|
continue;
|
3256 |
|
|
}
|
3257 |
|
|
else
|
3258 |
|
|
{
|
3259 |
|
|
for (lab = p->label; lab; lab = LABEL_REFS (lab))
|
3260 |
|
|
scan = emit_label_after (lab, scan);
|
3261 |
|
|
scan = emit_insn_after (gen_consttable_4 (p->value,
|
3262 |
|
|
const0_rtx), scan);
|
3263 |
|
|
need_align = ! need_align;
|
3264 |
|
|
}
|
3265 |
|
|
break;
|
3266 |
|
|
case DFmode:
|
3267 |
|
|
if (need_align)
|
3268 |
|
|
{
|
3269 |
|
|
scan = emit_insn_after (gen_align_log (GEN_INT (3)), scan);
|
3270 |
|
|
align_insn = scan;
|
3271 |
|
|
need_align = 0;
|
3272 |
|
|
}
|
3273 |
|
|
case DImode:
|
3274 |
|
|
for (lab = p->label; lab; lab = LABEL_REFS (lab))
|
3275 |
|
|
scan = emit_label_after (lab, scan);
|
3276 |
|
|
scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx),
|
3277 |
|
|
scan);
|
3278 |
|
|
break;
|
3279 |
|
|
default:
|
3280 |
|
|
gcc_unreachable ();
|
3281 |
|
|
}
|
3282 |
|
|
|
3283 |
|
|
if (p->mode != HImode)
|
3284 |
|
|
{
|
3285 |
|
|
for (ref = p->wend; ref; ref = ref->next)
|
3286 |
|
|
{
|
3287 |
|
|
lab = ref->label;
|
3288 |
|
|
scan = emit_insn_after (gen_consttable_window_end (lab),
|
3289 |
|
|
scan);
|
3290 |
|
|
}
|
3291 |
|
|
}
|
3292 |
|
|
}
|
3293 |
|
|
|
3294 |
|
|
pool_size = 0;
|
3295 |
|
|
}
|
3296 |
|
|
|
3297 |
|
|
for (i = 0; i < pool_size; i++)
|
3298 |
|
|
{
|
3299 |
|
|
pool_node *p = &pool_vector[i];
|
3300 |
|
|
|
3301 |
|
|
switch (p->mode)
|
3302 |
|
|
{
|
3303 |
|
|
case HImode:
|
3304 |
|
|
break;
|
3305 |
|
|
case SImode:
|
3306 |
|
|
case SFmode:
|
3307 |
|
|
if (need_align)
|
3308 |
|
|
{
|
3309 |
|
|
need_align = 0;
|
3310 |
|
|
scan = emit_label_after (gen_label_rtx (), scan);
|
3311 |
|
|
scan = emit_insn_after (gen_align_4 (), scan);
|
3312 |
|
|
}
|
3313 |
|
|
for (lab = p->label; lab; lab = LABEL_REFS (lab))
|
3314 |
|
|
scan = emit_label_after (lab, scan);
|
3315 |
|
|
scan = emit_insn_after (gen_consttable_4 (p->value, const0_rtx),
|
3316 |
|
|
scan);
|
3317 |
|
|
break;
|
3318 |
|
|
case DFmode:
|
3319 |
|
|
case DImode:
|
3320 |
|
|
if (need_align)
|
3321 |
|
|
{
|
3322 |
|
|
need_align = 0;
|
3323 |
|
|
scan = emit_label_after (gen_label_rtx (), scan);
|
3324 |
|
|
scan = emit_insn_after (gen_align_4 (), scan);
|
3325 |
|
|
}
|
3326 |
|
|
for (lab = p->label; lab; lab = LABEL_REFS (lab))
|
3327 |
|
|
scan = emit_label_after (lab, scan);
|
3328 |
|
|
scan = emit_insn_after (gen_consttable_8 (p->value, const0_rtx),
|
3329 |
|
|
scan);
|
3330 |
|
|
break;
|
3331 |
|
|
default:
|
3332 |
|
|
gcc_unreachable ();
|
3333 |
|
|
}
|
3334 |
|
|
|
3335 |
|
|
if (p->mode != HImode)
|
3336 |
|
|
{
|
3337 |
|
|
for (ref = p->wend; ref; ref = ref->next)
|
3338 |
|
|
{
|
3339 |
|
|
lab = ref->label;
|
3340 |
|
|
scan = emit_insn_after (gen_consttable_window_end (lab), scan);
|
3341 |
|
|
}
|
3342 |
|
|
}
|
3343 |
|
|
}
|
3344 |
|
|
|
3345 |
|
|
scan = emit_insn_after (gen_consttable_end (), scan);
|
3346 |
|
|
scan = emit_barrier_after (scan);
|
3347 |
|
|
pool_size = 0;
|
3348 |
|
|
pool_window_label = NULL_RTX;
|
3349 |
|
|
pool_window_last = 0;
|
3350 |
|
|
}
|
3351 |
|
|
|
3352 |
|
|
/* Return nonzero if constant would be an ok source for a
|
3353 |
|
|
mov.w instead of a mov.l. */
|
3354 |
|
|
|
3355 |
|
|
static int
|
3356 |
|
|
hi_const (rtx src)
|
3357 |
|
|
{
|
3358 |
|
|
return (GET_CODE (src) == CONST_INT
|
3359 |
|
|
&& INTVAL (src) >= -32768
|
3360 |
|
|
&& INTVAL (src) <= 32767);
|
3361 |
|
|
}
|
3362 |
|
|
|
3363 |
|
|
#define MOVA_LABELREF(mova) XVECEXP (SET_SRC (PATTERN (mova)), 0, 0)
|
3364 |
|
|
|
3365 |
|
|
/* Nonzero if the insn is a move instruction which needs to be fixed. */
|
3366 |
|
|
|
3367 |
|
|
/* ??? For a DImode/DFmode moves, we don't need to fix it if each half of the
|
3368 |
|
|
CONST_DOUBLE input value is CONST_OK_FOR_I08. For a SFmode move, we don't
|
3369 |
|
|
need to fix it if the input value is CONST_OK_FOR_I08. */
|
3370 |
|
|
|
3371 |
|
|
static int
|
3372 |
|
|
broken_move (rtx insn)
|
3373 |
|
|
{
|
3374 |
|
|
if (GET_CODE (insn) == INSN)
|
3375 |
|
|
{
|
3376 |
|
|
rtx pat = PATTERN (insn);
|
3377 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
3378 |
|
|
pat = XVECEXP (pat, 0, 0);
|
3379 |
|
|
if (GET_CODE (pat) == SET
|
3380 |
|
|
/* We can load any 8 bit value if we don't care what the high
|
3381 |
|
|
order bits end up as. */
|
3382 |
|
|
&& GET_MODE (SET_DEST (pat)) != QImode
|
3383 |
|
|
&& (CONSTANT_P (SET_SRC (pat))
|
3384 |
|
|
/* Match mova_const. */
|
3385 |
|
|
|| (GET_CODE (SET_SRC (pat)) == UNSPEC
|
3386 |
|
|
&& XINT (SET_SRC (pat), 1) == UNSPEC_MOVA
|
3387 |
|
|
&& GET_CODE (XVECEXP (SET_SRC (pat), 0, 0)) == CONST))
|
3388 |
|
|
&& ! (TARGET_SH2E
|
3389 |
|
|
&& GET_CODE (SET_SRC (pat)) == CONST_DOUBLE
|
3390 |
|
|
&& (fp_zero_operand (SET_SRC (pat))
|
3391 |
|
|
|| fp_one_operand (SET_SRC (pat)))
|
3392 |
|
|
/* ??? If this is a -m4 or -m4-single compilation, in general
|
3393 |
|
|
we don't know the current setting of fpscr, so disable fldi.
|
3394 |
|
|
There is an exception if this was a register-register move
|
3395 |
|
|
before reload - and hence it was ascertained that we have
|
3396 |
|
|
single precision setting - and in a post-reload optimization
|
3397 |
|
|
we changed this to do a constant load. In that case
|
3398 |
|
|
we don't have an r0 clobber, hence we must use fldi. */
|
3399 |
|
|
&& (! TARGET_SH4 || TARGET_FMOVD
|
3400 |
|
|
|| (GET_CODE (XEXP (XVECEXP (PATTERN (insn), 0, 2), 0))
|
3401 |
|
|
== SCRATCH))
|
3402 |
|
|
&& GET_CODE (SET_DEST (pat)) == REG
|
3403 |
|
|
&& FP_REGISTER_P (REGNO (SET_DEST (pat))))
|
3404 |
|
|
&& ! (TARGET_SH2A
|
3405 |
|
|
&& GET_MODE (SET_DEST (pat)) == SImode
|
3406 |
|
|
&& GET_CODE (SET_SRC (pat)) == CONST_INT
|
3407 |
|
|
&& CONST_OK_FOR_I20 (INTVAL (SET_SRC (pat))))
|
3408 |
|
|
&& (GET_CODE (SET_SRC (pat)) != CONST_INT
|
3409 |
|
|
|| ! CONST_OK_FOR_I08 (INTVAL (SET_SRC (pat)))))
|
3410 |
|
|
return 1;
|
3411 |
|
|
}
|
3412 |
|
|
|
3413 |
|
|
return 0;
|
3414 |
|
|
}
|
3415 |
|
|
|
3416 |
|
|
static int
|
3417 |
|
|
mova_p (rtx insn)
|
3418 |
|
|
{
|
3419 |
|
|
return (GET_CODE (insn) == INSN
|
3420 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
3421 |
|
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == UNSPEC
|
3422 |
|
|
&& XINT (SET_SRC (PATTERN (insn)), 1) == UNSPEC_MOVA
|
3423 |
|
|
/* Don't match mova_const. */
|
3424 |
|
|
&& GET_CODE (MOVA_LABELREF (insn)) == LABEL_REF);
|
3425 |
|
|
}
|
3426 |
|
|
|
3427 |
|
|
/* Fix up a mova from a switch that went out of range. */
|
3428 |
|
|
static void
|
3429 |
|
|
fixup_mova (rtx mova)
|
3430 |
|
|
{
|
3431 |
|
|
PUT_MODE (XEXP (MOVA_LABELREF (mova), 0), QImode);
|
3432 |
|
|
if (! flag_pic)
|
3433 |
|
|
{
|
3434 |
|
|
SET_SRC (PATTERN (mova)) = MOVA_LABELREF (mova);
|
3435 |
|
|
INSN_CODE (mova) = -1;
|
3436 |
|
|
}
|
3437 |
|
|
else
|
3438 |
|
|
{
|
3439 |
|
|
rtx worker = mova;
|
3440 |
|
|
rtx lab = gen_label_rtx ();
|
3441 |
|
|
rtx wpat, wpat0, wpat1, wsrc, diff;
|
3442 |
|
|
|
3443 |
|
|
do
|
3444 |
|
|
{
|
3445 |
|
|
worker = NEXT_INSN (worker);
|
3446 |
|
|
gcc_assert (worker
|
3447 |
|
|
&& GET_CODE (worker) != CODE_LABEL
|
3448 |
|
|
&& GET_CODE (worker) != JUMP_INSN);
|
3449 |
|
|
} while (GET_CODE (worker) == NOTE
|
3450 |
|
|
|| recog_memoized (worker) != CODE_FOR_casesi_worker_1);
|
3451 |
|
|
wpat = PATTERN (worker);
|
3452 |
|
|
wpat0 = XVECEXP (wpat, 0, 0);
|
3453 |
|
|
wpat1 = XVECEXP (wpat, 0, 1);
|
3454 |
|
|
wsrc = SET_SRC (wpat0);
|
3455 |
|
|
PATTERN (worker) = (gen_casesi_worker_2
|
3456 |
|
|
(SET_DEST (wpat0), XVECEXP (wsrc, 0, 1),
|
3457 |
|
|
XEXP (XVECEXP (wsrc, 0, 2), 0), lab,
|
3458 |
|
|
XEXP (wpat1, 0)));
|
3459 |
|
|
INSN_CODE (worker) = -1;
|
3460 |
|
|
diff = gen_rtx_MINUS (Pmode, XVECEXP (SET_SRC (PATTERN (mova)), 0, 0),
|
3461 |
|
|
gen_rtx_LABEL_REF (Pmode, lab));
|
3462 |
|
|
diff = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, diff), UNSPEC_PIC);
|
3463 |
|
|
SET_SRC (PATTERN (mova)) = gen_rtx_CONST (Pmode, diff);
|
3464 |
|
|
INSN_CODE (mova) = -1;
|
3465 |
|
|
}
|
3466 |
|
|
}
|
3467 |
|
|
|
3468 |
|
|
/* NEW_MOVA is a mova we've just encountered while scanning forward. Update
|
3469 |
|
|
*num_mova, and check if the new mova is not nested within the first one.
|
3470 |
|
|
return 0 if *first_mova was replaced, 1 if new_mova was replaced,
|
3471 |
|
|
2 if new_mova has been assigned to *first_mova, -1 otherwise.. */
|
3472 |
|
|
static int
|
3473 |
|
|
untangle_mova (int *num_mova, rtx *first_mova, rtx new_mova)
|
3474 |
|
|
{
|
3475 |
|
|
int n_addr = 0; /* Initialization to shut up spurious warning. */
|
3476 |
|
|
int f_target, n_target = 0; /* Likewise. */
|
3477 |
|
|
|
3478 |
|
|
if (optimize)
|
3479 |
|
|
{
|
3480 |
|
|
n_addr = INSN_ADDRESSES (INSN_UID (new_mova));
|
3481 |
|
|
n_target = INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (new_mova), 0)));
|
3482 |
|
|
if (n_addr > n_target || n_addr + 1022 < n_target)
|
3483 |
|
|
{
|
3484 |
|
|
/* Change the mova into a load.
|
3485 |
|
|
broken_move will then return true for it. */
|
3486 |
|
|
fixup_mova (new_mova);
|
3487 |
|
|
return 1;
|
3488 |
|
|
}
|
3489 |
|
|
}
|
3490 |
|
|
if (!(*num_mova)++)
|
3491 |
|
|
{
|
3492 |
|
|
*first_mova = new_mova;
|
3493 |
|
|
return 2;
|
3494 |
|
|
}
|
3495 |
|
|
if (!optimize
|
3496 |
|
|
|| ((f_target
|
3497 |
|
|
= INSN_ADDRESSES (INSN_UID (XEXP (MOVA_LABELREF (*first_mova), 0))))
|
3498 |
|
|
>= n_target))
|
3499 |
|
|
return -1;
|
3500 |
|
|
|
3501 |
|
|
(*num_mova)--;
|
3502 |
|
|
if (f_target - INSN_ADDRESSES (INSN_UID (*first_mova))
|
3503 |
|
|
> n_target - n_addr)
|
3504 |
|
|
{
|
3505 |
|
|
fixup_mova (*first_mova);
|
3506 |
|
|
return 0;
|
3507 |
|
|
}
|
3508 |
|
|
else
|
3509 |
|
|
{
|
3510 |
|
|
fixup_mova (new_mova);
|
3511 |
|
|
return 1;
|
3512 |
|
|
}
|
3513 |
|
|
}
|
3514 |
|
|
|
3515 |
|
|
/* Find the last barrier from insn FROM which is close enough to hold the
|
3516 |
|
|
constant pool. If we can't find one, then create one near the end of
|
3517 |
|
|
the range. */
|
3518 |
|
|
|
3519 |
|
|
static rtx
|
3520 |
|
|
find_barrier (int num_mova, rtx mova, rtx from)
|
3521 |
|
|
{
|
3522 |
|
|
int count_si = 0;
|
3523 |
|
|
int count_hi = 0;
|
3524 |
|
|
int found_hi = 0;
|
3525 |
|
|
int found_si = 0;
|
3526 |
|
|
int found_di = 0;
|
3527 |
|
|
int hi_align = 2;
|
3528 |
|
|
int si_align = 2;
|
3529 |
|
|
int leading_mova = num_mova;
|
3530 |
|
|
rtx barrier_before_mova = 0, found_barrier = 0, good_barrier = 0;
|
3531 |
|
|
int si_limit;
|
3532 |
|
|
int hi_limit;
|
3533 |
|
|
|
3534 |
|
|
/* For HImode: range is 510, add 4 because pc counts from address of
|
3535 |
|
|
second instruction after this one, subtract 2 for the jump instruction
|
3536 |
|
|
that we may need to emit before the table, subtract 2 for the instruction
|
3537 |
|
|
that fills the jump delay slot (in very rare cases, reorg will take an
|
3538 |
|
|
instruction from after the constant pool or will leave the delay slot
|
3539 |
|
|
empty). This gives 510.
|
3540 |
|
|
For SImode: range is 1020, add 4 because pc counts from address of
|
3541 |
|
|
second instruction after this one, subtract 2 in case pc is 2 byte
|
3542 |
|
|
aligned, subtract 2 for the jump instruction that we may need to emit
|
3543 |
|
|
before the table, subtract 2 for the instruction that fills the jump
|
3544 |
|
|
delay slot. This gives 1018. */
|
3545 |
|
|
|
3546 |
|
|
/* The branch will always be shortened now that the reference address for
|
3547 |
|
|
forward branches is the successor address, thus we need no longer make
|
3548 |
|
|
adjustments to the [sh]i_limit for -O0. */
|
3549 |
|
|
|
3550 |
|
|
si_limit = 1018;
|
3551 |
|
|
hi_limit = 510;
|
3552 |
|
|
|
3553 |
|
|
while (from && count_si < si_limit && count_hi < hi_limit)
|
3554 |
|
|
{
|
3555 |
|
|
int inc = get_attr_length (from);
|
3556 |
|
|
int new_align = 1;
|
3557 |
|
|
|
3558 |
|
|
/* If this is a label that existed at the time of the compute_alignments
|
3559 |
|
|
call, determine the alignment. N.B. When find_barrier recurses for
|
3560 |
|
|
an out-of-reach mova, we might see labels at the start of previously
|
3561 |
|
|
inserted constant tables. */
|
3562 |
|
|
if (GET_CODE (from) == CODE_LABEL
|
3563 |
|
|
&& CODE_LABEL_NUMBER (from) <= max_labelno_before_reorg)
|
3564 |
|
|
{
|
3565 |
|
|
if (optimize)
|
3566 |
|
|
new_align = 1 << label_to_alignment (from);
|
3567 |
|
|
else if (GET_CODE (prev_nonnote_insn (from)) == BARRIER)
|
3568 |
|
|
new_align = 1 << barrier_align (from);
|
3569 |
|
|
else
|
3570 |
|
|
new_align = 1;
|
3571 |
|
|
inc = 0;
|
3572 |
|
|
}
|
3573 |
|
|
/* In case we are scanning a constant table because of recursion, check
|
3574 |
|
|
for explicit alignments. If the table is long, we might be forced
|
3575 |
|
|
to emit the new table in front of it; the length of the alignment
|
3576 |
|
|
might be the last straw. */
|
3577 |
|
|
else if (GET_CODE (from) == INSN
|
3578 |
|
|
&& GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE
|
3579 |
|
|
&& XINT (PATTERN (from), 1) == UNSPECV_ALIGN)
|
3580 |
|
|
new_align = INTVAL (XVECEXP (PATTERN (from), 0, 0));
|
3581 |
|
|
/* When we find the end of a constant table, paste the new constant
|
3582 |
|
|
at the end. That is better than putting it in front because
|
3583 |
|
|
this way, we don't need extra alignment for adding a 4-byte-aligned
|
3584 |
|
|
mov(a) label to a 2/4 or 8/4 byte aligned table. */
|
3585 |
|
|
else if (GET_CODE (from) == INSN
|
3586 |
|
|
&& GET_CODE (PATTERN (from)) == UNSPEC_VOLATILE
|
3587 |
|
|
&& XINT (PATTERN (from), 1) == UNSPECV_CONST_END)
|
3588 |
|
|
return from;
|
3589 |
|
|
|
3590 |
|
|
if (GET_CODE (from) == BARRIER)
|
3591 |
|
|
{
|
3592 |
|
|
|
3593 |
|
|
found_barrier = from;
|
3594 |
|
|
|
3595 |
|
|
/* If we are at the end of the function, or in front of an alignment
|
3596 |
|
|
instruction, we need not insert an extra alignment. We prefer
|
3597 |
|
|
this kind of barrier. */
|
3598 |
|
|
if (barrier_align (from) > 2)
|
3599 |
|
|
good_barrier = from;
|
3600 |
|
|
}
|
3601 |
|
|
|
3602 |
|
|
if (broken_move (from))
|
3603 |
|
|
{
|
3604 |
|
|
rtx pat, src, dst;
|
3605 |
|
|
enum machine_mode mode;
|
3606 |
|
|
|
3607 |
|
|
pat = PATTERN (from);
|
3608 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
3609 |
|
|
pat = XVECEXP (pat, 0, 0);
|
3610 |
|
|
src = SET_SRC (pat);
|
3611 |
|
|
dst = SET_DEST (pat);
|
3612 |
|
|
mode = GET_MODE (dst);
|
3613 |
|
|
|
3614 |
|
|
/* We must explicitly check the mode, because sometimes the
|
3615 |
|
|
front end will generate code to load unsigned constants into
|
3616 |
|
|
HImode targets without properly sign extending them. */
|
3617 |
|
|
if (mode == HImode
|
3618 |
|
|
|| (mode == SImode && hi_const (src) && REGNO (dst) != FPUL_REG))
|
3619 |
|
|
{
|
3620 |
|
|
found_hi += 2;
|
3621 |
|
|
/* We put the short constants before the long constants, so
|
3622 |
|
|
we must count the length of short constants in the range
|
3623 |
|
|
for the long constants. */
|
3624 |
|
|
/* ??? This isn't optimal, but is easy to do. */
|
3625 |
|
|
si_limit -= 2;
|
3626 |
|
|
}
|
3627 |
|
|
else
|
3628 |
|
|
{
|
3629 |
|
|
/* We dump DF/DI constants before SF/SI ones, because
|
3630 |
|
|
the limit is the same, but the alignment requirements
|
3631 |
|
|
are higher. We may waste up to 4 additional bytes
|
3632 |
|
|
for alignment, and the DF/DI constant may have
|
3633 |
|
|
another SF/SI constant placed before it. */
|
3634 |
|
|
if (TARGET_SHCOMPACT
|
3635 |
|
|
&& ! found_di
|
3636 |
|
|
&& (mode == DFmode || mode == DImode))
|
3637 |
|
|
{
|
3638 |
|
|
found_di = 1;
|
3639 |
|
|
si_limit -= 8;
|
3640 |
|
|
}
|
3641 |
|
|
while (si_align > 2 && found_si + si_align - 2 > count_si)
|
3642 |
|
|
si_align >>= 1;
|
3643 |
|
|
if (found_si > count_si)
|
3644 |
|
|
count_si = found_si;
|
3645 |
|
|
found_si += GET_MODE_SIZE (mode);
|
3646 |
|
|
if (num_mova)
|
3647 |
|
|
si_limit -= GET_MODE_SIZE (mode);
|
3648 |
|
|
}
|
3649 |
|
|
}
|
3650 |
|
|
|
3651 |
|
|
if (mova_p (from))
|
3652 |
|
|
{
|
3653 |
|
|
switch (untangle_mova (&num_mova, &mova, from))
|
3654 |
|
|
{
|
3655 |
|
|
case 0: return find_barrier (0, 0, mova);
|
3656 |
|
|
case 2:
|
3657 |
|
|
{
|
3658 |
|
|
leading_mova = 0;
|
3659 |
|
|
barrier_before_mova
|
3660 |
|
|
= good_barrier ? good_barrier : found_barrier;
|
3661 |
|
|
}
|
3662 |
|
|
default: break;
|
3663 |
|
|
}
|
3664 |
|
|
if (found_si > count_si)
|
3665 |
|
|
count_si = found_si;
|
3666 |
|
|
}
|
3667 |
|
|
else if (GET_CODE (from) == JUMP_INSN
|
3668 |
|
|
&& (GET_CODE (PATTERN (from)) == ADDR_VEC
|
3669 |
|
|
|| GET_CODE (PATTERN (from)) == ADDR_DIFF_VEC))
|
3670 |
|
|
{
|
3671 |
|
|
if ((num_mova > 1 && GET_MODE (prev_nonnote_insn (from)) == VOIDmode)
|
3672 |
|
|
|| (num_mova
|
3673 |
|
|
&& (prev_nonnote_insn (from)
|
3674 |
|
|
== XEXP (MOVA_LABELREF (mova), 0))))
|
3675 |
|
|
num_mova--;
|
3676 |
|
|
if (barrier_align (next_real_insn (from)) == align_jumps_log)
|
3677 |
|
|
{
|
3678 |
|
|
/* We have just passed the barrier in front of the
|
3679 |
|
|
ADDR_DIFF_VEC, which is stored in found_barrier. Since
|
3680 |
|
|
the ADDR_DIFF_VEC is accessed as data, just like our pool
|
3681 |
|
|
constants, this is a good opportunity to accommodate what
|
3682 |
|
|
we have gathered so far.
|
3683 |
|
|
If we waited any longer, we could end up at a barrier in
|
3684 |
|
|
front of code, which gives worse cache usage for separated
|
3685 |
|
|
instruction / data caches. */
|
3686 |
|
|
good_barrier = found_barrier;
|
3687 |
|
|
break;
|
3688 |
|
|
}
|
3689 |
|
|
else
|
3690 |
|
|
{
|
3691 |
|
|
rtx body = PATTERN (from);
|
3692 |
|
|
inc = XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body));
|
3693 |
|
|
}
|
3694 |
|
|
}
|
3695 |
|
|
/* For the SH1, we generate alignments even after jumps-around-jumps. */
|
3696 |
|
|
else if (GET_CODE (from) == JUMP_INSN
|
3697 |
|
|
&& ! TARGET_SH2
|
3698 |
|
|
&& ! TARGET_SMALLCODE)
|
3699 |
|
|
new_align = 4;
|
3700 |
|
|
|
3701 |
|
|
if (found_si)
|
3702 |
|
|
{
|
3703 |
|
|
count_si += inc;
|
3704 |
|
|
if (new_align > si_align)
|
3705 |
|
|
{
|
3706 |
|
|
si_limit -= (count_si - 1) & (new_align - si_align);
|
3707 |
|
|
si_align = new_align;
|
3708 |
|
|
}
|
3709 |
|
|
count_si = (count_si + new_align - 1) & -new_align;
|
3710 |
|
|
}
|
3711 |
|
|
if (found_hi)
|
3712 |
|
|
{
|
3713 |
|
|
count_hi += inc;
|
3714 |
|
|
if (new_align > hi_align)
|
3715 |
|
|
{
|
3716 |
|
|
hi_limit -= (count_hi - 1) & (new_align - hi_align);
|
3717 |
|
|
hi_align = new_align;
|
3718 |
|
|
}
|
3719 |
|
|
count_hi = (count_hi + new_align - 1) & -new_align;
|
3720 |
|
|
}
|
3721 |
|
|
from = NEXT_INSN (from);
|
3722 |
|
|
}
|
3723 |
|
|
|
3724 |
|
|
if (num_mova)
|
3725 |
|
|
{
|
3726 |
|
|
if (leading_mova)
|
3727 |
|
|
{
|
3728 |
|
|
/* Try as we might, the leading mova is out of range. Change
|
3729 |
|
|
it into a load (which will become a pcload) and retry. */
|
3730 |
|
|
fixup_mova (mova);
|
3731 |
|
|
return find_barrier (0, 0, mova);
|
3732 |
|
|
}
|
3733 |
|
|
else
|
3734 |
|
|
{
|
3735 |
|
|
/* Insert the constant pool table before the mova instruction,
|
3736 |
|
|
to prevent the mova label reference from going out of range. */
|
3737 |
|
|
from = mova;
|
3738 |
|
|
good_barrier = found_barrier = barrier_before_mova;
|
3739 |
|
|
}
|
3740 |
|
|
}
|
3741 |
|
|
|
3742 |
|
|
if (found_barrier)
|
3743 |
|
|
{
|
3744 |
|
|
if (good_barrier && next_real_insn (found_barrier))
|
3745 |
|
|
found_barrier = good_barrier;
|
3746 |
|
|
}
|
3747 |
|
|
else
|
3748 |
|
|
{
|
3749 |
|
|
/* We didn't find a barrier in time to dump our stuff,
|
3750 |
|
|
so we'll make one. */
|
3751 |
|
|
rtx label = gen_label_rtx ();
|
3752 |
|
|
|
3753 |
|
|
/* If we exceeded the range, then we must back up over the last
|
3754 |
|
|
instruction we looked at. Otherwise, we just need to undo the
|
3755 |
|
|
NEXT_INSN at the end of the loop. */
|
3756 |
|
|
if (count_hi > hi_limit || count_si > si_limit)
|
3757 |
|
|
from = PREV_INSN (PREV_INSN (from));
|
3758 |
|
|
else
|
3759 |
|
|
from = PREV_INSN (from);
|
3760 |
|
|
|
3761 |
|
|
/* Walk back to be just before any jump or label.
|
3762 |
|
|
Putting it before a label reduces the number of times the branch
|
3763 |
|
|
around the constant pool table will be hit. Putting it before
|
3764 |
|
|
a jump makes it more likely that the bra delay slot will be
|
3765 |
|
|
filled. */
|
3766 |
|
|
while (GET_CODE (from) == JUMP_INSN || GET_CODE (from) == NOTE
|
3767 |
|
|
|| GET_CODE (from) == CODE_LABEL)
|
3768 |
|
|
from = PREV_INSN (from);
|
3769 |
|
|
|
3770 |
|
|
from = emit_jump_insn_after (gen_jump (label), from);
|
3771 |
|
|
JUMP_LABEL (from) = label;
|
3772 |
|
|
LABEL_NUSES (label) = 1;
|
3773 |
|
|
found_barrier = emit_barrier_after (from);
|
3774 |
|
|
emit_label_after (label, found_barrier);
|
3775 |
|
|
}
|
3776 |
|
|
|
3777 |
|
|
return found_barrier;
|
3778 |
|
|
}
|
3779 |
|
|
|
3780 |
|
|
/* If the instruction INSN is implemented by a special function, and we can
|
3781 |
|
|
positively find the register that is used to call the sfunc, and this
|
3782 |
|
|
register is not used anywhere else in this instruction - except as the
|
3783 |
|
|
destination of a set, return this register; else, return 0. */
|
3784 |
|
|
rtx
|
3785 |
|
|
sfunc_uses_reg (rtx insn)
|
3786 |
|
|
{
|
3787 |
|
|
int i;
|
3788 |
|
|
rtx pattern, part, reg_part, reg;
|
3789 |
|
|
|
3790 |
|
|
if (GET_CODE (insn) != INSN)
|
3791 |
|
|
return 0;
|
3792 |
|
|
pattern = PATTERN (insn);
|
3793 |
|
|
if (GET_CODE (pattern) != PARALLEL || get_attr_type (insn) != TYPE_SFUNC)
|
3794 |
|
|
return 0;
|
3795 |
|
|
|
3796 |
|
|
for (reg_part = 0, i = XVECLEN (pattern, 0) - 1; i >= 1; i--)
|
3797 |
|
|
{
|
3798 |
|
|
part = XVECEXP (pattern, 0, i);
|
3799 |
|
|
if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == SImode)
|
3800 |
|
|
reg_part = part;
|
3801 |
|
|
}
|
3802 |
|
|
if (! reg_part)
|
3803 |
|
|
return 0;
|
3804 |
|
|
reg = XEXP (reg_part, 0);
|
3805 |
|
|
for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
|
3806 |
|
|
{
|
3807 |
|
|
part = XVECEXP (pattern, 0, i);
|
3808 |
|
|
if (part == reg_part || GET_CODE (part) == CLOBBER)
|
3809 |
|
|
continue;
|
3810 |
|
|
if (reg_mentioned_p (reg, ((GET_CODE (part) == SET
|
3811 |
|
|
&& GET_CODE (SET_DEST (part)) == REG)
|
3812 |
|
|
? SET_SRC (part) : part)))
|
3813 |
|
|
return 0;
|
3814 |
|
|
}
|
3815 |
|
|
return reg;
|
3816 |
|
|
}
|
3817 |
|
|
|
3818 |
|
|
/* See if the only way in which INSN uses REG is by calling it, or by
|
3819 |
|
|
setting it while calling it. Set *SET to a SET rtx if the register
|
3820 |
|
|
is set by INSN. */
|
3821 |
|
|
|
3822 |
|
|
static int
|
3823 |
|
|
noncall_uses_reg (rtx reg, rtx insn, rtx *set)
|
3824 |
|
|
{
|
3825 |
|
|
rtx pattern, reg2;
|
3826 |
|
|
|
3827 |
|
|
*set = NULL_RTX;
|
3828 |
|
|
|
3829 |
|
|
reg2 = sfunc_uses_reg (insn);
|
3830 |
|
|
if (reg2 && REGNO (reg2) == REGNO (reg))
|
3831 |
|
|
{
|
3832 |
|
|
pattern = single_set (insn);
|
3833 |
|
|
if (pattern
|
3834 |
|
|
&& GET_CODE (SET_DEST (pattern)) == REG
|
3835 |
|
|
&& REGNO (reg) == REGNO (SET_DEST (pattern)))
|
3836 |
|
|
*set = pattern;
|
3837 |
|
|
return 0;
|
3838 |
|
|
}
|
3839 |
|
|
if (GET_CODE (insn) != CALL_INSN)
|
3840 |
|
|
{
|
3841 |
|
|
/* We don't use rtx_equal_p because we don't care if the mode is
|
3842 |
|
|
different. */
|
3843 |
|
|
pattern = single_set (insn);
|
3844 |
|
|
if (pattern
|
3845 |
|
|
&& GET_CODE (SET_DEST (pattern)) == REG
|
3846 |
|
|
&& REGNO (reg) == REGNO (SET_DEST (pattern)))
|
3847 |
|
|
{
|
3848 |
|
|
rtx par, part;
|
3849 |
|
|
int i;
|
3850 |
|
|
|
3851 |
|
|
*set = pattern;
|
3852 |
|
|
par = PATTERN (insn);
|
3853 |
|
|
if (GET_CODE (par) == PARALLEL)
|
3854 |
|
|
for (i = XVECLEN (par, 0) - 1; i >= 0; i--)
|
3855 |
|
|
{
|
3856 |
|
|
part = XVECEXP (par, 0, i);
|
3857 |
|
|
if (GET_CODE (part) != SET && reg_mentioned_p (reg, part))
|
3858 |
|
|
return 1;
|
3859 |
|
|
}
|
3860 |
|
|
return reg_mentioned_p (reg, SET_SRC (pattern));
|
3861 |
|
|
}
|
3862 |
|
|
|
3863 |
|
|
return 1;
|
3864 |
|
|
}
|
3865 |
|
|
|
3866 |
|
|
pattern = PATTERN (insn);
|
3867 |
|
|
|
3868 |
|
|
if (GET_CODE (pattern) == PARALLEL)
|
3869 |
|
|
{
|
3870 |
|
|
int i;
|
3871 |
|
|
|
3872 |
|
|
for (i = XVECLEN (pattern, 0) - 1; i >= 1; i--)
|
3873 |
|
|
if (reg_mentioned_p (reg, XVECEXP (pattern, 0, i)))
|
3874 |
|
|
return 1;
|
3875 |
|
|
pattern = XVECEXP (pattern, 0, 0);
|
3876 |
|
|
}
|
3877 |
|
|
|
3878 |
|
|
if (GET_CODE (pattern) == SET)
|
3879 |
|
|
{
|
3880 |
|
|
if (reg_mentioned_p (reg, SET_DEST (pattern)))
|
3881 |
|
|
{
|
3882 |
|
|
/* We don't use rtx_equal_p, because we don't care if the
|
3883 |
|
|
mode is different. */
|
3884 |
|
|
if (GET_CODE (SET_DEST (pattern)) != REG
|
3885 |
|
|
|| REGNO (reg) != REGNO (SET_DEST (pattern)))
|
3886 |
|
|
return 1;
|
3887 |
|
|
|
3888 |
|
|
*set = pattern;
|
3889 |
|
|
}
|
3890 |
|
|
|
3891 |
|
|
pattern = SET_SRC (pattern);
|
3892 |
|
|
}
|
3893 |
|
|
|
3894 |
|
|
if (GET_CODE (pattern) != CALL
|
3895 |
|
|
|| GET_CODE (XEXP (pattern, 0)) != MEM
|
3896 |
|
|
|| ! rtx_equal_p (reg, XEXP (XEXP (pattern, 0), 0)))
|
3897 |
|
|
return 1;
|
3898 |
|
|
|
3899 |
|
|
return 0;
|
3900 |
|
|
}
|
3901 |
|
|
|
3902 |
|
|
/* Given a X, a pattern of an insn or a part of it, return a mask of used
|
3903 |
|
|
general registers. Bits 0..15 mean that the respective registers
|
3904 |
|
|
are used as inputs in the instruction. Bits 16..31 mean that the
|
3905 |
|
|
registers 0..15, respectively, are used as outputs, or are clobbered.
|
3906 |
|
|
IS_DEST should be set to 16 if X is the destination of a SET, else to 0. */
|
3907 |
|
|
int
|
3908 |
|
|
regs_used (rtx x, int is_dest)
|
3909 |
|
|
{
|
3910 |
|
|
enum rtx_code code;
|
3911 |
|
|
const char *fmt;
|
3912 |
|
|
int i, used = 0;
|
3913 |
|
|
|
3914 |
|
|
if (! x)
|
3915 |
|
|
return used;
|
3916 |
|
|
code = GET_CODE (x);
|
3917 |
|
|
switch (code)
|
3918 |
|
|
{
|
3919 |
|
|
case REG:
|
3920 |
|
|
if (REGNO (x) < 16)
|
3921 |
|
|
return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1)
|
3922 |
|
|
<< (REGNO (x) + is_dest));
|
3923 |
|
|
return 0;
|
3924 |
|
|
case SUBREG:
|
3925 |
|
|
{
|
3926 |
|
|
rtx y = SUBREG_REG (x);
|
3927 |
|
|
|
3928 |
|
|
if (GET_CODE (y) != REG)
|
3929 |
|
|
break;
|
3930 |
|
|
if (REGNO (y) < 16)
|
3931 |
|
|
return (((1 << HARD_REGNO_NREGS (0, GET_MODE (x))) - 1)
|
3932 |
|
|
<< (REGNO (y) +
|
3933 |
|
|
subreg_regno_offset (REGNO (y),
|
3934 |
|
|
GET_MODE (y),
|
3935 |
|
|
SUBREG_BYTE (x),
|
3936 |
|
|
GET_MODE (x)) + is_dest));
|
3937 |
|
|
return 0;
|
3938 |
|
|
}
|
3939 |
|
|
case SET:
|
3940 |
|
|
return regs_used (SET_SRC (x), 0) | regs_used (SET_DEST (x), 16);
|
3941 |
|
|
case RETURN:
|
3942 |
|
|
/* If there was a return value, it must have been indicated with USE. */
|
3943 |
|
|
return 0x00ffff00;
|
3944 |
|
|
case CLOBBER:
|
3945 |
|
|
is_dest = 1;
|
3946 |
|
|
break;
|
3947 |
|
|
case MEM:
|
3948 |
|
|
is_dest = 0;
|
3949 |
|
|
break;
|
3950 |
|
|
case CALL:
|
3951 |
|
|
used |= 0x00ff00f0;
|
3952 |
|
|
break;
|
3953 |
|
|
default:
|
3954 |
|
|
break;
|
3955 |
|
|
}
|
3956 |
|
|
|
3957 |
|
|
fmt = GET_RTX_FORMAT (code);
|
3958 |
|
|
|
3959 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
3960 |
|
|
{
|
3961 |
|
|
if (fmt[i] == 'E')
|
3962 |
|
|
{
|
3963 |
|
|
register int j;
|
3964 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
3965 |
|
|
used |= regs_used (XVECEXP (x, i, j), is_dest);
|
3966 |
|
|
}
|
3967 |
|
|
else if (fmt[i] == 'e')
|
3968 |
|
|
used |= regs_used (XEXP (x, i), is_dest);
|
3969 |
|
|
}
|
3970 |
|
|
return used;
|
3971 |
|
|
}
|
3972 |
|
|
|
3973 |
|
|
/* Create an instruction that prevents redirection of a conditional branch
|
3974 |
|
|
to the destination of the JUMP with address ADDR.
|
3975 |
|
|
If the branch needs to be implemented as an indirect jump, try to find
|
3976 |
|
|
a scratch register for it.
|
3977 |
|
|
If NEED_BLOCK is 0, don't do anything unless we need a scratch register.
|
3978 |
|
|
If any preceding insn that doesn't fit into a delay slot is good enough,
|
3979 |
|
|
pass 1. Pass 2 if a definite blocking insn is needed.
|
3980 |
|
|
-1 is used internally to avoid deep recursion.
|
3981 |
|
|
If a blocking instruction is made or recognized, return it. */
|
3982 |
|
|
|
3983 |
|
|
static rtx
|
3984 |
|
|
gen_block_redirect (rtx jump, int addr, int need_block)
|
3985 |
|
|
{
|
3986 |
|
|
int dead = 0;
|
3987 |
|
|
rtx prev = prev_nonnote_insn (jump);
|
3988 |
|
|
rtx dest;
|
3989 |
|
|
|
3990 |
|
|
/* First, check if we already have an instruction that satisfies our need. */
|
3991 |
|
|
if (prev && GET_CODE (prev) == INSN && ! INSN_DELETED_P (prev))
|
3992 |
|
|
{
|
3993 |
|
|
if (INSN_CODE (prev) == CODE_FOR_indirect_jump_scratch)
|
3994 |
|
|
return prev;
|
3995 |
|
|
if (GET_CODE (PATTERN (prev)) == USE
|
3996 |
|
|
|| GET_CODE (PATTERN (prev)) == CLOBBER
|
3997 |
|
|
|| get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES)
|
3998 |
|
|
prev = jump;
|
3999 |
|
|
else if ((need_block &= ~1) < 0)
|
4000 |
|
|
return prev;
|
4001 |
|
|
else if (recog_memoized (prev) == CODE_FOR_block_branch_redirect)
|
4002 |
|
|
need_block = 0;
|
4003 |
|
|
}
|
4004 |
|
|
if (GET_CODE (PATTERN (jump)) == RETURN)
|
4005 |
|
|
{
|
4006 |
|
|
if (! need_block)
|
4007 |
|
|
return prev;
|
4008 |
|
|
/* Reorg even does nasty things with return insns that cause branches
|
4009 |
|
|
to go out of range - see find_end_label and callers. */
|
4010 |
|
|
return emit_insn_before (gen_block_branch_redirect (const0_rtx) , jump);
|
4011 |
|
|
}
|
4012 |
|
|
/* We can't use JUMP_LABEL here because it might be undefined
|
4013 |
|
|
when not optimizing. */
|
4014 |
|
|
dest = XEXP (SET_SRC (PATTERN (jump)), 0);
|
4015 |
|
|
/* If the branch is out of range, try to find a scratch register for it. */
|
4016 |
|
|
if (optimize
|
4017 |
|
|
&& (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092
|
4018 |
|
|
> 4092 + 4098))
|
4019 |
|
|
{
|
4020 |
|
|
rtx scan;
|
4021 |
|
|
/* Don't look for the stack pointer as a scratch register,
|
4022 |
|
|
it would cause trouble if an interrupt occurred. */
|
4023 |
|
|
unsigned try = 0x7fff, used;
|
4024 |
|
|
int jump_left = flag_expensive_optimizations + 1;
|
4025 |
|
|
|
4026 |
|
|
/* It is likely that the most recent eligible instruction is wanted for
|
4027 |
|
|
the delay slot. Therefore, find out which registers it uses, and
|
4028 |
|
|
try to avoid using them. */
|
4029 |
|
|
|
4030 |
|
|
for (scan = jump; (scan = PREV_INSN (scan)); )
|
4031 |
|
|
{
|
4032 |
|
|
enum rtx_code code;
|
4033 |
|
|
|
4034 |
|
|
if (INSN_DELETED_P (scan))
|
4035 |
|
|
continue;
|
4036 |
|
|
code = GET_CODE (scan);
|
4037 |
|
|
if (code == CODE_LABEL || code == JUMP_INSN)
|
4038 |
|
|
break;
|
4039 |
|
|
if (code == INSN
|
4040 |
|
|
&& GET_CODE (PATTERN (scan)) != USE
|
4041 |
|
|
&& GET_CODE (PATTERN (scan)) != CLOBBER
|
4042 |
|
|
&& get_attr_in_delay_slot (scan) == IN_DELAY_SLOT_YES)
|
4043 |
|
|
{
|
4044 |
|
|
try &= ~regs_used (PATTERN (scan), 0);
|
4045 |
|
|
break;
|
4046 |
|
|
}
|
4047 |
|
|
}
|
4048 |
|
|
for (used = dead = 0, scan = JUMP_LABEL (jump);
|
4049 |
|
|
(scan = NEXT_INSN (scan)); )
|
4050 |
|
|
{
|
4051 |
|
|
enum rtx_code code;
|
4052 |
|
|
|
4053 |
|
|
if (INSN_DELETED_P (scan))
|
4054 |
|
|
continue;
|
4055 |
|
|
code = GET_CODE (scan);
|
4056 |
|
|
if (INSN_P (scan))
|
4057 |
|
|
{
|
4058 |
|
|
used |= regs_used (PATTERN (scan), 0);
|
4059 |
|
|
if (code == CALL_INSN)
|
4060 |
|
|
used |= regs_used (CALL_INSN_FUNCTION_USAGE (scan), 0);
|
4061 |
|
|
dead |= (used >> 16) & ~used;
|
4062 |
|
|
if (dead & try)
|
4063 |
|
|
{
|
4064 |
|
|
dead &= try;
|
4065 |
|
|
break;
|
4066 |
|
|
}
|
4067 |
|
|
if (code == JUMP_INSN)
|
4068 |
|
|
{
|
4069 |
|
|
if (jump_left-- && simplejump_p (scan))
|
4070 |
|
|
scan = JUMP_LABEL (scan);
|
4071 |
|
|
else
|
4072 |
|
|
break;
|
4073 |
|
|
}
|
4074 |
|
|
}
|
4075 |
|
|
}
|
4076 |
|
|
/* Mask out the stack pointer again, in case it was
|
4077 |
|
|
the only 'free' register we have found. */
|
4078 |
|
|
dead &= 0x7fff;
|
4079 |
|
|
}
|
4080 |
|
|
/* If the immediate destination is still in range, check for possible
|
4081 |
|
|
threading with a jump beyond the delay slot insn.
|
4082 |
|
|
Don't check if we are called recursively; the jump has been or will be
|
4083 |
|
|
checked in a different invocation then. */
|
4084 |
|
|
|
4085 |
|
|
else if (optimize && need_block >= 0)
|
4086 |
|
|
{
|
4087 |
|
|
rtx next = next_active_insn (next_active_insn (dest));
|
4088 |
|
|
if (next && GET_CODE (next) == JUMP_INSN
|
4089 |
|
|
&& GET_CODE (PATTERN (next)) == SET
|
4090 |
|
|
&& recog_memoized (next) == CODE_FOR_jump_compact)
|
4091 |
|
|
{
|
4092 |
|
|
dest = JUMP_LABEL (next);
|
4093 |
|
|
if (dest
|
4094 |
|
|
&& (INSN_ADDRESSES (INSN_UID (dest)) - addr + (unsigned) 4092
|
4095 |
|
|
> 4092 + 4098))
|
4096 |
|
|
gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), -1);
|
4097 |
|
|
}
|
4098 |
|
|
}
|
4099 |
|
|
|
4100 |
|
|
if (dead)
|
4101 |
|
|
{
|
4102 |
|
|
rtx reg = gen_rtx_REG (SImode, exact_log2 (dead & -dead));
|
4103 |
|
|
|
4104 |
|
|
/* It would be nice if we could convert the jump into an indirect
|
4105 |
|
|
jump / far branch right now, and thus exposing all constituent
|
4106 |
|
|
instructions to further optimization. However, reorg uses
|
4107 |
|
|
simplejump_p to determine if there is an unconditional jump where
|
4108 |
|
|
it should try to schedule instructions from the target of the
|
4109 |
|
|
branch; simplejump_p fails for indirect jumps even if they have
|
4110 |
|
|
a JUMP_LABEL. */
|
4111 |
|
|
rtx insn = emit_insn_before (gen_indirect_jump_scratch
|
4112 |
|
|
(reg, GEN_INT (INSN_UID (JUMP_LABEL (jump))))
|
4113 |
|
|
, jump);
|
4114 |
|
|
/* ??? We would like this to have the scope of the jump, but that
|
4115 |
|
|
scope will change when a delay slot insn of an inner scope is added.
|
4116 |
|
|
Hence, after delay slot scheduling, we'll have to expect
|
4117 |
|
|
NOTE_INSN_BLOCK_END notes between the indirect_jump_scratch and
|
4118 |
|
|
the jump. */
|
4119 |
|
|
|
4120 |
|
|
INSN_LOCATOR (insn) = INSN_LOCATOR (jump);
|
4121 |
|
|
INSN_CODE (insn) = CODE_FOR_indirect_jump_scratch;
|
4122 |
|
|
return insn;
|
4123 |
|
|
}
|
4124 |
|
|
else if (need_block)
|
4125 |
|
|
/* We can't use JUMP_LABEL here because it might be undefined
|
4126 |
|
|
when not optimizing. */
|
4127 |
|
|
return emit_insn_before (gen_block_branch_redirect
|
4128 |
|
|
(GEN_INT (INSN_UID (XEXP (SET_SRC (PATTERN (jump)), 0))))
|
4129 |
|
|
, jump);
|
4130 |
|
|
return prev;
|
4131 |
|
|
}
|
4132 |
|
|
|
4133 |
|
|
#define CONDJUMP_MIN -252
|
4134 |
|
|
#define CONDJUMP_MAX 262
|
4135 |
|
|
struct far_branch
|
4136 |
|
|
{
|
4137 |
|
|
/* A label (to be placed) in front of the jump
|
4138 |
|
|
that jumps to our ultimate destination. */
|
4139 |
|
|
rtx near_label;
|
4140 |
|
|
/* Where we are going to insert it if we cannot move the jump any farther,
|
4141 |
|
|
or the jump itself if we have picked up an existing jump. */
|
4142 |
|
|
rtx insert_place;
|
4143 |
|
|
/* The ultimate destination. */
|
4144 |
|
|
rtx far_label;
|
4145 |
|
|
struct far_branch *prev;
|
4146 |
|
|
/* If the branch has already been created, its address;
|
4147 |
|
|
else the address of its first prospective user. */
|
4148 |
|
|
int address;
|
4149 |
|
|
};
|
4150 |
|
|
|
4151 |
|
|
static void gen_far_branch (struct far_branch *);
|
4152 |
|
|
enum mdep_reorg_phase_e mdep_reorg_phase;
|
4153 |
|
|
static void
|
4154 |
|
|
gen_far_branch (struct far_branch *bp)
|
4155 |
|
|
{
|
4156 |
|
|
rtx insn = bp->insert_place;
|
4157 |
|
|
rtx jump;
|
4158 |
|
|
rtx label = gen_label_rtx ();
|
4159 |
|
|
int ok;
|
4160 |
|
|
|
4161 |
|
|
emit_label_after (label, insn);
|
4162 |
|
|
if (bp->far_label)
|
4163 |
|
|
{
|
4164 |
|
|
jump = emit_jump_insn_after (gen_jump (bp->far_label), insn);
|
4165 |
|
|
LABEL_NUSES (bp->far_label)++;
|
4166 |
|
|
}
|
4167 |
|
|
else
|
4168 |
|
|
jump = emit_jump_insn_after (gen_return (), insn);
|
4169 |
|
|
/* Emit a barrier so that reorg knows that any following instructions
|
4170 |
|
|
are not reachable via a fall-through path.
|
4171 |
|
|
But don't do this when not optimizing, since we wouldn't suppress the
|
4172 |
|
|
alignment for the barrier then, and could end up with out-of-range
|
4173 |
|
|
pc-relative loads. */
|
4174 |
|
|
if (optimize)
|
4175 |
|
|
emit_barrier_after (jump);
|
4176 |
|
|
emit_label_after (bp->near_label, insn);
|
4177 |
|
|
JUMP_LABEL (jump) = bp->far_label;
|
4178 |
|
|
ok = invert_jump (insn, label, 1);
|
4179 |
|
|
gcc_assert (ok);
|
4180 |
|
|
|
4181 |
|
|
/* If we are branching around a jump (rather than a return), prevent
|
4182 |
|
|
reorg from using an insn from the jump target as the delay slot insn -
|
4183 |
|
|
when reorg did this, it pessimized code (we rather hide the delay slot)
|
4184 |
|
|
and it could cause branches to go out of range. */
|
4185 |
|
|
if (bp->far_label)
|
4186 |
|
|
(emit_insn_after
|
4187 |
|
|
(gen_stuff_delay_slot
|
4188 |
|
|
(GEN_INT (INSN_UID (XEXP (SET_SRC (PATTERN (jump)), 0))),
|
4189 |
|
|
GEN_INT (recog_memoized (insn) == CODE_FOR_branch_false)),
|
4190 |
|
|
insn));
|
4191 |
|
|
/* Prevent reorg from undoing our splits. */
|
4192 |
|
|
gen_block_redirect (jump, bp->address += 2, 2);
|
4193 |
|
|
}
|
4194 |
|
|
|
4195 |
|
|
/* Fix up ADDR_DIFF_VECs. */
|
4196 |
|
|
void
|
4197 |
|
|
fixup_addr_diff_vecs (rtx first)
|
4198 |
|
|
{
|
4199 |
|
|
rtx insn;
|
4200 |
|
|
|
4201 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4202 |
|
|
{
|
4203 |
|
|
rtx vec_lab, pat, prev, prevpat, x, braf_label;
|
4204 |
|
|
|
4205 |
|
|
if (GET_CODE (insn) != JUMP_INSN
|
4206 |
|
|
|| GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
|
4207 |
|
|
continue;
|
4208 |
|
|
pat = PATTERN (insn);
|
4209 |
|
|
vec_lab = XEXP (XEXP (pat, 0), 0);
|
4210 |
|
|
|
4211 |
|
|
/* Search the matching casesi_jump_2. */
|
4212 |
|
|
for (prev = vec_lab; ; prev = PREV_INSN (prev))
|
4213 |
|
|
{
|
4214 |
|
|
if (GET_CODE (prev) != JUMP_INSN)
|
4215 |
|
|
continue;
|
4216 |
|
|
prevpat = PATTERN (prev);
|
4217 |
|
|
if (GET_CODE (prevpat) != PARALLEL || XVECLEN (prevpat, 0) != 2)
|
4218 |
|
|
continue;
|
4219 |
|
|
x = XVECEXP (prevpat, 0, 1);
|
4220 |
|
|
if (GET_CODE (x) != USE)
|
4221 |
|
|
continue;
|
4222 |
|
|
x = XEXP (x, 0);
|
4223 |
|
|
if (GET_CODE (x) == LABEL_REF && XEXP (x, 0) == vec_lab)
|
4224 |
|
|
break;
|
4225 |
|
|
}
|
4226 |
|
|
/* FIXME: This is a bug in the optimizer, but it seems harmless
|
4227 |
|
|
to just avoid panicing. */
|
4228 |
|
|
if (!prev)
|
4229 |
|
|
continue;
|
4230 |
|
|
|
4231 |
|
|
/* Emit the reference label of the braf where it belongs, right after
|
4232 |
|
|
the casesi_jump_2 (i.e. braf). */
|
4233 |
|
|
braf_label = XEXP (XEXP (SET_SRC (XVECEXP (prevpat, 0, 0)), 1), 0);
|
4234 |
|
|
emit_label_after (braf_label, prev);
|
4235 |
|
|
|
4236 |
|
|
/* Fix up the ADDR_DIF_VEC to be relative
|
4237 |
|
|
to the reference address of the braf. */
|
4238 |
|
|
XEXP (XEXP (pat, 0), 0) = braf_label;
|
4239 |
|
|
}
|
4240 |
|
|
}
|
4241 |
|
|
|
4242 |
|
|
/* BARRIER_OR_LABEL is either a BARRIER or a CODE_LABEL immediately following
|
4243 |
|
|
a barrier. Return the base 2 logarithm of the desired alignment. */
|
4244 |
|
|
int
|
4245 |
|
|
barrier_align (rtx barrier_or_label)
|
4246 |
|
|
{
|
4247 |
|
|
rtx next = next_real_insn (barrier_or_label), pat, prev;
|
4248 |
|
|
int slot, credit, jump_to_next = 0;
|
4249 |
|
|
|
4250 |
|
|
if (! next)
|
4251 |
|
|
return 0;
|
4252 |
|
|
|
4253 |
|
|
pat = PATTERN (next);
|
4254 |
|
|
|
4255 |
|
|
if (GET_CODE (pat) == ADDR_DIFF_VEC)
|
4256 |
|
|
return 2;
|
4257 |
|
|
|
4258 |
|
|
if (GET_CODE (pat) == UNSPEC_VOLATILE && XINT (pat, 1) == UNSPECV_ALIGN)
|
4259 |
|
|
/* This is a barrier in front of a constant table. */
|
4260 |
|
|
return 0;
|
4261 |
|
|
|
4262 |
|
|
prev = prev_real_insn (barrier_or_label);
|
4263 |
|
|
if (GET_CODE (PATTERN (prev)) == ADDR_DIFF_VEC)
|
4264 |
|
|
{
|
4265 |
|
|
pat = PATTERN (prev);
|
4266 |
|
|
/* If this is a very small table, we want to keep the alignment after
|
4267 |
|
|
the table to the minimum for proper code alignment. */
|
4268 |
|
|
return ((TARGET_SMALLCODE
|
4269 |
|
|
|| ((unsigned) XVECLEN (pat, 1) * GET_MODE_SIZE (GET_MODE (pat))
|
4270 |
|
|
<= (unsigned) 1 << (CACHE_LOG - 2)))
|
4271 |
|
|
? 1 << TARGET_SHMEDIA : align_jumps_log);
|
4272 |
|
|
}
|
4273 |
|
|
|
4274 |
|
|
if (TARGET_SMALLCODE)
|
4275 |
|
|
return 0;
|
4276 |
|
|
|
4277 |
|
|
if (! TARGET_SH2 || ! optimize)
|
4278 |
|
|
return align_jumps_log;
|
4279 |
|
|
|
4280 |
|
|
/* When fixing up pcloads, a constant table might be inserted just before
|
4281 |
|
|
the basic block that ends with the barrier. Thus, we can't trust the
|
4282 |
|
|
instruction lengths before that. */
|
4283 |
|
|
if (mdep_reorg_phase > SH_FIXUP_PCLOAD)
|
4284 |
|
|
{
|
4285 |
|
|
/* Check if there is an immediately preceding branch to the insn beyond
|
4286 |
|
|
the barrier. We must weight the cost of discarding useful information
|
4287 |
|
|
from the current cache line when executing this branch and there is
|
4288 |
|
|
an alignment, against that of fetching unneeded insn in front of the
|
4289 |
|
|
branch target when there is no alignment. */
|
4290 |
|
|
|
4291 |
|
|
/* There are two delay_slot cases to consider. One is the simple case
|
4292 |
|
|
where the preceding branch is to the insn beyond the barrier (simple
|
4293 |
|
|
delay slot filling), and the other is where the preceding branch has
|
4294 |
|
|
a delay slot that is a duplicate of the insn after the barrier
|
4295 |
|
|
(fill_eager_delay_slots) and the branch is to the insn after the insn
|
4296 |
|
|
after the barrier. */
|
4297 |
|
|
|
4298 |
|
|
/* PREV is presumed to be the JUMP_INSN for the barrier under
|
4299 |
|
|
investigation. Skip to the insn before it. */
|
4300 |
|
|
prev = prev_real_insn (prev);
|
4301 |
|
|
|
4302 |
|
|
for (slot = 2, credit = (1 << (CACHE_LOG - 2)) + 2;
|
4303 |
|
|
credit >= 0 && prev && GET_CODE (prev) == INSN;
|
4304 |
|
|
prev = prev_real_insn (prev))
|
4305 |
|
|
{
|
4306 |
|
|
jump_to_next = 0;
|
4307 |
|
|
if (GET_CODE (PATTERN (prev)) == USE
|
4308 |
|
|
|| GET_CODE (PATTERN (prev)) == CLOBBER)
|
4309 |
|
|
continue;
|
4310 |
|
|
if (GET_CODE (PATTERN (prev)) == SEQUENCE)
|
4311 |
|
|
{
|
4312 |
|
|
prev = XVECEXP (PATTERN (prev), 0, 1);
|
4313 |
|
|
if (INSN_UID (prev) == INSN_UID (next))
|
4314 |
|
|
{
|
4315 |
|
|
/* Delay slot was filled with insn at jump target. */
|
4316 |
|
|
jump_to_next = 1;
|
4317 |
|
|
continue;
|
4318 |
|
|
}
|
4319 |
|
|
}
|
4320 |
|
|
|
4321 |
|
|
if (slot &&
|
4322 |
|
|
get_attr_in_delay_slot (prev) == IN_DELAY_SLOT_YES)
|
4323 |
|
|
slot = 0;
|
4324 |
|
|
credit -= get_attr_length (prev);
|
4325 |
|
|
}
|
4326 |
|
|
if (prev
|
4327 |
|
|
&& GET_CODE (prev) == JUMP_INSN
|
4328 |
|
|
&& JUMP_LABEL (prev))
|
4329 |
|
|
{
|
4330 |
|
|
rtx x;
|
4331 |
|
|
if (jump_to_next
|
4332 |
|
|
|| next_real_insn (JUMP_LABEL (prev)) == next
|
4333 |
|
|
/* If relax_delay_slots() decides NEXT was redundant
|
4334 |
|
|
with some previous instruction, it will have
|
4335 |
|
|
redirected PREV's jump to the following insn. */
|
4336 |
|
|
|| JUMP_LABEL (prev) == next_nonnote_insn (next)
|
4337 |
|
|
/* There is no upper bound on redundant instructions
|
4338 |
|
|
that might have been skipped, but we must not put an
|
4339 |
|
|
alignment where none had been before. */
|
4340 |
|
|
|| (x = (NEXT_INSN (NEXT_INSN (PREV_INSN (prev)))),
|
4341 |
|
|
(INSN_P (x)
|
4342 |
|
|
&& (INSN_CODE (x) == CODE_FOR_block_branch_redirect
|
4343 |
|
|
|| INSN_CODE (x) == CODE_FOR_indirect_jump_scratch
|
4344 |
|
|
|| INSN_CODE (x) == CODE_FOR_stuff_delay_slot))))
|
4345 |
|
|
{
|
4346 |
|
|
rtx pat = PATTERN (prev);
|
4347 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
4348 |
|
|
pat = XVECEXP (pat, 0, 0);
|
4349 |
|
|
if (credit - slot >= (GET_CODE (SET_SRC (pat)) == PC ? 2 : 0))
|
4350 |
|
|
return 0;
|
4351 |
|
|
}
|
4352 |
|
|
}
|
4353 |
|
|
}
|
4354 |
|
|
|
4355 |
|
|
return align_jumps_log;
|
4356 |
|
|
}
|
4357 |
|
|
|
4358 |
|
|
/* If we are inside a phony loop, almost any kind of label can turn up as the
|
4359 |
|
|
first one in the loop. Aligning a braf label causes incorrect switch
|
4360 |
|
|
destination addresses; we can detect braf labels because they are
|
4361 |
|
|
followed by a BARRIER.
|
4362 |
|
|
Applying loop alignment to small constant or switch tables is a waste
|
4363 |
|
|
of space, so we suppress this too. */
|
4364 |
|
|
int
|
4365 |
|
|
sh_loop_align (rtx label)
|
4366 |
|
|
{
|
4367 |
|
|
rtx next = label;
|
4368 |
|
|
|
4369 |
|
|
do
|
4370 |
|
|
next = next_nonnote_insn (next);
|
4371 |
|
|
while (next && GET_CODE (next) == CODE_LABEL);
|
4372 |
|
|
|
4373 |
|
|
if (! next
|
4374 |
|
|
|| ! INSN_P (next)
|
4375 |
|
|
|| GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC
|
4376 |
|
|
|| recog_memoized (next) == CODE_FOR_consttable_2)
|
4377 |
|
|
return 0;
|
4378 |
|
|
|
4379 |
|
|
return align_loops_log;
|
4380 |
|
|
}
|
4381 |
|
|
|
4382 |
|
|
/* Do a final pass over the function, just before delayed branch
|
4383 |
|
|
scheduling. */
|
4384 |
|
|
|
4385 |
|
|
static void
|
4386 |
|
|
sh_reorg (void)
|
4387 |
|
|
{
|
4388 |
|
|
rtx first, insn, mova = NULL_RTX;
|
4389 |
|
|
int num_mova;
|
4390 |
|
|
rtx r0_rtx = gen_rtx_REG (Pmode, 0);
|
4391 |
|
|
rtx r0_inc_rtx = gen_rtx_POST_INC (Pmode, r0_rtx);
|
4392 |
|
|
|
4393 |
|
|
first = get_insns ();
|
4394 |
|
|
max_labelno_before_reorg = max_label_num ();
|
4395 |
|
|
|
4396 |
|
|
/* We must split call insns before introducing `mova's. If we're
|
4397 |
|
|
optimizing, they'll have already been split. Otherwise, make
|
4398 |
|
|
sure we don't split them too late. */
|
4399 |
|
|
if (! optimize)
|
4400 |
|
|
split_all_insns_noflow ();
|
4401 |
|
|
|
4402 |
|
|
if (TARGET_SHMEDIA)
|
4403 |
|
|
return;
|
4404 |
|
|
|
4405 |
|
|
/* If relaxing, generate pseudo-ops to associate function calls with
|
4406 |
|
|
the symbols they call. It does no harm to not generate these
|
4407 |
|
|
pseudo-ops. However, when we can generate them, it enables to
|
4408 |
|
|
linker to potentially relax the jsr to a bsr, and eliminate the
|
4409 |
|
|
register load and, possibly, the constant pool entry. */
|
4410 |
|
|
|
4411 |
|
|
mdep_reorg_phase = SH_INSERT_USES_LABELS;
|
4412 |
|
|
if (TARGET_RELAX)
|
4413 |
|
|
{
|
4414 |
|
|
/* Remove all REG_LABEL notes. We want to use them for our own
|
4415 |
|
|
purposes. This works because none of the remaining passes
|
4416 |
|
|
need to look at them.
|
4417 |
|
|
|
4418 |
|
|
??? But it may break in the future. We should use a machine
|
4419 |
|
|
dependent REG_NOTE, or some other approach entirely. */
|
4420 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4421 |
|
|
{
|
4422 |
|
|
if (INSN_P (insn))
|
4423 |
|
|
{
|
4424 |
|
|
rtx note;
|
4425 |
|
|
|
4426 |
|
|
while ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != 0)
|
4427 |
|
|
remove_note (insn, note);
|
4428 |
|
|
}
|
4429 |
|
|
}
|
4430 |
|
|
|
4431 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4432 |
|
|
{
|
4433 |
|
|
rtx pattern, reg, link, set, scan, dies, label;
|
4434 |
|
|
int rescan = 0, foundinsn = 0;
|
4435 |
|
|
|
4436 |
|
|
if (GET_CODE (insn) == CALL_INSN)
|
4437 |
|
|
{
|
4438 |
|
|
pattern = PATTERN (insn);
|
4439 |
|
|
|
4440 |
|
|
if (GET_CODE (pattern) == PARALLEL)
|
4441 |
|
|
pattern = XVECEXP (pattern, 0, 0);
|
4442 |
|
|
if (GET_CODE (pattern) == SET)
|
4443 |
|
|
pattern = SET_SRC (pattern);
|
4444 |
|
|
|
4445 |
|
|
if (GET_CODE (pattern) != CALL
|
4446 |
|
|
|| GET_CODE (XEXP (pattern, 0)) != MEM)
|
4447 |
|
|
continue;
|
4448 |
|
|
|
4449 |
|
|
reg = XEXP (XEXP (pattern, 0), 0);
|
4450 |
|
|
}
|
4451 |
|
|
else
|
4452 |
|
|
{
|
4453 |
|
|
reg = sfunc_uses_reg (insn);
|
4454 |
|
|
if (! reg)
|
4455 |
|
|
continue;
|
4456 |
|
|
}
|
4457 |
|
|
|
4458 |
|
|
if (GET_CODE (reg) != REG)
|
4459 |
|
|
continue;
|
4460 |
|
|
|
4461 |
|
|
/* This is a function call via REG. If the only uses of REG
|
4462 |
|
|
between the time that it is set and the time that it dies
|
4463 |
|
|
are in function calls, then we can associate all the
|
4464 |
|
|
function calls with the setting of REG. */
|
4465 |
|
|
|
4466 |
|
|
for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
|
4467 |
|
|
{
|
4468 |
|
|
rtx linked_insn;
|
4469 |
|
|
|
4470 |
|
|
if (REG_NOTE_KIND (link) != 0)
|
4471 |
|
|
continue;
|
4472 |
|
|
linked_insn = XEXP (link, 0);
|
4473 |
|
|
set = single_set (linked_insn);
|
4474 |
|
|
if (set
|
4475 |
|
|
&& rtx_equal_p (reg, SET_DEST (set))
|
4476 |
|
|
&& ! INSN_DELETED_P (linked_insn))
|
4477 |
|
|
{
|
4478 |
|
|
link = linked_insn;
|
4479 |
|
|
break;
|
4480 |
|
|
}
|
4481 |
|
|
}
|
4482 |
|
|
|
4483 |
|
|
if (! link)
|
4484 |
|
|
{
|
4485 |
|
|
/* ??? Sometimes global register allocation will have
|
4486 |
|
|
deleted the insn pointed to by LOG_LINKS. Try
|
4487 |
|
|
scanning backward to find where the register is set. */
|
4488 |
|
|
for (scan = PREV_INSN (insn);
|
4489 |
|
|
scan && GET_CODE (scan) != CODE_LABEL;
|
4490 |
|
|
scan = PREV_INSN (scan))
|
4491 |
|
|
{
|
4492 |
|
|
if (! INSN_P (scan))
|
4493 |
|
|
continue;
|
4494 |
|
|
|
4495 |
|
|
if (! reg_mentioned_p (reg, scan))
|
4496 |
|
|
continue;
|
4497 |
|
|
|
4498 |
|
|
if (noncall_uses_reg (reg, scan, &set))
|
4499 |
|
|
break;
|
4500 |
|
|
|
4501 |
|
|
if (set)
|
4502 |
|
|
{
|
4503 |
|
|
link = scan;
|
4504 |
|
|
break;
|
4505 |
|
|
}
|
4506 |
|
|
}
|
4507 |
|
|
}
|
4508 |
|
|
|
4509 |
|
|
if (! link)
|
4510 |
|
|
continue;
|
4511 |
|
|
|
4512 |
|
|
/* The register is set at LINK. */
|
4513 |
|
|
|
4514 |
|
|
/* We can only optimize the function call if the register is
|
4515 |
|
|
being set to a symbol. In theory, we could sometimes
|
4516 |
|
|
optimize calls to a constant location, but the assembler
|
4517 |
|
|
and linker do not support that at present. */
|
4518 |
|
|
if (GET_CODE (SET_SRC (set)) != SYMBOL_REF
|
4519 |
|
|
&& GET_CODE (SET_SRC (set)) != LABEL_REF)
|
4520 |
|
|
continue;
|
4521 |
|
|
|
4522 |
|
|
/* Scan forward from LINK to the place where REG dies, and
|
4523 |
|
|
make sure that the only insns which use REG are
|
4524 |
|
|
themselves function calls. */
|
4525 |
|
|
|
4526 |
|
|
/* ??? This doesn't work for call targets that were allocated
|
4527 |
|
|
by reload, since there may not be a REG_DEAD note for the
|
4528 |
|
|
register. */
|
4529 |
|
|
|
4530 |
|
|
dies = NULL_RTX;
|
4531 |
|
|
for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan))
|
4532 |
|
|
{
|
4533 |
|
|
rtx scanset;
|
4534 |
|
|
|
4535 |
|
|
/* Don't try to trace forward past a CODE_LABEL if we haven't
|
4536 |
|
|
seen INSN yet. Ordinarily, we will only find the setting insn
|
4537 |
|
|
in LOG_LINKS if it is in the same basic block. However,
|
4538 |
|
|
cross-jumping can insert code labels in between the load and
|
4539 |
|
|
the call, and can result in situations where a single call
|
4540 |
|
|
insn may have two targets depending on where we came from. */
|
4541 |
|
|
|
4542 |
|
|
if (GET_CODE (scan) == CODE_LABEL && ! foundinsn)
|
4543 |
|
|
break;
|
4544 |
|
|
|
4545 |
|
|
if (! INSN_P (scan))
|
4546 |
|
|
continue;
|
4547 |
|
|
|
4548 |
|
|
/* Don't try to trace forward past a JUMP. To optimize
|
4549 |
|
|
safely, we would have to check that all the
|
4550 |
|
|
instructions at the jump destination did not use REG. */
|
4551 |
|
|
|
4552 |
|
|
if (GET_CODE (scan) == JUMP_INSN)
|
4553 |
|
|
break;
|
4554 |
|
|
|
4555 |
|
|
if (! reg_mentioned_p (reg, scan))
|
4556 |
|
|
continue;
|
4557 |
|
|
|
4558 |
|
|
if (noncall_uses_reg (reg, scan, &scanset))
|
4559 |
|
|
break;
|
4560 |
|
|
|
4561 |
|
|
if (scan == insn)
|
4562 |
|
|
foundinsn = 1;
|
4563 |
|
|
|
4564 |
|
|
if (scan != insn
|
4565 |
|
|
&& (GET_CODE (scan) == CALL_INSN || sfunc_uses_reg (scan)))
|
4566 |
|
|
{
|
4567 |
|
|
/* There is a function call to this register other
|
4568 |
|
|
than the one we are checking. If we optimize
|
4569 |
|
|
this call, we need to rescan again below. */
|
4570 |
|
|
rescan = 1;
|
4571 |
|
|
}
|
4572 |
|
|
|
4573 |
|
|
/* ??? We shouldn't have to worry about SCANSET here.
|
4574 |
|
|
We should just be able to check for a REG_DEAD note
|
4575 |
|
|
on a function call. However, the REG_DEAD notes are
|
4576 |
|
|
apparently not dependable around libcalls; c-torture
|
4577 |
|
|
execute/920501-2 is a test case. If SCANSET is set,
|
4578 |
|
|
then this insn sets the register, so it must have
|
4579 |
|
|
died earlier. Unfortunately, this will only handle
|
4580 |
|
|
the cases in which the register is, in fact, set in a
|
4581 |
|
|
later insn. */
|
4582 |
|
|
|
4583 |
|
|
/* ??? We shouldn't have to use FOUNDINSN here.
|
4584 |
|
|
However, the LOG_LINKS fields are apparently not
|
4585 |
|
|
entirely reliable around libcalls;
|
4586 |
|
|
newlib/libm/math/e_pow.c is a test case. Sometimes
|
4587 |
|
|
an insn will appear in LOG_LINKS even though it is
|
4588 |
|
|
not the most recent insn which sets the register. */
|
4589 |
|
|
|
4590 |
|
|
if (foundinsn
|
4591 |
|
|
&& (scanset
|
4592 |
|
|
|| find_reg_note (scan, REG_DEAD, reg)))
|
4593 |
|
|
{
|
4594 |
|
|
dies = scan;
|
4595 |
|
|
break;
|
4596 |
|
|
}
|
4597 |
|
|
}
|
4598 |
|
|
|
4599 |
|
|
if (! dies)
|
4600 |
|
|
{
|
4601 |
|
|
/* Either there was a branch, or some insn used REG
|
4602 |
|
|
other than as a function call address. */
|
4603 |
|
|
continue;
|
4604 |
|
|
}
|
4605 |
|
|
|
4606 |
|
|
/* Create a code label, and put it in a REG_LABEL note on
|
4607 |
|
|
the insn which sets the register, and on each call insn
|
4608 |
|
|
which uses the register. In final_prescan_insn we look
|
4609 |
|
|
for the REG_LABEL notes, and output the appropriate label
|
4610 |
|
|
or pseudo-op. */
|
4611 |
|
|
|
4612 |
|
|
label = gen_label_rtx ();
|
4613 |
|
|
REG_NOTES (link) = gen_rtx_INSN_LIST (REG_LABEL, label,
|
4614 |
|
|
REG_NOTES (link));
|
4615 |
|
|
REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
|
4616 |
|
|
REG_NOTES (insn));
|
4617 |
|
|
if (rescan)
|
4618 |
|
|
{
|
4619 |
|
|
scan = link;
|
4620 |
|
|
do
|
4621 |
|
|
{
|
4622 |
|
|
rtx reg2;
|
4623 |
|
|
|
4624 |
|
|
scan = NEXT_INSN (scan);
|
4625 |
|
|
if (scan != insn
|
4626 |
|
|
&& ((GET_CODE (scan) == CALL_INSN
|
4627 |
|
|
&& reg_mentioned_p (reg, scan))
|
4628 |
|
|
|| ((reg2 = sfunc_uses_reg (scan))
|
4629 |
|
|
&& REGNO (reg2) == REGNO (reg))))
|
4630 |
|
|
REG_NOTES (scan)
|
4631 |
|
|
= gen_rtx_INSN_LIST (REG_LABEL, label, REG_NOTES (scan));
|
4632 |
|
|
}
|
4633 |
|
|
while (scan != dies);
|
4634 |
|
|
}
|
4635 |
|
|
}
|
4636 |
|
|
}
|
4637 |
|
|
|
4638 |
|
|
if (TARGET_SH2)
|
4639 |
|
|
fixup_addr_diff_vecs (first);
|
4640 |
|
|
|
4641 |
|
|
if (optimize)
|
4642 |
|
|
{
|
4643 |
|
|
mdep_reorg_phase = SH_SHORTEN_BRANCHES0;
|
4644 |
|
|
shorten_branches (first);
|
4645 |
|
|
}
|
4646 |
|
|
|
4647 |
|
|
/* Scan the function looking for move instructions which have to be
|
4648 |
|
|
changed to pc-relative loads and insert the literal tables. */
|
4649 |
|
|
label_ref_list_pool = create_alloc_pool ("label references list",
|
4650 |
|
|
sizeof (struct label_ref_list_d),
|
4651 |
|
|
30);
|
4652 |
|
|
mdep_reorg_phase = SH_FIXUP_PCLOAD;
|
4653 |
|
|
for (insn = first, num_mova = 0; insn; insn = NEXT_INSN (insn))
|
4654 |
|
|
{
|
4655 |
|
|
if (mova_p (insn))
|
4656 |
|
|
{
|
4657 |
|
|
/* ??? basic block reordering can move a switch table dispatch
|
4658 |
|
|
below the switch table. Check if that has happened.
|
4659 |
|
|
We only have the addresses available when optimizing; but then,
|
4660 |
|
|
this check shouldn't be needed when not optimizing. */
|
4661 |
|
|
if (!untangle_mova (&num_mova, &mova, insn))
|
4662 |
|
|
{
|
4663 |
|
|
insn = mova;
|
4664 |
|
|
num_mova = 0;
|
4665 |
|
|
}
|
4666 |
|
|
}
|
4667 |
|
|
else if (GET_CODE (insn) == JUMP_INSN
|
4668 |
|
|
&& GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
|
4669 |
|
|
&& num_mova
|
4670 |
|
|
/* ??? loop invariant motion can also move a mova out of a
|
4671 |
|
|
loop. Since loop does this code motion anyway, maybe we
|
4672 |
|
|
should wrap UNSPEC_MOVA into a CONST, so that reload can
|
4673 |
|
|
move it back. */
|
4674 |
|
|
&& ((num_mova > 1
|
4675 |
|
|
&& GET_MODE (prev_nonnote_insn (insn)) == VOIDmode)
|
4676 |
|
|
|| (prev_nonnote_insn (insn)
|
4677 |
|
|
== XEXP (MOVA_LABELREF (mova), 0))))
|
4678 |
|
|
{
|
4679 |
|
|
rtx scan;
|
4680 |
|
|
int total;
|
4681 |
|
|
|
4682 |
|
|
num_mova--;
|
4683 |
|
|
|
4684 |
|
|
/* Some code might have been inserted between the mova and
|
4685 |
|
|
its ADDR_DIFF_VEC. Check if the mova is still in range. */
|
4686 |
|
|
for (scan = mova, total = 0; scan != insn; scan = NEXT_INSN (scan))
|
4687 |
|
|
total += get_attr_length (scan);
|
4688 |
|
|
|
4689 |
|
|
/* range of mova is 1020, add 4 because pc counts from address of
|
4690 |
|
|
second instruction after this one, subtract 2 in case pc is 2
|
4691 |
|
|
byte aligned. Possible alignment needed for the ADDR_DIFF_VEC
|
4692 |
|
|
cancels out with alignment effects of the mova itself. */
|
4693 |
|
|
if (total > 1022)
|
4694 |
|
|
{
|
4695 |
|
|
/* Change the mova into a load, and restart scanning
|
4696 |
|
|
there. broken_move will then return true for mova. */
|
4697 |
|
|
fixup_mova (mova);
|
4698 |
|
|
insn = mova;
|
4699 |
|
|
}
|
4700 |
|
|
}
|
4701 |
|
|
if (broken_move (insn)
|
4702 |
|
|
|| (GET_CODE (insn) == INSN
|
4703 |
|
|
&& recog_memoized (insn) == CODE_FOR_casesi_worker_2))
|
4704 |
|
|
{
|
4705 |
|
|
rtx scan;
|
4706 |
|
|
/* Scan ahead looking for a barrier to stick the constant table
|
4707 |
|
|
behind. */
|
4708 |
|
|
rtx barrier = find_barrier (num_mova, mova, insn);
|
4709 |
|
|
rtx last_float_move = NULL_RTX, last_float = 0, *last_float_addr = NULL;
|
4710 |
|
|
int need_aligned_label = 0;
|
4711 |
|
|
|
4712 |
|
|
if (num_mova && ! mova_p (mova))
|
4713 |
|
|
{
|
4714 |
|
|
/* find_barrier had to change the first mova into a
|
4715 |
|
|
pcload; thus, we have to start with this new pcload. */
|
4716 |
|
|
insn = mova;
|
4717 |
|
|
num_mova = 0;
|
4718 |
|
|
}
|
4719 |
|
|
/* Now find all the moves between the points and modify them. */
|
4720 |
|
|
for (scan = insn; scan != barrier; scan = NEXT_INSN (scan))
|
4721 |
|
|
{
|
4722 |
|
|
if (GET_CODE (scan) == CODE_LABEL)
|
4723 |
|
|
last_float = 0;
|
4724 |
|
|
if (GET_CODE (scan) == INSN
|
4725 |
|
|
&& recog_memoized (scan) == CODE_FOR_casesi_worker_2)
|
4726 |
|
|
need_aligned_label = 1;
|
4727 |
|
|
if (broken_move (scan))
|
4728 |
|
|
{
|
4729 |
|
|
rtx *patp = &PATTERN (scan), pat = *patp;
|
4730 |
|
|
rtx src, dst;
|
4731 |
|
|
rtx lab;
|
4732 |
|
|
rtx newsrc;
|
4733 |
|
|
enum machine_mode mode;
|
4734 |
|
|
|
4735 |
|
|
if (GET_CODE (pat) == PARALLEL)
|
4736 |
|
|
patp = &XVECEXP (pat, 0, 0), pat = *patp;
|
4737 |
|
|
src = SET_SRC (pat);
|
4738 |
|
|
dst = SET_DEST (pat);
|
4739 |
|
|
mode = GET_MODE (dst);
|
4740 |
|
|
|
4741 |
|
|
if (mode == SImode && hi_const (src)
|
4742 |
|
|
&& REGNO (dst) != FPUL_REG)
|
4743 |
|
|
{
|
4744 |
|
|
int offset = 0;
|
4745 |
|
|
|
4746 |
|
|
mode = HImode;
|
4747 |
|
|
while (GET_CODE (dst) == SUBREG)
|
4748 |
|
|
{
|
4749 |
|
|
offset += subreg_regno_offset (REGNO (SUBREG_REG (dst)),
|
4750 |
|
|
GET_MODE (SUBREG_REG (dst)),
|
4751 |
|
|
SUBREG_BYTE (dst),
|
4752 |
|
|
GET_MODE (dst));
|
4753 |
|
|
dst = SUBREG_REG (dst);
|
4754 |
|
|
}
|
4755 |
|
|
dst = gen_rtx_REG (HImode, REGNO (dst) + offset);
|
4756 |
|
|
}
|
4757 |
|
|
if (GET_CODE (dst) == REG && FP_ANY_REGISTER_P (REGNO (dst)))
|
4758 |
|
|
{
|
4759 |
|
|
/* This must be an insn that clobbers r0. */
|
4760 |
|
|
rtx *clobberp = &XVECEXP (PATTERN (scan), 0,
|
4761 |
|
|
XVECLEN (PATTERN (scan), 0)
|
4762 |
|
|
- 1);
|
4763 |
|
|
rtx clobber = *clobberp;
|
4764 |
|
|
|
4765 |
|
|
gcc_assert (GET_CODE (clobber) == CLOBBER
|
4766 |
|
|
&& rtx_equal_p (XEXP (clobber, 0), r0_rtx));
|
4767 |
|
|
|
4768 |
|
|
if (last_float
|
4769 |
|
|
&& reg_set_between_p (r0_rtx, last_float_move, scan))
|
4770 |
|
|
last_float = 0;
|
4771 |
|
|
if (last_float
|
4772 |
|
|
&& TARGET_SHCOMPACT
|
4773 |
|
|
&& GET_MODE_SIZE (mode) != 4
|
4774 |
|
|
&& GET_MODE_SIZE (GET_MODE (last_float)) == 4)
|
4775 |
|
|
last_float = 0;
|
4776 |
|
|
lab = add_constant (src, mode, last_float);
|
4777 |
|
|
if (lab)
|
4778 |
|
|
emit_insn_before (gen_mova (lab), scan);
|
4779 |
|
|
else
|
4780 |
|
|
{
|
4781 |
|
|
/* There will be a REG_UNUSED note for r0 on
|
4782 |
|
|
LAST_FLOAT_MOVE; we have to change it to REG_INC,
|
4783 |
|
|
lest reorg:mark_target_live_regs will not
|
4784 |
|
|
consider r0 to be used, and we end up with delay
|
4785 |
|
|
slot insn in front of SCAN that clobbers r0. */
|
4786 |
|
|
rtx note
|
4787 |
|
|
= find_regno_note (last_float_move, REG_UNUSED, 0);
|
4788 |
|
|
|
4789 |
|
|
/* If we are not optimizing, then there may not be
|
4790 |
|
|
a note. */
|
4791 |
|
|
if (note)
|
4792 |
|
|
PUT_MODE (note, REG_INC);
|
4793 |
|
|
|
4794 |
|
|
*last_float_addr = r0_inc_rtx;
|
4795 |
|
|
}
|
4796 |
|
|
last_float_move = scan;
|
4797 |
|
|
last_float = src;
|
4798 |
|
|
newsrc = gen_const_mem (mode,
|
4799 |
|
|
(((TARGET_SH4 && ! TARGET_FMOVD)
|
4800 |
|
|
|| REGNO (dst) == FPUL_REG)
|
4801 |
|
|
? r0_inc_rtx
|
4802 |
|
|
: r0_rtx));
|
4803 |
|
|
last_float_addr = &XEXP (newsrc, 0);
|
4804 |
|
|
|
4805 |
|
|
/* Remove the clobber of r0. */
|
4806 |
|
|
*clobberp = gen_rtx_CLOBBER (GET_MODE (clobber),
|
4807 |
|
|
gen_rtx_SCRATCH (Pmode));
|
4808 |
|
|
}
|
4809 |
|
|
/* This is a mova needing a label. Create it. */
|
4810 |
|
|
else if (GET_CODE (src) == UNSPEC
|
4811 |
|
|
&& XINT (src, 1) == UNSPEC_MOVA
|
4812 |
|
|
&& GET_CODE (XVECEXP (src, 0, 0)) == CONST)
|
4813 |
|
|
{
|
4814 |
|
|
lab = add_constant (XVECEXP (src, 0, 0), mode, 0);
|
4815 |
|
|
newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
|
4816 |
|
|
newsrc = gen_rtx_UNSPEC (SImode,
|
4817 |
|
|
gen_rtvec (1, newsrc),
|
4818 |
|
|
UNSPEC_MOVA);
|
4819 |
|
|
}
|
4820 |
|
|
else
|
4821 |
|
|
{
|
4822 |
|
|
lab = add_constant (src, mode, 0);
|
4823 |
|
|
newsrc = gen_rtx_LABEL_REF (VOIDmode, lab);
|
4824 |
|
|
newsrc = gen_const_mem (mode, newsrc);
|
4825 |
|
|
}
|
4826 |
|
|
*patp = gen_rtx_SET (VOIDmode, dst, newsrc);
|
4827 |
|
|
INSN_CODE (scan) = -1;
|
4828 |
|
|
}
|
4829 |
|
|
}
|
4830 |
|
|
dump_table (need_aligned_label ? insn : 0, barrier);
|
4831 |
|
|
insn = barrier;
|
4832 |
|
|
}
|
4833 |
|
|
}
|
4834 |
|
|
free_alloc_pool (label_ref_list_pool);
|
4835 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4836 |
|
|
PUT_MODE (insn, VOIDmode);
|
4837 |
|
|
|
4838 |
|
|
mdep_reorg_phase = SH_SHORTEN_BRANCHES1;
|
4839 |
|
|
INSN_ADDRESSES_FREE ();
|
4840 |
|
|
split_branches (first);
|
4841 |
|
|
|
4842 |
|
|
/* The INSN_REFERENCES_ARE_DELAYED in sh.h is problematic because it
|
4843 |
|
|
also has an effect on the register that holds the address of the sfunc.
|
4844 |
|
|
Insert an extra dummy insn in front of each sfunc that pretends to
|
4845 |
|
|
use this register. */
|
4846 |
|
|
if (flag_delayed_branch)
|
4847 |
|
|
{
|
4848 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4849 |
|
|
{
|
4850 |
|
|
rtx reg = sfunc_uses_reg (insn);
|
4851 |
|
|
|
4852 |
|
|
if (! reg)
|
4853 |
|
|
continue;
|
4854 |
|
|
emit_insn_before (gen_use_sfunc_addr (reg), insn);
|
4855 |
|
|
}
|
4856 |
|
|
}
|
4857 |
|
|
#if 0
|
4858 |
|
|
/* fpscr is not actually a user variable, but we pretend it is for the
|
4859 |
|
|
sake of the previous optimization passes, since we want it handled like
|
4860 |
|
|
one. However, we don't have any debugging information for it, so turn
|
4861 |
|
|
it into a non-user variable now. */
|
4862 |
|
|
if (TARGET_SH4)
|
4863 |
|
|
REG_USERVAR_P (get_fpscr_rtx ()) = 0;
|
4864 |
|
|
#endif
|
4865 |
|
|
mdep_reorg_phase = SH_AFTER_MDEP_REORG;
|
4866 |
|
|
}
|
4867 |
|
|
|
4868 |
|
|
int
|
4869 |
|
|
get_dest_uid (rtx label, int max_uid)
|
4870 |
|
|
{
|
4871 |
|
|
rtx dest = next_real_insn (label);
|
4872 |
|
|
int dest_uid;
|
4873 |
|
|
if (! dest)
|
4874 |
|
|
/* This can happen for an undefined label. */
|
4875 |
|
|
return 0;
|
4876 |
|
|
dest_uid = INSN_UID (dest);
|
4877 |
|
|
/* If this is a newly created branch redirection blocking instruction,
|
4878 |
|
|
we cannot index the branch_uid or insn_addresses arrays with its
|
4879 |
|
|
uid. But then, we won't need to, because the actual destination is
|
4880 |
|
|
the following branch. */
|
4881 |
|
|
while (dest_uid >= max_uid)
|
4882 |
|
|
{
|
4883 |
|
|
dest = NEXT_INSN (dest);
|
4884 |
|
|
dest_uid = INSN_UID (dest);
|
4885 |
|
|
}
|
4886 |
|
|
if (GET_CODE (dest) == JUMP_INSN && GET_CODE (PATTERN (dest)) == RETURN)
|
4887 |
|
|
return 0;
|
4888 |
|
|
return dest_uid;
|
4889 |
|
|
}
|
4890 |
|
|
|
4891 |
|
|
/* Split condbranches that are out of range. Also add clobbers for
|
4892 |
|
|
scratch registers that are needed in far jumps.
|
4893 |
|
|
We do this before delay slot scheduling, so that it can take our
|
4894 |
|
|
newly created instructions into account. It also allows us to
|
4895 |
|
|
find branches with common targets more easily. */
|
4896 |
|
|
|
4897 |
|
|
static void
|
4898 |
|
|
split_branches (rtx first)
|
4899 |
|
|
{
|
4900 |
|
|
rtx insn;
|
4901 |
|
|
struct far_branch **uid_branch, *far_branch_list = 0;
|
4902 |
|
|
int max_uid = get_max_uid ();
|
4903 |
|
|
int ok;
|
4904 |
|
|
|
4905 |
|
|
/* Find out which branches are out of range. */
|
4906 |
|
|
shorten_branches (first);
|
4907 |
|
|
|
4908 |
|
|
uid_branch = (struct far_branch **) alloca (max_uid * sizeof *uid_branch);
|
4909 |
|
|
memset ((char *) uid_branch, 0, max_uid * sizeof *uid_branch);
|
4910 |
|
|
|
4911 |
|
|
for (insn = first; insn; insn = NEXT_INSN (insn))
|
4912 |
|
|
if (! INSN_P (insn))
|
4913 |
|
|
continue;
|
4914 |
|
|
else if (INSN_DELETED_P (insn))
|
4915 |
|
|
{
|
4916 |
|
|
/* Shorten_branches would split this instruction again,
|
4917 |
|
|
so transform it into a note. */
|
4918 |
|
|
PUT_CODE (insn, NOTE);
|
4919 |
|
|
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
|
4920 |
|
|
NOTE_SOURCE_FILE (insn) = 0;
|
4921 |
|
|
}
|
4922 |
|
|
else if (GET_CODE (insn) == JUMP_INSN
|
4923 |
|
|
/* Don't mess with ADDR_DIFF_VEC */
|
4924 |
|
|
&& (GET_CODE (PATTERN (insn)) == SET
|
4925 |
|
|
|| GET_CODE (PATTERN (insn)) == RETURN))
|
4926 |
|
|
{
|
4927 |
|
|
enum attr_type type = get_attr_type (insn);
|
4928 |
|
|
if (type == TYPE_CBRANCH)
|
4929 |
|
|
{
|
4930 |
|
|
rtx next, beyond;
|
4931 |
|
|
|
4932 |
|
|
if (get_attr_length (insn) > 4)
|
4933 |
|
|
{
|
4934 |
|
|
rtx src = SET_SRC (PATTERN (insn));
|
4935 |
|
|
rtx olabel = XEXP (XEXP (src, 1), 0);
|
4936 |
|
|
int addr = INSN_ADDRESSES (INSN_UID (insn));
|
4937 |
|
|
rtx label = 0;
|
4938 |
|
|
int dest_uid = get_dest_uid (olabel, max_uid);
|
4939 |
|
|
struct far_branch *bp = uid_branch[dest_uid];
|
4940 |
|
|
|
4941 |
|
|
/* redirect_jump needs a valid JUMP_LABEL, and it might delete
|
4942 |
|
|
the label if the LABEL_NUSES count drops to zero. There is
|
4943 |
|
|
always a jump_optimize pass that sets these values, but it
|
4944 |
|
|
proceeds to delete unreferenced code, and then if not
|
4945 |
|
|
optimizing, to un-delete the deleted instructions, thus
|
4946 |
|
|
leaving labels with too low uses counts. */
|
4947 |
|
|
if (! optimize)
|
4948 |
|
|
{
|
4949 |
|
|
JUMP_LABEL (insn) = olabel;
|
4950 |
|
|
LABEL_NUSES (olabel)++;
|
4951 |
|
|
}
|
4952 |
|
|
if (! bp)
|
4953 |
|
|
{
|
4954 |
|
|
bp = (struct far_branch *) alloca (sizeof *bp);
|
4955 |
|
|
uid_branch[dest_uid] = bp;
|
4956 |
|
|
bp->prev = far_branch_list;
|
4957 |
|
|
far_branch_list = bp;
|
4958 |
|
|
bp->far_label
|
4959 |
|
|
= XEXP (XEXP (SET_SRC (PATTERN (insn)), 1), 0);
|
4960 |
|
|
LABEL_NUSES (bp->far_label)++;
|
4961 |
|
|
}
|
4962 |
|
|
else
|
4963 |
|
|
{
|
4964 |
|
|
label = bp->near_label;
|
4965 |
|
|
if (! label && bp->address - addr >= CONDJUMP_MIN)
|
4966 |
|
|
{
|
4967 |
|
|
rtx block = bp->insert_place;
|
4968 |
|
|
|
4969 |
|
|
if (GET_CODE (PATTERN (block)) == RETURN)
|
4970 |
|
|
block = PREV_INSN (block);
|
4971 |
|
|
else
|
4972 |
|
|
block = gen_block_redirect (block,
|
4973 |
|
|
bp->address, 2);
|
4974 |
|
|
label = emit_label_after (gen_label_rtx (),
|
4975 |
|
|
PREV_INSN (block));
|
4976 |
|
|
bp->near_label = label;
|
4977 |
|
|
}
|
4978 |
|
|
else if (label && ! NEXT_INSN (label))
|
4979 |
|
|
{
|
4980 |
|
|
if (addr + 2 - bp->address <= CONDJUMP_MAX)
|
4981 |
|
|
bp->insert_place = insn;
|
4982 |
|
|
else
|
4983 |
|
|
gen_far_branch (bp);
|
4984 |
|
|
}
|
4985 |
|
|
}
|
4986 |
|
|
if (! label
|
4987 |
|
|
|| (NEXT_INSN (label) && bp->address - addr < CONDJUMP_MIN))
|
4988 |
|
|
{
|
4989 |
|
|
bp->near_label = label = gen_label_rtx ();
|
4990 |
|
|
bp->insert_place = insn;
|
4991 |
|
|
bp->address = addr;
|
4992 |
|
|
}
|
4993 |
|
|
ok = redirect_jump (insn, label, 1);
|
4994 |
|
|
gcc_assert (ok);
|
4995 |
|
|
}
|
4996 |
|
|
else
|
4997 |
|
|
{
|
4998 |
|
|
/* get_attr_length (insn) == 2 */
|
4999 |
|
|
/* Check if we have a pattern where reorg wants to redirect
|
5000 |
|
|
the branch to a label from an unconditional branch that
|
5001 |
|
|
is too far away. */
|
5002 |
|
|
/* We can't use JUMP_LABEL here because it might be undefined
|
5003 |
|
|
when not optimizing. */
|
5004 |
|
|
/* A syntax error might cause beyond to be NULL_RTX. */
|
5005 |
|
|
beyond
|
5006 |
|
|
= next_active_insn (XEXP (XEXP (SET_SRC (PATTERN (insn)), 1),
|
5007 |
|
|
0));
|
5008 |
|
|
|
5009 |
|
|
if (beyond
|
5010 |
|
|
&& (GET_CODE (beyond) == JUMP_INSN
|
5011 |
|
|
|| ((beyond = next_active_insn (beyond))
|
5012 |
|
|
&& GET_CODE (beyond) == JUMP_INSN))
|
5013 |
|
|
&& GET_CODE (PATTERN (beyond)) == SET
|
5014 |
|
|
&& recog_memoized (beyond) == CODE_FOR_jump_compact
|
5015 |
|
|
&& ((INSN_ADDRESSES
|
5016 |
|
|
(INSN_UID (XEXP (SET_SRC (PATTERN (beyond)), 0)))
|
5017 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252)
|
5018 |
|
|
> 252 + 258 + 2))
|
5019 |
|
|
gen_block_redirect (beyond,
|
5020 |
|
|
INSN_ADDRESSES (INSN_UID (beyond)), 1);
|
5021 |
|
|
}
|
5022 |
|
|
|
5023 |
|
|
next = next_active_insn (insn);
|
5024 |
|
|
|
5025 |
|
|
if ((GET_CODE (next) == JUMP_INSN
|
5026 |
|
|
|| ((next = next_active_insn (next))
|
5027 |
|
|
&& GET_CODE (next) == JUMP_INSN))
|
5028 |
|
|
&& GET_CODE (PATTERN (next)) == SET
|
5029 |
|
|
&& recog_memoized (next) == CODE_FOR_jump_compact
|
5030 |
|
|
&& ((INSN_ADDRESSES
|
5031 |
|
|
(INSN_UID (XEXP (SET_SRC (PATTERN (next)), 0)))
|
5032 |
|
|
- INSN_ADDRESSES (INSN_UID (insn)) + (unsigned) 252)
|
5033 |
|
|
> 252 + 258 + 2))
|
5034 |
|
|
gen_block_redirect (next, INSN_ADDRESSES (INSN_UID (next)), 1);
|
5035 |
|
|
}
|
5036 |
|
|
else if (type == TYPE_JUMP || type == TYPE_RETURN)
|
5037 |
|
|
{
|
5038 |
|
|
int addr = INSN_ADDRESSES (INSN_UID (insn));
|
5039 |
|
|
rtx far_label = 0;
|
5040 |
|
|
int dest_uid = 0;
|
5041 |
|
|
struct far_branch *bp;
|
5042 |
|
|
|
5043 |
|
|
if (type == TYPE_JUMP)
|
5044 |
|
|
{
|
5045 |
|
|
far_label = XEXP (SET_SRC (PATTERN (insn)), 0);
|
5046 |
|
|
dest_uid = get_dest_uid (far_label, max_uid);
|
5047 |
|
|
if (! dest_uid)
|
5048 |
|
|
{
|
5049 |
|
|
/* Parse errors can lead to labels outside
|
5050 |
|
|
the insn stream. */
|
5051 |
|
|
if (! NEXT_INSN (far_label))
|
5052 |
|
|
continue;
|
5053 |
|
|
|
5054 |
|
|
if (! optimize)
|
5055 |
|
|
{
|
5056 |
|
|
JUMP_LABEL (insn) = far_label;
|
5057 |
|
|
LABEL_NUSES (far_label)++;
|
5058 |
|
|
}
|
5059 |
|
|
redirect_jump (insn, NULL_RTX, 1);
|
5060 |
|
|
far_label = 0;
|
5061 |
|
|
}
|
5062 |
|
|
}
|
5063 |
|
|
bp = uid_branch[dest_uid];
|
5064 |
|
|
if (! bp)
|
5065 |
|
|
{
|
5066 |
|
|
bp = (struct far_branch *) alloca (sizeof *bp);
|
5067 |
|
|
uid_branch[dest_uid] = bp;
|
5068 |
|
|
bp->prev = far_branch_list;
|
5069 |
|
|
far_branch_list = bp;
|
5070 |
|
|
bp->near_label = 0;
|
5071 |
|
|
bp->far_label = far_label;
|
5072 |
|
|
if (far_label)
|
5073 |
|
|
LABEL_NUSES (far_label)++;
|
5074 |
|
|
}
|
5075 |
|
|
else if (bp->near_label && ! NEXT_INSN (bp->near_label))
|
5076 |
|
|
if (addr - bp->address <= CONDJUMP_MAX)
|
5077 |
|
|
emit_label_after (bp->near_label, PREV_INSN (insn));
|
5078 |
|
|
else
|
5079 |
|
|
{
|
5080 |
|
|
gen_far_branch (bp);
|
5081 |
|
|
bp->near_label = 0;
|
5082 |
|
|
}
|
5083 |
|
|
else
|
5084 |
|
|
bp->near_label = 0;
|
5085 |
|
|
bp->address = addr;
|
5086 |
|
|
bp->insert_place = insn;
|
5087 |
|
|
if (! far_label)
|
5088 |
|
|
emit_insn_before (gen_block_branch_redirect (const0_rtx), insn);
|
5089 |
|
|
else
|
5090 |
|
|
gen_block_redirect (insn, addr, bp->near_label ? 2 : 0);
|
5091 |
|
|
}
|
5092 |
|
|
}
|
5093 |
|
|
/* Generate all pending far branches,
|
5094 |
|
|
and free our references to the far labels. */
|
5095 |
|
|
while (far_branch_list)
|
5096 |
|
|
{
|
5097 |
|
|
if (far_branch_list->near_label
|
5098 |
|
|
&& ! NEXT_INSN (far_branch_list->near_label))
|
5099 |
|
|
gen_far_branch (far_branch_list);
|
5100 |
|
|
if (optimize
|
5101 |
|
|
&& far_branch_list->far_label
|
5102 |
|
|
&& ! --LABEL_NUSES (far_branch_list->far_label))
|
5103 |
|
|
delete_insn (far_branch_list->far_label);
|
5104 |
|
|
far_branch_list = far_branch_list->prev;
|
5105 |
|
|
}
|
5106 |
|
|
|
5107 |
|
|
/* Instruction length information is no longer valid due to the new
|
5108 |
|
|
instructions that have been generated. */
|
5109 |
|
|
init_insn_lengths ();
|
5110 |
|
|
}
|
5111 |
|
|
|
5112 |
|
|
/* Dump out instruction addresses, which is useful for debugging the
|
5113 |
|
|
constant pool table stuff.
|
5114 |
|
|
|
5115 |
|
|
If relaxing, output the label and pseudo-ops used to link together
|
5116 |
|
|
calls and the instruction which set the registers. */
|
5117 |
|
|
|
5118 |
|
|
/* ??? The addresses printed by this routine for insns are nonsense for
|
5119 |
|
|
insns which are inside of a sequence where none of the inner insns have
|
5120 |
|
|
variable length. This is because the second pass of shorten_branches
|
5121 |
|
|
does not bother to update them. */
|
5122 |
|
|
|
5123 |
|
|
void
|
5124 |
|
|
final_prescan_insn (rtx insn, rtx *opvec ATTRIBUTE_UNUSED,
|
5125 |
|
|
int noperands ATTRIBUTE_UNUSED)
|
5126 |
|
|
{
|
5127 |
|
|
if (TARGET_DUMPISIZE)
|
5128 |
|
|
fprintf (asm_out_file, "\n! at %04x\n", INSN_ADDRESSES (INSN_UID (insn)));
|
5129 |
|
|
|
5130 |
|
|
if (TARGET_RELAX)
|
5131 |
|
|
{
|
5132 |
|
|
rtx note;
|
5133 |
|
|
|
5134 |
|
|
note = find_reg_note (insn, REG_LABEL, NULL_RTX);
|
5135 |
|
|
if (note)
|
5136 |
|
|
{
|
5137 |
|
|
rtx pattern;
|
5138 |
|
|
|
5139 |
|
|
pattern = PATTERN (insn);
|
5140 |
|
|
if (GET_CODE (pattern) == PARALLEL)
|
5141 |
|
|
pattern = XVECEXP (pattern, 0, 0);
|
5142 |
|
|
switch (GET_CODE (pattern))
|
5143 |
|
|
{
|
5144 |
|
|
case SET:
|
5145 |
|
|
if (GET_CODE (SET_SRC (pattern)) != CALL
|
5146 |
|
|
&& get_attr_type (insn) != TYPE_SFUNC)
|
5147 |
|
|
{
|
5148 |
|
|
targetm.asm_out.internal_label
|
5149 |
|
|
(asm_out_file, "L", CODE_LABEL_NUMBER (XEXP (note, 0)));
|
5150 |
|
|
break;
|
5151 |
|
|
}
|
5152 |
|
|
/* else FALLTHROUGH */
|
5153 |
|
|
case CALL:
|
5154 |
|
|
asm_fprintf (asm_out_file, "\t.uses %LL%d\n",
|
5155 |
|
|
CODE_LABEL_NUMBER (XEXP (note, 0)));
|
5156 |
|
|
break;
|
5157 |
|
|
|
5158 |
|
|
default:
|
5159 |
|
|
gcc_unreachable ();
|
5160 |
|
|
}
|
5161 |
|
|
}
|
5162 |
|
|
}
|
5163 |
|
|
}
|
5164 |
|
|
|
5165 |
|
|
/* Dump out any constants accumulated in the final pass. These will
|
5166 |
|
|
only be labels. */
|
5167 |
|
|
|
5168 |
|
|
const char *
|
5169 |
|
|
output_jump_label_table (void)
|
5170 |
|
|
{
|
5171 |
|
|
int i;
|
5172 |
|
|
|
5173 |
|
|
if (pool_size)
|
5174 |
|
|
{
|
5175 |
|
|
fprintf (asm_out_file, "\t.align 2\n");
|
5176 |
|
|
for (i = 0; i < pool_size; i++)
|
5177 |
|
|
{
|
5178 |
|
|
pool_node *p = &pool_vector[i];
|
5179 |
|
|
|
5180 |
|
|
(*targetm.asm_out.internal_label) (asm_out_file, "L",
|
5181 |
|
|
CODE_LABEL_NUMBER (p->label));
|
5182 |
|
|
output_asm_insn (".long %O0", &p->value);
|
5183 |
|
|
}
|
5184 |
|
|
pool_size = 0;
|
5185 |
|
|
}
|
5186 |
|
|
|
5187 |
|
|
return "";
|
5188 |
|
|
}
|
5189 |
|
|
|
5190 |
|
|
/* A full frame looks like:
|
5191 |
|
|
|
5192 |
|
|
arg-5
|
5193 |
|
|
arg-4
|
5194 |
|
|
[ if current_function_anonymous_args
|
5195 |
|
|
arg-3
|
5196 |
|
|
arg-2
|
5197 |
|
|
arg-1
|
5198 |
|
|
arg-0 ]
|
5199 |
|
|
saved-fp
|
5200 |
|
|
saved-r10
|
5201 |
|
|
saved-r11
|
5202 |
|
|
saved-r12
|
5203 |
|
|
saved-pr
|
5204 |
|
|
local-n
|
5205 |
|
|
..
|
5206 |
|
|
local-1
|
5207 |
|
|
local-0 <- fp points here. */
|
5208 |
|
|
|
5209 |
|
|
/* Number of bytes pushed for anonymous args, used to pass information
|
5210 |
|
|
between expand_prologue and expand_epilogue. */
|
5211 |
|
|
|
5212 |
|
|
/* Adjust the stack by SIZE bytes. REG holds the rtl of the register to be
|
5213 |
|
|
adjusted. If epilogue_p is zero, this is for a prologue; otherwise, it's
|
5214 |
|
|
for an epilogue and a negative value means that it's for a sibcall
|
5215 |
|
|
epilogue. If LIVE_REGS_MASK is nonzero, it points to a HARD_REG_SET of
|
5216 |
|
|
all the registers that are about to be restored, and hence dead. */
|
5217 |
|
|
|
5218 |
|
|
static void
|
5219 |
|
|
output_stack_adjust (int size, rtx reg, int epilogue_p,
|
5220 |
|
|
HARD_REG_SET *live_regs_mask)
|
5221 |
|
|
{
|
5222 |
|
|
rtx (*emit_fn) (rtx) = epilogue_p ? &emit_insn : &frame_insn;
|
5223 |
|
|
if (size)
|
5224 |
|
|
{
|
5225 |
|
|
HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT;
|
5226 |
|
|
|
5227 |
|
|
/* This test is bogus, as output_stack_adjust is used to re-align the
|
5228 |
|
|
stack. */
|
5229 |
|
|
#if 0
|
5230 |
|
|
gcc_assert (!(size % align));
|
5231 |
|
|
#endif
|
5232 |
|
|
|
5233 |
|
|
if (CONST_OK_FOR_ADD (size))
|
5234 |
|
|
emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size)));
|
5235 |
|
|
/* Try to do it with two partial adjustments; however, we must make
|
5236 |
|
|
sure that the stack is properly aligned at all times, in case
|
5237 |
|
|
an interrupt occurs between the two partial adjustments. */
|
5238 |
|
|
else if (CONST_OK_FOR_ADD (size / 2 & -align)
|
5239 |
|
|
&& CONST_OK_FOR_ADD (size - (size / 2 & -align)))
|
5240 |
|
|
{
|
5241 |
|
|
emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size / 2 & -align)));
|
5242 |
|
|
emit_fn (GEN_ADD3 (reg, reg, GEN_INT (size - (size / 2 & -align))));
|
5243 |
|
|
}
|
5244 |
|
|
else
|
5245 |
|
|
{
|
5246 |
|
|
rtx const_reg;
|
5247 |
|
|
rtx insn;
|
5248 |
|
|
int temp = epilogue_p ? 7 : (TARGET_SH5 ? 0 : 1);
|
5249 |
|
|
int i;
|
5250 |
|
|
|
5251 |
|
|
/* If TEMP is invalid, we could temporarily save a general
|
5252 |
|
|
register to MACL. However, there is currently no need
|
5253 |
|
|
to handle this case, so just die when we see it. */
|
5254 |
|
|
if (epilogue_p < 0
|
5255 |
|
|
|| current_function_interrupt
|
5256 |
|
|
|| ! call_really_used_regs[temp] || fixed_regs[temp])
|
5257 |
|
|
temp = -1;
|
5258 |
|
|
if (temp < 0 && ! current_function_interrupt
|
5259 |
|
|
&& (TARGET_SHMEDIA || epilogue_p >= 0))
|
5260 |
|
|
{
|
5261 |
|
|
HARD_REG_SET temps;
|
5262 |
|
|
COPY_HARD_REG_SET (temps, call_used_reg_set);
|
5263 |
|
|
AND_COMPL_HARD_REG_SET (temps, call_fixed_reg_set);
|
5264 |
|
|
if (epilogue_p > 0)
|
5265 |
|
|
{
|
5266 |
|
|
int nreg = 0;
|
5267 |
|
|
if (current_function_return_rtx)
|
5268 |
|
|
{
|
5269 |
|
|
enum machine_mode mode;
|
5270 |
|
|
mode = GET_MODE (current_function_return_rtx);
|
5271 |
|
|
if (BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG)
|
5272 |
|
|
nreg = HARD_REGNO_NREGS (FIRST_RET_REG, mode);
|
5273 |
|
|
}
|
5274 |
|
|
for (i = 0; i < nreg; i++)
|
5275 |
|
|
CLEAR_HARD_REG_BIT (temps, FIRST_RET_REG + i);
|
5276 |
|
|
if (current_function_calls_eh_return)
|
5277 |
|
|
{
|
5278 |
|
|
CLEAR_HARD_REG_BIT (temps, EH_RETURN_STACKADJ_REGNO);
|
5279 |
|
|
for (i = 0; i <= 3; i++)
|
5280 |
|
|
CLEAR_HARD_REG_BIT (temps, EH_RETURN_DATA_REGNO (i));
|
5281 |
|
|
}
|
5282 |
|
|
}
|
5283 |
|
|
if (TARGET_SHMEDIA && epilogue_p < 0)
|
5284 |
|
|
for (i = FIRST_TARGET_REG; i <= LAST_TARGET_REG; i++)
|
5285 |
|
|
CLEAR_HARD_REG_BIT (temps, i);
|
5286 |
|
|
if (epilogue_p <= 0)
|
5287 |
|
|
{
|
5288 |
|
|
for (i = FIRST_PARM_REG;
|
5289 |
|
|
i < FIRST_PARM_REG + NPARM_REGS (SImode); i++)
|
5290 |
|
|
CLEAR_HARD_REG_BIT (temps, i);
|
5291 |
|
|
if (cfun->static_chain_decl != NULL)
|
5292 |
|
|
CLEAR_HARD_REG_BIT (temps, STATIC_CHAIN_REGNUM);
|
5293 |
|
|
}
|
5294 |
|
|
temp = scavenge_reg (&temps);
|
5295 |
|
|
}
|
5296 |
|
|
if (temp < 0 && live_regs_mask)
|
5297 |
|
|
{
|
5298 |
|
|
HARD_REG_SET temps;
|
5299 |
|
|
|
5300 |
|
|
COPY_HARD_REG_SET (temps, *live_regs_mask);
|
5301 |
|
|
CLEAR_HARD_REG_BIT (temps, REGNO (reg));
|
5302 |
|
|
temp = scavenge_reg (&temps);
|
5303 |
|
|
}
|
5304 |
|
|
if (temp < 0)
|
5305 |
|
|
{
|
5306 |
|
|
rtx adj_reg, tmp_reg, mem;
|
5307 |
|
|
|
5308 |
|
|
/* If we reached here, the most likely case is the (sibcall)
|
5309 |
|
|
epilogue for non SHmedia. Put a special push/pop sequence
|
5310 |
|
|
for such case as the last resort. This looks lengthy but
|
5311 |
|
|
would not be problem because it seems to be very
|
5312 |
|
|
rare. */
|
5313 |
|
|
|
5314 |
|
|
gcc_assert (!TARGET_SHMEDIA && epilogue_p);
|
5315 |
|
|
|
5316 |
|
|
|
5317 |
|
|
/* ??? There is still the slight possibility that r4 or
|
5318 |
|
|
r5 have been reserved as fixed registers or assigned
|
5319 |
|
|
as global registers, and they change during an
|
5320 |
|
|
interrupt. There are possible ways to handle this:
|
5321 |
|
|
|
5322 |
|
|
- If we are adjusting the frame pointer (r14), we can do
|
5323 |
|
|
with a single temp register and an ordinary push / pop
|
5324 |
|
|
on the stack.
|
5325 |
|
|
- Grab any call-used or call-saved registers (i.e. not
|
5326 |
|
|
fixed or globals) for the temps we need. We might
|
5327 |
|
|
also grab r14 if we are adjusting the stack pointer.
|
5328 |
|
|
If we can't find enough available registers, issue
|
5329 |
|
|
a diagnostic and die - the user must have reserved
|
5330 |
|
|
way too many registers.
|
5331 |
|
|
But since all this is rather unlikely to happen and
|
5332 |
|
|
would require extra testing, we just die if r4 / r5
|
5333 |
|
|
are not available. */
|
5334 |
|
|
gcc_assert (!fixed_regs[4] && !fixed_regs[5]
|
5335 |
|
|
&& !global_regs[4] && !global_regs[5]);
|
5336 |
|
|
|
5337 |
|
|
adj_reg = gen_rtx_REG (GET_MODE (reg), 4);
|
5338 |
|
|
tmp_reg = gen_rtx_REG (GET_MODE (reg), 5);
|
5339 |
|
|
emit_move_insn (gen_tmp_stack_mem (Pmode, reg), adj_reg);
|
5340 |
|
|
emit_insn (GEN_MOV (adj_reg, GEN_INT (size)));
|
5341 |
|
|
emit_insn (GEN_ADD3 (adj_reg, adj_reg, reg));
|
5342 |
|
|
mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg));
|
5343 |
|
|
emit_move_insn (mem, tmp_reg);
|
5344 |
|
|
emit_move_insn (tmp_reg, gen_tmp_stack_mem (Pmode, reg));
|
5345 |
|
|
mem = gen_tmp_stack_mem (Pmode, gen_rtx_PRE_DEC (Pmode, adj_reg));
|
5346 |
|
|
emit_move_insn (mem, tmp_reg);
|
5347 |
|
|
emit_move_insn (reg, adj_reg);
|
5348 |
|
|
mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg));
|
5349 |
|
|
emit_move_insn (adj_reg, mem);
|
5350 |
|
|
mem = gen_tmp_stack_mem (Pmode, gen_rtx_POST_INC (Pmode, reg));
|
5351 |
|
|
emit_move_insn (tmp_reg, mem);
|
5352 |
|
|
/* Tell flow the insns that pop r4/r5 aren't dead. */
|
5353 |
|
|
emit_insn (gen_rtx_USE (VOIDmode, tmp_reg));
|
5354 |
|
|
emit_insn (gen_rtx_USE (VOIDmode, adj_reg));
|
5355 |
|
|
return;
|
5356 |
|
|
}
|
5357 |
|
|
const_reg = gen_rtx_REG (GET_MODE (reg), temp);
|
5358 |
|
|
|
5359 |
|
|
/* If SIZE is negative, subtract the positive value.
|
5360 |
|
|
This sometimes allows a constant pool entry to be shared
|
5361 |
|
|
between prologue and epilogue code. */
|
5362 |
|
|
if (size < 0)
|
5363 |
|
|
{
|
5364 |
|
|
emit_insn (GEN_MOV (const_reg, GEN_INT (-size)));
|
5365 |
|
|
insn = emit_fn (GEN_SUB3 (reg, reg, const_reg));
|
5366 |
|
|
}
|
5367 |
|
|
else
|
5368 |
|
|
{
|
5369 |
|
|
emit_insn (GEN_MOV (const_reg, GEN_INT (size)));
|
5370 |
|
|
insn = emit_fn (GEN_ADD3 (reg, reg, const_reg));
|
5371 |
|
|
}
|
5372 |
|
|
if (! epilogue_p)
|
5373 |
|
|
REG_NOTES (insn)
|
5374 |
|
|
= (gen_rtx_EXPR_LIST
|
5375 |
|
|
(REG_FRAME_RELATED_EXPR,
|
5376 |
|
|
gen_rtx_SET (VOIDmode, reg,
|
5377 |
|
|
gen_rtx_PLUS (SImode, reg, GEN_INT (size))),
|
5378 |
|
|
REG_NOTES (insn)));
|
5379 |
|
|
}
|
5380 |
|
|
}
|
5381 |
|
|
}
|
5382 |
|
|
|
5383 |
|
|
static rtx
|
5384 |
|
|
frame_insn (rtx x)
|
5385 |
|
|
{
|
5386 |
|
|
x = emit_insn (x);
|
5387 |
|
|
RTX_FRAME_RELATED_P (x) = 1;
|
5388 |
|
|
return x;
|
5389 |
|
|
}
|
5390 |
|
|
|
5391 |
|
|
/* Output RTL to push register RN onto the stack. */
|
5392 |
|
|
|
5393 |
|
|
static rtx
|
5394 |
|
|
push (int rn)
|
5395 |
|
|
{
|
5396 |
|
|
rtx x;
|
5397 |
|
|
if (rn == FPUL_REG)
|
5398 |
|
|
x = gen_push_fpul ();
|
5399 |
|
|
else if (rn == FPSCR_REG)
|
5400 |
|
|
x = gen_push_fpscr ();
|
5401 |
|
|
else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && ! TARGET_FPU_SINGLE
|
5402 |
|
|
&& FP_OR_XD_REGISTER_P (rn))
|
5403 |
|
|
{
|
5404 |
|
|
if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1)
|
5405 |
|
|
return NULL_RTX;
|
5406 |
|
|
x = gen_push_4 (gen_rtx_REG (DFmode, rn));
|
5407 |
|
|
}
|
5408 |
|
|
else if (TARGET_SH2E && FP_REGISTER_P (rn))
|
5409 |
|
|
x = gen_push_e (gen_rtx_REG (SFmode, rn));
|
5410 |
|
|
else
|
5411 |
|
|
x = gen_push (gen_rtx_REG (SImode, rn));
|
5412 |
|
|
|
5413 |
|
|
x = frame_insn (x);
|
5414 |
|
|
REG_NOTES (x)
|
5415 |
|
|
= gen_rtx_EXPR_LIST (REG_INC,
|
5416 |
|
|
gen_rtx_REG (SImode, STACK_POINTER_REGNUM), 0);
|
5417 |
|
|
return x;
|
5418 |
|
|
}
|
5419 |
|
|
|
5420 |
|
|
/* Output RTL to pop register RN from the stack. */
|
5421 |
|
|
|
5422 |
|
|
static void
|
5423 |
|
|
pop (int rn)
|
5424 |
|
|
{
|
5425 |
|
|
rtx x;
|
5426 |
|
|
if (rn == FPUL_REG)
|
5427 |
|
|
x = gen_pop_fpul ();
|
5428 |
|
|
else if (rn == FPSCR_REG)
|
5429 |
|
|
x = gen_pop_fpscr ();
|
5430 |
|
|
else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && ! TARGET_FPU_SINGLE
|
5431 |
|
|
&& FP_OR_XD_REGISTER_P (rn))
|
5432 |
|
|
{
|
5433 |
|
|
if (FP_REGISTER_P (rn) && (rn - FIRST_FP_REG) & 1)
|
5434 |
|
|
return;
|
5435 |
|
|
x = gen_pop_4 (gen_rtx_REG (DFmode, rn));
|
5436 |
|
|
}
|
5437 |
|
|
else if (TARGET_SH2E && FP_REGISTER_P (rn))
|
5438 |
|
|
x = gen_pop_e (gen_rtx_REG (SFmode, rn));
|
5439 |
|
|
else
|
5440 |
|
|
x = gen_pop (gen_rtx_REG (SImode, rn));
|
5441 |
|
|
|
5442 |
|
|
x = emit_insn (x);
|
5443 |
|
|
REG_NOTES (x)
|
5444 |
|
|
= gen_rtx_EXPR_LIST (REG_INC,
|
5445 |
|
|
gen_rtx_REG (SImode, STACK_POINTER_REGNUM), 0);
|
5446 |
|
|
}
|
5447 |
|
|
|
5448 |
|
|
/* Generate code to push the regs specified in the mask. */
|
5449 |
|
|
|
5450 |
|
|
static void
|
5451 |
|
|
push_regs (HARD_REG_SET *mask, int interrupt_handler)
|
5452 |
|
|
{
|
5453 |
|
|
int i;
|
5454 |
|
|
int skip_fpscr = 0;
|
5455 |
|
|
|
5456 |
|
|
/* Push PR last; this gives better latencies after the prologue, and
|
5457 |
|
|
candidates for the return delay slot when there are no general
|
5458 |
|
|
registers pushed. */
|
5459 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
5460 |
|
|
{
|
5461 |
|
|
/* If this is an interrupt handler, and the SZ bit varies,
|
5462 |
|
|
and we have to push any floating point register, we need
|
5463 |
|
|
to switch to the correct precision first. */
|
5464 |
|
|
if (i == FIRST_FP_REG && interrupt_handler && TARGET_FMOVD
|
5465 |
|
|
&& hard_regs_intersect_p (mask, ®_class_contents[DF_REGS]))
|
5466 |
|
|
{
|
5467 |
|
|
HARD_REG_SET unsaved;
|
5468 |
|
|
|
5469 |
|
|
push (FPSCR_REG);
|
5470 |
|
|
COMPL_HARD_REG_SET (unsaved, *mask);
|
5471 |
|
|
fpscr_set_from_mem (NORMAL_MODE (FP_MODE), unsaved);
|
5472 |
|
|
skip_fpscr = 1;
|
5473 |
|
|
}
|
5474 |
|
|
if (i != PR_REG
|
5475 |
|
|
&& (i != FPSCR_REG || ! skip_fpscr)
|
5476 |
|
|
&& TEST_HARD_REG_BIT (*mask, i))
|
5477 |
|
|
push (i);
|
5478 |
|
|
}
|
5479 |
|
|
if (TEST_HARD_REG_BIT (*mask, PR_REG))
|
5480 |
|
|
push (PR_REG);
|
5481 |
|
|
}
|
5482 |
|
|
|
5483 |
|
|
/* Calculate how much extra space is needed to save all callee-saved
|
5484 |
|
|
target registers.
|
5485 |
|
|
LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */
|
5486 |
|
|
|
5487 |
|
|
static int
|
5488 |
|
|
shmedia_target_regs_stack_space (HARD_REG_SET *live_regs_mask)
|
5489 |
|
|
{
|
5490 |
|
|
int reg;
|
5491 |
|
|
int stack_space = 0;
|
5492 |
|
|
int interrupt_handler = sh_cfun_interrupt_handler_p ();
|
5493 |
|
|
|
5494 |
|
|
for (reg = LAST_TARGET_REG; reg >= FIRST_TARGET_REG; reg--)
|
5495 |
|
|
if ((! call_really_used_regs[reg] || interrupt_handler)
|
5496 |
|
|
&& ! TEST_HARD_REG_BIT (*live_regs_mask, reg))
|
5497 |
|
|
/* Leave space to save this target register on the stack,
|
5498 |
|
|
in case target register allocation wants to use it. */
|
5499 |
|
|
stack_space += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));
|
5500 |
|
|
return stack_space;
|
5501 |
|
|
}
|
5502 |
|
|
|
5503 |
|
|
/* Decide whether we should reserve space for callee-save target registers,
|
5504 |
|
|
in case target register allocation wants to use them. REGS_SAVED is
|
5505 |
|
|
the space, in bytes, that is already required for register saves.
|
5506 |
|
|
LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */
|
5507 |
|
|
|
5508 |
|
|
static int
|
5509 |
|
|
shmedia_reserve_space_for_target_registers_p (int regs_saved,
|
5510 |
|
|
HARD_REG_SET *live_regs_mask)
|
5511 |
|
|
{
|
5512 |
|
|
if (optimize_size)
|
5513 |
|
|
return 0;
|
5514 |
|
|
return shmedia_target_regs_stack_space (live_regs_mask) <= regs_saved;
|
5515 |
|
|
}
|
5516 |
|
|
|
5517 |
|
|
/* Decide how much space to reserve for callee-save target registers
|
5518 |
|
|
in case target register allocation wants to use them.
|
5519 |
|
|
LIVE_REGS_MASK is the register mask calculated by calc_live_regs. */
|
5520 |
|
|
|
5521 |
|
|
static int
|
5522 |
|
|
shmedia_target_regs_stack_adjust (HARD_REG_SET *live_regs_mask)
|
5523 |
|
|
{
|
5524 |
|
|
if (shmedia_space_reserved_for_target_registers)
|
5525 |
|
|
return shmedia_target_regs_stack_space (live_regs_mask);
|
5526 |
|
|
else
|
5527 |
|
|
return 0;
|
5528 |
|
|
}
|
5529 |
|
|
|
5530 |
|
|
/* Work out the registers which need to be saved, both as a mask and a
|
5531 |
|
|
count of saved words. Return the count.
|
5532 |
|
|
|
5533 |
|
|
If doing a pragma interrupt function, then push all regs used by the
|
5534 |
|
|
function, and if we call another function (we can tell by looking at PR),
|
5535 |
|
|
make sure that all the regs it clobbers are safe too. */
|
5536 |
|
|
|
5537 |
|
|
static int
|
5538 |
|
|
calc_live_regs (HARD_REG_SET *live_regs_mask)
|
5539 |
|
|
{
|
5540 |
|
|
unsigned int reg;
|
5541 |
|
|
int count;
|
5542 |
|
|
tree attrs;
|
5543 |
|
|
bool interrupt_or_trapa_handler, trapa_handler, interrupt_handler;
|
5544 |
|
|
bool nosave_low_regs;
|
5545 |
|
|
int pr_live, has_call;
|
5546 |
|
|
|
5547 |
|
|
attrs = DECL_ATTRIBUTES (current_function_decl);
|
5548 |
|
|
interrupt_or_trapa_handler = sh_cfun_interrupt_handler_p ();
|
5549 |
|
|
trapa_handler = lookup_attribute ("trapa_handler", attrs) != NULL_TREE;
|
5550 |
|
|
interrupt_handler = interrupt_or_trapa_handler && ! trapa_handler;
|
5551 |
|
|
nosave_low_regs = lookup_attribute ("nosave_low_regs", attrs) != NULL_TREE;
|
5552 |
|
|
|
5553 |
|
|
CLEAR_HARD_REG_SET (*live_regs_mask);
|
5554 |
|
|
if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && interrupt_handler
|
5555 |
|
|
&& regs_ever_live[FPSCR_REG])
|
5556 |
|
|
target_flags &= ~MASK_FPU_SINGLE;
|
5557 |
|
|
/* If we can save a lot of saves by switching to double mode, do that. */
|
5558 |
|
|
else if ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && TARGET_FMOVD && TARGET_FPU_SINGLE)
|
5559 |
|
|
for (count = 0, reg = FIRST_FP_REG; reg <= LAST_FP_REG; reg += 2)
|
5560 |
|
|
if (regs_ever_live[reg] && regs_ever_live[reg+1]
|
5561 |
|
|
&& (! call_really_used_regs[reg]
|
5562 |
|
|
|| interrupt_handler)
|
5563 |
|
|
&& ++count > 2)
|
5564 |
|
|
{
|
5565 |
|
|
target_flags &= ~MASK_FPU_SINGLE;
|
5566 |
|
|
break;
|
5567 |
|
|
}
|
5568 |
|
|
/* PR_MEDIA_REG is a general purpose register, thus global_alloc already
|
5569 |
|
|
knows how to use it. That means the pseudo originally allocated for
|
5570 |
|
|
the initial value can become the PR_MEDIA_REG hard register, as seen for
|
5571 |
|
|
execute/20010122-1.c:test9. */
|
5572 |
|
|
if (TARGET_SHMEDIA)
|
5573 |
|
|
/* ??? this function is called from initial_elimination_offset, hence we
|
5574 |
|
|
can't use the result of sh_media_register_for_return here. */
|
5575 |
|
|
pr_live = sh_pr_n_sets ();
|
5576 |
|
|
else
|
5577 |
|
|
{
|
5578 |
|
|
rtx pr_initial = has_hard_reg_initial_val (Pmode, PR_REG);
|
5579 |
|
|
pr_live = (pr_initial
|
5580 |
|
|
? (GET_CODE (pr_initial) != REG
|
5581 |
|
|
|| REGNO (pr_initial) != (PR_REG))
|
5582 |
|
|
: regs_ever_live[PR_REG]);
|
5583 |
|
|
/* For Shcompact, if not optimizing, we end up with a memory reference
|
5584 |
|
|
using the return address pointer for __builtin_return_address even
|
5585 |
|
|
though there is no actual need to put the PR register on the stack. */
|
5586 |
|
|
pr_live |= regs_ever_live[RETURN_ADDRESS_POINTER_REGNUM];
|
5587 |
|
|
}
|
5588 |
|
|
/* Force PR to be live if the prologue has to call the SHmedia
|
5589 |
|
|
argument decoder or register saver. */
|
5590 |
|
|
if (TARGET_SHCOMPACT
|
5591 |
|
|
&& ((current_function_args_info.call_cookie
|
5592 |
|
|
& ~ CALL_COOKIE_RET_TRAMP (1))
|
5593 |
|
|
|| current_function_has_nonlocal_label))
|
5594 |
|
|
pr_live = 1;
|
5595 |
|
|
has_call = TARGET_SHMEDIA ? ! leaf_function_p () : pr_live;
|
5596 |
|
|
for (count = 0, reg = FIRST_PSEUDO_REGISTER; reg-- != 0; )
|
5597 |
|
|
{
|
5598 |
|
|
if (reg == (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
|
5599 |
|
|
? pr_live
|
5600 |
|
|
: interrupt_handler
|
5601 |
|
|
? (/* Need to save all the regs ever live. */
|
5602 |
|
|
(regs_ever_live[reg]
|
5603 |
|
|
|| (call_really_used_regs[reg]
|
5604 |
|
|
&& (! fixed_regs[reg] || reg == MACH_REG || reg == MACL_REG
|
5605 |
|
|
|| reg == PIC_OFFSET_TABLE_REGNUM)
|
5606 |
|
|
&& has_call)
|
5607 |
|
|
|| (TARGET_SHMEDIA && has_call
|
5608 |
|
|
&& REGISTER_NATURAL_MODE (reg) == SImode
|
5609 |
|
|
&& (GENERAL_REGISTER_P (reg) || TARGET_REGISTER_P (reg))))
|
5610 |
|
|
&& reg != STACK_POINTER_REGNUM && reg != ARG_POINTER_REGNUM
|
5611 |
|
|
&& reg != RETURN_ADDRESS_POINTER_REGNUM
|
5612 |
|
|
&& reg != T_REG && reg != GBR_REG
|
5613 |
|
|
/* Push fpscr only on targets which have FPU */
|
5614 |
|
|
&& (reg != FPSCR_REG || TARGET_FPU_ANY))
|
5615 |
|
|
: (/* Only push those regs which are used and need to be saved. */
|
5616 |
|
|
(TARGET_SHCOMPACT
|
5617 |
|
|
&& flag_pic
|
5618 |
|
|
&& current_function_args_info.call_cookie
|
5619 |
|
|
&& reg == PIC_OFFSET_TABLE_REGNUM)
|
5620 |
|
|
|| (regs_ever_live[reg]
|
5621 |
|
|
&& (!call_really_used_regs[reg]
|
5622 |
|
|
|| (trapa_handler && reg == FPSCR_REG && TARGET_FPU_ANY)))
|
5623 |
|
|
|| (current_function_calls_eh_return
|
5624 |
|
|
&& (reg == EH_RETURN_DATA_REGNO (0)
|
5625 |
|
|
|| reg == EH_RETURN_DATA_REGNO (1)
|
5626 |
|
|
|| reg == EH_RETURN_DATA_REGNO (2)
|
5627 |
|
|
|| reg == EH_RETURN_DATA_REGNO (3)))
|
5628 |
|
|
|| ((reg == MACL_REG || reg == MACH_REG)
|
5629 |
|
|
&& regs_ever_live[reg]
|
5630 |
|
|
&& sh_cfun_attr_renesas_p ())
|
5631 |
|
|
))
|
5632 |
|
|
{
|
5633 |
|
|
SET_HARD_REG_BIT (*live_regs_mask, reg);
|
5634 |
|
|
count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));
|
5635 |
|
|
|
5636 |
|
|
if ((TARGET_SH4 || TARGET_SH2A_DOUBLE || TARGET_SH5) && TARGET_FMOVD
|
5637 |
|
|
&& GET_MODE_CLASS (REGISTER_NATURAL_MODE (reg)) == MODE_FLOAT)
|
5638 |
|
|
{
|
5639 |
|
|
if (FP_REGISTER_P (reg))
|
5640 |
|
|
{
|
5641 |
|
|
if (! TARGET_FPU_SINGLE && ! regs_ever_live[reg ^ 1])
|
5642 |
|
|
{
|
5643 |
|
|
SET_HARD_REG_BIT (*live_regs_mask, (reg ^ 1));
|
5644 |
|
|
count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg ^ 1));
|
5645 |
|
|
}
|
5646 |
|
|
}
|
5647 |
|
|
else if (XD_REGISTER_P (reg))
|
5648 |
|
|
{
|
5649 |
|
|
/* Must switch to double mode to access these registers. */
|
5650 |
|
|
target_flags &= ~MASK_FPU_SINGLE;
|
5651 |
|
|
}
|
5652 |
|
|
}
|
5653 |
|
|
}
|
5654 |
|
|
if (nosave_low_regs && reg == R8_REG)
|
5655 |
|
|
break;
|
5656 |
|
|
}
|
5657 |
|
|
/* If we have a target register optimization pass after prologue / epilogue
|
5658 |
|
|
threading, we need to assume all target registers will be live even if
|
5659 |
|
|
they aren't now. */
|
5660 |
|
|
if (flag_branch_target_load_optimize2
|
5661 |
|
|
&& TARGET_SAVE_ALL_TARGET_REGS
|
5662 |
|
|
&& shmedia_space_reserved_for_target_registers)
|
5663 |
|
|
for (reg = LAST_TARGET_REG; reg >= FIRST_TARGET_REG; reg--)
|
5664 |
|
|
if ((! call_really_used_regs[reg] || interrupt_handler)
|
5665 |
|
|
&& ! TEST_HARD_REG_BIT (*live_regs_mask, reg))
|
5666 |
|
|
{
|
5667 |
|
|
SET_HARD_REG_BIT (*live_regs_mask, reg);
|
5668 |
|
|
count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (reg));
|
5669 |
|
|
}
|
5670 |
|
|
/* If this is an interrupt handler, we don't have any call-clobbered
|
5671 |
|
|
registers we can conveniently use for target register save/restore.
|
5672 |
|
|
Make sure we save at least one general purpose register when we need
|
5673 |
|
|
to save target registers. */
|
5674 |
|
|
if (interrupt_handler
|
5675 |
|
|
&& hard_regs_intersect_p (live_regs_mask,
|
5676 |
|
|
®_class_contents[TARGET_REGS])
|
5677 |
|
|
&& ! hard_regs_intersect_p (live_regs_mask,
|
5678 |
|
|
®_class_contents[GENERAL_REGS]))
|
5679 |
|
|
{
|
5680 |
|
|
SET_HARD_REG_BIT (*live_regs_mask, R0_REG);
|
5681 |
|
|
count += GET_MODE_SIZE (REGISTER_NATURAL_MODE (R0_REG));
|
5682 |
|
|
}
|
5683 |
|
|
|
5684 |
|
|
return count;
|
5685 |
|
|
}
|
5686 |
|
|
|
5687 |
|
|
/* Code to generate prologue and epilogue sequences */
|
5688 |
|
|
|
5689 |
|
|
/* PUSHED is the number of bytes that are being pushed on the
|
5690 |
|
|
stack for register saves. Return the frame size, padded
|
5691 |
|
|
appropriately so that the stack stays properly aligned. */
|
5692 |
|
|
static HOST_WIDE_INT
|
5693 |
|
|
rounded_frame_size (int pushed)
|
5694 |
|
|
{
|
5695 |
|
|
HOST_WIDE_INT size = get_frame_size ();
|
5696 |
|
|
HOST_WIDE_INT align = STACK_BOUNDARY / BITS_PER_UNIT;
|
5697 |
|
|
|
5698 |
|
|
return ((size + pushed + align - 1) & -align) - pushed;
|
5699 |
|
|
}
|
5700 |
|
|
|
5701 |
|
|
/* Choose a call-clobbered target-branch register that remains
|
5702 |
|
|
unchanged along the whole function. We set it up as the return
|
5703 |
|
|
value in the prologue. */
|
5704 |
|
|
int
|
5705 |
|
|
sh_media_register_for_return (void)
|
5706 |
|
|
{
|
5707 |
|
|
int regno;
|
5708 |
|
|
int tr0_used;
|
5709 |
|
|
|
5710 |
|
|
if (! current_function_is_leaf)
|
5711 |
|
|
return -1;
|
5712 |
|
|
if (lookup_attribute ("interrupt_handler",
|
5713 |
|
|
DECL_ATTRIBUTES (current_function_decl)))
|
5714 |
|
|
return -1;
|
5715 |
|
|
if (sh_cfun_interrupt_handler_p ())
|
5716 |
|
|
return -1;
|
5717 |
|
|
|
5718 |
|
|
tr0_used = flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM];
|
5719 |
|
|
|
5720 |
|
|
for (regno = FIRST_TARGET_REG + tr0_used; regno <= LAST_TARGET_REG; regno++)
|
5721 |
|
|
if (call_really_used_regs[regno] && ! regs_ever_live[regno])
|
5722 |
|
|
return regno;
|
5723 |
|
|
|
5724 |
|
|
return -1;
|
5725 |
|
|
}
|
5726 |
|
|
|
5727 |
|
|
/* The maximum registers we need to save are:
|
5728 |
|
|
- 62 general purpose registers (r15 is stack pointer, r63 is zero)
|
5729 |
|
|
- 32 floating point registers (for each pair, we save none,
|
5730 |
|
|
one single precision value, or a double precision value).
|
5731 |
|
|
- 8 target registers
|
5732 |
|
|
- add 1 entry for a delimiter. */
|
5733 |
|
|
#define MAX_SAVED_REGS (62+32+8)
|
5734 |
|
|
|
5735 |
|
|
typedef struct save_entry_s
|
5736 |
|
|
{
|
5737 |
|
|
unsigned char reg;
|
5738 |
|
|
unsigned char mode;
|
5739 |
|
|
short offset;
|
5740 |
|
|
} save_entry;
|
5741 |
|
|
|
5742 |
|
|
#define MAX_TEMPS 4
|
5743 |
|
|
|
5744 |
|
|
/* There will be a delimiter entry with VOIDmode both at the start and the
|
5745 |
|
|
end of a filled in schedule. The end delimiter has the offset of the
|
5746 |
|
|
save with the smallest (i.e. most negative) offset. */
|
5747 |
|
|
typedef struct save_schedule_s
|
5748 |
|
|
{
|
5749 |
|
|
save_entry entries[MAX_SAVED_REGS + 2];
|
5750 |
|
|
int temps[MAX_TEMPS+1];
|
5751 |
|
|
} save_schedule;
|
5752 |
|
|
|
5753 |
|
|
/* Fill in SCHEDULE according to LIVE_REGS_MASK. If RESTORE is nonzero,
|
5754 |
|
|
use reverse order. Returns the last entry written to (not counting
|
5755 |
|
|
the delimiter). OFFSET_BASE is a number to be added to all offset
|
5756 |
|
|
entries. */
|
5757 |
|
|
|
5758 |
|
|
static save_entry *
|
5759 |
|
|
sh5_schedule_saves (HARD_REG_SET *live_regs_mask, save_schedule *schedule,
|
5760 |
|
|
int offset_base)
|
5761 |
|
|
{
|
5762 |
|
|
int align, i;
|
5763 |
|
|
save_entry *entry = schedule->entries;
|
5764 |
|
|
int tmpx = 0;
|
5765 |
|
|
int offset;
|
5766 |
|
|
|
5767 |
|
|
if (! current_function_interrupt)
|
5768 |
|
|
for (i = FIRST_GENERAL_REG; tmpx < MAX_TEMPS && i <= LAST_GENERAL_REG; i++)
|
5769 |
|
|
if (call_really_used_regs[i] && ! fixed_regs[i] && i != PR_MEDIA_REG
|
5770 |
|
|
&& ! FUNCTION_ARG_REGNO_P (i)
|
5771 |
|
|
&& i != FIRST_RET_REG
|
5772 |
|
|
&& ! (cfun->static_chain_decl != NULL && i == STATIC_CHAIN_REGNUM)
|
5773 |
|
|
&& ! (current_function_calls_eh_return
|
5774 |
|
|
&& (i == EH_RETURN_STACKADJ_REGNO
|
5775 |
|
|
|| ((unsigned) i >= EH_RETURN_DATA_REGNO (0)
|
5776 |
|
|
&& (unsigned) i <= EH_RETURN_DATA_REGNO (3)))))
|
5777 |
|
|
schedule->temps[tmpx++] = i;
|
5778 |
|
|
entry->reg = -1;
|
5779 |
|
|
entry->mode = VOIDmode;
|
5780 |
|
|
entry->offset = offset_base;
|
5781 |
|
|
entry++;
|
5782 |
|
|
/* We loop twice: first, we save 8-byte aligned registers in the
|
5783 |
|
|
higher addresses, that are known to be aligned. Then, we
|
5784 |
|
|
proceed to saving 32-bit registers that don't need 8-byte
|
5785 |
|
|
alignment.
|
5786 |
|
|
If this is an interrupt function, all registers that need saving
|
5787 |
|
|
need to be saved in full. moreover, we need to postpone saving
|
5788 |
|
|
target registers till we have saved some general purpose registers
|
5789 |
|
|
we can then use as scratch registers. */
|
5790 |
|
|
offset = offset_base;
|
5791 |
|
|
for (align = 1; align >= 0; align--)
|
5792 |
|
|
{
|
5793 |
|
|
for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
|
5794 |
|
|
if (TEST_HARD_REG_BIT (*live_regs_mask, i))
|
5795 |
|
|
{
|
5796 |
|
|
enum machine_mode mode = REGISTER_NATURAL_MODE (i);
|
5797 |
|
|
int reg = i;
|
5798 |
|
|
|
5799 |
|
|
if (current_function_interrupt)
|
5800 |
|
|
{
|
5801 |
|
|
if (TARGET_REGISTER_P (i))
|
5802 |
|
|
continue;
|
5803 |
|
|
if (GENERAL_REGISTER_P (i))
|
5804 |
|
|
mode = DImode;
|
5805 |
|
|
}
|
5806 |
|
|
if (mode == SFmode && (i % 2) == 1
|
5807 |
|
|
&& ! TARGET_FPU_SINGLE && FP_REGISTER_P (i)
|
5808 |
|
|
&& (TEST_HARD_REG_BIT (*live_regs_mask, (i ^ 1))))
|
5809 |
|
|
{
|
5810 |
|
|
mode = DFmode;
|
5811 |
|
|
i--;
|
5812 |
|
|
reg--;
|
5813 |
|
|
}
|
5814 |
|
|
|
5815 |
|
|
/* If we're doing the aligned pass and this is not aligned,
|
5816 |
|
|
or we're doing the unaligned pass and this is aligned,
|
5817 |
|
|
skip it. */
|
5818 |
|
|
if ((GET_MODE_SIZE (mode) % (STACK_BOUNDARY / BITS_PER_UNIT) == 0)
|
5819 |
|
|
!= align)
|
5820 |
|
|
continue;
|
5821 |
|
|
|
5822 |
|
|
if (current_function_interrupt
|
5823 |
|
|
&& GENERAL_REGISTER_P (i)
|
5824 |
|
|
&& tmpx < MAX_TEMPS)
|
5825 |
|
|
schedule->temps[tmpx++] = i;
|
5826 |
|
|
|
5827 |
|
|
offset -= GET_MODE_SIZE (mode);
|
5828 |
|
|
entry->reg = i;
|
5829 |
|
|
entry->mode = mode;
|
5830 |
|
|
entry->offset = offset;
|
5831 |
|
|
entry++;
|
5832 |
|
|
}
|
5833 |
|
|
if (align && current_function_interrupt)
|
5834 |
|
|
for (i = LAST_TARGET_REG; i >= FIRST_TARGET_REG; i--)
|
5835 |
|
|
if (TEST_HARD_REG_BIT (*live_regs_mask, i))
|
5836 |
|
|
{
|
5837 |
|
|
offset -= GET_MODE_SIZE (DImode);
|
5838 |
|
|
entry->reg = i;
|
5839 |
|
|
entry->mode = DImode;
|
5840 |
|
|
entry->offset = offset;
|
5841 |
|
|
entry++;
|
5842 |
|
|
}
|
5843 |
|
|
}
|
5844 |
|
|
entry->reg = -1;
|
5845 |
|
|
entry->mode = VOIDmode;
|
5846 |
|
|
entry->offset = offset;
|
5847 |
|
|
schedule->temps[tmpx] = -1;
|
5848 |
|
|
return entry - 1;
|
5849 |
|
|
}
|
5850 |
|
|
|
5851 |
|
|
void
|
5852 |
|
|
sh_expand_prologue (void)
|
5853 |
|
|
{
|
5854 |
|
|
HARD_REG_SET live_regs_mask;
|
5855 |
|
|
int d, i;
|
5856 |
|
|
int d_rounding = 0;
|
5857 |
|
|
int save_flags = target_flags;
|
5858 |
|
|
int pretend_args;
|
5859 |
|
|
tree sp_switch_attr
|
5860 |
|
|
= lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl));
|
5861 |
|
|
|
5862 |
|
|
current_function_interrupt = sh_cfun_interrupt_handler_p ();
|
5863 |
|
|
|
5864 |
|
|
/* We have pretend args if we had an object sent partially in registers
|
5865 |
|
|
and partially on the stack, e.g. a large structure. */
|
5866 |
|
|
pretend_args = current_function_pretend_args_size;
|
5867 |
|
|
if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl)
|
5868 |
|
|
&& (NPARM_REGS(SImode)
|
5869 |
|
|
> current_function_args_info.arg_count[(int) SH_ARG_INT]))
|
5870 |
|
|
pretend_args = 0;
|
5871 |
|
|
output_stack_adjust (-pretend_args
|
5872 |
|
|
- current_function_args_info.stack_regs * 8,
|
5873 |
|
|
stack_pointer_rtx, 0, NULL);
|
5874 |
|
|
|
5875 |
|
|
if (TARGET_SHCOMPACT && flag_pic && current_function_args_info.call_cookie)
|
5876 |
|
|
/* We're going to use the PIC register to load the address of the
|
5877 |
|
|
incoming-argument decoder and/or of the return trampoline from
|
5878 |
|
|
the GOT, so make sure the PIC register is preserved and
|
5879 |
|
|
initialized. */
|
5880 |
|
|
regs_ever_live[PIC_OFFSET_TABLE_REGNUM] = 1;
|
5881 |
|
|
|
5882 |
|
|
if (TARGET_SHCOMPACT
|
5883 |
|
|
&& (current_function_args_info.call_cookie & ~ CALL_COOKIE_RET_TRAMP(1)))
|
5884 |
|
|
{
|
5885 |
|
|
int reg;
|
5886 |
|
|
|
5887 |
|
|
/* First, make all registers with incoming arguments that will
|
5888 |
|
|
be pushed onto the stack live, so that register renaming
|
5889 |
|
|
doesn't overwrite them. */
|
5890 |
|
|
for (reg = 0; reg < NPARM_REGS (SImode); reg++)
|
5891 |
|
|
if (CALL_COOKIE_STACKSEQ_GET (current_function_args_info.call_cookie)
|
5892 |
|
|
>= NPARM_REGS (SImode) - reg)
|
5893 |
|
|
for (; reg < NPARM_REGS (SImode); reg++)
|
5894 |
|
|
emit_insn (gen_shcompact_preserve_incoming_args
|
5895 |
|
|
(gen_rtx_REG (SImode, FIRST_PARM_REG + reg)));
|
5896 |
|
|
else if (CALL_COOKIE_INT_REG_GET
|
5897 |
|
|
(current_function_args_info.call_cookie, reg) == 1)
|
5898 |
|
|
emit_insn (gen_shcompact_preserve_incoming_args
|
5899 |
|
|
(gen_rtx_REG (SImode, FIRST_PARM_REG + reg)));
|
5900 |
|
|
|
5901 |
|
|
emit_move_insn (gen_rtx_REG (Pmode, MACL_REG),
|
5902 |
|
|
stack_pointer_rtx);
|
5903 |
|
|
emit_move_insn (gen_rtx_REG (SImode, R0_REG),
|
5904 |
|
|
GEN_INT (current_function_args_info.call_cookie));
|
5905 |
|
|
emit_move_insn (gen_rtx_REG (SImode, MACH_REG),
|
5906 |
|
|
gen_rtx_REG (SImode, R0_REG));
|
5907 |
|
|
}
|
5908 |
|
|
else if (TARGET_SHMEDIA)
|
5909 |
|
|
{
|
5910 |
|
|
int tr = sh_media_register_for_return ();
|
5911 |
|
|
|
5912 |
|
|
if (tr >= 0)
|
5913 |
|
|
{
|
5914 |
|
|
rtx insn = emit_move_insn (gen_rtx_REG (DImode, tr),
|
5915 |
|
|
gen_rtx_REG (DImode, PR_MEDIA_REG));
|
5916 |
|
|
|
5917 |
|
|
/* ??? We should suppress saving pr when we don't need it, but this
|
5918 |
|
|
is tricky because of builtin_return_address. */
|
5919 |
|
|
|
5920 |
|
|
/* If this function only exits with sibcalls, this copy
|
5921 |
|
|
will be flagged as dead. */
|
5922 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
|
5923 |
|
|
const0_rtx,
|
5924 |
|
|
REG_NOTES (insn));
|
5925 |
|
|
}
|
5926 |
|
|
}
|
5927 |
|
|
|
5928 |
|
|
/* Emit the code for SETUP_VARARGS. */
|
5929 |
|
|
if (current_function_stdarg)
|
5930 |
|
|
{
|
5931 |
|
|
if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl))
|
5932 |
|
|
{
|
5933 |
|
|
/* Push arg regs as if they'd been provided by caller in stack. */
|
5934 |
|
|
for (i = 0; i < NPARM_REGS(SImode); i++)
|
5935 |
|
|
{
|
5936 |
|
|
int rn = NPARM_REGS(SImode) + FIRST_PARM_REG - i - 1;
|
5937 |
|
|
rtx insn;
|
5938 |
|
|
|
5939 |
|
|
if (i >= (NPARM_REGS(SImode)
|
5940 |
|
|
- current_function_args_info.arg_count[(int) SH_ARG_INT]
|
5941 |
|
|
))
|
5942 |
|
|
break;
|
5943 |
|
|
insn = push (rn);
|
5944 |
|
|
RTX_FRAME_RELATED_P (insn) = 0;
|
5945 |
|
|
}
|
5946 |
|
|
}
|
5947 |
|
|
}
|
5948 |
|
|
|
5949 |
|
|
/* If we're supposed to switch stacks at function entry, do so now. */
|
5950 |
|
|
if (sp_switch_attr)
|
5951 |
|
|
{
|
5952 |
|
|
/* The argument specifies a variable holding the address of the
|
5953 |
|
|
stack the interrupt function should switch to/from at entry/exit. */
|
5954 |
|
|
const char *s
|
5955 |
|
|
= ggc_strdup (TREE_STRING_POINTER (TREE_VALUE (sp_switch_attr)));
|
5956 |
|
|
rtx sp_switch = gen_rtx_SYMBOL_REF (Pmode, s);
|
5957 |
|
|
|
5958 |
|
|
emit_insn (gen_sp_switch_1 (sp_switch));
|
5959 |
|
|
}
|
5960 |
|
|
|
5961 |
|
|
d = calc_live_regs (&live_regs_mask);
|
5962 |
|
|
/* ??? Maybe we could save some switching if we can move a mode switch
|
5963 |
|
|
that already happens to be at the function start into the prologue. */
|
5964 |
|
|
if (target_flags != save_flags && ! current_function_interrupt)
|
5965 |
|
|
emit_insn (gen_toggle_sz ());
|
5966 |
|
|
|
5967 |
|
|
if (TARGET_SH5)
|
5968 |
|
|
{
|
5969 |
|
|
int offset_base, offset;
|
5970 |
|
|
rtx r0 = NULL_RTX;
|
5971 |
|
|
int offset_in_r0 = -1;
|
5972 |
|
|
int sp_in_r0 = 0;
|
5973 |
|
|
int tregs_space = shmedia_target_regs_stack_adjust (&live_regs_mask);
|
5974 |
|
|
int total_size, save_size;
|
5975 |
|
|
save_schedule schedule;
|
5976 |
|
|
save_entry *entry;
|
5977 |
|
|
int *tmp_pnt;
|
5978 |
|
|
|
5979 |
|
|
if (call_really_used_regs[R0_REG] && ! fixed_regs[R0_REG]
|
5980 |
|
|
&& ! current_function_interrupt)
|
5981 |
|
|
r0 = gen_rtx_REG (Pmode, R0_REG);
|
5982 |
|
|
|
5983 |
|
|
/* D is the actual number of bytes that we need for saving registers,
|
5984 |
|
|
however, in initial_elimination_offset we have committed to using
|
5985 |
|
|
an additional TREGS_SPACE amount of bytes - in order to keep both
|
5986 |
|
|
addresses to arguments supplied by the caller and local variables
|
5987 |
|
|
valid, we must keep this gap. Place it between the incoming
|
5988 |
|
|
arguments and the actually saved registers in a bid to optimize
|
5989 |
|
|
locality of reference. */
|
5990 |
|
|
total_size = d + tregs_space;
|
5991 |
|
|
total_size += rounded_frame_size (total_size);
|
5992 |
|
|
save_size = total_size - rounded_frame_size (d);
|
5993 |
|
|
if (save_size % (STACK_BOUNDARY / BITS_PER_UNIT))
|
5994 |
|
|
d_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT)
|
5995 |
|
|
- save_size % (STACK_BOUNDARY / BITS_PER_UNIT));
|
5996 |
|
|
|
5997 |
|
|
/* If adjusting the stack in a single step costs nothing extra, do so.
|
5998 |
|
|
I.e. either if a single addi is enough, or we need a movi anyway,
|
5999 |
|
|
and we don't exceed the maximum offset range (the test for the
|
6000 |
|
|
latter is conservative for simplicity). */
|
6001 |
|
|
if (TARGET_SHMEDIA
|
6002 |
|
|
&& (CONST_OK_FOR_I10 (-total_size)
|
6003 |
|
|
|| (! CONST_OK_FOR_I10 (-(save_size + d_rounding))
|
6004 |
|
|
&& total_size <= 2044)))
|
6005 |
|
|
d_rounding = total_size - save_size;
|
6006 |
|
|
|
6007 |
|
|
offset_base = d + d_rounding;
|
6008 |
|
|
|
6009 |
|
|
output_stack_adjust (-(save_size + d_rounding), stack_pointer_rtx,
|
6010 |
|
|
0, NULL);
|
6011 |
|
|
|
6012 |
|
|
sh5_schedule_saves (&live_regs_mask, &schedule, offset_base);
|
6013 |
|
|
tmp_pnt = schedule.temps;
|
6014 |
|
|
for (entry = &schedule.entries[1]; entry->mode != VOIDmode; entry++)
|
6015 |
|
|
{
|
6016 |
|
|
enum machine_mode mode = entry->mode;
|
6017 |
|
|
unsigned int reg = entry->reg;
|
6018 |
|
|
rtx reg_rtx, mem_rtx, pre_dec = NULL_RTX;
|
6019 |
|
|
rtx orig_reg_rtx;
|
6020 |
|
|
|
6021 |
|
|
offset = entry->offset;
|
6022 |
|
|
|
6023 |
|
|
reg_rtx = gen_rtx_REG (mode, reg);
|
6024 |
|
|
|
6025 |
|
|
mem_rtx = gen_frame_mem (mode,
|
6026 |
|
|
gen_rtx_PLUS (Pmode,
|
6027 |
|
|
stack_pointer_rtx,
|
6028 |
|
|
GEN_INT (offset)));
|
6029 |
|
|
|
6030 |
|
|
GO_IF_LEGITIMATE_ADDRESS (mode, XEXP (mem_rtx, 0), try_pre_dec);
|
6031 |
|
|
|
6032 |
|
|
gcc_assert (r0);
|
6033 |
|
|
mem_rtx = NULL_RTX;
|
6034 |
|
|
|
6035 |
|
|
try_pre_dec:
|
6036 |
|
|
do
|
6037 |
|
|
if (HAVE_PRE_DECREMENT
|
6038 |
|
|
&& (offset_in_r0 - offset == GET_MODE_SIZE (mode)
|
6039 |
|
|
|| mem_rtx == NULL_RTX
|
6040 |
|
|
|| reg == PR_REG || SPECIAL_REGISTER_P (reg)))
|
6041 |
|
|
{
|
6042 |
|
|
pre_dec = gen_frame_mem (mode, gen_rtx_PRE_DEC (Pmode, r0));
|
6043 |
|
|
|
6044 |
|
|
GO_IF_LEGITIMATE_ADDRESS (mode, XEXP (pre_dec, 0),
|
6045 |
|
|
pre_dec_ok);
|
6046 |
|
|
|
6047 |
|
|
pre_dec = NULL_RTX;
|
6048 |
|
|
|
6049 |
|
|
break;
|
6050 |
|
|
|
6051 |
|
|
pre_dec_ok:
|
6052 |
|
|
mem_rtx = NULL_RTX;
|
6053 |
|
|
offset += GET_MODE_SIZE (mode);
|
6054 |
|
|
}
|
6055 |
|
|
while (0);
|
6056 |
|
|
|
6057 |
|
|
if (mem_rtx != NULL_RTX)
|
6058 |
|
|
goto addr_ok;
|
6059 |
|
|
|
6060 |
|
|
if (offset_in_r0 == -1)
|
6061 |
|
|
{
|
6062 |
|
|
emit_move_insn (r0, GEN_INT (offset));
|
6063 |
|
|
offset_in_r0 = offset;
|
6064 |
|
|
}
|
6065 |
|
|
else if (offset != offset_in_r0)
|
6066 |
|
|
{
|
6067 |
|
|
emit_move_insn (r0,
|
6068 |
|
|
gen_rtx_PLUS
|
6069 |
|
|
(Pmode, r0,
|
6070 |
|
|
GEN_INT (offset - offset_in_r0)));
|
6071 |
|
|
offset_in_r0 += offset - offset_in_r0;
|
6072 |
|
|
}
|
6073 |
|
|
|
6074 |
|
|
if (pre_dec != NULL_RTX)
|
6075 |
|
|
{
|
6076 |
|
|
if (! sp_in_r0)
|
6077 |
|
|
{
|
6078 |
|
|
emit_move_insn (r0,
|
6079 |
|
|
gen_rtx_PLUS
|
6080 |
|
|
(Pmode, r0, stack_pointer_rtx));
|
6081 |
|
|
sp_in_r0 = 1;
|
6082 |
|
|
}
|
6083 |
|
|
|
6084 |
|
|
offset -= GET_MODE_SIZE (mode);
|
6085 |
|
|
offset_in_r0 -= GET_MODE_SIZE (mode);
|
6086 |
|
|
|
6087 |
|
|
mem_rtx = pre_dec;
|
6088 |
|
|
}
|
6089 |
|
|
else if (sp_in_r0)
|
6090 |
|
|
mem_rtx = gen_frame_mem (mode, r0);
|
6091 |
|
|
else
|
6092 |
|
|
mem_rtx = gen_frame_mem (mode,
|
6093 |
|
|
gen_rtx_PLUS (Pmode,
|
6094 |
|
|
stack_pointer_rtx,
|
6095 |
|
|
r0));
|
6096 |
|
|
|
6097 |
|
|
/* We must not use an r0-based address for target-branch
|
6098 |
|
|
registers or for special registers without pre-dec
|
6099 |
|
|
memory addresses, since we store their values in r0
|
6100 |
|
|
first. */
|
6101 |
|
|
gcc_assert (!TARGET_REGISTER_P (reg)
|
6102 |
|
|
&& ((reg != PR_REG && !SPECIAL_REGISTER_P (reg))
|
6103 |
|
|
|| mem_rtx == pre_dec));
|
6104 |
|
|
|
6105 |
|
|
addr_ok:
|
6106 |
|
|
orig_reg_rtx = reg_rtx;
|
6107 |
|
|
if (TARGET_REGISTER_P (reg)
|
6108 |
|
|
|| ((reg == PR_REG || SPECIAL_REGISTER_P (reg))
|
6109 |
|
|
&& mem_rtx != pre_dec))
|
6110 |
|
|
{
|
6111 |
|
|
rtx tmp_reg = gen_rtx_REG (GET_MODE (reg_rtx), *tmp_pnt);
|
6112 |
|
|
|
6113 |
|
|
emit_move_insn (tmp_reg, reg_rtx);
|
6114 |
|
|
|
6115 |
|
|
if (REGNO (tmp_reg) == R0_REG)
|
6116 |
|
|
{
|
6117 |
|
|
offset_in_r0 = -1;
|
6118 |
|
|
sp_in_r0 = 0;
|
6119 |
|
|
gcc_assert (!refers_to_regno_p
|
6120 |
|
|
(R0_REG, R0_REG+1, mem_rtx, (rtx *) 0));
|
6121 |
|
|
}
|
6122 |
|
|
|
6123 |
|
|
if (*++tmp_pnt <= 0)
|
6124 |
|
|
tmp_pnt = schedule.temps;
|
6125 |
|
|
|
6126 |
|
|
reg_rtx = tmp_reg;
|
6127 |
|
|
}
|
6128 |
|
|
{
|
6129 |
|
|
rtx insn;
|
6130 |
|
|
|
6131 |
|
|
/* Mark as interesting for dwarf cfi generator */
|
6132 |
|
|
insn = emit_move_insn (mem_rtx, reg_rtx);
|
6133 |
|
|
RTX_FRAME_RELATED_P (insn) = 1;
|
6134 |
|
|
/* If we use an intermediate register for the save, we can't
|
6135 |
|
|
describe this exactly in cfi as a copy of the to-be-saved
|
6136 |
|
|
register into the temporary register and then the temporary
|
6137 |
|
|
register on the stack, because the temporary register can
|
6138 |
|
|
have a different natural size than the to-be-saved register.
|
6139 |
|
|
Thus, we gloss over the intermediate copy and pretend we do
|
6140 |
|
|
a direct save from the to-be-saved register. */
|
6141 |
|
|
if (REGNO (reg_rtx) != reg)
|
6142 |
|
|
{
|
6143 |
|
|
rtx set, note_rtx;
|
6144 |
|
|
|
6145 |
|
|
set = gen_rtx_SET (VOIDmode, mem_rtx, orig_reg_rtx);
|
6146 |
|
|
note_rtx = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, set,
|
6147 |
|
|
REG_NOTES (insn));
|
6148 |
|
|
REG_NOTES (insn) = note_rtx;
|
6149 |
|
|
}
|
6150 |
|
|
|
6151 |
|
|
if (TARGET_SHCOMPACT && (offset_in_r0 != -1))
|
6152 |
|
|
{
|
6153 |
|
|
rtx reg_rtx = gen_rtx_REG (mode, reg);
|
6154 |
|
|
rtx set, note_rtx;
|
6155 |
|
|
rtx mem_rtx = gen_frame_mem (mode,
|
6156 |
|
|
gen_rtx_PLUS (Pmode,
|
6157 |
|
|
stack_pointer_rtx,
|
6158 |
|
|
GEN_INT (offset)));
|
6159 |
|
|
|
6160 |
|
|
set = gen_rtx_SET (VOIDmode, mem_rtx, reg_rtx);
|
6161 |
|
|
note_rtx = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, set,
|
6162 |
|
|
REG_NOTES (insn));
|
6163 |
|
|
REG_NOTES (insn) = note_rtx;
|
6164 |
|
|
}
|
6165 |
|
|
}
|
6166 |
|
|
}
|
6167 |
|
|
|
6168 |
|
|
gcc_assert (entry->offset == d_rounding);
|
6169 |
|
|
}
|
6170 |
|
|
else
|
6171 |
|
|
push_regs (&live_regs_mask, current_function_interrupt);
|
6172 |
|
|
|
6173 |
|
|
if (flag_pic && regs_ever_live[PIC_OFFSET_TABLE_REGNUM])
|
6174 |
|
|
{
|
6175 |
|
|
rtx insn = get_last_insn ();
|
6176 |
|
|
rtx last = emit_insn (gen_GOTaddr2picreg ());
|
6177 |
|
|
|
6178 |
|
|
/* Mark these insns as possibly dead. Sometimes, flow2 may
|
6179 |
|
|
delete all uses of the PIC register. In this case, let it
|
6180 |
|
|
delete the initialization too. */
|
6181 |
|
|
do
|
6182 |
|
|
{
|
6183 |
|
|
insn = NEXT_INSN (insn);
|
6184 |
|
|
|
6185 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
|
6186 |
|
|
const0_rtx,
|
6187 |
|
|
REG_NOTES (insn));
|
6188 |
|
|
}
|
6189 |
|
|
while (insn != last);
|
6190 |
|
|
}
|
6191 |
|
|
|
6192 |
|
|
if (SHMEDIA_REGS_STACK_ADJUST ())
|
6193 |
|
|
{
|
6194 |
|
|
/* This must NOT go through the PLT, otherwise mach and macl
|
6195 |
|
|
may be clobbered. */
|
6196 |
|
|
function_symbol (gen_rtx_REG (Pmode, R0_REG),
|
6197 |
|
|
(TARGET_FPU_ANY
|
6198 |
|
|
? "__GCC_push_shmedia_regs"
|
6199 |
|
|
: "__GCC_push_shmedia_regs_nofpu"), SFUNC_GOT);
|
6200 |
|
|
emit_insn (gen_shmedia_save_restore_regs_compact
|
6201 |
|
|
(GEN_INT (-SHMEDIA_REGS_STACK_ADJUST ())));
|
6202 |
|
|
}
|
6203 |
|
|
|
6204 |
|
|
if (target_flags != save_flags && ! current_function_interrupt)
|
6205 |
|
|
{
|
6206 |
|
|
rtx insn = emit_insn (gen_toggle_sz ());
|
6207 |
|
|
|
6208 |
|
|
/* If we're lucky, a mode switch in the function body will
|
6209 |
|
|
overwrite fpscr, turning this insn dead. Tell flow this
|
6210 |
|
|
insn is ok to delete. */
|
6211 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
|
6212 |
|
|
const0_rtx,
|
6213 |
|
|
REG_NOTES (insn));
|
6214 |
|
|
}
|
6215 |
|
|
|
6216 |
|
|
target_flags = save_flags;
|
6217 |
|
|
|
6218 |
|
|
output_stack_adjust (-rounded_frame_size (d) + d_rounding,
|
6219 |
|
|
stack_pointer_rtx, 0, NULL);
|
6220 |
|
|
|
6221 |
|
|
if (frame_pointer_needed)
|
6222 |
|
|
frame_insn (GEN_MOV (hard_frame_pointer_rtx, stack_pointer_rtx));
|
6223 |
|
|
|
6224 |
|
|
if (TARGET_SHCOMPACT
|
6225 |
|
|
&& (current_function_args_info.call_cookie & ~ CALL_COOKIE_RET_TRAMP(1)))
|
6226 |
|
|
{
|
6227 |
|
|
/* This must NOT go through the PLT, otherwise mach and macl
|
6228 |
|
|
may be clobbered. */
|
6229 |
|
|
function_symbol (gen_rtx_REG (Pmode, R0_REG),
|
6230 |
|
|
"__GCC_shcompact_incoming_args", SFUNC_GOT);
|
6231 |
|
|
emit_insn (gen_shcompact_incoming_args ());
|
6232 |
|
|
}
|
6233 |
|
|
}
|
6234 |
|
|
|
6235 |
|
|
void
|
6236 |
|
|
sh_expand_epilogue (bool sibcall_p)
|
6237 |
|
|
{
|
6238 |
|
|
HARD_REG_SET live_regs_mask;
|
6239 |
|
|
int d, i;
|
6240 |
|
|
int d_rounding = 0;
|
6241 |
|
|
|
6242 |
|
|
int save_flags = target_flags;
|
6243 |
|
|
int frame_size, save_size;
|
6244 |
|
|
int fpscr_deferred = 0;
|
6245 |
|
|
int e = sibcall_p ? -1 : 1;
|
6246 |
|
|
|
6247 |
|
|
d = calc_live_regs (&live_regs_mask);
|
6248 |
|
|
|
6249 |
|
|
save_size = d;
|
6250 |
|
|
frame_size = rounded_frame_size (d);
|
6251 |
|
|
|
6252 |
|
|
if (TARGET_SH5)
|
6253 |
|
|
{
|
6254 |
|
|
int tregs_space = shmedia_target_regs_stack_adjust (&live_regs_mask);
|
6255 |
|
|
int total_size;
|
6256 |
|
|
if (d % (STACK_BOUNDARY / BITS_PER_UNIT))
|
6257 |
|
|
d_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT)
|
6258 |
|
|
- d % (STACK_BOUNDARY / BITS_PER_UNIT));
|
6259 |
|
|
|
6260 |
|
|
total_size = d + tregs_space;
|
6261 |
|
|
total_size += rounded_frame_size (total_size);
|
6262 |
|
|
save_size = total_size - frame_size;
|
6263 |
|
|
|
6264 |
|
|
/* If adjusting the stack in a single step costs nothing extra, do so.
|
6265 |
|
|
I.e. either if a single addi is enough, or we need a movi anyway,
|
6266 |
|
|
and we don't exceed the maximum offset range (the test for the
|
6267 |
|
|
latter is conservative for simplicity). */
|
6268 |
|
|
if (TARGET_SHMEDIA
|
6269 |
|
|
&& ! frame_pointer_needed
|
6270 |
|
|
&& (CONST_OK_FOR_I10 (total_size)
|
6271 |
|
|
|| (! CONST_OK_FOR_I10 (save_size + d_rounding)
|
6272 |
|
|
&& total_size <= 2044)))
|
6273 |
|
|
d_rounding = frame_size;
|
6274 |
|
|
|
6275 |
|
|
frame_size -= d_rounding;
|
6276 |
|
|
}
|
6277 |
|
|
|
6278 |
|
|
if (frame_pointer_needed)
|
6279 |
|
|
{
|
6280 |
|
|
/* We must avoid scheduling the epilogue with previous basic blocks
|
6281 |
|
|
when exception handling is enabled. See PR/18032. */
|
6282 |
|
|
if (flag_exceptions)
|
6283 |
|
|
emit_insn (gen_blockage ());
|
6284 |
|
|
output_stack_adjust (frame_size, hard_frame_pointer_rtx, e,
|
6285 |
|
|
&live_regs_mask);
|
6286 |
|
|
|
6287 |
|
|
/* We must avoid moving the stack pointer adjustment past code
|
6288 |
|
|
which reads from the local frame, else an interrupt could
|
6289 |
|
|
occur after the SP adjustment and clobber data in the local
|
6290 |
|
|
frame. */
|
6291 |
|
|
emit_insn (gen_blockage ());
|
6292 |
|
|
emit_insn (GEN_MOV (stack_pointer_rtx, hard_frame_pointer_rtx));
|
6293 |
|
|
}
|
6294 |
|
|
else if (frame_size)
|
6295 |
|
|
{
|
6296 |
|
|
/* We must avoid moving the stack pointer adjustment past code
|
6297 |
|
|
which reads from the local frame, else an interrupt could
|
6298 |
|
|
occur after the SP adjustment and clobber data in the local
|
6299 |
|
|
frame. */
|
6300 |
|
|
emit_insn (gen_blockage ());
|
6301 |
|
|
output_stack_adjust (frame_size, stack_pointer_rtx, e, &live_regs_mask);
|
6302 |
|
|
}
|
6303 |
|
|
|
6304 |
|
|
if (SHMEDIA_REGS_STACK_ADJUST ())
|
6305 |
|
|
{
|
6306 |
|
|
function_symbol (gen_rtx_REG (Pmode, R0_REG),
|
6307 |
|
|
(TARGET_FPU_ANY
|
6308 |
|
|
? "__GCC_pop_shmedia_regs"
|
6309 |
|
|
: "__GCC_pop_shmedia_regs_nofpu"), SFUNC_GOT);
|
6310 |
|
|
/* This must NOT go through the PLT, otherwise mach and macl
|
6311 |
|
|
may be clobbered. */
|
6312 |
|
|
emit_insn (gen_shmedia_save_restore_regs_compact
|
6313 |
|
|
(GEN_INT (SHMEDIA_REGS_STACK_ADJUST ())));
|
6314 |
|
|
}
|
6315 |
|
|
|
6316 |
|
|
/* Pop all the registers. */
|
6317 |
|
|
|
6318 |
|
|
if (target_flags != save_flags && ! current_function_interrupt)
|
6319 |
|
|
emit_insn (gen_toggle_sz ());
|
6320 |
|
|
if (TARGET_SH5)
|
6321 |
|
|
{
|
6322 |
|
|
int offset_base, offset;
|
6323 |
|
|
int offset_in_r0 = -1;
|
6324 |
|
|
int sp_in_r0 = 0;
|
6325 |
|
|
rtx r0 = gen_rtx_REG (Pmode, R0_REG);
|
6326 |
|
|
save_schedule schedule;
|
6327 |
|
|
save_entry *entry;
|
6328 |
|
|
int *tmp_pnt;
|
6329 |
|
|
|
6330 |
|
|
entry = sh5_schedule_saves (&live_regs_mask, &schedule, d_rounding);
|
6331 |
|
|
offset_base = -entry[1].offset + d_rounding;
|
6332 |
|
|
tmp_pnt = schedule.temps;
|
6333 |
|
|
for (; entry->mode != VOIDmode; entry--)
|
6334 |
|
|
{
|
6335 |
|
|
enum machine_mode mode = entry->mode;
|
6336 |
|
|
int reg = entry->reg;
|
6337 |
|
|
rtx reg_rtx, mem_rtx, post_inc = NULL_RTX, insn;
|
6338 |
|
|
|
6339 |
|
|
offset = offset_base + entry->offset;
|
6340 |
|
|
reg_rtx = gen_rtx_REG (mode, reg);
|
6341 |
|
|
|
6342 |
|
|
mem_rtx = gen_frame_mem (mode,
|
6343 |
|
|
gen_rtx_PLUS (Pmode,
|
6344 |
|
|
stack_pointer_rtx,
|
6345 |
|
|
GEN_INT (offset)));
|
6346 |
|
|
|
6347 |
|
|
GO_IF_LEGITIMATE_ADDRESS (mode, XEXP (mem_rtx, 0), try_post_inc);
|
6348 |
|
|
|
6349 |
|
|
mem_rtx = NULL_RTX;
|
6350 |
|
|
|
6351 |
|
|
try_post_inc:
|
6352 |
|
|
do
|
6353 |
|
|
if (HAVE_POST_INCREMENT
|
6354 |
|
|
&& (offset == offset_in_r0
|
6355 |
|
|
|| (offset + GET_MODE_SIZE (mode) != d + d_rounding
|
6356 |
|
|
&& mem_rtx == NULL_RTX)
|
6357 |
|
|
|| reg == PR_REG || SPECIAL_REGISTER_P (reg)))
|
6358 |
|
|
{
|
6359 |
|
|
post_inc = gen_frame_mem (mode, gen_rtx_POST_INC (Pmode, r0));
|
6360 |
|
|
|
6361 |
|
|
GO_IF_LEGITIMATE_ADDRESS (mode, XEXP (post_inc, 0),
|
6362 |
|
|
post_inc_ok);
|
6363 |
|
|
|
6364 |
|
|
post_inc = NULL_RTX;
|
6365 |
|
|
|
6366 |
|
|
break;
|
6367 |
|
|
|
6368 |
|
|
post_inc_ok:
|
6369 |
|
|
mem_rtx = NULL_RTX;
|
6370 |
|
|
}
|
6371 |
|
|
while (0);
|
6372 |
|
|
|
6373 |
|
|
if (mem_rtx != NULL_RTX)
|
6374 |
|
|
goto addr_ok;
|
6375 |
|
|
|
6376 |
|
|
if (offset_in_r0 == -1)
|
6377 |
|
|
{
|
6378 |
|
|
emit_move_insn (r0, GEN_INT (offset));
|
6379 |
|
|
offset_in_r0 = offset;
|
6380 |
|
|
}
|
6381 |
|
|
else if (offset != offset_in_r0)
|
6382 |
|
|
{
|
6383 |
|
|
emit_move_insn (r0,
|
6384 |
|
|
gen_rtx_PLUS
|
6385 |
|
|
(Pmode, r0,
|
6386 |
|
|
GEN_INT (offset - offset_in_r0)));
|
6387 |
|
|
offset_in_r0 += offset - offset_in_r0;
|
6388 |
|
|
}
|
6389 |
|
|
|
6390 |
|
|
if (post_inc != NULL_RTX)
|
6391 |
|
|
{
|
6392 |
|
|
if (! sp_in_r0)
|
6393 |
|
|
{
|
6394 |
|
|
emit_move_insn (r0,
|
6395 |
|
|
gen_rtx_PLUS
|
6396 |
|
|
(Pmode, r0, stack_pointer_rtx));
|
6397 |
|
|
sp_in_r0 = 1;
|
6398 |
|
|
}
|
6399 |
|
|
|
6400 |
|
|
mem_rtx = post_inc;
|
6401 |
|
|
|
6402 |
|
|
offset_in_r0 += GET_MODE_SIZE (mode);
|
6403 |
|
|
}
|
6404 |
|
|
else if (sp_in_r0)
|
6405 |
|
|
mem_rtx = gen_frame_mem (mode, r0);
|
6406 |
|
|
else
|
6407 |
|
|
mem_rtx = gen_frame_mem (mode,
|
6408 |
|
|
gen_rtx_PLUS (Pmode,
|
6409 |
|
|
stack_pointer_rtx,
|
6410 |
|
|
r0));
|
6411 |
|
|
|
6412 |
|
|
gcc_assert ((reg != PR_REG && !SPECIAL_REGISTER_P (reg))
|
6413 |
|
|
|| mem_rtx == post_inc);
|
6414 |
|
|
|
6415 |
|
|
addr_ok:
|
6416 |
|
|
if ((reg == PR_REG || SPECIAL_REGISTER_P (reg))
|
6417 |
|
|
&& mem_rtx != post_inc)
|
6418 |
|
|
{
|
6419 |
|
|
insn = emit_move_insn (r0, mem_rtx);
|
6420 |
|
|
mem_rtx = r0;
|
6421 |
|
|
}
|
6422 |
|
|
else if (TARGET_REGISTER_P (reg))
|
6423 |
|
|
{
|
6424 |
|
|
rtx tmp_reg = gen_rtx_REG (mode, *tmp_pnt);
|
6425 |
|
|
|
6426 |
|
|
/* Give the scheduler a bit of freedom by using up to
|
6427 |
|
|
MAX_TEMPS registers in a round-robin fashion. */
|
6428 |
|
|
insn = emit_move_insn (tmp_reg, mem_rtx);
|
6429 |
|
|
mem_rtx = tmp_reg;
|
6430 |
|
|
if (*++tmp_pnt < 0)
|
6431 |
|
|
tmp_pnt = schedule.temps;
|
6432 |
|
|
}
|
6433 |
|
|
|
6434 |
|
|
insn = emit_move_insn (reg_rtx, mem_rtx);
|
6435 |
|
|
if (reg == PR_MEDIA_REG && sh_media_register_for_return () >= 0)
|
6436 |
|
|
/* This is dead, unless we return with a sibcall. */
|
6437 |
|
|
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_MAYBE_DEAD,
|
6438 |
|
|
const0_rtx,
|
6439 |
|
|
REG_NOTES (insn));
|
6440 |
|
|
}
|
6441 |
|
|
|
6442 |
|
|
gcc_assert (entry->offset + offset_base == d + d_rounding);
|
6443 |
|
|
}
|
6444 |
|
|
else /* ! TARGET_SH5 */
|
6445 |
|
|
{
|
6446 |
|
|
save_size = 0;
|
6447 |
|
|
if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG))
|
6448 |
|
|
pop (PR_REG);
|
6449 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
6450 |
|
|
{
|
6451 |
|
|
int j = (FIRST_PSEUDO_REGISTER - 1) - i;
|
6452 |
|
|
|
6453 |
|
|
if (j == FPSCR_REG && current_function_interrupt && TARGET_FMOVD
|
6454 |
|
|
&& hard_regs_intersect_p (&live_regs_mask,
|
6455 |
|
|
®_class_contents[DF_REGS]))
|
6456 |
|
|
fpscr_deferred = 1;
|
6457 |
|
|
else if (j != PR_REG && TEST_HARD_REG_BIT (live_regs_mask, j))
|
6458 |
|
|
pop (j);
|
6459 |
|
|
if (j == FIRST_FP_REG && fpscr_deferred)
|
6460 |
|
|
pop (FPSCR_REG);
|
6461 |
|
|
|
6462 |
|
|
}
|
6463 |
|
|
}
|
6464 |
|
|
if (target_flags != save_flags && ! current_function_interrupt)
|
6465 |
|
|
emit_insn (gen_toggle_sz ());
|
6466 |
|
|
target_flags = save_flags;
|
6467 |
|
|
|
6468 |
|
|
output_stack_adjust (current_function_pretend_args_size
|
6469 |
|
|
+ save_size + d_rounding
|
6470 |
|
|
+ current_function_args_info.stack_regs * 8,
|
6471 |
|
|
stack_pointer_rtx, e, NULL);
|
6472 |
|
|
|
6473 |
|
|
if (current_function_calls_eh_return)
|
6474 |
|
|
emit_insn (GEN_ADD3 (stack_pointer_rtx, stack_pointer_rtx,
|
6475 |
|
|
EH_RETURN_STACKADJ_RTX));
|
6476 |
|
|
|
6477 |
|
|
/* Switch back to the normal stack if necessary. */
|
6478 |
|
|
if (lookup_attribute ("sp_switch", DECL_ATTRIBUTES (current_function_decl)))
|
6479 |
|
|
emit_insn (gen_sp_switch_2 ());
|
6480 |
|
|
|
6481 |
|
|
/* Tell flow the insn that pops PR isn't dead. */
|
6482 |
|
|
/* PR_REG will never be live in SHmedia mode, and we don't need to
|
6483 |
|
|
USE PR_MEDIA_REG, since it will be explicitly copied to TR0_REG
|
6484 |
|
|
by the return pattern. */
|
6485 |
|
|
if (TEST_HARD_REG_BIT (live_regs_mask, PR_REG))
|
6486 |
|
|
emit_insn (gen_rtx_USE (VOIDmode, gen_rtx_REG (SImode, PR_REG)));
|
6487 |
|
|
}
|
6488 |
|
|
|
6489 |
|
|
static int sh_need_epilogue_known = 0;
|
6490 |
|
|
|
6491 |
|
|
int
|
6492 |
|
|
sh_need_epilogue (void)
|
6493 |
|
|
{
|
6494 |
|
|
if (! sh_need_epilogue_known)
|
6495 |
|
|
{
|
6496 |
|
|
rtx epilogue;
|
6497 |
|
|
|
6498 |
|
|
start_sequence ();
|
6499 |
|
|
sh_expand_epilogue (0);
|
6500 |
|
|
epilogue = get_insns ();
|
6501 |
|
|
end_sequence ();
|
6502 |
|
|
sh_need_epilogue_known = (epilogue == NULL ? -1 : 1);
|
6503 |
|
|
}
|
6504 |
|
|
return sh_need_epilogue_known > 0;
|
6505 |
|
|
}
|
6506 |
|
|
|
6507 |
|
|
/* Emit code to change the current function's return address to RA.
|
6508 |
|
|
TEMP is available as a scratch register, if needed. */
|
6509 |
|
|
|
6510 |
|
|
void
|
6511 |
|
|
sh_set_return_address (rtx ra, rtx tmp)
|
6512 |
|
|
{
|
6513 |
|
|
HARD_REG_SET live_regs_mask;
|
6514 |
|
|
int d;
|
6515 |
|
|
int pr_reg = TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG;
|
6516 |
|
|
int pr_offset;
|
6517 |
|
|
|
6518 |
|
|
d = calc_live_regs (&live_regs_mask);
|
6519 |
|
|
|
6520 |
|
|
/* If pr_reg isn't life, we can set it (or the register given in
|
6521 |
|
|
sh_media_register_for_return) directly. */
|
6522 |
|
|
if (! TEST_HARD_REG_BIT (live_regs_mask, pr_reg))
|
6523 |
|
|
{
|
6524 |
|
|
rtx rr;
|
6525 |
|
|
|
6526 |
|
|
if (TARGET_SHMEDIA)
|
6527 |
|
|
{
|
6528 |
|
|
int rr_regno = sh_media_register_for_return ();
|
6529 |
|
|
|
6530 |
|
|
if (rr_regno < 0)
|
6531 |
|
|
rr_regno = pr_reg;
|
6532 |
|
|
|
6533 |
|
|
rr = gen_rtx_REG (DImode, rr_regno);
|
6534 |
|
|
}
|
6535 |
|
|
else
|
6536 |
|
|
rr = gen_rtx_REG (SImode, pr_reg);
|
6537 |
|
|
|
6538 |
|
|
emit_insn (GEN_MOV (rr, ra));
|
6539 |
|
|
/* Tell flow the register for return isn't dead. */
|
6540 |
|
|
emit_insn (gen_rtx_USE (VOIDmode, rr));
|
6541 |
|
|
return;
|
6542 |
|
|
}
|
6543 |
|
|
|
6544 |
|
|
if (TARGET_SH5)
|
6545 |
|
|
{
|
6546 |
|
|
int offset;
|
6547 |
|
|
save_schedule schedule;
|
6548 |
|
|
save_entry *entry;
|
6549 |
|
|
|
6550 |
|
|
entry = sh5_schedule_saves (&live_regs_mask, &schedule, 0);
|
6551 |
|
|
offset = entry[1].offset;
|
6552 |
|
|
for (; entry->mode != VOIDmode; entry--)
|
6553 |
|
|
if (entry->reg == pr_reg)
|
6554 |
|
|
goto found;
|
6555 |
|
|
|
6556 |
|
|
/* We can't find pr register. */
|
6557 |
|
|
gcc_unreachable ();
|
6558 |
|
|
|
6559 |
|
|
found:
|
6560 |
|
|
offset = entry->offset - offset;
|
6561 |
|
|
pr_offset = (rounded_frame_size (d) + offset
|
6562 |
|
|
+ SHMEDIA_REGS_STACK_ADJUST ());
|
6563 |
|
|
}
|
6564 |
|
|
else
|
6565 |
|
|
pr_offset = rounded_frame_size (d);
|
6566 |
|
|
|
6567 |
|
|
emit_insn (GEN_MOV (tmp, GEN_INT (pr_offset)));
|
6568 |
|
|
emit_insn (GEN_ADD3 (tmp, tmp, hard_frame_pointer_rtx));
|
6569 |
|
|
|
6570 |
|
|
tmp = gen_frame_mem (Pmode, tmp);
|
6571 |
|
|
emit_insn (GEN_MOV (tmp, ra));
|
6572 |
|
|
}
|
6573 |
|
|
|
6574 |
|
|
/* Clear variables at function end. */
|
6575 |
|
|
|
6576 |
|
|
static void
|
6577 |
|
|
sh_output_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
|
6578 |
|
|
HOST_WIDE_INT size ATTRIBUTE_UNUSED)
|
6579 |
|
|
{
|
6580 |
|
|
sh_need_epilogue_known = 0;
|
6581 |
|
|
}
|
6582 |
|
|
|
6583 |
|
|
static rtx
|
6584 |
|
|
sh_builtin_saveregs (void)
|
6585 |
|
|
{
|
6586 |
|
|
/* First unnamed integer register. */
|
6587 |
|
|
int first_intreg = current_function_args_info.arg_count[(int) SH_ARG_INT];
|
6588 |
|
|
/* Number of integer registers we need to save. */
|
6589 |
|
|
int n_intregs = MAX (0, NPARM_REGS (SImode) - first_intreg);
|
6590 |
|
|
/* First unnamed SFmode float reg */
|
6591 |
|
|
int first_floatreg = current_function_args_info.arg_count[(int) SH_ARG_FLOAT];
|
6592 |
|
|
/* Number of SFmode float regs to save. */
|
6593 |
|
|
int n_floatregs = MAX (0, NPARM_REGS (SFmode) - first_floatreg);
|
6594 |
|
|
rtx regbuf, fpregs;
|
6595 |
|
|
int bufsize, regno;
|
6596 |
|
|
HOST_WIDE_INT alias_set;
|
6597 |
|
|
|
6598 |
|
|
if (TARGET_SH5)
|
6599 |
|
|
{
|
6600 |
|
|
if (n_intregs)
|
6601 |
|
|
{
|
6602 |
|
|
int pushregs = n_intregs;
|
6603 |
|
|
|
6604 |
|
|
while (pushregs < NPARM_REGS (SImode) - 1
|
6605 |
|
|
&& (CALL_COOKIE_INT_REG_GET
|
6606 |
|
|
(current_function_args_info.call_cookie,
|
6607 |
|
|
NPARM_REGS (SImode) - pushregs)
|
6608 |
|
|
== 1))
|
6609 |
|
|
{
|
6610 |
|
|
current_function_args_info.call_cookie
|
6611 |
|
|
&= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode)
|
6612 |
|
|
- pushregs, 1);
|
6613 |
|
|
pushregs++;
|
6614 |
|
|
}
|
6615 |
|
|
|
6616 |
|
|
if (pushregs == NPARM_REGS (SImode))
|
6617 |
|
|
current_function_args_info.call_cookie
|
6618 |
|
|
|= (CALL_COOKIE_INT_REG (0, 1)
|
6619 |
|
|
| CALL_COOKIE_STACKSEQ (pushregs - 1));
|
6620 |
|
|
else
|
6621 |
|
|
current_function_args_info.call_cookie
|
6622 |
|
|
|= CALL_COOKIE_STACKSEQ (pushregs);
|
6623 |
|
|
|
6624 |
|
|
current_function_pretend_args_size += 8 * n_intregs;
|
6625 |
|
|
}
|
6626 |
|
|
if (TARGET_SHCOMPACT)
|
6627 |
|
|
return const0_rtx;
|
6628 |
|
|
}
|
6629 |
|
|
|
6630 |
|
|
if (! TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH5)
|
6631 |
|
|
{
|
6632 |
|
|
error ("__builtin_saveregs not supported by this subtarget");
|
6633 |
|
|
return const0_rtx;
|
6634 |
|
|
}
|
6635 |
|
|
|
6636 |
|
|
if (TARGET_SHMEDIA)
|
6637 |
|
|
n_floatregs = 0;
|
6638 |
|
|
|
6639 |
|
|
/* Allocate block of memory for the regs. */
|
6640 |
|
|
/* ??? If n_intregs + n_floatregs == 0, should we allocate at least 1 byte?
|
6641 |
|
|
Or can assign_stack_local accept a 0 SIZE argument? */
|
6642 |
|
|
bufsize = (n_intregs * UNITS_PER_WORD) + (n_floatregs * UNITS_PER_WORD);
|
6643 |
|
|
|
6644 |
|
|
if (TARGET_SHMEDIA)
|
6645 |
|
|
regbuf = gen_frame_mem (BLKmode, gen_rtx_REG (Pmode, ARG_POINTER_REGNUM));
|
6646 |
|
|
else if (n_floatregs & 1)
|
6647 |
|
|
{
|
6648 |
|
|
rtx addr;
|
6649 |
|
|
|
6650 |
|
|
regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0);
|
6651 |
|
|
addr = copy_to_mode_reg (Pmode, XEXP (regbuf, 0));
|
6652 |
|
|
emit_insn (gen_iorsi3 (addr, addr, GEN_INT (UNITS_PER_WORD)));
|
6653 |
|
|
regbuf = change_address (regbuf, BLKmode, addr);
|
6654 |
|
|
}
|
6655 |
|
|
else if (STACK_BOUNDARY < 64 && TARGET_FPU_DOUBLE && n_floatregs)
|
6656 |
|
|
{
|
6657 |
|
|
rtx addr, mask;
|
6658 |
|
|
|
6659 |
|
|
regbuf = assign_stack_local (BLKmode, bufsize + UNITS_PER_WORD, 0);
|
6660 |
|
|
addr = copy_to_mode_reg (Pmode, plus_constant (XEXP (regbuf, 0), 4));
|
6661 |
|
|
mask = copy_to_mode_reg (Pmode, GEN_INT (-8));
|
6662 |
|
|
emit_insn (gen_andsi3 (addr, addr, mask));
|
6663 |
|
|
regbuf = change_address (regbuf, BLKmode, addr);
|
6664 |
|
|
}
|
6665 |
|
|
else
|
6666 |
|
|
regbuf = assign_stack_local (BLKmode, bufsize, TARGET_FPU_DOUBLE ? 64 : 0);
|
6667 |
|
|
alias_set = get_varargs_alias_set ();
|
6668 |
|
|
set_mem_alias_set (regbuf, alias_set);
|
6669 |
|
|
|
6670 |
|
|
/* Save int args.
|
6671 |
|
|
This is optimized to only save the regs that are necessary. Explicitly
|
6672 |
|
|
named args need not be saved. */
|
6673 |
|
|
if (n_intregs > 0)
|
6674 |
|
|
move_block_from_reg (BASE_ARG_REG (SImode) + first_intreg,
|
6675 |
|
|
adjust_address (regbuf, BLKmode,
|
6676 |
|
|
n_floatregs * UNITS_PER_WORD),
|
6677 |
|
|
n_intregs);
|
6678 |
|
|
|
6679 |
|
|
if (TARGET_SHMEDIA)
|
6680 |
|
|
/* Return the address of the regbuf. */
|
6681 |
|
|
return XEXP (regbuf, 0);
|
6682 |
|
|
|
6683 |
|
|
/* Save float args.
|
6684 |
|
|
This is optimized to only save the regs that are necessary. Explicitly
|
6685 |
|
|
named args need not be saved.
|
6686 |
|
|
We explicitly build a pointer to the buffer because it halves the insn
|
6687 |
|
|
count when not optimizing (otherwise the pointer is built for each reg
|
6688 |
|
|
saved).
|
6689 |
|
|
We emit the moves in reverse order so that we can use predecrement. */
|
6690 |
|
|
|
6691 |
|
|
fpregs = copy_to_mode_reg (Pmode,
|
6692 |
|
|
plus_constant (XEXP (regbuf, 0),
|
6693 |
|
|
n_floatregs * UNITS_PER_WORD));
|
6694 |
|
|
if (TARGET_SH4 || TARGET_SH2A_DOUBLE)
|
6695 |
|
|
{
|
6696 |
|
|
rtx mem;
|
6697 |
|
|
for (regno = NPARM_REGS (DFmode) - 2; regno >= first_floatreg; regno -= 2)
|
6698 |
|
|
{
|
6699 |
|
|
emit_insn (gen_addsi3 (fpregs, fpregs,
|
6700 |
|
|
GEN_INT (-2 * UNITS_PER_WORD)));
|
6701 |
|
|
mem = change_address (regbuf, DFmode, fpregs);
|
6702 |
|
|
emit_move_insn (mem,
|
6703 |
|
|
gen_rtx_REG (DFmode, BASE_ARG_REG (DFmode) + regno));
|
6704 |
|
|
}
|
6705 |
|
|
regno = first_floatreg;
|
6706 |
|
|
if (regno & 1)
|
6707 |
|
|
{
|
6708 |
|
|
emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD)));
|
6709 |
|
|
mem = change_address (regbuf, SFmode, fpregs);
|
6710 |
|
|
emit_move_insn (mem,
|
6711 |
|
|
gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno
|
6712 |
|
|
- (TARGET_LITTLE_ENDIAN != 0)));
|
6713 |
|
|
}
|
6714 |
|
|
}
|
6715 |
|
|
else
|
6716 |
|
|
for (regno = NPARM_REGS (SFmode) - 1; regno >= first_floatreg; regno--)
|
6717 |
|
|
{
|
6718 |
|
|
rtx mem;
|
6719 |
|
|
|
6720 |
|
|
emit_insn (gen_addsi3 (fpregs, fpregs, GEN_INT (-UNITS_PER_WORD)));
|
6721 |
|
|
mem = change_address (regbuf, SFmode, fpregs);
|
6722 |
|
|
emit_move_insn (mem,
|
6723 |
|
|
gen_rtx_REG (SFmode, BASE_ARG_REG (SFmode) + regno));
|
6724 |
|
|
}
|
6725 |
|
|
|
6726 |
|
|
/* Return the address of the regbuf. */
|
6727 |
|
|
return XEXP (regbuf, 0);
|
6728 |
|
|
}
|
6729 |
|
|
|
6730 |
|
|
/* Define the `__builtin_va_list' type for the ABI. */
|
6731 |
|
|
|
6732 |
|
|
static tree
|
6733 |
|
|
sh_build_builtin_va_list (void)
|
6734 |
|
|
{
|
6735 |
|
|
tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
|
6736 |
|
|
tree record;
|
6737 |
|
|
|
6738 |
|
|
if (TARGET_SH5 || (! TARGET_SH2E && ! TARGET_SH4)
|
6739 |
|
|
|| TARGET_HITACHI || sh_cfun_attr_renesas_p ())
|
6740 |
|
|
return ptr_type_node;
|
6741 |
|
|
|
6742 |
|
|
record = (*lang_hooks.types.make_type) (RECORD_TYPE);
|
6743 |
|
|
|
6744 |
|
|
f_next_o = build_decl (FIELD_DECL, get_identifier ("__va_next_o"),
|
6745 |
|
|
ptr_type_node);
|
6746 |
|
|
f_next_o_limit = build_decl (FIELD_DECL,
|
6747 |
|
|
get_identifier ("__va_next_o_limit"),
|
6748 |
|
|
ptr_type_node);
|
6749 |
|
|
f_next_fp = build_decl (FIELD_DECL, get_identifier ("__va_next_fp"),
|
6750 |
|
|
ptr_type_node);
|
6751 |
|
|
f_next_fp_limit = build_decl (FIELD_DECL,
|
6752 |
|
|
get_identifier ("__va_next_fp_limit"),
|
6753 |
|
|
ptr_type_node);
|
6754 |
|
|
f_next_stack = build_decl (FIELD_DECL, get_identifier ("__va_next_stack"),
|
6755 |
|
|
ptr_type_node);
|
6756 |
|
|
|
6757 |
|
|
DECL_FIELD_CONTEXT (f_next_o) = record;
|
6758 |
|
|
DECL_FIELD_CONTEXT (f_next_o_limit) = record;
|
6759 |
|
|
DECL_FIELD_CONTEXT (f_next_fp) = record;
|
6760 |
|
|
DECL_FIELD_CONTEXT (f_next_fp_limit) = record;
|
6761 |
|
|
DECL_FIELD_CONTEXT (f_next_stack) = record;
|
6762 |
|
|
|
6763 |
|
|
TYPE_FIELDS (record) = f_next_o;
|
6764 |
|
|
TREE_CHAIN (f_next_o) = f_next_o_limit;
|
6765 |
|
|
TREE_CHAIN (f_next_o_limit) = f_next_fp;
|
6766 |
|
|
TREE_CHAIN (f_next_fp) = f_next_fp_limit;
|
6767 |
|
|
TREE_CHAIN (f_next_fp_limit) = f_next_stack;
|
6768 |
|
|
|
6769 |
|
|
layout_type (record);
|
6770 |
|
|
|
6771 |
|
|
return record;
|
6772 |
|
|
}
|
6773 |
|
|
|
6774 |
|
|
/* Implement `va_start' for varargs and stdarg. */
|
6775 |
|
|
|
6776 |
|
|
void
|
6777 |
|
|
sh_va_start (tree valist, rtx nextarg)
|
6778 |
|
|
{
|
6779 |
|
|
tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
|
6780 |
|
|
tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack;
|
6781 |
|
|
tree t, u;
|
6782 |
|
|
int nfp, nint;
|
6783 |
|
|
|
6784 |
|
|
if (TARGET_SH5)
|
6785 |
|
|
{
|
6786 |
|
|
expand_builtin_saveregs ();
|
6787 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
6788 |
|
|
return;
|
6789 |
|
|
}
|
6790 |
|
|
|
6791 |
|
|
if ((! TARGET_SH2E && ! TARGET_SH4)
|
6792 |
|
|
|| TARGET_HITACHI || sh_cfun_attr_renesas_p ())
|
6793 |
|
|
{
|
6794 |
|
|
std_expand_builtin_va_start (valist, nextarg);
|
6795 |
|
|
return;
|
6796 |
|
|
}
|
6797 |
|
|
|
6798 |
|
|
f_next_o = TYPE_FIELDS (va_list_type_node);
|
6799 |
|
|
f_next_o_limit = TREE_CHAIN (f_next_o);
|
6800 |
|
|
f_next_fp = TREE_CHAIN (f_next_o_limit);
|
6801 |
|
|
f_next_fp_limit = TREE_CHAIN (f_next_fp);
|
6802 |
|
|
f_next_stack = TREE_CHAIN (f_next_fp_limit);
|
6803 |
|
|
|
6804 |
|
|
next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o,
|
6805 |
|
|
NULL_TREE);
|
6806 |
|
|
next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit),
|
6807 |
|
|
valist, f_next_o_limit, NULL_TREE);
|
6808 |
|
|
next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp), valist, f_next_fp,
|
6809 |
|
|
NULL_TREE);
|
6810 |
|
|
next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit),
|
6811 |
|
|
valist, f_next_fp_limit, NULL_TREE);
|
6812 |
|
|
next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack),
|
6813 |
|
|
valist, f_next_stack, NULL_TREE);
|
6814 |
|
|
|
6815 |
|
|
/* Call __builtin_saveregs. */
|
6816 |
|
|
u = make_tree (ptr_type_node, expand_builtin_saveregs ());
|
6817 |
|
|
t = build2 (MODIFY_EXPR, ptr_type_node, next_fp, u);
|
6818 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
6819 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
6820 |
|
|
|
6821 |
|
|
nfp = current_function_args_info.arg_count[SH_ARG_FLOAT];
|
6822 |
|
|
if (nfp < 8)
|
6823 |
|
|
nfp = 8 - nfp;
|
6824 |
|
|
else
|
6825 |
|
|
nfp = 0;
|
6826 |
|
|
u = fold_build2 (PLUS_EXPR, ptr_type_node, u,
|
6827 |
|
|
build_int_cst (NULL_TREE, UNITS_PER_WORD * nfp));
|
6828 |
|
|
t = build2 (MODIFY_EXPR, ptr_type_node, next_fp_limit, u);
|
6829 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
6830 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
6831 |
|
|
|
6832 |
|
|
t = build2 (MODIFY_EXPR, ptr_type_node, next_o, u);
|
6833 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
6834 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
6835 |
|
|
|
6836 |
|
|
nint = current_function_args_info.arg_count[SH_ARG_INT];
|
6837 |
|
|
if (nint < 4)
|
6838 |
|
|
nint = 4 - nint;
|
6839 |
|
|
else
|
6840 |
|
|
nint = 0;
|
6841 |
|
|
u = fold_build2 (PLUS_EXPR, ptr_type_node, u,
|
6842 |
|
|
build_int_cst (NULL_TREE, UNITS_PER_WORD * nint));
|
6843 |
|
|
t = build2 (MODIFY_EXPR, ptr_type_node, next_o_limit, u);
|
6844 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
6845 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
6846 |
|
|
|
6847 |
|
|
u = make_tree (ptr_type_node, nextarg);
|
6848 |
|
|
t = build2 (MODIFY_EXPR, ptr_type_node, next_stack, u);
|
6849 |
|
|
TREE_SIDE_EFFECTS (t) = 1;
|
6850 |
|
|
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
|
6851 |
|
|
}
|
6852 |
|
|
|
6853 |
|
|
/* TYPE is a RECORD_TYPE. If there is only a single nonzero-sized
|
6854 |
|
|
member, return it. */
|
6855 |
|
|
static tree
|
6856 |
|
|
find_sole_member (tree type)
|
6857 |
|
|
{
|
6858 |
|
|
tree field, member = NULL_TREE;
|
6859 |
|
|
|
6860 |
|
|
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
6861 |
|
|
{
|
6862 |
|
|
if (TREE_CODE (field) != FIELD_DECL)
|
6863 |
|
|
continue;
|
6864 |
|
|
if (!DECL_SIZE (field))
|
6865 |
|
|
return NULL_TREE;
|
6866 |
|
|
if (integer_zerop (DECL_SIZE (field)))
|
6867 |
|
|
continue;
|
6868 |
|
|
if (member)
|
6869 |
|
|
return NULL_TREE;
|
6870 |
|
|
member = field;
|
6871 |
|
|
}
|
6872 |
|
|
return member;
|
6873 |
|
|
}
|
6874 |
|
|
/* Implement `va_arg'. */
|
6875 |
|
|
|
6876 |
|
|
static tree
|
6877 |
|
|
sh_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p,
|
6878 |
|
|
tree *post_p ATTRIBUTE_UNUSED)
|
6879 |
|
|
{
|
6880 |
|
|
HOST_WIDE_INT size, rsize;
|
6881 |
|
|
tree tmp, pptr_type_node;
|
6882 |
|
|
tree addr, lab_over = NULL, result = NULL;
|
6883 |
|
|
int pass_by_ref = targetm.calls.must_pass_in_stack (TYPE_MODE (type), type);
|
6884 |
|
|
tree eff_type;
|
6885 |
|
|
|
6886 |
|
|
if (pass_by_ref)
|
6887 |
|
|
type = build_pointer_type (type);
|
6888 |
|
|
|
6889 |
|
|
size = int_size_in_bytes (type);
|
6890 |
|
|
rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
|
6891 |
|
|
pptr_type_node = build_pointer_type (ptr_type_node);
|
6892 |
|
|
|
6893 |
|
|
if (! TARGET_SH5 && (TARGET_SH2E || TARGET_SH4)
|
6894 |
|
|
&& ! (TARGET_HITACHI || sh_cfun_attr_renesas_p ()))
|
6895 |
|
|
{
|
6896 |
|
|
tree f_next_o, f_next_o_limit, f_next_fp, f_next_fp_limit, f_next_stack;
|
6897 |
|
|
tree next_o, next_o_limit, next_fp, next_fp_limit, next_stack;
|
6898 |
|
|
int pass_as_float;
|
6899 |
|
|
tree lab_false;
|
6900 |
|
|
tree member;
|
6901 |
|
|
|
6902 |
|
|
f_next_o = TYPE_FIELDS (va_list_type_node);
|
6903 |
|
|
f_next_o_limit = TREE_CHAIN (f_next_o);
|
6904 |
|
|
f_next_fp = TREE_CHAIN (f_next_o_limit);
|
6905 |
|
|
f_next_fp_limit = TREE_CHAIN (f_next_fp);
|
6906 |
|
|
f_next_stack = TREE_CHAIN (f_next_fp_limit);
|
6907 |
|
|
|
6908 |
|
|
next_o = build3 (COMPONENT_REF, TREE_TYPE (f_next_o), valist, f_next_o,
|
6909 |
|
|
NULL_TREE);
|
6910 |
|
|
next_o_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_o_limit),
|
6911 |
|
|
valist, f_next_o_limit, NULL_TREE);
|
6912 |
|
|
next_fp = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp),
|
6913 |
|
|
valist, f_next_fp, NULL_TREE);
|
6914 |
|
|
next_fp_limit = build3 (COMPONENT_REF, TREE_TYPE (f_next_fp_limit),
|
6915 |
|
|
valist, f_next_fp_limit, NULL_TREE);
|
6916 |
|
|
next_stack = build3 (COMPONENT_REF, TREE_TYPE (f_next_stack),
|
6917 |
|
|
valist, f_next_stack, NULL_TREE);
|
6918 |
|
|
|
6919 |
|
|
/* Structures with a single member with a distinct mode are passed
|
6920 |
|
|
like their member. This is relevant if the latter has a REAL_TYPE
|
6921 |
|
|
or COMPLEX_TYPE type. */
|
6922 |
|
|
eff_type = type;
|
6923 |
|
|
while (TREE_CODE (eff_type) == RECORD_TYPE
|
6924 |
|
|
&& (member = find_sole_member (eff_type))
|
6925 |
|
|
&& (TREE_CODE (TREE_TYPE (member)) == REAL_TYPE
|
6926 |
|
|
|| TREE_CODE (TREE_TYPE (member)) == COMPLEX_TYPE
|
6927 |
|
|
|| TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE))
|
6928 |
|
|
{
|
6929 |
|
|
tree field_type = TREE_TYPE (member);
|
6930 |
|
|
|
6931 |
|
|
if (TYPE_MODE (eff_type) == TYPE_MODE (field_type))
|
6932 |
|
|
eff_type = field_type;
|
6933 |
|
|
else
|
6934 |
|
|
{
|
6935 |
|
|
gcc_assert ((TYPE_ALIGN (eff_type)
|
6936 |
|
|
< GET_MODE_ALIGNMENT (TYPE_MODE (field_type)))
|
6937 |
|
|
|| (TYPE_ALIGN (eff_type)
|
6938 |
|
|
> GET_MODE_BITSIZE (TYPE_MODE (field_type))));
|
6939 |
|
|
break;
|
6940 |
|
|
}
|
6941 |
|
|
}
|
6942 |
|
|
|
6943 |
|
|
if (TARGET_SH4)
|
6944 |
|
|
{
|
6945 |
|
|
pass_as_float = ((TREE_CODE (eff_type) == REAL_TYPE && size <= 8)
|
6946 |
|
|
|| (TREE_CODE (eff_type) == COMPLEX_TYPE
|
6947 |
|
|
&& TREE_CODE (TREE_TYPE (eff_type)) == REAL_TYPE
|
6948 |
|
|
&& size <= 16));
|
6949 |
|
|
}
|
6950 |
|
|
else
|
6951 |
|
|
{
|
6952 |
|
|
pass_as_float = (TREE_CODE (eff_type) == REAL_TYPE && size == 4);
|
6953 |
|
|
}
|
6954 |
|
|
|
6955 |
|
|
addr = create_tmp_var (pptr_type_node, NULL);
|
6956 |
|
|
lab_false = create_artificial_label ();
|
6957 |
|
|
lab_over = create_artificial_label ();
|
6958 |
|
|
|
6959 |
|
|
valist = build1 (INDIRECT_REF, ptr_type_node, addr);
|
6960 |
|
|
|
6961 |
|
|
if (pass_as_float)
|
6962 |
|
|
{
|
6963 |
|
|
tree next_fp_tmp = create_tmp_var (TREE_TYPE (f_next_fp), NULL);
|
6964 |
|
|
tree cmp;
|
6965 |
|
|
bool is_double = size == 8 && TREE_CODE (eff_type) == REAL_TYPE;
|
6966 |
|
|
|
6967 |
|
|
tmp = build1 (ADDR_EXPR, pptr_type_node, next_fp);
|
6968 |
|
|
tmp = build2 (MODIFY_EXPR, void_type_node, addr, tmp);
|
6969 |
|
|
gimplify_and_add (tmp, pre_p);
|
6970 |
|
|
|
6971 |
|
|
tmp = build2 (MODIFY_EXPR, ptr_type_node, next_fp_tmp, valist);
|
6972 |
|
|
gimplify_and_add (tmp, pre_p);
|
6973 |
|
|
tmp = next_fp_limit;
|
6974 |
|
|
if (size > 4 && !is_double)
|
6975 |
|
|
tmp = build2 (PLUS_EXPR, TREE_TYPE (tmp), tmp,
|
6976 |
|
|
fold_convert (TREE_TYPE (tmp), size_int (4 - size)));
|
6977 |
|
|
tmp = build2 (GE_EXPR, boolean_type_node, next_fp_tmp, tmp);
|
6978 |
|
|
cmp = build3 (COND_EXPR, void_type_node, tmp,
|
6979 |
|
|
build1 (GOTO_EXPR, void_type_node, lab_false),
|
6980 |
|
|
NULL_TREE);
|
6981 |
|
|
if (!is_double)
|
6982 |
|
|
gimplify_and_add (cmp, pre_p);
|
6983 |
|
|
|
6984 |
|
|
if (TYPE_ALIGN (eff_type) > BITS_PER_WORD
|
6985 |
|
|
|| (is_double || size == 16))
|
6986 |
|
|
{
|
6987 |
|
|
tmp = fold_convert (ptr_type_node, size_int (UNITS_PER_WORD));
|
6988 |
|
|
tmp = build2 (BIT_AND_EXPR, ptr_type_node, next_fp_tmp, tmp);
|
6989 |
|
|
tmp = build2 (PLUS_EXPR, ptr_type_node, next_fp_tmp, tmp);
|
6990 |
|
|
tmp = build2 (MODIFY_EXPR, ptr_type_node, next_fp_tmp, tmp);
|
6991 |
|
|
gimplify_and_add (tmp, pre_p);
|
6992 |
|
|
}
|
6993 |
|
|
if (is_double)
|
6994 |
|
|
gimplify_and_add (cmp, pre_p);
|
6995 |
|
|
|
6996 |
|
|
#ifdef FUNCTION_ARG_SCmode_WART
|
6997 |
|
|
if (TYPE_MODE (eff_type) == SCmode
|
6998 |
|
|
&& TARGET_SH4 && TARGET_LITTLE_ENDIAN)
|
6999 |
|
|
{
|
7000 |
|
|
tree subtype = TREE_TYPE (eff_type);
|
7001 |
|
|
tree real, imag;
|
7002 |
|
|
|
7003 |
|
|
imag
|
7004 |
|
|
= std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL);
|
7005 |
|
|
imag = get_initialized_tmp_var (imag, pre_p, NULL);
|
7006 |
|
|
|
7007 |
|
|
real
|
7008 |
|
|
= std_gimplify_va_arg_expr (next_fp_tmp, subtype, pre_p, NULL);
|
7009 |
|
|
real = get_initialized_tmp_var (real, pre_p, NULL);
|
7010 |
|
|
|
7011 |
|
|
result = build2 (COMPLEX_EXPR, type, real, imag);
|
7012 |
|
|
result = get_initialized_tmp_var (result, pre_p, NULL);
|
7013 |
|
|
}
|
7014 |
|
|
#endif /* FUNCTION_ARG_SCmode_WART */
|
7015 |
|
|
|
7016 |
|
|
tmp = build1 (GOTO_EXPR, void_type_node, lab_over);
|
7017 |
|
|
gimplify_and_add (tmp, pre_p);
|
7018 |
|
|
|
7019 |
|
|
tmp = build1 (LABEL_EXPR, void_type_node, lab_false);
|
7020 |
|
|
gimplify_and_add (tmp, pre_p);
|
7021 |
|
|
|
7022 |
|
|
tmp = build1 (ADDR_EXPR, pptr_type_node, next_stack);
|
7023 |
|
|
tmp = build2 (MODIFY_EXPR, void_type_node, addr, tmp);
|
7024 |
|
|
gimplify_and_add (tmp, pre_p);
|
7025 |
|
|
tmp = build2 (MODIFY_EXPR, ptr_type_node, next_fp_tmp, valist);
|
7026 |
|
|
gimplify_and_add (tmp, pre_p);
|
7027 |
|
|
|
7028 |
|
|
tmp = build2 (MODIFY_EXPR, ptr_type_node, valist, next_fp_tmp);
|
7029 |
|
|
gimplify_and_add (tmp, post_p);
|
7030 |
|
|
valist = next_fp_tmp;
|
7031 |
|
|
}
|
7032 |
|
|
else
|
7033 |
|
|
{
|
7034 |
|
|
tmp = fold_convert (ptr_type_node, size_int (rsize));
|
7035 |
|
|
tmp = build2 (PLUS_EXPR, ptr_type_node, next_o, tmp);
|
7036 |
|
|
tmp = build2 (GT_EXPR, boolean_type_node, tmp, next_o_limit);
|
7037 |
|
|
tmp = build3 (COND_EXPR, void_type_node, tmp,
|
7038 |
|
|
build1 (GOTO_EXPR, void_type_node, lab_false),
|
7039 |
|
|
NULL_TREE);
|
7040 |
|
|
gimplify_and_add (tmp, pre_p);
|
7041 |
|
|
|
7042 |
|
|
tmp = build1 (ADDR_EXPR, pptr_type_node, next_o);
|
7043 |
|
|
tmp = build2 (MODIFY_EXPR, void_type_node, addr, tmp);
|
7044 |
|
|
gimplify_and_add (tmp, pre_p);
|
7045 |
|
|
|
7046 |
|
|
tmp = build1 (GOTO_EXPR, void_type_node, lab_over);
|
7047 |
|
|
gimplify_and_add (tmp, pre_p);
|
7048 |
|
|
|
7049 |
|
|
tmp = build1 (LABEL_EXPR, void_type_node, lab_false);
|
7050 |
|
|
gimplify_and_add (tmp, pre_p);
|
7051 |
|
|
|
7052 |
|
|
if (size > 4 && ! TARGET_SH4)
|
7053 |
|
|
{
|
7054 |
|
|
tmp = build2 (MODIFY_EXPR, ptr_type_node, next_o, next_o_limit);
|
7055 |
|
|
gimplify_and_add (tmp, pre_p);
|
7056 |
|
|
}
|
7057 |
|
|
|
7058 |
|
|
tmp = build1 (ADDR_EXPR, pptr_type_node, next_stack);
|
7059 |
|
|
tmp = build2 (MODIFY_EXPR, void_type_node, addr, tmp);
|
7060 |
|
|
gimplify_and_add (tmp, pre_p);
|
7061 |
|
|
}
|
7062 |
|
|
|
7063 |
|
|
if (!result)
|
7064 |
|
|
{
|
7065 |
|
|
tmp = build1 (LABEL_EXPR, void_type_node, lab_over);
|
7066 |
|
|
gimplify_and_add (tmp, pre_p);
|
7067 |
|
|
}
|
7068 |
|
|
}
|
7069 |
|
|
|
7070 |
|
|
/* ??? In va-sh.h, there had been code to make values larger than
|
7071 |
|
|
size 8 indirect. This does not match the FUNCTION_ARG macros. */
|
7072 |
|
|
|
7073 |
|
|
tmp = std_gimplify_va_arg_expr (valist, type, pre_p, NULL);
|
7074 |
|
|
if (result)
|
7075 |
|
|
{
|
7076 |
|
|
tmp = build2 (MODIFY_EXPR, void_type_node, result, tmp);
|
7077 |
|
|
gimplify_and_add (tmp, pre_p);
|
7078 |
|
|
|
7079 |
|
|
tmp = build1 (LABEL_EXPR, void_type_node, lab_over);
|
7080 |
|
|
gimplify_and_add (tmp, pre_p);
|
7081 |
|
|
}
|
7082 |
|
|
else
|
7083 |
|
|
result = tmp;
|
7084 |
|
|
|
7085 |
|
|
if (pass_by_ref)
|
7086 |
|
|
result = build_va_arg_indirect_ref (result);
|
7087 |
|
|
|
7088 |
|
|
return result;
|
7089 |
|
|
}
|
7090 |
|
|
|
7091 |
|
|
bool
|
7092 |
|
|
sh_promote_prototypes (tree type)
|
7093 |
|
|
{
|
7094 |
|
|
if (TARGET_HITACHI)
|
7095 |
|
|
return 0;
|
7096 |
|
|
if (! type)
|
7097 |
|
|
return 1;
|
7098 |
|
|
return ! sh_attr_renesas_p (type);
|
7099 |
|
|
}
|
7100 |
|
|
|
7101 |
|
|
/* Whether an argument must be passed by reference. On SHcompact, we
|
7102 |
|
|
pretend arguments wider than 32-bits that would have been passed in
|
7103 |
|
|
registers are passed by reference, so that an SHmedia trampoline
|
7104 |
|
|
loads them into the full 64-bits registers. */
|
7105 |
|
|
|
7106 |
|
|
static int
|
7107 |
|
|
shcompact_byref (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
7108 |
|
|
tree type, bool named)
|
7109 |
|
|
{
|
7110 |
|
|
unsigned HOST_WIDE_INT size;
|
7111 |
|
|
|
7112 |
|
|
if (type)
|
7113 |
|
|
size = int_size_in_bytes (type);
|
7114 |
|
|
else
|
7115 |
|
|
size = GET_MODE_SIZE (mode);
|
7116 |
|
|
|
7117 |
|
|
if (cum->arg_count[SH_ARG_INT] < NPARM_REGS (SImode)
|
7118 |
|
|
&& (!named
|
7119 |
|
|
|| GET_SH_ARG_CLASS (mode) == SH_ARG_INT
|
7120 |
|
|
|| (GET_SH_ARG_CLASS (mode) == SH_ARG_FLOAT
|
7121 |
|
|
&& cum->arg_count[SH_ARG_FLOAT] >= NPARM_REGS (SFmode)))
|
7122 |
|
|
&& size > 4
|
7123 |
|
|
&& !SHCOMPACT_FORCE_ON_STACK (mode, type)
|
7124 |
|
|
&& !SH5_WOULD_BE_PARTIAL_NREGS (*cum, mode, type, named))
|
7125 |
|
|
return size;
|
7126 |
|
|
else
|
7127 |
|
|
return 0;
|
7128 |
|
|
}
|
7129 |
|
|
|
7130 |
|
|
static bool
|
7131 |
|
|
sh_pass_by_reference (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
7132 |
|
|
tree type, bool named)
|
7133 |
|
|
{
|
7134 |
|
|
if (targetm.calls.must_pass_in_stack (mode, type))
|
7135 |
|
|
return true;
|
7136 |
|
|
|
7137 |
|
|
/* ??? std_gimplify_va_arg_expr passes NULL for cum. That function
|
7138 |
|
|
wants to know about pass-by-reference semantics for incoming
|
7139 |
|
|
arguments. */
|
7140 |
|
|
if (! cum)
|
7141 |
|
|
return false;
|
7142 |
|
|
|
7143 |
|
|
if (TARGET_SHCOMPACT)
|
7144 |
|
|
{
|
7145 |
|
|
cum->byref = shcompact_byref (cum, mode, type, named);
|
7146 |
|
|
return cum->byref != 0;
|
7147 |
|
|
}
|
7148 |
|
|
|
7149 |
|
|
return false;
|
7150 |
|
|
}
|
7151 |
|
|
|
7152 |
|
|
static bool
|
7153 |
|
|
sh_callee_copies (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
7154 |
|
|
tree type, bool named ATTRIBUTE_UNUSED)
|
7155 |
|
|
{
|
7156 |
|
|
/* ??? How can it possibly be correct to return true only on the
|
7157 |
|
|
caller side of the equation? Is there someplace else in the
|
7158 |
|
|
sh backend that's magically producing the copies? */
|
7159 |
|
|
return (cum->outgoing
|
7160 |
|
|
&& ((mode == BLKmode ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode))
|
7161 |
|
|
% SH_MIN_ALIGN_FOR_CALLEE_COPY == 0));
|
7162 |
|
|
}
|
7163 |
|
|
|
7164 |
|
|
static int
|
7165 |
|
|
sh_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
|
7166 |
|
|
tree type, bool named ATTRIBUTE_UNUSED)
|
7167 |
|
|
{
|
7168 |
|
|
int words = 0;
|
7169 |
|
|
|
7170 |
|
|
if (!TARGET_SH5
|
7171 |
|
|
&& PASS_IN_REG_P (*cum, mode, type)
|
7172 |
|
|
&& !(TARGET_SH4 || TARGET_SH2A_DOUBLE)
|
7173 |
|
|
&& (ROUND_REG (*cum, mode)
|
7174 |
|
|
+ (mode != BLKmode
|
7175 |
|
|
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
|
7176 |
|
|
: ROUND_ADVANCE (int_size_in_bytes (type)))
|
7177 |
|
|
> NPARM_REGS (mode)))
|
7178 |
|
|
words = NPARM_REGS (mode) - ROUND_REG (*cum, mode);
|
7179 |
|
|
|
7180 |
|
|
else if (!TARGET_SHCOMPACT
|
7181 |
|
|
&& SH5_WOULD_BE_PARTIAL_NREGS (*cum, mode, type, named))
|
7182 |
|
|
words = NPARM_REGS (SImode) - cum->arg_count[SH_ARG_INT];
|
7183 |
|
|
|
7184 |
|
|
return words * UNITS_PER_WORD;
|
7185 |
|
|
}
|
7186 |
|
|
|
7187 |
|
|
|
7188 |
|
|
/* Define where to put the arguments to a function.
|
7189 |
|
|
Value is zero to push the argument on the stack,
|
7190 |
|
|
or a hard register in which to store the argument.
|
7191 |
|
|
|
7192 |
|
|
MODE is the argument's machine mode.
|
7193 |
|
|
TYPE is the data type of the argument (as a tree).
|
7194 |
|
|
This is null for libcalls where that information may
|
7195 |
|
|
not be available.
|
7196 |
|
|
CUM is a variable of type CUMULATIVE_ARGS which gives info about
|
7197 |
|
|
the preceding args and about the function being called.
|
7198 |
|
|
NAMED is nonzero if this argument is a named parameter
|
7199 |
|
|
(otherwise it is an extra parameter matching an ellipsis).
|
7200 |
|
|
|
7201 |
|
|
On SH the first args are normally in registers
|
7202 |
|
|
and the rest are pushed. Any arg that starts within the first
|
7203 |
|
|
NPARM_REGS words is at least partially passed in a register unless
|
7204 |
|
|
its data type forbids. */
|
7205 |
|
|
|
7206 |
|
|
|
7207 |
|
|
rtx
|
7208 |
|
|
sh_function_arg (CUMULATIVE_ARGS *ca, enum machine_mode mode,
|
7209 |
|
|
tree type, int named)
|
7210 |
|
|
{
|
7211 |
|
|
if (! TARGET_SH5 && mode == VOIDmode)
|
7212 |
|
|
return GEN_INT (ca->renesas_abi ? 1 : 0);
|
7213 |
|
|
|
7214 |
|
|
if (! TARGET_SH5
|
7215 |
|
|
&& PASS_IN_REG_P (*ca, mode, type)
|
7216 |
|
|
&& (named || ! (TARGET_HITACHI || ca->renesas_abi)))
|
7217 |
|
|
{
|
7218 |
|
|
int regno;
|
7219 |
|
|
|
7220 |
|
|
if (mode == SCmode && TARGET_SH4 && TARGET_LITTLE_ENDIAN
|
7221 |
|
|
&& (! FUNCTION_ARG_SCmode_WART || (ROUND_REG (*ca, mode) & 1)))
|
7222 |
|
|
{
|
7223 |
|
|
rtx r1 = gen_rtx_EXPR_LIST (VOIDmode,
|
7224 |
|
|
gen_rtx_REG (SFmode,
|
7225 |
|
|
BASE_ARG_REG (mode)
|
7226 |
|
|
+ (ROUND_REG (*ca, mode) ^ 1)),
|
7227 |
|
|
const0_rtx);
|
7228 |
|
|
rtx r2 = gen_rtx_EXPR_LIST (VOIDmode,
|
7229 |
|
|
gen_rtx_REG (SFmode,
|
7230 |
|
|
BASE_ARG_REG (mode)
|
7231 |
|
|
+ ((ROUND_REG (*ca, mode) + 1) ^ 1)),
|
7232 |
|
|
GEN_INT (4));
|
7233 |
|
|
return gen_rtx_PARALLEL(SCmode, gen_rtvec(2, r1, r2));
|
7234 |
|
|
}
|
7235 |
|
|
|
7236 |
|
|
/* If the alignment of a DF value causes an SF register to be
|
7237 |
|
|
skipped, we will use that skipped register for the next SF
|
7238 |
|
|
value. */
|
7239 |
|
|
if ((TARGET_HITACHI || ca->renesas_abi)
|
7240 |
|
|
&& ca->free_single_fp_reg
|
7241 |
|
|
&& mode == SFmode)
|
7242 |
|
|
return gen_rtx_REG (mode, ca->free_single_fp_reg);
|
7243 |
|
|
|
7244 |
|
|
regno = (BASE_ARG_REG (mode) + ROUND_REG (*ca, mode))
|
7245 |
|
|
^ (mode == SFmode && TARGET_SH4
|
7246 |
|
|
&& TARGET_LITTLE_ENDIAN != 0
|
7247 |
|
|
&& ! TARGET_HITACHI && ! ca->renesas_abi);
|
7248 |
|
|
return gen_rtx_REG (mode, regno);
|
7249 |
|
|
|
7250 |
|
|
}
|
7251 |
|
|
|
7252 |
|
|
if (TARGET_SH5)
|
7253 |
|
|
{
|
7254 |
|
|
if (mode == VOIDmode && TARGET_SHCOMPACT)
|
7255 |
|
|
return GEN_INT (ca->call_cookie);
|
7256 |
|
|
|
7257 |
|
|
/* The following test assumes unnamed arguments are promoted to
|
7258 |
|
|
DFmode. */
|
7259 |
|
|
if (mode == SFmode && ca->free_single_fp_reg)
|
7260 |
|
|
return SH5_PROTOTYPED_FLOAT_ARG (*ca, mode, ca->free_single_fp_reg);
|
7261 |
|
|
|
7262 |
|
|
if ((GET_SH_ARG_CLASS (mode) == SH_ARG_FLOAT)
|
7263 |
|
|
&& (named || ! ca->prototype_p)
|
7264 |
|
|
&& ca->arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (SFmode))
|
7265 |
|
|
{
|
7266 |
|
|
if (! ca->prototype_p && TARGET_SHMEDIA)
|
7267 |
|
|
return SH5_PROTOTYPELESS_FLOAT_ARG (*ca, mode);
|
7268 |
|
|
|
7269 |
|
|
return SH5_PROTOTYPED_FLOAT_ARG (*ca, mode,
|
7270 |
|
|
FIRST_FP_PARM_REG
|
7271 |
|
|
+ ca->arg_count[(int) SH_ARG_FLOAT]);
|
7272 |
|
|
}
|
7273 |
|
|
|
7274 |
|
|
if (ca->arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode)
|
7275 |
|
|
&& (! TARGET_SHCOMPACT
|
7276 |
|
|
|| (! SHCOMPACT_FORCE_ON_STACK (mode, type)
|
7277 |
|
|
&& ! SH5_WOULD_BE_PARTIAL_NREGS (*ca, mode,
|
7278 |
|
|
type, named))))
|
7279 |
|
|
{
|
7280 |
|
|
return gen_rtx_REG (mode, (FIRST_PARM_REG
|
7281 |
|
|
+ ca->arg_count[(int) SH_ARG_INT]));
|
7282 |
|
|
}
|
7283 |
|
|
|
7284 |
|
|
return 0;
|
7285 |
|
|
}
|
7286 |
|
|
|
7287 |
|
|
return 0;
|
7288 |
|
|
}
|
7289 |
|
|
|
7290 |
|
|
/* Update the data in CUM to advance over an argument
|
7291 |
|
|
of mode MODE and data type TYPE.
|
7292 |
|
|
(TYPE is null for libcalls where that information may not be
|
7293 |
|
|
available.) */
|
7294 |
|
|
|
7295 |
|
|
void
|
7296 |
|
|
sh_function_arg_advance (CUMULATIVE_ARGS *ca, enum machine_mode mode,
|
7297 |
|
|
tree type, int named)
|
7298 |
|
|
{
|
7299 |
|
|
if (ca->force_mem)
|
7300 |
|
|
ca->force_mem = 0;
|
7301 |
|
|
else if (TARGET_SH5)
|
7302 |
|
|
{
|
7303 |
|
|
tree type2 = (ca->byref && type
|
7304 |
|
|
? TREE_TYPE (type)
|
7305 |
|
|
: type);
|
7306 |
|
|
enum machine_mode mode2 = (ca->byref && type
|
7307 |
|
|
? TYPE_MODE (type2)
|
7308 |
|
|
: mode);
|
7309 |
|
|
int dwords = ((ca->byref
|
7310 |
|
|
? ca->byref
|
7311 |
|
|
: mode2 == BLKmode
|
7312 |
|
|
? int_size_in_bytes (type2)
|
7313 |
|
|
: GET_MODE_SIZE (mode2)) + 7) / 8;
|
7314 |
|
|
int numregs = MIN (dwords, NPARM_REGS (SImode)
|
7315 |
|
|
- ca->arg_count[(int) SH_ARG_INT]);
|
7316 |
|
|
|
7317 |
|
|
if (numregs)
|
7318 |
|
|
{
|
7319 |
|
|
ca->arg_count[(int) SH_ARG_INT] += numregs;
|
7320 |
|
|
if (TARGET_SHCOMPACT
|
7321 |
|
|
&& SHCOMPACT_FORCE_ON_STACK (mode2, type2))
|
7322 |
|
|
{
|
7323 |
|
|
ca->call_cookie
|
7324 |
|
|
|= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT]
|
7325 |
|
|
- numregs, 1);
|
7326 |
|
|
/* N.B. We want this also for outgoing. */
|
7327 |
|
|
ca->stack_regs += numregs;
|
7328 |
|
|
}
|
7329 |
|
|
else if (ca->byref)
|
7330 |
|
|
{
|
7331 |
|
|
if (! ca->outgoing)
|
7332 |
|
|
ca->stack_regs += numregs;
|
7333 |
|
|
ca->byref_regs += numregs;
|
7334 |
|
|
ca->byref = 0;
|
7335 |
|
|
do
|
7336 |
|
|
ca->call_cookie
|
7337 |
|
|
|= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT]
|
7338 |
|
|
- numregs, 2);
|
7339 |
|
|
while (--numregs);
|
7340 |
|
|
ca->call_cookie
|
7341 |
|
|
|= CALL_COOKIE_INT_REG (ca->arg_count[(int) SH_ARG_INT]
|
7342 |
|
|
- 1, 1);
|
7343 |
|
|
}
|
7344 |
|
|
else if (dwords > numregs)
|
7345 |
|
|
{
|
7346 |
|
|
int pushregs = numregs;
|
7347 |
|
|
|
7348 |
|
|
if (TARGET_SHCOMPACT)
|
7349 |
|
|
ca->stack_regs += numregs;
|
7350 |
|
|
while (pushregs < NPARM_REGS (SImode) - 1
|
7351 |
|
|
&& (CALL_COOKIE_INT_REG_GET
|
7352 |
|
|
(ca->call_cookie,
|
7353 |
|
|
NPARM_REGS (SImode) - pushregs)
|
7354 |
|
|
== 1))
|
7355 |
|
|
{
|
7356 |
|
|
ca->call_cookie
|
7357 |
|
|
&= ~ CALL_COOKIE_INT_REG (NPARM_REGS (SImode)
|
7358 |
|
|
- pushregs, 1);
|
7359 |
|
|
pushregs++;
|
7360 |
|
|
}
|
7361 |
|
|
if (numregs == NPARM_REGS (SImode))
|
7362 |
|
|
ca->call_cookie
|
7363 |
|
|
|= CALL_COOKIE_INT_REG (0, 1)
|
7364 |
|
|
| CALL_COOKIE_STACKSEQ (numregs - 1);
|
7365 |
|
|
else
|
7366 |
|
|
ca->call_cookie
|
7367 |
|
|
|= CALL_COOKIE_STACKSEQ (numregs);
|
7368 |
|
|
}
|
7369 |
|
|
}
|
7370 |
|
|
if (GET_SH_ARG_CLASS (mode2) == SH_ARG_FLOAT
|
7371 |
|
|
&& (named || ! ca->prototype_p))
|
7372 |
|
|
{
|
7373 |
|
|
if (mode2 == SFmode && ca->free_single_fp_reg)
|
7374 |
|
|
ca->free_single_fp_reg = 0;
|
7375 |
|
|
else if (ca->arg_count[(int) SH_ARG_FLOAT]
|
7376 |
|
|
< NPARM_REGS (SFmode))
|
7377 |
|
|
{
|
7378 |
|
|
int numfpregs
|
7379 |
|
|
= MIN ((GET_MODE_SIZE (mode2) + 7) / 8 * 2,
|
7380 |
|
|
NPARM_REGS (SFmode)
|
7381 |
|
|
- ca->arg_count[(int) SH_ARG_FLOAT]);
|
7382 |
|
|
|
7383 |
|
|
ca->arg_count[(int) SH_ARG_FLOAT] += numfpregs;
|
7384 |
|
|
|
7385 |
|
|
if (TARGET_SHCOMPACT && ! ca->prototype_p)
|
7386 |
|
|
{
|
7387 |
|
|
if (ca->outgoing && numregs > 0)
|
7388 |
|
|
do
|
7389 |
|
|
{
|
7390 |
|
|
ca->call_cookie
|
7391 |
|
|
|= (CALL_COOKIE_INT_REG
|
7392 |
|
|
(ca->arg_count[(int) SH_ARG_INT]
|
7393 |
|
|
- numregs + ((numfpregs - 2) / 2),
|
7394 |
|
|
4 + (ca->arg_count[(int) SH_ARG_FLOAT]
|
7395 |
|
|
- numfpregs) / 2));
|
7396 |
|
|
}
|
7397 |
|
|
while (numfpregs -= 2);
|
7398 |
|
|
}
|
7399 |
|
|
else if (mode2 == SFmode && (named)
|
7400 |
|
|
&& (ca->arg_count[(int) SH_ARG_FLOAT]
|
7401 |
|
|
< NPARM_REGS (SFmode)))
|
7402 |
|
|
ca->free_single_fp_reg
|
7403 |
|
|
= FIRST_FP_PARM_REG - numfpregs
|
7404 |
|
|
+ ca->arg_count[(int) SH_ARG_FLOAT] + 1;
|
7405 |
|
|
}
|
7406 |
|
|
}
|
7407 |
|
|
return;
|
7408 |
|
|
}
|
7409 |
|
|
|
7410 |
|
|
if ((TARGET_HITACHI || ca->renesas_abi) && TARGET_FPU_DOUBLE)
|
7411 |
|
|
{
|
7412 |
|
|
/* Note that we've used the skipped register. */
|
7413 |
|
|
if (mode == SFmode && ca->free_single_fp_reg)
|
7414 |
|
|
{
|
7415 |
|
|
ca->free_single_fp_reg = 0;
|
7416 |
|
|
return;
|
7417 |
|
|
}
|
7418 |
|
|
/* When we have a DF after an SF, there's an SF register that get
|
7419 |
|
|
skipped in order to align the DF value. We note this skipped
|
7420 |
|
|
register, because the next SF value will use it, and not the
|
7421 |
|
|
SF that follows the DF. */
|
7422 |
|
|
if (mode == DFmode
|
7423 |
|
|
&& ROUND_REG (*ca, DFmode) != ROUND_REG (*ca, SFmode))
|
7424 |
|
|
{
|
7425 |
|
|
ca->free_single_fp_reg = (ROUND_REG (*ca, SFmode)
|
7426 |
|
|
+ BASE_ARG_REG (mode));
|
7427 |
|
|
}
|
7428 |
|
|
}
|
7429 |
|
|
|
7430 |
|
|
if (! ((TARGET_SH4 || TARGET_SH2A) || ca->renesas_abi)
|
7431 |
|
|
|| PASS_IN_REG_P (*ca, mode, type))
|
7432 |
|
|
(ca->arg_count[(int) GET_SH_ARG_CLASS (mode)]
|
7433 |
|
|
= (ROUND_REG (*ca, mode)
|
7434 |
|
|
+ (mode == BLKmode
|
7435 |
|
|
? ROUND_ADVANCE (int_size_in_bytes (type))
|
7436 |
|
|
: ROUND_ADVANCE (GET_MODE_SIZE (mode)))));
|
7437 |
|
|
}
|
7438 |
|
|
|
7439 |
|
|
/* The Renesas calling convention doesn't quite fit into this scheme since
|
7440 |
|
|
the address is passed like an invisible argument, but one that is always
|
7441 |
|
|
passed in memory. */
|
7442 |
|
|
static rtx
|
7443 |
|
|
sh_struct_value_rtx (tree fndecl, int incoming ATTRIBUTE_UNUSED)
|
7444 |
|
|
{
|
7445 |
|
|
if (TARGET_HITACHI || sh_attr_renesas_p (fndecl))
|
7446 |
|
|
return 0;
|
7447 |
|
|
return gen_rtx_REG (Pmode, 2);
|
7448 |
|
|
}
|
7449 |
|
|
|
7450 |
|
|
/* Worker function for TARGET_RETURN_IN_MEMORY. */
|
7451 |
|
|
|
7452 |
|
|
static bool
|
7453 |
|
|
sh_return_in_memory (tree type, tree fndecl)
|
7454 |
|
|
{
|
7455 |
|
|
if (TARGET_SH5)
|
7456 |
|
|
{
|
7457 |
|
|
if (TYPE_MODE (type) == BLKmode)
|
7458 |
|
|
return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)) > 8;
|
7459 |
|
|
else
|
7460 |
|
|
return GET_MODE_SIZE (TYPE_MODE (type)) > 8;
|
7461 |
|
|
}
|
7462 |
|
|
else
|
7463 |
|
|
{
|
7464 |
|
|
return (TYPE_MODE (type) == BLKmode
|
7465 |
|
|
|| ((TARGET_HITACHI || sh_attr_renesas_p (fndecl))
|
7466 |
|
|
&& TREE_CODE (type) == RECORD_TYPE));
|
7467 |
|
|
}
|
7468 |
|
|
}
|
7469 |
|
|
|
7470 |
|
|
/* We actually emit the code in sh_expand_prologue. We used to use
|
7471 |
|
|
a static variable to flag that we need to emit this code, but that
|
7472 |
|
|
doesn't when inlining, when functions are deferred and then emitted
|
7473 |
|
|
later. Fortunately, we already have two flags that are part of struct
|
7474 |
|
|
function that tell if a function uses varargs or stdarg. */
|
7475 |
|
|
static void
|
7476 |
|
|
sh_setup_incoming_varargs (CUMULATIVE_ARGS *ca,
|
7477 |
|
|
enum machine_mode mode,
|
7478 |
|
|
tree type,
|
7479 |
|
|
int *pretend_arg_size,
|
7480 |
|
|
int second_time ATTRIBUTE_UNUSED)
|
7481 |
|
|
{
|
7482 |
|
|
gcc_assert (current_function_stdarg);
|
7483 |
|
|
if (TARGET_VARARGS_PRETEND_ARGS (current_function_decl))
|
7484 |
|
|
{
|
7485 |
|
|
int named_parm_regs, anon_parm_regs;
|
7486 |
|
|
|
7487 |
|
|
named_parm_regs = (ROUND_REG (*ca, mode)
|
7488 |
|
|
+ (mode == BLKmode
|
7489 |
|
|
? ROUND_ADVANCE (int_size_in_bytes (type))
|
7490 |
|
|
: ROUND_ADVANCE (GET_MODE_SIZE (mode))));
|
7491 |
|
|
anon_parm_regs = NPARM_REGS (SImode) - named_parm_regs;
|
7492 |
|
|
if (anon_parm_regs > 0)
|
7493 |
|
|
*pretend_arg_size = anon_parm_regs * 4;
|
7494 |
|
|
}
|
7495 |
|
|
}
|
7496 |
|
|
|
7497 |
|
|
static bool
|
7498 |
|
|
sh_strict_argument_naming (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED)
|
7499 |
|
|
{
|
7500 |
|
|
return TARGET_SH5;
|
7501 |
|
|
}
|
7502 |
|
|
|
7503 |
|
|
static bool
|
7504 |
|
|
sh_pretend_outgoing_varargs_named (CUMULATIVE_ARGS *ca)
|
7505 |
|
|
{
|
7506 |
|
|
return ! (TARGET_HITACHI || ca->renesas_abi) && ! TARGET_SH5;
|
7507 |
|
|
}
|
7508 |
|
|
|
7509 |
|
|
|
7510 |
|
|
/* Define the offset between two registers, one to be eliminated, and
|
7511 |
|
|
the other its replacement, at the start of a routine. */
|
7512 |
|
|
|
7513 |
|
|
int
|
7514 |
|
|
initial_elimination_offset (int from, int to)
|
7515 |
|
|
{
|
7516 |
|
|
int regs_saved;
|
7517 |
|
|
int regs_saved_rounding = 0;
|
7518 |
|
|
int total_saved_regs_space;
|
7519 |
|
|
int total_auto_space;
|
7520 |
|
|
int save_flags = target_flags;
|
7521 |
|
|
int copy_flags;
|
7522 |
|
|
HARD_REG_SET live_regs_mask;
|
7523 |
|
|
|
7524 |
|
|
shmedia_space_reserved_for_target_registers = false;
|
7525 |
|
|
regs_saved = calc_live_regs (&live_regs_mask);
|
7526 |
|
|
regs_saved += SHMEDIA_REGS_STACK_ADJUST ();
|
7527 |
|
|
|
7528 |
|
|
if (shmedia_reserve_space_for_target_registers_p (regs_saved, &live_regs_mask))
|
7529 |
|
|
{
|
7530 |
|
|
shmedia_space_reserved_for_target_registers = true;
|
7531 |
|
|
regs_saved += shmedia_target_regs_stack_adjust (&live_regs_mask);
|
7532 |
|
|
}
|
7533 |
|
|
|
7534 |
|
|
if (TARGET_SH5 && regs_saved % (STACK_BOUNDARY / BITS_PER_UNIT))
|
7535 |
|
|
regs_saved_rounding = ((STACK_BOUNDARY / BITS_PER_UNIT)
|
7536 |
|
|
- regs_saved % (STACK_BOUNDARY / BITS_PER_UNIT));
|
7537 |
|
|
|
7538 |
|
|
total_auto_space = rounded_frame_size (regs_saved) - regs_saved_rounding;
|
7539 |
|
|
copy_flags = target_flags;
|
7540 |
|
|
target_flags = save_flags;
|
7541 |
|
|
|
7542 |
|
|
total_saved_regs_space = regs_saved + regs_saved_rounding;
|
7543 |
|
|
|
7544 |
|
|
if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
|
7545 |
|
|
return total_saved_regs_space + total_auto_space
|
7546 |
|
|
+ current_function_args_info.byref_regs * 8;
|
7547 |
|
|
|
7548 |
|
|
if (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
|
7549 |
|
|
return total_saved_regs_space + total_auto_space
|
7550 |
|
|
+ current_function_args_info.byref_regs * 8;
|
7551 |
|
|
|
7552 |
|
|
/* Initial gap between fp and sp is 0. */
|
7553 |
|
|
if (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
|
7554 |
|
|
return 0;
|
7555 |
|
|
|
7556 |
|
|
if (from == FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM)
|
7557 |
|
|
return rounded_frame_size (0);
|
7558 |
|
|
|
7559 |
|
|
if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
|
7560 |
|
|
return rounded_frame_size (0);
|
7561 |
|
|
|
7562 |
|
|
gcc_assert (from == RETURN_ADDRESS_POINTER_REGNUM
|
7563 |
|
|
&& (to == HARD_FRAME_POINTER_REGNUM
|
7564 |
|
|
|| to == STACK_POINTER_REGNUM));
|
7565 |
|
|
if (TARGET_SH5)
|
7566 |
|
|
{
|
7567 |
|
|
int n = total_saved_regs_space;
|
7568 |
|
|
int pr_reg = TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG;
|
7569 |
|
|
save_schedule schedule;
|
7570 |
|
|
save_entry *entry;
|
7571 |
|
|
|
7572 |
|
|
n += total_auto_space;
|
7573 |
|
|
|
7574 |
|
|
/* If it wasn't saved, there's not much we can do. */
|
7575 |
|
|
if (! TEST_HARD_REG_BIT (live_regs_mask, pr_reg))
|
7576 |
|
|
return n;
|
7577 |
|
|
|
7578 |
|
|
target_flags = copy_flags;
|
7579 |
|
|
|
7580 |
|
|
sh5_schedule_saves (&live_regs_mask, &schedule, n);
|
7581 |
|
|
for (entry = &schedule.entries[1]; entry->mode != VOIDmode; entry++)
|
7582 |
|
|
if (entry->reg == pr_reg)
|
7583 |
|
|
{
|
7584 |
|
|
target_flags = save_flags;
|
7585 |
|
|
return entry->offset;
|
7586 |
|
|
}
|
7587 |
|
|
gcc_unreachable ();
|
7588 |
|
|
}
|
7589 |
|
|
else
|
7590 |
|
|
return total_auto_space;
|
7591 |
|
|
}
|
7592 |
|
|
|
7593 |
|
|
/* Insert any deferred function attributes from earlier pragmas. */
|
7594 |
|
|
static void
|
7595 |
|
|
sh_insert_attributes (tree node, tree *attributes)
|
7596 |
|
|
{
|
7597 |
|
|
tree attrs;
|
7598 |
|
|
|
7599 |
|
|
if (TREE_CODE (node) != FUNCTION_DECL)
|
7600 |
|
|
return;
|
7601 |
|
|
|
7602 |
|
|
/* We are only interested in fields. */
|
7603 |
|
|
if (!DECL_P (node))
|
7604 |
|
|
return;
|
7605 |
|
|
|
7606 |
|
|
/* Append the attributes to the deferred attributes. */
|
7607 |
|
|
*sh_deferred_function_attributes_tail = *attributes;
|
7608 |
|
|
attrs = sh_deferred_function_attributes;
|
7609 |
|
|
if (!attrs)
|
7610 |
|
|
return;
|
7611 |
|
|
|
7612 |
|
|
/* Some attributes imply or require the interrupt attribute. */
|
7613 |
|
|
if (!lookup_attribute ("interrupt_handler", attrs)
|
7614 |
|
|
&& !lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (node)))
|
7615 |
|
|
{
|
7616 |
|
|
/* If we have a trapa_handler, but no interrupt_handler attribute,
|
7617 |
|
|
insert an interrupt_handler attribute. */
|
7618 |
|
|
if (lookup_attribute ("trapa_handler", attrs) != NULL_TREE)
|
7619 |
|
|
/* We can't use sh_pr_interrupt here because that's not in the
|
7620 |
|
|
java frontend. */
|
7621 |
|
|
attrs
|
7622 |
|
|
= tree_cons (get_identifier("interrupt_handler"), NULL_TREE, attrs);
|
7623 |
|
|
/* However, for sp_switch, trap_exit and nosave_low_regs, if the
|
7624 |
|
|
interrupt attribute is missing, we ignore the attribute and warn. */
|
7625 |
|
|
else if (lookup_attribute ("sp_switch", attrs)
|
7626 |
|
|
|| lookup_attribute ("trap_exit", attrs)
|
7627 |
|
|
|| lookup_attribute ("nosave_low_regs", attrs))
|
7628 |
|
|
{
|
7629 |
|
|
tree *tail;
|
7630 |
|
|
|
7631 |
|
|
for (tail = attributes; attrs; attrs = TREE_CHAIN (attrs))
|
7632 |
|
|
{
|
7633 |
|
|
if (is_attribute_p ("sp_switch", TREE_PURPOSE (attrs))
|
7634 |
|
|
|| is_attribute_p ("trap_exit", TREE_PURPOSE (attrs))
|
7635 |
|
|
|| is_attribute_p ("nosave_low_regs", TREE_PURPOSE (attrs)))
|
7636 |
|
|
warning (OPT_Wattributes,
|
7637 |
|
|
"%qs attribute only applies to interrupt functions",
|
7638 |
|
|
IDENTIFIER_POINTER (TREE_PURPOSE (attrs)));
|
7639 |
|
|
else
|
7640 |
|
|
{
|
7641 |
|
|
*tail = tree_cons (TREE_PURPOSE (attrs), NULL_TREE,
|
7642 |
|
|
NULL_TREE);
|
7643 |
|
|
tail = &TREE_CHAIN (*tail);
|
7644 |
|
|
}
|
7645 |
|
|
}
|
7646 |
|
|
attrs = *attributes;
|
7647 |
|
|
}
|
7648 |
|
|
}
|
7649 |
|
|
|
7650 |
|
|
/* Install the processed list. */
|
7651 |
|
|
*attributes = attrs;
|
7652 |
|
|
|
7653 |
|
|
/* Clear deferred attributes. */
|
7654 |
|
|
sh_deferred_function_attributes = NULL_TREE;
|
7655 |
|
|
sh_deferred_function_attributes_tail = &sh_deferred_function_attributes;
|
7656 |
|
|
|
7657 |
|
|
return;
|
7658 |
|
|
}
|
7659 |
|
|
|
7660 |
|
|
/* Supported attributes:
|
7661 |
|
|
|
7662 |
|
|
interrupt_handler -- specifies this function is an interrupt handler.
|
7663 |
|
|
|
7664 |
|
|
trapa_handler - like above, but don't save all registers.
|
7665 |
|
|
|
7666 |
|
|
sp_switch -- specifies an alternate stack for an interrupt handler
|
7667 |
|
|
to run on.
|
7668 |
|
|
|
7669 |
|
|
trap_exit -- use a trapa to exit an interrupt function instead of
|
7670 |
|
|
an rte instruction.
|
7671 |
|
|
|
7672 |
|
|
nosave_low_regs - don't save r0..r7 in an interrupt handler.
|
7673 |
|
|
This is useful on the SH3 and upwards,
|
7674 |
|
|
which has a separate set of low regs for User and Supervisor modes.
|
7675 |
|
|
This should only be used for the lowest level of interrupts. Higher levels
|
7676 |
|
|
of interrupts must save the registers in case they themselves are
|
7677 |
|
|
interrupted.
|
7678 |
|
|
|
7679 |
|
|
renesas -- use Renesas calling/layout conventions (functions and
|
7680 |
|
|
structures).
|
7681 |
|
|
|
7682 |
|
|
*/
|
7683 |
|
|
|
7684 |
|
|
const struct attribute_spec sh_attribute_table[] =
|
7685 |
|
|
{
|
7686 |
|
|
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
7687 |
|
|
{ "interrupt_handler", 0, 0, true, false, false, sh_handle_interrupt_handler_attribute },
|
7688 |
|
|
{ "sp_switch", 1, 1, true, false, false, sh_handle_sp_switch_attribute },
|
7689 |
|
|
{ "trap_exit", 1, 1, true, false, false, sh_handle_trap_exit_attribute },
|
7690 |
|
|
{ "renesas", 0, 0, false, true, false, sh_handle_renesas_attribute },
|
7691 |
|
|
{ "trapa_handler", 0, 0, true, false, false, sh_handle_interrupt_handler_attribute },
|
7692 |
|
|
{ "nosave_low_regs", 0, 0, true, false, false, sh_handle_interrupt_handler_attribute },
|
7693 |
|
|
#ifdef SYMBIAN
|
7694 |
|
|
/* Symbian support adds three new attributes:
|
7695 |
|
|
dllexport - for exporting a function/variable that will live in a dll
|
7696 |
|
|
dllimport - for importing a function/variable from a dll
|
7697 |
|
|
|
7698 |
|
|
Microsoft allows multiple declspecs in one __declspec, separating
|
7699 |
|
|
them with spaces. We do NOT support this. Instead, use __declspec
|
7700 |
|
|
multiple times. */
|
7701 |
|
|
{ "dllimport", 0, 0, true, false, false, sh_symbian_handle_dll_attribute },
|
7702 |
|
|
{ "dllexport", 0, 0, true, false, false, sh_symbian_handle_dll_attribute },
|
7703 |
|
|
#endif
|
7704 |
|
|
{ NULL, 0, 0, false, false, false, NULL }
|
7705 |
|
|
};
|
7706 |
|
|
|
7707 |
|
|
/* Handle an "interrupt_handler" attribute; arguments as in
|
7708 |
|
|
struct attribute_spec.handler. */
|
7709 |
|
|
static tree
|
7710 |
|
|
sh_handle_interrupt_handler_attribute (tree *node, tree name,
|
7711 |
|
|
tree args ATTRIBUTE_UNUSED,
|
7712 |
|
|
int flags ATTRIBUTE_UNUSED,
|
7713 |
|
|
bool *no_add_attrs)
|
7714 |
|
|
{
|
7715 |
|
|
if (TREE_CODE (*node) != FUNCTION_DECL)
|
7716 |
|
|
{
|
7717 |
|
|
warning (OPT_Wattributes, "%qs attribute only applies to functions",
|
7718 |
|
|
IDENTIFIER_POINTER (name));
|
7719 |
|
|
*no_add_attrs = true;
|
7720 |
|
|
}
|
7721 |
|
|
else if (TARGET_SHCOMPACT)
|
7722 |
|
|
{
|
7723 |
|
|
error ("attribute interrupt_handler is not compatible with -m5-compact");
|
7724 |
|
|
*no_add_attrs = true;
|
7725 |
|
|
}
|
7726 |
|
|
|
7727 |
|
|
return NULL_TREE;
|
7728 |
|
|
}
|
7729 |
|
|
|
7730 |
|
|
/* Handle an "sp_switch" attribute; arguments as in
|
7731 |
|
|
struct attribute_spec.handler. */
|
7732 |
|
|
static tree
|
7733 |
|
|
sh_handle_sp_switch_attribute (tree *node, tree name, tree args,
|
7734 |
|
|
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
|
7735 |
|
|
{
|
7736 |
|
|
if (TREE_CODE (*node) != FUNCTION_DECL)
|
7737 |
|
|
{
|
7738 |
|
|
warning (OPT_Wattributes, "%qs attribute only applies to functions",
|
7739 |
|
|
IDENTIFIER_POINTER (name));
|
7740 |
|
|
*no_add_attrs = true;
|
7741 |
|
|
}
|
7742 |
|
|
else if (TREE_CODE (TREE_VALUE (args)) != STRING_CST)
|
7743 |
|
|
{
|
7744 |
|
|
/* The argument must be a constant string. */
|
7745 |
|
|
warning (OPT_Wattributes, "%qs attribute argument not a string constant",
|
7746 |
|
|
IDENTIFIER_POINTER (name));
|
7747 |
|
|
*no_add_attrs = true;
|
7748 |
|
|
}
|
7749 |
|
|
|
7750 |
|
|
return NULL_TREE;
|
7751 |
|
|
}
|
7752 |
|
|
|
7753 |
|
|
/* Handle an "trap_exit" attribute; arguments as in
|
7754 |
|
|
struct attribute_spec.handler. */
|
7755 |
|
|
static tree
|
7756 |
|
|
sh_handle_trap_exit_attribute (tree *node, tree name, tree args,
|
7757 |
|
|
int flags ATTRIBUTE_UNUSED, bool *no_add_attrs)
|
7758 |
|
|
{
|
7759 |
|
|
if (TREE_CODE (*node) != FUNCTION_DECL)
|
7760 |
|
|
{
|
7761 |
|
|
warning (OPT_Wattributes, "%qs attribute only applies to functions",
|
7762 |
|
|
IDENTIFIER_POINTER (name));
|
7763 |
|
|
*no_add_attrs = true;
|
7764 |
|
|
}
|
7765 |
|
|
/* The argument specifies a trap number to be used in a trapa instruction
|
7766 |
|
|
at function exit (instead of an rte instruction). */
|
7767 |
|
|
else if (TREE_CODE (TREE_VALUE (args)) != INTEGER_CST)
|
7768 |
|
|
{
|
7769 |
|
|
/* The argument must be a constant integer. */
|
7770 |
|
|
warning (OPT_Wattributes, "%qs attribute argument not an "
|
7771 |
|
|
"integer constant", IDENTIFIER_POINTER (name));
|
7772 |
|
|
*no_add_attrs = true;
|
7773 |
|
|
}
|
7774 |
|
|
|
7775 |
|
|
return NULL_TREE;
|
7776 |
|
|
}
|
7777 |
|
|
|
7778 |
|
|
static tree
|
7779 |
|
|
sh_handle_renesas_attribute (tree *node ATTRIBUTE_UNUSED,
|
7780 |
|
|
tree name ATTRIBUTE_UNUSED,
|
7781 |
|
|
tree args ATTRIBUTE_UNUSED,
|
7782 |
|
|
int flags ATTRIBUTE_UNUSED,
|
7783 |
|
|
bool *no_add_attrs ATTRIBUTE_UNUSED)
|
7784 |
|
|
{
|
7785 |
|
|
return NULL_TREE;
|
7786 |
|
|
}
|
7787 |
|
|
|
7788 |
|
|
/* True if __attribute__((renesas)) or -mrenesas. */
|
7789 |
|
|
int
|
7790 |
|
|
sh_attr_renesas_p (tree td)
|
7791 |
|
|
{
|
7792 |
|
|
if (TARGET_HITACHI)
|
7793 |
|
|
return 1;
|
7794 |
|
|
if (td == 0)
|
7795 |
|
|
return 0;
|
7796 |
|
|
if (DECL_P (td))
|
7797 |
|
|
td = TREE_TYPE (td);
|
7798 |
|
|
if (td == error_mark_node)
|
7799 |
|
|
return 0;
|
7800 |
|
|
return (lookup_attribute ("renesas", TYPE_ATTRIBUTES (td))
|
7801 |
|
|
!= NULL_TREE);
|
7802 |
|
|
}
|
7803 |
|
|
|
7804 |
|
|
/* True if __attribute__((renesas)) or -mrenesas, for the current
|
7805 |
|
|
function. */
|
7806 |
|
|
int
|
7807 |
|
|
sh_cfun_attr_renesas_p (void)
|
7808 |
|
|
{
|
7809 |
|
|
return sh_attr_renesas_p (current_function_decl);
|
7810 |
|
|
}
|
7811 |
|
|
|
7812 |
|
|
int
|
7813 |
|
|
sh_cfun_interrupt_handler_p (void)
|
7814 |
|
|
{
|
7815 |
|
|
return (lookup_attribute ("interrupt_handler",
|
7816 |
|
|
DECL_ATTRIBUTES (current_function_decl))
|
7817 |
|
|
!= NULL_TREE);
|
7818 |
|
|
}
|
7819 |
|
|
|
7820 |
|
|
/* Implement TARGET_CHECK_PCH_TARGET_FLAGS. */
|
7821 |
|
|
|
7822 |
|
|
static const char *
|
7823 |
|
|
sh_check_pch_target_flags (int old_flags)
|
7824 |
|
|
{
|
7825 |
|
|
if ((old_flags ^ target_flags) & (MASK_SH1 | MASK_SH2 | MASK_SH3
|
7826 |
|
|
| MASK_SH_E | MASK_HARD_SH4
|
7827 |
|
|
| MASK_FPU_SINGLE | MASK_SH4))
|
7828 |
|
|
return _("created and used with different architectures / ABIs");
|
7829 |
|
|
if ((old_flags ^ target_flags) & MASK_HITACHI)
|
7830 |
|
|
return _("created and used with different ABIs");
|
7831 |
|
|
if ((old_flags ^ target_flags) & MASK_LITTLE_ENDIAN)
|
7832 |
|
|
return _("created and used with different endianness");
|
7833 |
|
|
return NULL;
|
7834 |
|
|
}
|
7835 |
|
|
|
7836 |
|
|
/* Predicates used by the templates. */
|
7837 |
|
|
|
7838 |
|
|
/* Returns 1 if OP is MACL, MACH or PR. The input must be a REG rtx.
|
7839 |
|
|
Used only in general_movsrc_operand. */
|
7840 |
|
|
|
7841 |
|
|
int
|
7842 |
|
|
system_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
7843 |
|
|
{
|
7844 |
|
|
switch (REGNO (op))
|
7845 |
|
|
{
|
7846 |
|
|
case PR_REG:
|
7847 |
|
|
case MACL_REG:
|
7848 |
|
|
case MACH_REG:
|
7849 |
|
|
return 1;
|
7850 |
|
|
}
|
7851 |
|
|
return 0;
|
7852 |
|
|
}
|
7853 |
|
|
|
7854 |
|
|
/* Nonzero if OP is a floating point value with value 0.0. */
|
7855 |
|
|
|
7856 |
|
|
int
|
7857 |
|
|
fp_zero_operand (rtx op)
|
7858 |
|
|
{
|
7859 |
|
|
REAL_VALUE_TYPE r;
|
7860 |
|
|
|
7861 |
|
|
if (GET_MODE (op) != SFmode)
|
7862 |
|
|
return 0;
|
7863 |
|
|
|
7864 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
|
7865 |
|
|
return REAL_VALUES_EQUAL (r, dconst0) && ! REAL_VALUE_MINUS_ZERO (r);
|
7866 |
|
|
}
|
7867 |
|
|
|
7868 |
|
|
/* Nonzero if OP is a floating point value with value 1.0. */
|
7869 |
|
|
|
7870 |
|
|
int
|
7871 |
|
|
fp_one_operand (rtx op)
|
7872 |
|
|
{
|
7873 |
|
|
REAL_VALUE_TYPE r;
|
7874 |
|
|
|
7875 |
|
|
if (GET_MODE (op) != SFmode)
|
7876 |
|
|
return 0;
|
7877 |
|
|
|
7878 |
|
|
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
|
7879 |
|
|
return REAL_VALUES_EQUAL (r, dconst1);
|
7880 |
|
|
}
|
7881 |
|
|
|
7882 |
|
|
/* For -m4 and -m4-single-only, mode switching is used. If we are
|
7883 |
|
|
compiling without -mfmovd, movsf_ie isn't taken into account for
|
7884 |
|
|
mode switching. We could check in machine_dependent_reorg for
|
7885 |
|
|
cases where we know we are in single precision mode, but there is
|
7886 |
|
|
interface to find that out during reload, so we must avoid
|
7887 |
|
|
choosing an fldi alternative during reload and thus failing to
|
7888 |
|
|
allocate a scratch register for the constant loading. */
|
7889 |
|
|
int
|
7890 |
|
|
fldi_ok (void)
|
7891 |
|
|
{
|
7892 |
|
|
return ! TARGET_SH4 || TARGET_FMOVD || reload_completed;
|
7893 |
|
|
}
|
7894 |
|
|
|
7895 |
|
|
int
|
7896 |
|
|
tertiary_reload_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
7897 |
|
|
{
|
7898 |
|
|
enum rtx_code code = GET_CODE (op);
|
7899 |
|
|
return code == MEM || (TARGET_SH4 && code == CONST_DOUBLE);
|
7900 |
|
|
}
|
7901 |
|
|
|
7902 |
|
|
/* Return the TLS type for TLS symbols, 0 for otherwise. */
|
7903 |
|
|
int
|
7904 |
|
|
tls_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
|
7905 |
|
|
{
|
7906 |
|
|
if (GET_CODE (op) != SYMBOL_REF)
|
7907 |
|
|
return 0;
|
7908 |
|
|
return SYMBOL_REF_TLS_MODEL (op);
|
7909 |
|
|
}
|
7910 |
|
|
|
7911 |
|
|
/* Return the destination address of a branch. */
|
7912 |
|
|
|
7913 |
|
|
static int
|
7914 |
|
|
branch_dest (rtx branch)
|
7915 |
|
|
{
|
7916 |
|
|
rtx dest = SET_SRC (PATTERN (branch));
|
7917 |
|
|
int dest_uid;
|
7918 |
|
|
|
7919 |
|
|
if (GET_CODE (dest) == IF_THEN_ELSE)
|
7920 |
|
|
dest = XEXP (dest, 1);
|
7921 |
|
|
dest = XEXP (dest, 0);
|
7922 |
|
|
dest_uid = INSN_UID (dest);
|
7923 |
|
|
return INSN_ADDRESSES (dest_uid);
|
7924 |
|
|
}
|
7925 |
|
|
|
7926 |
|
|
/* Return nonzero if REG is not used after INSN.
|
7927 |
|
|
We assume REG is a reload reg, and therefore does
|
7928 |
|
|
not live past labels. It may live past calls or jumps though. */
|
7929 |
|
|
int
|
7930 |
|
|
reg_unused_after (rtx reg, rtx insn)
|
7931 |
|
|
{
|
7932 |
|
|
enum rtx_code code;
|
7933 |
|
|
rtx set;
|
7934 |
|
|
|
7935 |
|
|
/* If the reg is set by this instruction, then it is safe for our
|
7936 |
|
|
case. Disregard the case where this is a store to memory, since
|
7937 |
|
|
we are checking a register used in the store address. */
|
7938 |
|
|
set = single_set (insn);
|
7939 |
|
|
if (set && GET_CODE (SET_DEST (set)) != MEM
|
7940 |
|
|
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
7941 |
|
|
return 1;
|
7942 |
|
|
|
7943 |
|
|
while ((insn = NEXT_INSN (insn)))
|
7944 |
|
|
{
|
7945 |
|
|
rtx set;
|
7946 |
|
|
if (!INSN_P (insn))
|
7947 |
|
|
continue;
|
7948 |
|
|
|
7949 |
|
|
code = GET_CODE (insn);
|
7950 |
|
|
|
7951 |
|
|
#if 0
|
7952 |
|
|
/* If this is a label that existed before reload, then the register
|
7953 |
|
|
if dead here. However, if this is a label added by reorg, then
|
7954 |
|
|
the register may still be live here. We can't tell the difference,
|
7955 |
|
|
so we just ignore labels completely. */
|
7956 |
|
|
if (code == CODE_LABEL)
|
7957 |
|
|
return 1;
|
7958 |
|
|
/* else */
|
7959 |
|
|
#endif
|
7960 |
|
|
|
7961 |
|
|
if (code == JUMP_INSN)
|
7962 |
|
|
return 0;
|
7963 |
|
|
|
7964 |
|
|
/* If this is a sequence, we must handle them all at once.
|
7965 |
|
|
We could have for instance a call that sets the target register,
|
7966 |
|
|
and an insn in a delay slot that uses the register. In this case,
|
7967 |
|
|
we must return 0. */
|
7968 |
|
|
else if (code == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
|
7969 |
|
|
{
|
7970 |
|
|
int i;
|
7971 |
|
|
int retval = 0;
|
7972 |
|
|
|
7973 |
|
|
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
7974 |
|
|
{
|
7975 |
|
|
rtx this_insn = XVECEXP (PATTERN (insn), 0, i);
|
7976 |
|
|
rtx set = single_set (this_insn);
|
7977 |
|
|
|
7978 |
|
|
if (GET_CODE (this_insn) == CALL_INSN)
|
7979 |
|
|
code = CALL_INSN;
|
7980 |
|
|
else if (GET_CODE (this_insn) == JUMP_INSN)
|
7981 |
|
|
{
|
7982 |
|
|
if (INSN_ANNULLED_BRANCH_P (this_insn))
|
7983 |
|
|
return 0;
|
7984 |
|
|
code = JUMP_INSN;
|
7985 |
|
|
}
|
7986 |
|
|
|
7987 |
|
|
if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
|
7988 |
|
|
return 0;
|
7989 |
|
|
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
7990 |
|
|
{
|
7991 |
|
|
if (GET_CODE (SET_DEST (set)) != MEM)
|
7992 |
|
|
retval = 1;
|
7993 |
|
|
else
|
7994 |
|
|
return 0;
|
7995 |
|
|
}
|
7996 |
|
|
if (set == 0
|
7997 |
|
|
&& reg_overlap_mentioned_p (reg, PATTERN (this_insn)))
|
7998 |
|
|
return 0;
|
7999 |
|
|
}
|
8000 |
|
|
if (retval == 1)
|
8001 |
|
|
return 1;
|
8002 |
|
|
else if (code == JUMP_INSN)
|
8003 |
|
|
return 0;
|
8004 |
|
|
}
|
8005 |
|
|
|
8006 |
|
|
set = single_set (insn);
|
8007 |
|
|
if (set && reg_overlap_mentioned_p (reg, SET_SRC (set)))
|
8008 |
|
|
return 0;
|
8009 |
|
|
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
8010 |
|
|
return GET_CODE (SET_DEST (set)) != MEM;
|
8011 |
|
|
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
8012 |
|
|
return 0;
|
8013 |
|
|
|
8014 |
|
|
if (code == CALL_INSN && call_really_used_regs[REGNO (reg)])
|
8015 |
|
|
return 1;
|
8016 |
|
|
}
|
8017 |
|
|
return 1;
|
8018 |
|
|
}
|
8019 |
|
|
|
8020 |
|
|
#include "ggc.h"
|
8021 |
|
|
|
8022 |
|
|
static GTY(()) rtx fpscr_rtx;
|
8023 |
|
|
rtx
|
8024 |
|
|
get_fpscr_rtx (void)
|
8025 |
|
|
{
|
8026 |
|
|
if (! fpscr_rtx)
|
8027 |
|
|
{
|
8028 |
|
|
fpscr_rtx = gen_rtx_REG (PSImode, FPSCR_REG);
|
8029 |
|
|
REG_USERVAR_P (fpscr_rtx) = 1;
|
8030 |
|
|
mark_user_reg (fpscr_rtx);
|
8031 |
|
|
}
|
8032 |
|
|
if (! reload_completed || mdep_reorg_phase != SH_AFTER_MDEP_REORG)
|
8033 |
|
|
mark_user_reg (fpscr_rtx);
|
8034 |
|
|
return fpscr_rtx;
|
8035 |
|
|
}
|
8036 |
|
|
|
8037 |
|
|
static GTY(()) tree fpscr_values;
|
8038 |
|
|
|
8039 |
|
|
static void
|
8040 |
|
|
emit_fpu_switch (rtx scratch, int index)
|
8041 |
|
|
{
|
8042 |
|
|
rtx dst, src;
|
8043 |
|
|
|
8044 |
|
|
if (fpscr_values == NULL)
|
8045 |
|
|
{
|
8046 |
|
|
tree t;
|
8047 |
|
|
|
8048 |
|
|
t = build_index_type (integer_one_node);
|
8049 |
|
|
t = build_array_type (integer_type_node, t);
|
8050 |
|
|
t = build_decl (VAR_DECL, get_identifier ("__fpscr_values"), t);
|
8051 |
|
|
DECL_ARTIFICIAL (t) = 1;
|
8052 |
|
|
DECL_IGNORED_P (t) = 1;
|
8053 |
|
|
DECL_EXTERNAL (t) = 1;
|
8054 |
|
|
TREE_STATIC (t) = 1;
|
8055 |
|
|
TREE_PUBLIC (t) = 1;
|
8056 |
|
|
TREE_USED (t) = 1;
|
8057 |
|
|
|
8058 |
|
|
fpscr_values = t;
|
8059 |
|
|
}
|
8060 |
|
|
|
8061 |
|
|
src = DECL_RTL (fpscr_values);
|
8062 |
|
|
if (no_new_pseudos)
|
8063 |
|
|
{
|
8064 |
|
|
emit_move_insn (scratch, XEXP (src, 0));
|
8065 |
|
|
if (index != 0)
|
8066 |
|
|
emit_insn (gen_addsi3 (scratch, scratch, GEN_INT (index * 4)));
|
8067 |
|
|
src = adjust_automodify_address (src, PSImode, scratch, index * 4);
|
8068 |
|
|
}
|
8069 |
|
|
else
|
8070 |
|
|
src = adjust_address (src, PSImode, index * 4);
|
8071 |
|
|
|
8072 |
|
|
dst = get_fpscr_rtx ();
|
8073 |
|
|
emit_move_insn (dst, src);
|
8074 |
|
|
}
|
8075 |
|
|
|
8076 |
|
|
void
|
8077 |
|
|
emit_sf_insn (rtx pat)
|
8078 |
|
|
{
|
8079 |
|
|
emit_insn (pat);
|
8080 |
|
|
}
|
8081 |
|
|
|
8082 |
|
|
void
|
8083 |
|
|
emit_df_insn (rtx pat)
|
8084 |
|
|
{
|
8085 |
|
|
emit_insn (pat);
|
8086 |
|
|
}
|
8087 |
|
|
|
8088 |
|
|
void
|
8089 |
|
|
expand_sf_unop (rtx (*fun) (rtx, rtx, rtx), rtx *operands)
|
8090 |
|
|
{
|
8091 |
|
|
emit_sf_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ()));
|
8092 |
|
|
}
|
8093 |
|
|
|
8094 |
|
|
void
|
8095 |
|
|
expand_sf_binop (rtx (*fun) (rtx, rtx, rtx, rtx), rtx *operands)
|
8096 |
|
|
{
|
8097 |
|
|
emit_sf_insn ((*fun) (operands[0], operands[1], operands[2],
|
8098 |
|
|
get_fpscr_rtx ()));
|
8099 |
|
|
}
|
8100 |
|
|
|
8101 |
|
|
void
|
8102 |
|
|
expand_df_unop (rtx (*fun) (rtx, rtx, rtx), rtx *operands)
|
8103 |
|
|
{
|
8104 |
|
|
emit_df_insn ((*fun) (operands[0], operands[1], get_fpscr_rtx ()));
|
8105 |
|
|
}
|
8106 |
|
|
|
8107 |
|
|
void
|
8108 |
|
|
expand_df_binop (rtx (*fun) (rtx, rtx, rtx, rtx), rtx *operands)
|
8109 |
|
|
{
|
8110 |
|
|
emit_df_insn ((*fun) (operands[0], operands[1], operands[2],
|
8111 |
|
|
get_fpscr_rtx ()));
|
8112 |
|
|
}
|
8113 |
|
|
|
8114 |
|
|
/* ??? gcc does flow analysis strictly after common subexpression
|
8115 |
|
|
elimination. As a result, common subexpression elimination fails
|
8116 |
|
|
when there are some intervening statements setting the same register.
|
8117 |
|
|
If we did nothing about this, this would hurt the precision switching
|
8118 |
|
|
for SH4 badly. There is some cse after reload, but it is unable to
|
8119 |
|
|
undo the extra register pressure from the unused instructions, and
|
8120 |
|
|
it cannot remove auto-increment loads.
|
8121 |
|
|
|
8122 |
|
|
A C code example that shows this flow/cse weakness for (at least) SH
|
8123 |
|
|
and sparc (as of gcc ss-970706) is this:
|
8124 |
|
|
|
8125 |
|
|
double
|
8126 |
|
|
f(double a)
|
8127 |
|
|
{
|
8128 |
|
|
double d;
|
8129 |
|
|
d = 0.1;
|
8130 |
|
|
a += d;
|
8131 |
|
|
d = 1.1;
|
8132 |
|
|
d = 0.1;
|
8133 |
|
|
a *= d;
|
8134 |
|
|
return a;
|
8135 |
|
|
}
|
8136 |
|
|
|
8137 |
|
|
So we add another pass before common subexpression elimination, to
|
8138 |
|
|
remove assignments that are dead due to a following assignment in the
|
8139 |
|
|
same basic block. */
|
8140 |
|
|
|
8141 |
|
|
static void
|
8142 |
|
|
mark_use (rtx x, rtx *reg_set_block)
|
8143 |
|
|
{
|
8144 |
|
|
enum rtx_code code;
|
8145 |
|
|
|
8146 |
|
|
if (! x)
|
8147 |
|
|
return;
|
8148 |
|
|
code = GET_CODE (x);
|
8149 |
|
|
switch (code)
|
8150 |
|
|
{
|
8151 |
|
|
case REG:
|
8152 |
|
|
{
|
8153 |
|
|
int regno = REGNO (x);
|
8154 |
|
|
int nregs = (regno < FIRST_PSEUDO_REGISTER
|
8155 |
|
|
? HARD_REGNO_NREGS (regno, GET_MODE (x))
|
8156 |
|
|
: 1);
|
8157 |
|
|
do
|
8158 |
|
|
{
|
8159 |
|
|
reg_set_block[regno + nregs - 1] = 0;
|
8160 |
|
|
}
|
8161 |
|
|
while (--nregs);
|
8162 |
|
|
break;
|
8163 |
|
|
}
|
8164 |
|
|
case SET:
|
8165 |
|
|
{
|
8166 |
|
|
rtx dest = SET_DEST (x);
|
8167 |
|
|
|
8168 |
|
|
if (GET_CODE (dest) == SUBREG)
|
8169 |
|
|
dest = SUBREG_REG (dest);
|
8170 |
|
|
if (GET_CODE (dest) != REG)
|
8171 |
|
|
mark_use (dest, reg_set_block);
|
8172 |
|
|
mark_use (SET_SRC (x), reg_set_block);
|
8173 |
|
|
break;
|
8174 |
|
|
}
|
8175 |
|
|
case CLOBBER:
|
8176 |
|
|
break;
|
8177 |
|
|
default:
|
8178 |
|
|
{
|
8179 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
8180 |
|
|
int i, j;
|
8181 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
8182 |
|
|
{
|
8183 |
|
|
if (fmt[i] == 'e')
|
8184 |
|
|
mark_use (XEXP (x, i), reg_set_block);
|
8185 |
|
|
else if (fmt[i] == 'E')
|
8186 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
8187 |
|
|
mark_use (XVECEXP (x, i, j), reg_set_block);
|
8188 |
|
|
}
|
8189 |
|
|
break;
|
8190 |
|
|
}
|
8191 |
|
|
}
|
8192 |
|
|
}
|
8193 |
|
|
|
8194 |
|
|
static rtx get_free_reg (HARD_REG_SET);
|
8195 |
|
|
|
8196 |
|
|
/* This function returns a register to use to load the address to load
|
8197 |
|
|
the fpscr from. Currently it always returns r1 or r7, but when we are
|
8198 |
|
|
able to use pseudo registers after combine, or have a better mechanism
|
8199 |
|
|
for choosing a register, it should be done here. */
|
8200 |
|
|
/* REGS_LIVE is the liveness information for the point for which we
|
8201 |
|
|
need this allocation. In some bare-bones exit blocks, r1 is live at the
|
8202 |
|
|
start. We can even have all of r0..r3 being live:
|
8203 |
|
|
__complex__ long long f (double d) { if (d == 0) return 2; else return 3; }
|
8204 |
|
|
INSN before which new insns are placed with will clobber the register
|
8205 |
|
|
we return. If a basic block consists only of setting the return value
|
8206 |
|
|
register to a pseudo and using that register, the return value is not
|
8207 |
|
|
live before or after this block, yet we we'll insert our insns right in
|
8208 |
|
|
the middle. */
|
8209 |
|
|
|
8210 |
|
|
static rtx
|
8211 |
|
|
get_free_reg (HARD_REG_SET regs_live)
|
8212 |
|
|
{
|
8213 |
|
|
if (! TEST_HARD_REG_BIT (regs_live, 1))
|
8214 |
|
|
return gen_rtx_REG (Pmode, 1);
|
8215 |
|
|
|
8216 |
|
|
/* Hard reg 1 is live; since this is a SMALL_REGISTER_CLASSES target,
|
8217 |
|
|
there shouldn't be anything but a jump before the function end. */
|
8218 |
|
|
gcc_assert (!TEST_HARD_REG_BIT (regs_live, 7));
|
8219 |
|
|
return gen_rtx_REG (Pmode, 7);
|
8220 |
|
|
}
|
8221 |
|
|
|
8222 |
|
|
/* This function will set the fpscr from memory.
|
8223 |
|
|
MODE is the mode we are setting it to. */
|
8224 |
|
|
void
|
8225 |
|
|
fpscr_set_from_mem (int mode, HARD_REG_SET regs_live)
|
8226 |
|
|
{
|
8227 |
|
|
enum attr_fp_mode fp_mode = mode;
|
8228 |
|
|
enum attr_fp_mode norm_mode = ACTUAL_NORMAL_MODE (FP_MODE);
|
8229 |
|
|
rtx addr_reg = get_free_reg (regs_live);
|
8230 |
|
|
|
8231 |
|
|
emit_fpu_switch (addr_reg, fp_mode == norm_mode);
|
8232 |
|
|
}
|
8233 |
|
|
|
8234 |
|
|
/* Is the given character a logical line separator for the assembler? */
|
8235 |
|
|
#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
|
8236 |
|
|
#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
|
8237 |
|
|
#endif
|
8238 |
|
|
|
8239 |
|
|
int
|
8240 |
|
|
sh_insn_length_adjustment (rtx insn)
|
8241 |
|
|
{
|
8242 |
|
|
/* Instructions with unfilled delay slots take up an extra two bytes for
|
8243 |
|
|
the nop in the delay slot. */
|
8244 |
|
|
if (((GET_CODE (insn) == INSN
|
8245 |
|
|
&& GET_CODE (PATTERN (insn)) != USE
|
8246 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
8247 |
|
|
|| GET_CODE (insn) == CALL_INSN
|
8248 |
|
|
|| (GET_CODE (insn) == JUMP_INSN
|
8249 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
|
8250 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_VEC))
|
8251 |
|
|
&& GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (insn)))) != SEQUENCE
|
8252 |
|
|
&& get_attr_needs_delay_slot (insn) == NEEDS_DELAY_SLOT_YES)
|
8253 |
|
|
return 2;
|
8254 |
|
|
|
8255 |
|
|
/* SH2e has a bug that prevents the use of annulled branches, so if
|
8256 |
|
|
the delay slot is not filled, we'll have to put a NOP in it. */
|
8257 |
|
|
if (sh_cpu == CPU_SH2E
|
8258 |
|
|
&& GET_CODE (insn) == JUMP_INSN
|
8259 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC
|
8260 |
|
|
&& GET_CODE (PATTERN (insn)) != ADDR_VEC
|
8261 |
|
|
&& get_attr_type (insn) == TYPE_CBRANCH
|
8262 |
|
|
&& GET_CODE (PATTERN (NEXT_INSN (PREV_INSN (insn)))) != SEQUENCE)
|
8263 |
|
|
return 2;
|
8264 |
|
|
|
8265 |
|
|
/* sh-dsp parallel processing insn take four bytes instead of two. */
|
8266 |
|
|
|
8267 |
|
|
if (GET_CODE (insn) == INSN)
|
8268 |
|
|
{
|
8269 |
|
|
int sum = 0;
|
8270 |
|
|
rtx body = PATTERN (insn);
|
8271 |
|
|
const char *template;
|
8272 |
|
|
char c;
|
8273 |
|
|
int maybe_label = 1;
|
8274 |
|
|
|
8275 |
|
|
if (GET_CODE (body) == ASM_INPUT)
|
8276 |
|
|
template = XSTR (body, 0);
|
8277 |
|
|
else if (asm_noperands (body) >= 0)
|
8278 |
|
|
template
|
8279 |
|
|
= decode_asm_operands (body, NULL, NULL, NULL, NULL);
|
8280 |
|
|
else
|
8281 |
|
|
return 0;
|
8282 |
|
|
do
|
8283 |
|
|
{
|
8284 |
|
|
int ppi_adjust = 0;
|
8285 |
|
|
|
8286 |
|
|
do
|
8287 |
|
|
c = *template++;
|
8288 |
|
|
while (c == ' ' || c == '\t');
|
8289 |
|
|
/* all sh-dsp parallel-processing insns start with p.
|
8290 |
|
|
The only non-ppi sh insn starting with p is pref.
|
8291 |
|
|
The only ppi starting with pr is prnd. */
|
8292 |
|
|
if ((c == 'p' || c == 'P') && strncasecmp ("re", template, 2))
|
8293 |
|
|
ppi_adjust = 2;
|
8294 |
|
|
/* The repeat pseudo-insn expands two three insns, a total of
|
8295 |
|
|
six bytes in size. */
|
8296 |
|
|
else if ((c == 'r' || c == 'R')
|
8297 |
|
|
&& ! strncasecmp ("epeat", template, 5))
|
8298 |
|
|
ppi_adjust = 4;
|
8299 |
|
|
while (c && c != '\n' && ! IS_ASM_LOGICAL_LINE_SEPARATOR (c))
|
8300 |
|
|
{
|
8301 |
|
|
/* If this is a label, it is obviously not a ppi insn. */
|
8302 |
|
|
if (c == ':' && maybe_label)
|
8303 |
|
|
{
|
8304 |
|
|
ppi_adjust = 0;
|
8305 |
|
|
break;
|
8306 |
|
|
}
|
8307 |
|
|
else if (c == '\'' || c == '"')
|
8308 |
|
|
maybe_label = 0;
|
8309 |
|
|
c = *template++;
|
8310 |
|
|
}
|
8311 |
|
|
sum += ppi_adjust;
|
8312 |
|
|
maybe_label = c != ':';
|
8313 |
|
|
}
|
8314 |
|
|
while (c);
|
8315 |
|
|
return sum;
|
8316 |
|
|
}
|
8317 |
|
|
return 0;
|
8318 |
|
|
}
|
8319 |
|
|
|
8320 |
|
|
/* Return TRUE if X references a SYMBOL_REF or LABEL_REF whose symbol
|
8321 |
|
|
isn't protected by a PIC unspec. */
|
8322 |
|
|
int
|
8323 |
|
|
nonpic_symbol_mentioned_p (rtx x)
|
8324 |
|
|
{
|
8325 |
|
|
register const char *fmt;
|
8326 |
|
|
register int i;
|
8327 |
|
|
|
8328 |
|
|
if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF
|
8329 |
|
|
|| GET_CODE (x) == PC)
|
8330 |
|
|
return 1;
|
8331 |
|
|
|
8332 |
|
|
/* We don't want to look into the possible MEM location of a
|
8333 |
|
|
CONST_DOUBLE, since we're not going to use it, in general. */
|
8334 |
|
|
if (GET_CODE (x) == CONST_DOUBLE)
|
8335 |
|
|
return 0;
|
8336 |
|
|
|
8337 |
|
|
if (GET_CODE (x) == UNSPEC
|
8338 |
|
|
&& (XINT (x, 1) == UNSPEC_PIC
|
8339 |
|
|
|| XINT (x, 1) == UNSPEC_GOT
|
8340 |
|
|
|| XINT (x, 1) == UNSPEC_GOTOFF
|
8341 |
|
|
|| XINT (x, 1) == UNSPEC_GOTPLT
|
8342 |
|
|
|| XINT (x, 1) == UNSPEC_GOTTPOFF
|
8343 |
|
|
|| XINT (x, 1) == UNSPEC_DTPOFF
|
8344 |
|
|
|| XINT (x, 1) == UNSPEC_PLT))
|
8345 |
|
|
return 0;
|
8346 |
|
|
|
8347 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
8348 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
8349 |
|
|
{
|
8350 |
|
|
if (fmt[i] == 'E')
|
8351 |
|
|
{
|
8352 |
|
|
register int j;
|
8353 |
|
|
|
8354 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
8355 |
|
|
if (nonpic_symbol_mentioned_p (XVECEXP (x, i, j)))
|
8356 |
|
|
return 1;
|
8357 |
|
|
}
|
8358 |
|
|
else if (fmt[i] == 'e' && nonpic_symbol_mentioned_p (XEXP (x, i)))
|
8359 |
|
|
return 1;
|
8360 |
|
|
}
|
8361 |
|
|
|
8362 |
|
|
return 0;
|
8363 |
|
|
}
|
8364 |
|
|
|
8365 |
|
|
/* Convert a non-PIC address in `orig' to a PIC address using @GOT or
|
8366 |
|
|
@GOTOFF in `reg'. */
|
8367 |
|
|
rtx
|
8368 |
|
|
legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
|
8369 |
|
|
rtx reg)
|
8370 |
|
|
{
|
8371 |
|
|
if (tls_symbolic_operand (orig, Pmode))
|
8372 |
|
|
return orig;
|
8373 |
|
|
|
8374 |
|
|
if (GET_CODE (orig) == LABEL_REF
|
8375 |
|
|
|| (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
|
8376 |
|
|
{
|
8377 |
|
|
if (reg == 0)
|
8378 |
|
|
reg = gen_reg_rtx (Pmode);
|
8379 |
|
|
|
8380 |
|
|
emit_insn (gen_symGOTOFF2reg (reg, orig));
|
8381 |
|
|
return reg;
|
8382 |
|
|
}
|
8383 |
|
|
else if (GET_CODE (orig) == SYMBOL_REF)
|
8384 |
|
|
{
|
8385 |
|
|
if (reg == 0)
|
8386 |
|
|
reg = gen_reg_rtx (Pmode);
|
8387 |
|
|
|
8388 |
|
|
emit_insn (gen_symGOT2reg (reg, orig));
|
8389 |
|
|
return reg;
|
8390 |
|
|
}
|
8391 |
|
|
return orig;
|
8392 |
|
|
}
|
8393 |
|
|
|
8394 |
|
|
/* Mark the use of a constant in the literal table. If the constant
|
8395 |
|
|
has multiple labels, make it unique. */
|
8396 |
|
|
static rtx
|
8397 |
|
|
mark_constant_pool_use (rtx x)
|
8398 |
|
|
{
|
8399 |
|
|
rtx insn, lab, pattern;
|
8400 |
|
|
|
8401 |
|
|
if (x == NULL)
|
8402 |
|
|
return x;
|
8403 |
|
|
|
8404 |
|
|
switch (GET_CODE (x))
|
8405 |
|
|
{
|
8406 |
|
|
case LABEL_REF:
|
8407 |
|
|
x = XEXP (x, 0);
|
8408 |
|
|
case CODE_LABEL:
|
8409 |
|
|
break;
|
8410 |
|
|
default:
|
8411 |
|
|
return x;
|
8412 |
|
|
}
|
8413 |
|
|
|
8414 |
|
|
/* Get the first label in the list of labels for the same constant
|
8415 |
|
|
and delete another labels in the list. */
|
8416 |
|
|
lab = x;
|
8417 |
|
|
for (insn = PREV_INSN (x); insn; insn = PREV_INSN (insn))
|
8418 |
|
|
{
|
8419 |
|
|
if (GET_CODE (insn) != CODE_LABEL
|
8420 |
|
|
|| LABEL_REFS (insn) != NEXT_INSN (insn))
|
8421 |
|
|
break;
|
8422 |
|
|
lab = insn;
|
8423 |
|
|
}
|
8424 |
|
|
|
8425 |
|
|
for (insn = LABEL_REFS (lab); insn; insn = LABEL_REFS (insn))
|
8426 |
|
|
INSN_DELETED_P (insn) = 1;
|
8427 |
|
|
|
8428 |
|
|
/* Mark constants in a window. */
|
8429 |
|
|
for (insn = NEXT_INSN (x); insn; insn = NEXT_INSN (insn))
|
8430 |
|
|
{
|
8431 |
|
|
if (GET_CODE (insn) != INSN)
|
8432 |
|
|
continue;
|
8433 |
|
|
|
8434 |
|
|
pattern = PATTERN (insn);
|
8435 |
|
|
if (GET_CODE (pattern) != UNSPEC_VOLATILE)
|
8436 |
|
|
continue;
|
8437 |
|
|
|
8438 |
|
|
switch (XINT (pattern, 1))
|
8439 |
|
|
{
|
8440 |
|
|
case UNSPECV_CONST2:
|
8441 |
|
|
case UNSPECV_CONST4:
|
8442 |
|
|
case UNSPECV_CONST8:
|
8443 |
|
|
XVECEXP (pattern, 0, 1) = const1_rtx;
|
8444 |
|
|
break;
|
8445 |
|
|
case UNSPECV_WINDOW_END:
|
8446 |
|
|
if (XVECEXP (pattern, 0, 0) == x)
|
8447 |
|
|
return lab;
|
8448 |
|
|
break;
|
8449 |
|
|
case UNSPECV_CONST_END:
|
8450 |
|
|
return lab;
|
8451 |
|
|
default:
|
8452 |
|
|
break;
|
8453 |
|
|
}
|
8454 |
|
|
}
|
8455 |
|
|
|
8456 |
|
|
return lab;
|
8457 |
|
|
}
|
8458 |
|
|
|
8459 |
|
|
/* Return true if it's possible to redirect BRANCH1 to the destination
|
8460 |
|
|
of an unconditional jump BRANCH2. We only want to do this if the
|
8461 |
|
|
resulting branch will have a short displacement. */
|
8462 |
|
|
int
|
8463 |
|
|
sh_can_redirect_branch (rtx branch1, rtx branch2)
|
8464 |
|
|
{
|
8465 |
|
|
if (flag_expensive_optimizations && simplejump_p (branch2))
|
8466 |
|
|
{
|
8467 |
|
|
rtx dest = XEXP (SET_SRC (single_set (branch2)), 0);
|
8468 |
|
|
rtx insn;
|
8469 |
|
|
int distance;
|
8470 |
|
|
|
8471 |
|
|
for (distance = 0, insn = NEXT_INSN (branch1);
|
8472 |
|
|
insn && distance < 256;
|
8473 |
|
|
insn = PREV_INSN (insn))
|
8474 |
|
|
{
|
8475 |
|
|
if (insn == dest)
|
8476 |
|
|
return 1;
|
8477 |
|
|
else
|
8478 |
|
|
distance += get_attr_length (insn);
|
8479 |
|
|
}
|
8480 |
|
|
for (distance = 0, insn = NEXT_INSN (branch1);
|
8481 |
|
|
insn && distance < 256;
|
8482 |
|
|
insn = NEXT_INSN (insn))
|
8483 |
|
|
{
|
8484 |
|
|
if (insn == dest)
|
8485 |
|
|
return 1;
|
8486 |
|
|
else
|
8487 |
|
|
distance += get_attr_length (insn);
|
8488 |
|
|
}
|
8489 |
|
|
}
|
8490 |
|
|
return 0;
|
8491 |
|
|
}
|
8492 |
|
|
|
8493 |
|
|
/* Return nonzero if register old_reg can be renamed to register new_reg. */
|
8494 |
|
|
int
|
8495 |
|
|
sh_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
|
8496 |
|
|
unsigned int new_reg)
|
8497 |
|
|
{
|
8498 |
|
|
/* Interrupt functions can only use registers that have already been
|
8499 |
|
|
saved by the prologue, even if they would normally be
|
8500 |
|
|
call-clobbered. */
|
8501 |
|
|
|
8502 |
|
|
if (sh_cfun_interrupt_handler_p () && !regs_ever_live[new_reg])
|
8503 |
|
|
return 0;
|
8504 |
|
|
|
8505 |
|
|
return 1;
|
8506 |
|
|
}
|
8507 |
|
|
|
8508 |
|
|
/* Function to update the integer COST
|
8509 |
|
|
based on the relationship between INSN that is dependent on
|
8510 |
|
|
DEP_INSN through the dependence LINK. The default is to make no
|
8511 |
|
|
adjustment to COST. This can be used for example to specify to
|
8512 |
|
|
the scheduler that an output- or anti-dependence does not incur
|
8513 |
|
|
the same cost as a data-dependence. The return value should be
|
8514 |
|
|
the new value for COST. */
|
8515 |
|
|
static int
|
8516 |
|
|
sh_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx dep_insn, int cost)
|
8517 |
|
|
{
|
8518 |
|
|
rtx reg, use_pat;
|
8519 |
|
|
|
8520 |
|
|
if (TARGET_SHMEDIA)
|
8521 |
|
|
{
|
8522 |
|
|
/* On SHmedia, if the dependence is an anti-dependence or
|
8523 |
|
|
output-dependence, there is no cost. */
|
8524 |
|
|
if (REG_NOTE_KIND (link) != 0)
|
8525 |
|
|
{
|
8526 |
|
|
/* However, dependencies between target register loads and
|
8527 |
|
|
uses of the register in a subsequent block that are separated
|
8528 |
|
|
by a conditional branch are not modelled - we have to do with
|
8529 |
|
|
the anti-dependency between the target register load and the
|
8530 |
|
|
conditional branch that ends the current block. */
|
8531 |
|
|
if (REG_NOTE_KIND (link) == REG_DEP_ANTI
|
8532 |
|
|
&& GET_CODE (PATTERN (dep_insn)) == SET
|
8533 |
|
|
&& (get_attr_type (dep_insn) == TYPE_PT_MEDIA
|
8534 |
|
|
|| get_attr_type (dep_insn) == TYPE_PTABS_MEDIA)
|
8535 |
|
|
&& get_attr_type (insn) == TYPE_CBRANCH_MEDIA)
|
8536 |
|
|
{
|
8537 |
|
|
int orig_cost = cost;
|
8538 |
|
|
rtx note = find_reg_note (insn, REG_BR_PROB, 0);
|
8539 |
|
|
rtx target = ((! note
|
8540 |
|
|
|| INTVAL (XEXP (note, 0)) * 2 < REG_BR_PROB_BASE)
|
8541 |
|
|
? insn : JUMP_LABEL (insn));
|
8542 |
|
|
/* On the likely path, the branch costs 1, on the unlikely path,
|
8543 |
|
|
it costs 3. */
|
8544 |
|
|
cost--;
|
8545 |
|
|
do
|
8546 |
|
|
target = next_active_insn (target);
|
8547 |
|
|
while (target && ! flow_dependent_p (target, dep_insn)
|
8548 |
|
|
&& --cost > 0);
|
8549 |
|
|
/* If two branches are executed in immediate succession, with the
|
8550 |
|
|
first branch properly predicted, this causes a stall at the
|
8551 |
|
|
second branch, hence we won't need the target for the
|
8552 |
|
|
second branch for two cycles after the launch of the first
|
8553 |
|
|
branch. */
|
8554 |
|
|
if (cost > orig_cost - 2)
|
8555 |
|
|
cost = orig_cost - 2;
|
8556 |
|
|
}
|
8557 |
|
|
else
|
8558 |
|
|
cost = 0;
|
8559 |
|
|
}
|
8560 |
|
|
|
8561 |
|
|
else if (get_attr_is_mac_media (insn)
|
8562 |
|
|
&& get_attr_is_mac_media (dep_insn))
|
8563 |
|
|
cost = 1;
|
8564 |
|
|
|
8565 |
|
|
else if (! reload_completed
|
8566 |
|
|
&& GET_CODE (PATTERN (insn)) == SET
|
8567 |
|
|
&& GET_CODE (SET_SRC (PATTERN (insn))) == FLOAT
|
8568 |
|
|
&& GET_CODE (PATTERN (dep_insn)) == SET
|
8569 |
|
|
&& fp_arith_reg_operand (SET_SRC (PATTERN (dep_insn)), VOIDmode)
|
8570 |
|
|
&& cost < 4)
|
8571 |
|
|
cost = 4;
|
8572 |
|
|
/* Schedule the ptabs for a casesi_jump_media in preference to stuff
|
8573 |
|
|
that is needed at the target. */
|
8574 |
|
|
else if (get_attr_type (insn) == TYPE_JUMP_MEDIA
|
8575 |
|
|
&& ! flow_dependent_p (insn, dep_insn))
|
8576 |
|
|
cost--;
|
8577 |
|
|
}
|
8578 |
|
|
else if (REG_NOTE_KIND (link) == 0)
|
8579 |
|
|
{
|
8580 |
|
|
enum attr_type dep_type, type;
|
8581 |
|
|
|
8582 |
|
|
if (recog_memoized (insn) < 0
|
8583 |
|
|
|| recog_memoized (dep_insn) < 0)
|
8584 |
|
|
return cost;
|
8585 |
|
|
|
8586 |
|
|
dep_type = get_attr_type (dep_insn);
|
8587 |
|
|
if (dep_type == TYPE_FLOAD || dep_type == TYPE_PCFLOAD)
|
8588 |
|
|
cost--;
|
8589 |
|
|
if ((dep_type == TYPE_LOAD_SI || dep_type == TYPE_PCLOAD_SI)
|
8590 |
|
|
&& (type = get_attr_type (insn)) != TYPE_CALL
|
8591 |
|
|
&& type != TYPE_SFUNC)
|
8592 |
|
|
cost--;
|
8593 |
|
|
|
8594 |
|
|
/* The only input for a call that is timing-critical is the
|
8595 |
|
|
function's address. */
|
8596 |
|
|
if (GET_CODE(insn) == CALL_INSN)
|
8597 |
|
|
{
|
8598 |
|
|
rtx call = PATTERN (insn);
|
8599 |
|
|
|
8600 |
|
|
if (GET_CODE (call) == PARALLEL)
|
8601 |
|
|
call = XVECEXP (call, 0 ,0);
|
8602 |
|
|
if (GET_CODE (call) == SET)
|
8603 |
|
|
call = SET_SRC (call);
|
8604 |
|
|
if (GET_CODE (call) == CALL && GET_CODE (XEXP (call, 0)) == MEM
|
8605 |
|
|
/* sibcalli_thunk uses a symbol_ref in an unspec. */
|
8606 |
|
|
&& (GET_CODE (XEXP (XEXP (call, 0), 0)) == UNSPEC
|
8607 |
|
|
|| ! reg_set_p (XEXP (XEXP (call, 0), 0), dep_insn)))
|
8608 |
|
|
cost = 0;
|
8609 |
|
|
}
|
8610 |
|
|
/* Likewise, the most timing critical input for an sfuncs call
|
8611 |
|
|
is the function address. However, sfuncs typically start
|
8612 |
|
|
using their arguments pretty quickly.
|
8613 |
|
|
Assume a four cycle delay before they are needed. */
|
8614 |
|
|
/* All sfunc calls are parallels with at least four components.
|
8615 |
|
|
Exploit this to avoid unnecessary calls to sfunc_uses_reg. */
|
8616 |
|
|
else if (GET_CODE (PATTERN (insn)) == PARALLEL
|
8617 |
|
|
&& XVECLEN (PATTERN (insn), 0) >= 4
|
8618 |
|
|
&& (reg = sfunc_uses_reg (insn)))
|
8619 |
|
|
{
|
8620 |
|
|
if (! reg_set_p (reg, dep_insn))
|
8621 |
|
|
cost -= 4;
|
8622 |
|
|
}
|
8623 |
|
|
/* When the preceding instruction loads the shift amount of
|
8624 |
|
|
the following SHAD/SHLD, the latency of the load is increased
|
8625 |
|
|
by 1 cycle. */
|
8626 |
|
|
else if (TARGET_SH4
|
8627 |
|
|
&& get_attr_type (insn) == TYPE_DYN_SHIFT
|
8628 |
|
|
&& get_attr_any_int_load (dep_insn) == ANY_INT_LOAD_YES
|
8629 |
|
|
&& reg_overlap_mentioned_p (SET_DEST (single_set (dep_insn)),
|
8630 |
|
|
XEXP (SET_SRC (single_set (insn)),
|
8631 |
|
|
1)))
|
8632 |
|
|
cost++;
|
8633 |
|
|
/* When an LS group instruction with a latency of less than
|
8634 |
|
|
3 cycles is followed by a double-precision floating-point
|
8635 |
|
|
instruction, FIPR, or FTRV, the latency of the first
|
8636 |
|
|
instruction is increased to 3 cycles. */
|
8637 |
|
|
else if (cost < 3
|
8638 |
|
|
&& get_attr_insn_class (dep_insn) == INSN_CLASS_LS_GROUP
|
8639 |
|
|
&& get_attr_dfp_comp (insn) == DFP_COMP_YES)
|
8640 |
|
|
cost = 3;
|
8641 |
|
|
/* The lsw register of a double-precision computation is ready one
|
8642 |
|
|
cycle earlier. */
|
8643 |
|
|
else if (reload_completed
|
8644 |
|
|
&& get_attr_dfp_comp (dep_insn) == DFP_COMP_YES
|
8645 |
|
|
&& (use_pat = single_set (insn))
|
8646 |
|
|
&& ! regno_use_in (REGNO (SET_DEST (single_set (dep_insn))),
|
8647 |
|
|
SET_SRC (use_pat)))
|
8648 |
|
|
cost -= 1;
|
8649 |
|
|
|
8650 |
|
|
if (get_attr_any_fp_comp (dep_insn) == ANY_FP_COMP_YES
|
8651 |
|
|
&& get_attr_late_fp_use (insn) == LATE_FP_USE_YES)
|
8652 |
|
|
cost -= 1;
|
8653 |
|
|
}
|
8654 |
|
|
/* An anti-dependence penalty of two applies if the first insn is a double
|
8655 |
|
|
precision fadd / fsub / fmul. */
|
8656 |
|
|
else if (REG_NOTE_KIND (link) == REG_DEP_ANTI
|
8657 |
|
|
&& recog_memoized (dep_insn) >= 0
|
8658 |
|
|
&& get_attr_type (dep_insn) == TYPE_DFP_ARITH
|
8659 |
|
|
/* A lot of alleged anti-flow dependences are fake,
|
8660 |
|
|
so check this one is real. */
|
8661 |
|
|
&& flow_dependent_p (dep_insn, insn))
|
8662 |
|
|
cost = 2;
|
8663 |
|
|
|
8664 |
|
|
|
8665 |
|
|
return cost;
|
8666 |
|
|
}
|
8667 |
|
|
|
8668 |
|
|
/* Check if INSN is flow-dependent on DEP_INSN. Can also be used to check
|
8669 |
|
|
if DEP_INSN is anti-flow dependent on INSN. */
|
8670 |
|
|
static int
|
8671 |
|
|
flow_dependent_p (rtx insn, rtx dep_insn)
|
8672 |
|
|
{
|
8673 |
|
|
rtx tmp = PATTERN (insn);
|
8674 |
|
|
|
8675 |
|
|
note_stores (PATTERN (dep_insn), flow_dependent_p_1, &tmp);
|
8676 |
|
|
return tmp == NULL_RTX;
|
8677 |
|
|
}
|
8678 |
|
|
|
8679 |
|
|
/* A helper function for flow_dependent_p called through note_stores. */
|
8680 |
|
|
static void
|
8681 |
|
|
flow_dependent_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
|
8682 |
|
|
{
|
8683 |
|
|
rtx * pinsn = (rtx *) data;
|
8684 |
|
|
|
8685 |
|
|
if (*pinsn && reg_referenced_p (x, *pinsn))
|
8686 |
|
|
*pinsn = NULL_RTX;
|
8687 |
|
|
}
|
8688 |
|
|
|
8689 |
|
|
/* For use by sh_allocate_initial_value. Note that sh.md contains some
|
8690 |
|
|
'special function' patterns (type sfunc) that clobber pr, but that
|
8691 |
|
|
do not look like function calls to leaf_function_p. Hence we must
|
8692 |
|
|
do this extra check. */
|
8693 |
|
|
static int
|
8694 |
|
|
sh_pr_n_sets (void)
|
8695 |
|
|
{
|
8696 |
|
|
return REG_N_SETS (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG);
|
8697 |
|
|
}
|
8698 |
|
|
|
8699 |
|
|
/* Return where to allocate pseudo for a given hard register initial
|
8700 |
|
|
value. */
|
8701 |
|
|
static rtx
|
8702 |
|
|
sh_allocate_initial_value (rtx hard_reg)
|
8703 |
|
|
{
|
8704 |
|
|
rtx x;
|
8705 |
|
|
|
8706 |
|
|
if (REGNO (hard_reg) == (TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG))
|
8707 |
|
|
{
|
8708 |
|
|
if (current_function_is_leaf
|
8709 |
|
|
&& ! sh_pr_n_sets ()
|
8710 |
|
|
&& ! (TARGET_SHCOMPACT
|
8711 |
|
|
&& ((current_function_args_info.call_cookie
|
8712 |
|
|
& ~ CALL_COOKIE_RET_TRAMP (1))
|
8713 |
|
|
|| current_function_has_nonlocal_label)))
|
8714 |
|
|
x = hard_reg;
|
8715 |
|
|
else
|
8716 |
|
|
x = gen_frame_mem (Pmode, return_address_pointer_rtx);
|
8717 |
|
|
}
|
8718 |
|
|
else
|
8719 |
|
|
x = NULL_RTX;
|
8720 |
|
|
|
8721 |
|
|
return x;
|
8722 |
|
|
}
|
8723 |
|
|
|
8724 |
|
|
/* This function returns "2" to indicate dual issue for the SH4
|
8725 |
|
|
processor. To be used by the DFA pipeline description. */
|
8726 |
|
|
static int
|
8727 |
|
|
sh_issue_rate (void)
|
8728 |
|
|
{
|
8729 |
|
|
if (TARGET_SUPERSCALAR)
|
8730 |
|
|
return 2;
|
8731 |
|
|
else
|
8732 |
|
|
return 1;
|
8733 |
|
|
}
|
8734 |
|
|
|
8735 |
|
|
/* Functions for ready queue reordering for sched1. */
|
8736 |
|
|
|
8737 |
|
|
/* Get weight for mode for a set x. */
|
8738 |
|
|
static short
|
8739 |
|
|
find_set_regmode_weight (rtx x, enum machine_mode mode)
|
8740 |
|
|
{
|
8741 |
|
|
if (GET_CODE (x) == CLOBBER && register_operand (SET_DEST (x), mode))
|
8742 |
|
|
return 1;
|
8743 |
|
|
if (GET_CODE (x) == SET && register_operand (SET_DEST (x), mode))
|
8744 |
|
|
{
|
8745 |
|
|
if (GET_CODE (SET_DEST (x)) == REG)
|
8746 |
|
|
{
|
8747 |
|
|
if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
|
8748 |
|
|
return 1;
|
8749 |
|
|
else
|
8750 |
|
|
return 0;
|
8751 |
|
|
}
|
8752 |
|
|
return 1;
|
8753 |
|
|
}
|
8754 |
|
|
return 0;
|
8755 |
|
|
}
|
8756 |
|
|
|
8757 |
|
|
/* Get regmode weight for insn. */
|
8758 |
|
|
static short
|
8759 |
|
|
find_insn_regmode_weight (rtx insn, enum machine_mode mode)
|
8760 |
|
|
{
|
8761 |
|
|
short reg_weight = 0;
|
8762 |
|
|
rtx x;
|
8763 |
|
|
|
8764 |
|
|
/* Increment weight for each register born here. */
|
8765 |
|
|
x = PATTERN (insn);
|
8766 |
|
|
reg_weight += find_set_regmode_weight (x, mode);
|
8767 |
|
|
if (GET_CODE (x) == PARALLEL)
|
8768 |
|
|
{
|
8769 |
|
|
int j;
|
8770 |
|
|
for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
|
8771 |
|
|
{
|
8772 |
|
|
x = XVECEXP (PATTERN (insn), 0, j);
|
8773 |
|
|
reg_weight += find_set_regmode_weight (x, mode);
|
8774 |
|
|
}
|
8775 |
|
|
}
|
8776 |
|
|
/* Decrement weight for each register that dies here. */
|
8777 |
|
|
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
8778 |
|
|
{
|
8779 |
|
|
if (REG_NOTE_KIND (x) == REG_DEAD || REG_NOTE_KIND (x) == REG_UNUSED)
|
8780 |
|
|
{
|
8781 |
|
|
rtx note = XEXP (x, 0);
|
8782 |
|
|
if (GET_CODE (note) == REG && GET_MODE (note) == mode)
|
8783 |
|
|
reg_weight--;
|
8784 |
|
|
}
|
8785 |
|
|
}
|
8786 |
|
|
return reg_weight;
|
8787 |
|
|
}
|
8788 |
|
|
|
8789 |
|
|
/* Calculate regmode weights for all insns of a basic block. */
|
8790 |
|
|
static void
|
8791 |
|
|
find_regmode_weight (basic_block b, enum machine_mode mode)
|
8792 |
|
|
{
|
8793 |
|
|
rtx insn, next_tail, head, tail;
|
8794 |
|
|
|
8795 |
|
|
get_ebb_head_tail (b, b, &head, &tail);
|
8796 |
|
|
next_tail = NEXT_INSN (tail);
|
8797 |
|
|
|
8798 |
|
|
for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
|
8799 |
|
|
{
|
8800 |
|
|
/* Handle register life information. */
|
8801 |
|
|
if (!INSN_P (insn))
|
8802 |
|
|
continue;
|
8803 |
|
|
|
8804 |
|
|
if (mode == SFmode)
|
8805 |
|
|
INSN_REGMODE_WEIGHT (insn, mode) =
|
8806 |
|
|
find_insn_regmode_weight (insn, mode) + 2 * find_insn_regmode_weight (insn, DFmode);
|
8807 |
|
|
else if (mode == SImode)
|
8808 |
|
|
INSN_REGMODE_WEIGHT (insn, mode) =
|
8809 |
|
|
find_insn_regmode_weight (insn, mode) + 2 * find_insn_regmode_weight (insn, DImode);
|
8810 |
|
|
}
|
8811 |
|
|
}
|
8812 |
|
|
|
8813 |
|
|
/* Comparison function for ready queue sorting. */
|
8814 |
|
|
static int
|
8815 |
|
|
rank_for_reorder (const void *x, const void *y)
|
8816 |
|
|
{
|
8817 |
|
|
rtx tmp = *(const rtx *) y;
|
8818 |
|
|
rtx tmp2 = *(const rtx *) x;
|
8819 |
|
|
|
8820 |
|
|
/* The insn in a schedule group should be issued the first. */
|
8821 |
|
|
if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
|
8822 |
|
|
return SCHED_GROUP_P (tmp2) ? 1 : -1;
|
8823 |
|
|
|
8824 |
|
|
/* If insns are equally good, sort by INSN_LUID (original insn order), This
|
8825 |
|
|
minimizes instruction movement, thus minimizing sched's effect on
|
8826 |
|
|
register pressure. */
|
8827 |
|
|
return INSN_LUID (tmp) - INSN_LUID (tmp2);
|
8828 |
|
|
}
|
8829 |
|
|
|
8830 |
|
|
/* Resort the array A in which only element at index N may be out of order. */
|
8831 |
|
|
static void
|
8832 |
|
|
swap_reorder (rtx *a, int n)
|
8833 |
|
|
{
|
8834 |
|
|
rtx insn = a[n - 1];
|
8835 |
|
|
int i = n - 2;
|
8836 |
|
|
|
8837 |
|
|
while (i >= 0 && rank_for_reorder (a + i, &insn) >= 0)
|
8838 |
|
|
{
|
8839 |
|
|
a[i + 1] = a[i];
|
8840 |
|
|
i -= 1;
|
8841 |
|
|
}
|
8842 |
|
|
a[i + 1] = insn;
|
8843 |
|
|
}
|
8844 |
|
|
|
8845 |
|
|
#define SCHED_REORDER(READY, N_READY) \
|
8846 |
|
|
do \
|
8847 |
|
|
{ \
|
8848 |
|
|
if ((N_READY) == 2) \
|
8849 |
|
|
swap_reorder (READY, N_READY); \
|
8850 |
|
|
else if ((N_READY) > 2) \
|
8851 |
|
|
qsort (READY, N_READY, sizeof (rtx), rank_for_reorder); \
|
8852 |
|
|
} \
|
8853 |
|
|
while (0)
|
8854 |
|
|
|
8855 |
|
|
/* Sort the ready list READY by ascending priority, using the SCHED_REORDER
|
8856 |
|
|
macro. */
|
8857 |
|
|
static void
|
8858 |
|
|
ready_reorder (rtx *ready, int nready)
|
8859 |
|
|
{
|
8860 |
|
|
SCHED_REORDER (ready, nready);
|
8861 |
|
|
}
|
8862 |
|
|
|
8863 |
|
|
/* Calculate regmode weights for all insns of all basic block. */
|
8864 |
|
|
static void
|
8865 |
|
|
sh_md_init_global (FILE *dump ATTRIBUTE_UNUSED,
|
8866 |
|
|
int verbose ATTRIBUTE_UNUSED,
|
8867 |
|
|
int old_max_uid)
|
8868 |
|
|
{
|
8869 |
|
|
basic_block b;
|
8870 |
|
|
|
8871 |
|
|
regmode_weight[0] = (short *) xcalloc (old_max_uid, sizeof (short));
|
8872 |
|
|
regmode_weight[1] = (short *) xcalloc (old_max_uid, sizeof (short));
|
8873 |
|
|
|
8874 |
|
|
FOR_EACH_BB_REVERSE (b)
|
8875 |
|
|
{
|
8876 |
|
|
find_regmode_weight (b, SImode);
|
8877 |
|
|
find_regmode_weight (b, SFmode);
|
8878 |
|
|
}
|
8879 |
|
|
|
8880 |
|
|
CURR_REGMODE_PRESSURE (SImode) = 0;
|
8881 |
|
|
CURR_REGMODE_PRESSURE (SFmode) = 0;
|
8882 |
|
|
|
8883 |
|
|
}
|
8884 |
|
|
|
8885 |
|
|
/* Cleanup. */
|
8886 |
|
|
static void
|
8887 |
|
|
sh_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
|
8888 |
|
|
int verbose ATTRIBUTE_UNUSED)
|
8889 |
|
|
{
|
8890 |
|
|
if (regmode_weight[0])
|
8891 |
|
|
{
|
8892 |
|
|
free (regmode_weight[0]);
|
8893 |
|
|
regmode_weight[0] = NULL;
|
8894 |
|
|
}
|
8895 |
|
|
if (regmode_weight[1])
|
8896 |
|
|
{
|
8897 |
|
|
free (regmode_weight[1]);
|
8898 |
|
|
regmode_weight[1] = NULL;
|
8899 |
|
|
}
|
8900 |
|
|
}
|
8901 |
|
|
|
8902 |
|
|
/* Cache the can_issue_more so that we can return it from reorder2. Also,
|
8903 |
|
|
keep count of register pressures on SImode and SFmode. */
|
8904 |
|
|
static int
|
8905 |
|
|
sh_variable_issue (FILE *dump ATTRIBUTE_UNUSED,
|
8906 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
8907 |
|
|
rtx insn,
|
8908 |
|
|
int can_issue_more)
|
8909 |
|
|
{
|
8910 |
|
|
if (GET_CODE (PATTERN (insn)) != USE
|
8911 |
|
|
&& GET_CODE (PATTERN (insn)) != CLOBBER)
|
8912 |
|
|
cached_can_issue_more = can_issue_more - 1;
|
8913 |
|
|
else
|
8914 |
|
|
cached_can_issue_more = can_issue_more;
|
8915 |
|
|
|
8916 |
|
|
if (reload_completed)
|
8917 |
|
|
return cached_can_issue_more;
|
8918 |
|
|
|
8919 |
|
|
CURR_REGMODE_PRESSURE (SImode) += INSN_REGMODE_WEIGHT (insn, SImode);
|
8920 |
|
|
CURR_REGMODE_PRESSURE (SFmode) += INSN_REGMODE_WEIGHT (insn, SFmode);
|
8921 |
|
|
|
8922 |
|
|
return cached_can_issue_more;
|
8923 |
|
|
}
|
8924 |
|
|
|
8925 |
|
|
static void
|
8926 |
|
|
sh_md_init (FILE *dump ATTRIBUTE_UNUSED,
|
8927 |
|
|
int verbose ATTRIBUTE_UNUSED,
|
8928 |
|
|
int veclen ATTRIBUTE_UNUSED)
|
8929 |
|
|
{
|
8930 |
|
|
CURR_REGMODE_PRESSURE (SImode) = 0;
|
8931 |
|
|
CURR_REGMODE_PRESSURE (SFmode) = 0;
|
8932 |
|
|
}
|
8933 |
|
|
|
8934 |
|
|
/* Some magic numbers. */
|
8935 |
|
|
/* Pressure on register r0 can lead to spill failures. so avoid sched1 for
|
8936 |
|
|
functions that already have high pressure on r0. */
|
8937 |
|
|
#define R0_MAX_LIFE_REGIONS 2
|
8938 |
|
|
#define R0_MAX_LIVE_LENGTH 12
|
8939 |
|
|
/* Register Pressure thresholds for SImode and SFmode registers. */
|
8940 |
|
|
#define SIMODE_MAX_WEIGHT 5
|
8941 |
|
|
#define SFMODE_MAX_WEIGHT 10
|
8942 |
|
|
|
8943 |
|
|
/* Return true if the pressure is high for MODE. */
|
8944 |
|
|
static short
|
8945 |
|
|
high_pressure (enum machine_mode mode)
|
8946 |
|
|
{
|
8947 |
|
|
/* Pressure on register r0 can lead to spill failures. so avoid sched1 for
|
8948 |
|
|
functions that already have high pressure on r0. */
|
8949 |
|
|
if ((REG_N_SETS (0) - REG_N_DEATHS (0)) >= R0_MAX_LIFE_REGIONS
|
8950 |
|
|
&& REG_LIVE_LENGTH (0) >= R0_MAX_LIVE_LENGTH)
|
8951 |
|
|
return 1;
|
8952 |
|
|
|
8953 |
|
|
if (mode == SFmode)
|
8954 |
|
|
return (CURR_REGMODE_PRESSURE (SFmode) > SFMODE_MAX_WEIGHT);
|
8955 |
|
|
else
|
8956 |
|
|
return (CURR_REGMODE_PRESSURE (SImode) > SIMODE_MAX_WEIGHT);
|
8957 |
|
|
}
|
8958 |
|
|
|
8959 |
|
|
/* Reorder ready queue if register pressure is high. */
|
8960 |
|
|
static int
|
8961 |
|
|
sh_reorder (FILE *dump ATTRIBUTE_UNUSED,
|
8962 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
8963 |
|
|
rtx *ready,
|
8964 |
|
|
int *n_readyp,
|
8965 |
|
|
int clock_var ATTRIBUTE_UNUSED)
|
8966 |
|
|
{
|
8967 |
|
|
if (reload_completed)
|
8968 |
|
|
return sh_issue_rate ();
|
8969 |
|
|
|
8970 |
|
|
if (high_pressure (SFmode) || high_pressure (SImode))
|
8971 |
|
|
{
|
8972 |
|
|
ready_reorder (ready, *n_readyp);
|
8973 |
|
|
}
|
8974 |
|
|
|
8975 |
|
|
return sh_issue_rate ();
|
8976 |
|
|
}
|
8977 |
|
|
|
8978 |
|
|
/* Skip cycles if the current register pressure is high. */
|
8979 |
|
|
static int
|
8980 |
|
|
sh_reorder2 (FILE *dump ATTRIBUTE_UNUSED,
|
8981 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
8982 |
|
|
rtx *ready ATTRIBUTE_UNUSED,
|
8983 |
|
|
int *n_readyp ATTRIBUTE_UNUSED,
|
8984 |
|
|
int clock_var ATTRIBUTE_UNUSED)
|
8985 |
|
|
{
|
8986 |
|
|
if (reload_completed)
|
8987 |
|
|
return cached_can_issue_more;
|
8988 |
|
|
|
8989 |
|
|
if (high_pressure(SFmode) || high_pressure (SImode))
|
8990 |
|
|
skip_cycles = 1;
|
8991 |
|
|
|
8992 |
|
|
return cached_can_issue_more;
|
8993 |
|
|
}
|
8994 |
|
|
|
8995 |
|
|
/* Skip cycles without sorting the ready queue. This will move insn from
|
8996 |
|
|
Q->R. If this is the last cycle we are skipping; allow sorting of ready
|
8997 |
|
|
queue by sh_reorder. */
|
8998 |
|
|
|
8999 |
|
|
/* Generally, skipping these many cycles are sufficient for all insns to move
|
9000 |
|
|
from Q -> R. */
|
9001 |
|
|
#define MAX_SKIPS 8
|
9002 |
|
|
|
9003 |
|
|
static int
|
9004 |
|
|
sh_dfa_new_cycle (FILE *sched_dump ATTRIBUTE_UNUSED,
|
9005 |
|
|
int sched_verbose ATTRIBUTE_UNUSED,
|
9006 |
|
|
rtx insn ATTRIBUTE_UNUSED,
|
9007 |
|
|
int last_clock_var,
|
9008 |
|
|
int clock_var,
|
9009 |
|
|
int *sort_p)
|
9010 |
|
|
{
|
9011 |
|
|
if (reload_completed)
|
9012 |
|
|
return 0;
|
9013 |
|
|
|
9014 |
|
|
if (skip_cycles)
|
9015 |
|
|
{
|
9016 |
|
|
if ((clock_var - last_clock_var) < MAX_SKIPS)
|
9017 |
|
|
{
|
9018 |
|
|
*sort_p = 0;
|
9019 |
|
|
return 1;
|
9020 |
|
|
}
|
9021 |
|
|
/* If this is the last cycle we are skipping, allow reordering of R. */
|
9022 |
|
|
if ((clock_var - last_clock_var) == MAX_SKIPS)
|
9023 |
|
|
{
|
9024 |
|
|
*sort_p = 1;
|
9025 |
|
|
return 1;
|
9026 |
|
|
}
|
9027 |
|
|
}
|
9028 |
|
|
|
9029 |
|
|
skip_cycles = 0;
|
9030 |
|
|
|
9031 |
|
|
return 0;
|
9032 |
|
|
}
|
9033 |
|
|
|
9034 |
|
|
/* SHmedia requires registers for branches, so we can't generate new
|
9035 |
|
|
branches past reload. */
|
9036 |
|
|
static bool
|
9037 |
|
|
sh_cannot_modify_jumps_p (void)
|
9038 |
|
|
{
|
9039 |
|
|
return (TARGET_SHMEDIA && (reload_in_progress || reload_completed));
|
9040 |
|
|
}
|
9041 |
|
|
|
9042 |
|
|
static int
|
9043 |
|
|
sh_target_reg_class (void)
|
9044 |
|
|
{
|
9045 |
|
|
return TARGET_SHMEDIA ? TARGET_REGS : NO_REGS;
|
9046 |
|
|
}
|
9047 |
|
|
|
9048 |
|
|
static bool
|
9049 |
|
|
sh_optimize_target_register_callee_saved (bool after_prologue_epilogue_gen)
|
9050 |
|
|
{
|
9051 |
|
|
HARD_REG_SET dummy;
|
9052 |
|
|
rtx insn;
|
9053 |
|
|
|
9054 |
|
|
if (! shmedia_space_reserved_for_target_registers)
|
9055 |
|
|
return 0;
|
9056 |
|
|
if (after_prologue_epilogue_gen && ! TARGET_SAVE_ALL_TARGET_REGS)
|
9057 |
|
|
return 0;
|
9058 |
|
|
if (calc_live_regs (&dummy) >= 6 * 8)
|
9059 |
|
|
return 1;
|
9060 |
|
|
/* This is a borderline case. See if we got a nested loop, or a loop
|
9061 |
|
|
with a call, or with more than 4 labels inside. */
|
9062 |
|
|
for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
|
9063 |
|
|
{
|
9064 |
|
|
if (GET_CODE (insn) == NOTE
|
9065 |
|
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
9066 |
|
|
{
|
9067 |
|
|
int labels = 0;
|
9068 |
|
|
|
9069 |
|
|
do
|
9070 |
|
|
{
|
9071 |
|
|
insn = NEXT_INSN (insn);
|
9072 |
|
|
if ((GET_CODE (insn) == NOTE
|
9073 |
|
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
9074 |
|
|
|| GET_CODE (insn) == CALL_INSN
|
9075 |
|
|
|| (GET_CODE (insn) == CODE_LABEL && ++labels > 4))
|
9076 |
|
|
return 1;
|
9077 |
|
|
}
|
9078 |
|
|
while (GET_CODE (insn) != NOTE
|
9079 |
|
|
|| NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END);
|
9080 |
|
|
}
|
9081 |
|
|
}
|
9082 |
|
|
return 0;
|
9083 |
|
|
}
|
9084 |
|
|
|
9085 |
|
|
static bool
|
9086 |
|
|
sh_ms_bitfield_layout_p (tree record_type ATTRIBUTE_UNUSED)
|
9087 |
|
|
{
|
9088 |
|
|
return (TARGET_SH5 || TARGET_HITACHI || sh_attr_renesas_p (record_type));
|
9089 |
|
|
}
|
9090 |
|
|
|
9091 |
|
|
/*
|
9092 |
|
|
On the SH1..SH4, the trampoline looks like
|
9093 |
|
|
2 0002 D202 mov.l l2,r2
|
9094 |
|
|
1 0000 D301 mov.l l1,r3
|
9095 |
|
|
3 0004 422B jmp @r2
|
9096 |
|
|
4 0006 0009 nop
|
9097 |
|
|
5 0008 00000000 l1: .long area
|
9098 |
|
|
6 000c 00000000 l2: .long function
|
9099 |
|
|
|
9100 |
|
|
SH5 (compact) uses r1 instead of r3 for the static chain. */
|
9101 |
|
|
|
9102 |
|
|
|
9103 |
|
|
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
9104 |
|
|
FNADDR is an RTX for the address of the function's pure code.
|
9105 |
|
|
CXT is an RTX for the static chain value for the function. */
|
9106 |
|
|
|
9107 |
|
|
void
|
9108 |
|
|
sh_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt)
|
9109 |
|
|
{
|
9110 |
|
|
rtx tramp_mem = gen_frame_mem (BLKmode, tramp);
|
9111 |
|
|
|
9112 |
|
|
if (TARGET_SHMEDIA64)
|
9113 |
|
|
{
|
9114 |
|
|
rtx tramp_templ;
|
9115 |
|
|
int fixed_len;
|
9116 |
|
|
|
9117 |
|
|
rtx movi1 = GEN_INT (0xcc000010);
|
9118 |
|
|
rtx shori1 = GEN_INT (0xc8000010);
|
9119 |
|
|
rtx src, dst;
|
9120 |
|
|
|
9121 |
|
|
/* The following trampoline works within a +- 128 KB range for cxt:
|
9122 |
|
|
ptb/u cxt,tr1; movi fnaddr >> 48,r0; shori fnaddr >> 32,r0;
|
9123 |
|
|
shori fnaddr >> 16,r0; shori fnaddr,r0; ptabs/l r0,tr0
|
9124 |
|
|
gettr tr1,r1; blink tr0,r63 */
|
9125 |
|
|
/* Address rounding makes it hard to compute the exact bounds of the
|
9126 |
|
|
offset for this trampoline, but we have a rather generous offset
|
9127 |
|
|
range, so frame_offset should do fine as an upper bound. */
|
9128 |
|
|
if (cxt == virtual_stack_vars_rtx && frame_offset < 0x20000)
|
9129 |
|
|
{
|
9130 |
|
|
/* ??? could optimize this trampoline initialization
|
9131 |
|
|
by writing DImode words with two insns each. */
|
9132 |
|
|
rtx mask = force_reg (DImode, GEN_INT (0x3fffc00));
|
9133 |
|
|
rtx insn = gen_rtx_MINUS (DImode, cxt, tramp);
|
9134 |
|
|
insn = gen_rtx_ASHIFT (DImode, insn, GEN_INT (10-2));
|
9135 |
|
|
insn = gen_rtx_AND (DImode, insn, mask);
|
9136 |
|
|
/* Or in ptb/u .,tr1 pattern */
|
9137 |
|
|
insn = gen_rtx_IOR (DImode, insn, gen_int_mode (0xec000010, SImode));
|
9138 |
|
|
insn = force_operand (insn, NULL_RTX);
|
9139 |
|
|
insn = gen_lowpart (SImode, insn);
|
9140 |
|
|
emit_move_insn (change_address (tramp_mem, SImode, NULL_RTX), insn);
|
9141 |
|
|
insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (38));
|
9142 |
|
|
insn = gen_rtx_AND (DImode, insn, mask);
|
9143 |
|
|
insn = force_operand (gen_rtx_IOR (DImode, movi1, insn), NULL_RTX);
|
9144 |
|
|
insn = gen_lowpart (SImode, insn);
|
9145 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 4), insn);
|
9146 |
|
|
insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (22));
|
9147 |
|
|
insn = gen_rtx_AND (DImode, insn, mask);
|
9148 |
|
|
insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX);
|
9149 |
|
|
insn = gen_lowpart (SImode, insn);
|
9150 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 8), insn);
|
9151 |
|
|
insn = gen_rtx_LSHIFTRT (DImode, fnaddr, GEN_INT (6));
|
9152 |
|
|
insn = gen_rtx_AND (DImode, insn, mask);
|
9153 |
|
|
insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX);
|
9154 |
|
|
insn = gen_lowpart (SImode, insn);
|
9155 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 12), insn);
|
9156 |
|
|
insn = gen_rtx_ASHIFT (DImode, fnaddr, GEN_INT (10));
|
9157 |
|
|
insn = gen_rtx_AND (DImode, insn, mask);
|
9158 |
|
|
insn = force_operand (gen_rtx_IOR (DImode, shori1, insn), NULL_RTX);
|
9159 |
|
|
insn = gen_lowpart (SImode, insn);
|
9160 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 16), insn);
|
9161 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 20),
|
9162 |
|
|
GEN_INT (0x6bf10600));
|
9163 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 24),
|
9164 |
|
|
GEN_INT (0x4415fc10));
|
9165 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 28),
|
9166 |
|
|
GEN_INT (0x4401fff0));
|
9167 |
|
|
emit_insn (gen_ic_invalidate_line (tramp));
|
9168 |
|
|
return;
|
9169 |
|
|
}
|
9170 |
|
|
tramp_templ = gen_rtx_SYMBOL_REF (Pmode,"__GCC_nested_trampoline");
|
9171 |
|
|
fixed_len = TRAMPOLINE_SIZE - 2 * GET_MODE_SIZE (Pmode);
|
9172 |
|
|
|
9173 |
|
|
tramp_templ = gen_datalabel_ref (tramp_templ);
|
9174 |
|
|
dst = tramp_mem;
|
9175 |
|
|
src = gen_const_mem (BLKmode, tramp_templ);
|
9176 |
|
|
set_mem_align (dst, 256);
|
9177 |
|
|
set_mem_align (src, 64);
|
9178 |
|
|
emit_block_move (dst, src, GEN_INT (fixed_len), BLOCK_OP_NORMAL);
|
9179 |
|
|
|
9180 |
|
|
emit_move_insn (adjust_address (tramp_mem, Pmode, fixed_len), fnaddr);
|
9181 |
|
|
emit_move_insn (adjust_address (tramp_mem, Pmode,
|
9182 |
|
|
fixed_len + GET_MODE_SIZE (Pmode)),
|
9183 |
|
|
cxt);
|
9184 |
|
|
emit_insn (gen_ic_invalidate_line (tramp));
|
9185 |
|
|
return;
|
9186 |
|
|
}
|
9187 |
|
|
else if (TARGET_SHMEDIA)
|
9188 |
|
|
{
|
9189 |
|
|
/* movi fnaddr >> 16,r1; shori fnaddr,r1; ptabs/l r1,tr0
|
9190 |
|
|
movi cxt >> 16,r1; shori cxt,r1; blink tr0,r63 */
|
9191 |
|
|
rtx quad0 = gen_reg_rtx (DImode), cxtload = gen_reg_rtx (DImode);
|
9192 |
|
|
rtx quad1 = gen_reg_rtx (DImode), quad2 = gen_reg_rtx (DImode);
|
9193 |
|
|
/* movi 0,r1: 0xcc000010 shori 0,r1: c8000010 concatenated,
|
9194 |
|
|
rotated 10 right, and higher 16 bit of every 32 selected. */
|
9195 |
|
|
rtx movishori
|
9196 |
|
|
= force_reg (V2HImode, (simplify_gen_subreg
|
9197 |
|
|
(V2HImode, GEN_INT (0x4330432), SImode, 0)));
|
9198 |
|
|
rtx ptabs = force_reg (DImode, GEN_INT (0x6bf10600));
|
9199 |
|
|
rtx blink = force_reg (DImode, GEN_INT (0x4401fff0));
|
9200 |
|
|
|
9201 |
|
|
tramp = force_reg (Pmode, tramp);
|
9202 |
|
|
fnaddr = force_reg (SImode, fnaddr);
|
9203 |
|
|
cxt = force_reg (SImode, cxt);
|
9204 |
|
|
emit_insn (gen_mshflo_w_x (gen_rtx_SUBREG (V4HImode, quad0, 0),
|
9205 |
|
|
gen_rtx_SUBREG (V2HImode, fnaddr, 0),
|
9206 |
|
|
movishori));
|
9207 |
|
|
emit_insn (gen_rotrdi3_mextr (quad0, quad0,
|
9208 |
|
|
GEN_INT (TARGET_LITTLE_ENDIAN ? 24 : 56)));
|
9209 |
|
|
emit_insn (gen_ashldi3_media (quad0, quad0, const2_rtx));
|
9210 |
|
|
emit_move_insn (change_address (tramp_mem, DImode, NULL_RTX), quad0);
|
9211 |
|
|
emit_insn (gen_mshflo_w_x (gen_rtx_SUBREG (V4HImode, cxtload, 0),
|
9212 |
|
|
gen_rtx_SUBREG (V2HImode, cxt, 0),
|
9213 |
|
|
movishori));
|
9214 |
|
|
emit_insn (gen_rotrdi3_mextr (cxtload, cxtload,
|
9215 |
|
|
GEN_INT (TARGET_LITTLE_ENDIAN ? 24 : 56)));
|
9216 |
|
|
emit_insn (gen_ashldi3_media (cxtload, cxtload, const2_rtx));
|
9217 |
|
|
if (TARGET_LITTLE_ENDIAN)
|
9218 |
|
|
{
|
9219 |
|
|
emit_insn (gen_mshflo_l_di (quad1, ptabs, cxtload));
|
9220 |
|
|
emit_insn (gen_mextr4 (quad2, cxtload, blink));
|
9221 |
|
|
}
|
9222 |
|
|
else
|
9223 |
|
|
{
|
9224 |
|
|
emit_insn (gen_mextr4 (quad1, cxtload, ptabs));
|
9225 |
|
|
emit_insn (gen_mshflo_l_di (quad2, blink, cxtload));
|
9226 |
|
|
}
|
9227 |
|
|
emit_move_insn (adjust_address (tramp_mem, DImode, 8), quad1);
|
9228 |
|
|
emit_move_insn (adjust_address (tramp_mem, DImode, 16), quad2);
|
9229 |
|
|
emit_insn (gen_ic_invalidate_line (tramp));
|
9230 |
|
|
return;
|
9231 |
|
|
}
|
9232 |
|
|
else if (TARGET_SHCOMPACT)
|
9233 |
|
|
{
|
9234 |
|
|
emit_insn (gen_initialize_trampoline (tramp, cxt, fnaddr));
|
9235 |
|
|
return;
|
9236 |
|
|
}
|
9237 |
|
|
emit_move_insn (change_address (tramp_mem, SImode, NULL_RTX),
|
9238 |
|
|
gen_int_mode (TARGET_LITTLE_ENDIAN ? 0xd301d202 : 0xd202d301,
|
9239 |
|
|
SImode));
|
9240 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 4),
|
9241 |
|
|
gen_int_mode (TARGET_LITTLE_ENDIAN ? 0x0009422b : 0x422b0009,
|
9242 |
|
|
SImode));
|
9243 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 8), cxt);
|
9244 |
|
|
emit_move_insn (adjust_address (tramp_mem, SImode, 12), fnaddr);
|
9245 |
|
|
if (TARGET_HARVARD)
|
9246 |
|
|
{
|
9247 |
|
|
if (TARGET_USERMODE)
|
9248 |
|
|
emit_library_call (function_symbol (NULL, "__ic_invalidate",
|
9249 |
|
|
FUNCTION_ORDINARY),
|
9250 |
|
|
0, VOIDmode, 1, tramp, SImode);
|
9251 |
|
|
else
|
9252 |
|
|
emit_insn (gen_ic_invalidate_line (tramp));
|
9253 |
|
|
}
|
9254 |
|
|
}
|
9255 |
|
|
|
9256 |
|
|
/* FIXME: This is overly conservative. A SHcompact function that
|
9257 |
|
|
receives arguments ``by reference'' will have them stored in its
|
9258 |
|
|
own stack frame, so it must not pass pointers or references to
|
9259 |
|
|
these arguments to other functions by means of sibling calls. */
|
9260 |
|
|
/* If PIC, we cannot make sibling calls to global functions
|
9261 |
|
|
because the PLT requires r12 to be live. */
|
9262 |
|
|
static bool
|
9263 |
|
|
sh_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
|
9264 |
|
|
{
|
9265 |
|
|
return (1
|
9266 |
|
|
&& (! TARGET_SHCOMPACT
|
9267 |
|
|
|| current_function_args_info.stack_regs == 0)
|
9268 |
|
|
&& ! sh_cfun_interrupt_handler_p ()
|
9269 |
|
|
&& (! flag_pic
|
9270 |
|
|
|| (decl && ! TREE_PUBLIC (decl))
|
9271 |
|
|
|| (decl && DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT)));
|
9272 |
|
|
}
|
9273 |
|
|
|
9274 |
|
|
/* Machine specific built-in functions. */
|
9275 |
|
|
|
9276 |
|
|
struct builtin_description
|
9277 |
|
|
{
|
9278 |
|
|
const enum insn_code icode;
|
9279 |
|
|
const char *const name;
|
9280 |
|
|
int signature;
|
9281 |
|
|
};
|
9282 |
|
|
|
9283 |
|
|
/* describe number and signedness of arguments; arg[0] == result
|
9284 |
|
|
(1: unsigned, 2: signed, 4: don't care, 8: pointer 0: no argument */
|
9285 |
|
|
/* 9: 64 bit pointer, 10: 32 bit pointer */
|
9286 |
|
|
static const char signature_args[][4] =
|
9287 |
|
|
{
|
9288 |
|
|
#define SH_BLTIN_V2SI2 0
|
9289 |
|
|
{ 4, 4 },
|
9290 |
|
|
#define SH_BLTIN_V4HI2 1
|
9291 |
|
|
{ 4, 4 },
|
9292 |
|
|
#define SH_BLTIN_V2SI3 2
|
9293 |
|
|
{ 4, 4, 4 },
|
9294 |
|
|
#define SH_BLTIN_V4HI3 3
|
9295 |
|
|
{ 4, 4, 4 },
|
9296 |
|
|
#define SH_BLTIN_V8QI3 4
|
9297 |
|
|
{ 4, 4, 4 },
|
9298 |
|
|
#define SH_BLTIN_MAC_HISI 5
|
9299 |
|
|
{ 1, 4, 4, 1 },
|
9300 |
|
|
#define SH_BLTIN_SH_HI 6
|
9301 |
|
|
{ 4, 4, 1 },
|
9302 |
|
|
#define SH_BLTIN_SH_SI 7
|
9303 |
|
|
{ 4, 4, 1 },
|
9304 |
|
|
#define SH_BLTIN_V4HI2V2SI 8
|
9305 |
|
|
{ 4, 4, 4 },
|
9306 |
|
|
#define SH_BLTIN_V4HI2V8QI 9
|
9307 |
|
|
{ 4, 4, 4 },
|
9308 |
|
|
#define SH_BLTIN_SISF 10
|
9309 |
|
|
{ 4, 2 },
|
9310 |
|
|
#define SH_BLTIN_LDUA_L 11
|
9311 |
|
|
{ 2, 10 },
|
9312 |
|
|
#define SH_BLTIN_LDUA_Q 12
|
9313 |
|
|
{ 1, 10 },
|
9314 |
|
|
#define SH_BLTIN_STUA_L 13
|
9315 |
|
|
{ 0, 10, 2 },
|
9316 |
|
|
#define SH_BLTIN_STUA_Q 14
|
9317 |
|
|
{ 0, 10, 1 },
|
9318 |
|
|
#define SH_BLTIN_LDUA_L64 15
|
9319 |
|
|
{ 2, 9 },
|
9320 |
|
|
#define SH_BLTIN_LDUA_Q64 16
|
9321 |
|
|
{ 1, 9 },
|
9322 |
|
|
#define SH_BLTIN_STUA_L64 17
|
9323 |
|
|
{ 0, 9, 2 },
|
9324 |
|
|
#define SH_BLTIN_STUA_Q64 18
|
9325 |
|
|
{ 0, 9, 1 },
|
9326 |
|
|
#define SH_BLTIN_NUM_SHARED_SIGNATURES 19
|
9327 |
|
|
#define SH_BLTIN_2 19
|
9328 |
|
|
#define SH_BLTIN_SU 19
|
9329 |
|
|
{ 1, 2 },
|
9330 |
|
|
#define SH_BLTIN_3 20
|
9331 |
|
|
#define SH_BLTIN_SUS 20
|
9332 |
|
|
{ 2, 2, 1 },
|
9333 |
|
|
#define SH_BLTIN_PSSV 21
|
9334 |
|
|
{ 0, 8, 2, 2 },
|
9335 |
|
|
#define SH_BLTIN_XXUU 22
|
9336 |
|
|
#define SH_BLTIN_UUUU 22
|
9337 |
|
|
{ 1, 1, 1, 1 },
|
9338 |
|
|
#define SH_BLTIN_PV 23
|
9339 |
|
|
{ 0, 8 },
|
9340 |
|
|
};
|
9341 |
|
|
/* mcmv: operands considered unsigned. */
|
9342 |
|
|
/* mmulsum_wq, msad_ubq: result considered unsigned long long. */
|
9343 |
|
|
/* mperm: control value considered unsigned int. */
|
9344 |
|
|
/* mshalds, mshard, mshards, mshlld, mshlrd: shift count is unsigned int. */
|
9345 |
|
|
/* mshards_q: returns signed short. */
|
9346 |
|
|
/* nsb: takes long long arg, returns unsigned char. */
|
9347 |
|
|
static const struct builtin_description bdesc[] =
|
9348 |
|
|
{
|
9349 |
|
|
{ CODE_FOR_absv2si2, "__builtin_absv2si2", SH_BLTIN_V2SI2 },
|
9350 |
|
|
{ CODE_FOR_absv4hi2, "__builtin_absv4hi2", SH_BLTIN_V4HI2 },
|
9351 |
|
|
{ CODE_FOR_addv2si3, "__builtin_addv2si3", SH_BLTIN_V2SI3 },
|
9352 |
|
|
{ CODE_FOR_addv4hi3, "__builtin_addv4hi3", SH_BLTIN_V4HI3 },
|
9353 |
|
|
{ CODE_FOR_ssaddv2si3,"__builtin_ssaddv2si3", SH_BLTIN_V2SI3 },
|
9354 |
|
|
{ CODE_FOR_usaddv8qi3,"__builtin_usaddv8qi3", SH_BLTIN_V8QI3 },
|
9355 |
|
|
{ CODE_FOR_ssaddv4hi3,"__builtin_ssaddv4hi3", SH_BLTIN_V4HI3 },
|
9356 |
|
|
{ CODE_FOR_alloco_i, "__builtin_sh_media_ALLOCO", SH_BLTIN_PV },
|
9357 |
|
|
{ CODE_FOR_negcmpeqv8qi,"__builtin_sh_media_MCMPEQ_B", SH_BLTIN_V8QI3 },
|
9358 |
|
|
{ CODE_FOR_negcmpeqv2si,"__builtin_sh_media_MCMPEQ_L", SH_BLTIN_V2SI3 },
|
9359 |
|
|
{ CODE_FOR_negcmpeqv4hi,"__builtin_sh_media_MCMPEQ_W", SH_BLTIN_V4HI3 },
|
9360 |
|
|
{ CODE_FOR_negcmpgtuv8qi,"__builtin_sh_media_MCMPGT_UB", SH_BLTIN_V8QI3 },
|
9361 |
|
|
{ CODE_FOR_negcmpgtv2si,"__builtin_sh_media_MCMPGT_L", SH_BLTIN_V2SI3 },
|
9362 |
|
|
{ CODE_FOR_negcmpgtv4hi,"__builtin_sh_media_MCMPGT_W", SH_BLTIN_V4HI3 },
|
9363 |
|
|
{ CODE_FOR_mcmv, "__builtin_sh_media_MCMV", SH_BLTIN_UUUU },
|
9364 |
|
|
{ CODE_FOR_mcnvs_lw, "__builtin_sh_media_MCNVS_LW", SH_BLTIN_3 },
|
9365 |
|
|
{ CODE_FOR_mcnvs_wb, "__builtin_sh_media_MCNVS_WB", SH_BLTIN_V4HI2V8QI },
|
9366 |
|
|
{ CODE_FOR_mcnvs_wub, "__builtin_sh_media_MCNVS_WUB", SH_BLTIN_V4HI2V8QI },
|
9367 |
|
|
{ CODE_FOR_mextr1, "__builtin_sh_media_MEXTR1", SH_BLTIN_V8QI3 },
|
9368 |
|
|
{ CODE_FOR_mextr2, "__builtin_sh_media_MEXTR2", SH_BLTIN_V8QI3 },
|
9369 |
|
|
{ CODE_FOR_mextr3, "__builtin_sh_media_MEXTR3", SH_BLTIN_V8QI3 },
|
9370 |
|
|
{ CODE_FOR_mextr4, "__builtin_sh_media_MEXTR4", SH_BLTIN_V8QI3 },
|
9371 |
|
|
{ CODE_FOR_mextr5, "__builtin_sh_media_MEXTR5", SH_BLTIN_V8QI3 },
|
9372 |
|
|
{ CODE_FOR_mextr6, "__builtin_sh_media_MEXTR6", SH_BLTIN_V8QI3 },
|
9373 |
|
|
{ CODE_FOR_mextr7, "__builtin_sh_media_MEXTR7", SH_BLTIN_V8QI3 },
|
9374 |
|
|
{ CODE_FOR_mmacfx_wl, "__builtin_sh_media_MMACFX_WL", SH_BLTIN_MAC_HISI },
|
9375 |
|
|
{ CODE_FOR_mmacnfx_wl,"__builtin_sh_media_MMACNFX_WL", SH_BLTIN_MAC_HISI },
|
9376 |
|
|
{ CODE_FOR_mulv2si3, "__builtin_mulv2si3", SH_BLTIN_V2SI3, },
|
9377 |
|
|
{ CODE_FOR_mulv4hi3, "__builtin_mulv4hi3", SH_BLTIN_V4HI3 },
|
9378 |
|
|
{ CODE_FOR_mmulfx_l, "__builtin_sh_media_MMULFX_L", SH_BLTIN_V2SI3 },
|
9379 |
|
|
{ CODE_FOR_mmulfx_w, "__builtin_sh_media_MMULFX_W", SH_BLTIN_V4HI3 },
|
9380 |
|
|
{ CODE_FOR_mmulfxrp_w,"__builtin_sh_media_MMULFXRP_W", SH_BLTIN_V4HI3 },
|
9381 |
|
|
{ CODE_FOR_mmulhi_wl, "__builtin_sh_media_MMULHI_WL", SH_BLTIN_V4HI2V2SI },
|
9382 |
|
|
{ CODE_FOR_mmullo_wl, "__builtin_sh_media_MMULLO_WL", SH_BLTIN_V4HI2V2SI },
|
9383 |
|
|
{ CODE_FOR_mmulsum_wq,"__builtin_sh_media_MMULSUM_WQ", SH_BLTIN_XXUU },
|
9384 |
|
|
{ CODE_FOR_mperm_w, "__builtin_sh_media_MPERM_W", SH_BLTIN_SH_HI },
|
9385 |
|
|
{ CODE_FOR_msad_ubq, "__builtin_sh_media_MSAD_UBQ", SH_BLTIN_XXUU },
|
9386 |
|
|
{ CODE_FOR_mshalds_l, "__builtin_sh_media_MSHALDS_L", SH_BLTIN_SH_SI },
|
9387 |
|
|
{ CODE_FOR_mshalds_w, "__builtin_sh_media_MSHALDS_W", SH_BLTIN_SH_HI },
|
9388 |
|
|
{ CODE_FOR_ashrv2si3, "__builtin_ashrv2si3", SH_BLTIN_SH_SI },
|
9389 |
|
|
{ CODE_FOR_ashrv4hi3, "__builtin_ashrv4hi3", SH_BLTIN_SH_HI },
|
9390 |
|
|
{ CODE_FOR_mshards_q, "__builtin_sh_media_MSHARDS_Q", SH_BLTIN_SUS },
|
9391 |
|
|
{ CODE_FOR_mshfhi_b, "__builtin_sh_media_MSHFHI_B", SH_BLTIN_V8QI3 },
|
9392 |
|
|
{ CODE_FOR_mshfhi_l, "__builtin_sh_media_MSHFHI_L", SH_BLTIN_V2SI3 },
|
9393 |
|
|
{ CODE_FOR_mshfhi_w, "__builtin_sh_media_MSHFHI_W", SH_BLTIN_V4HI3 },
|
9394 |
|
|
{ CODE_FOR_mshflo_b, "__builtin_sh_media_MSHFLO_B", SH_BLTIN_V8QI3 },
|
9395 |
|
|
{ CODE_FOR_mshflo_l, "__builtin_sh_media_MSHFLO_L", SH_BLTIN_V2SI3 },
|
9396 |
|
|
{ CODE_FOR_mshflo_w, "__builtin_sh_media_MSHFLO_W", SH_BLTIN_V4HI3 },
|
9397 |
|
|
{ CODE_FOR_ashlv2si3, "__builtin_ashlv2si3", SH_BLTIN_SH_SI },
|
9398 |
|
|
{ CODE_FOR_ashlv4hi3, "__builtin_ashlv4hi3", SH_BLTIN_SH_HI },
|
9399 |
|
|
{ CODE_FOR_lshrv2si3, "__builtin_lshrv2si3", SH_BLTIN_SH_SI },
|
9400 |
|
|
{ CODE_FOR_lshrv4hi3, "__builtin_lshrv4hi3", SH_BLTIN_SH_HI },
|
9401 |
|
|
{ CODE_FOR_subv2si3, "__builtin_subv2si3", SH_BLTIN_V2SI3 },
|
9402 |
|
|
{ CODE_FOR_subv4hi3, "__builtin_subv4hi3", SH_BLTIN_V4HI3 },
|
9403 |
|
|
{ CODE_FOR_sssubv2si3,"__builtin_sssubv2si3", SH_BLTIN_V2SI3 },
|
9404 |
|
|
{ CODE_FOR_ussubv8qi3,"__builtin_ussubv8qi3", SH_BLTIN_V8QI3 },
|
9405 |
|
|
{ CODE_FOR_sssubv4hi3,"__builtin_sssubv4hi3", SH_BLTIN_V4HI3 },
|
9406 |
|
|
{ CODE_FOR_fcosa_s, "__builtin_sh_media_FCOSA_S", SH_BLTIN_SISF },
|
9407 |
|
|
{ CODE_FOR_fsina_s, "__builtin_sh_media_FSINA_S", SH_BLTIN_SISF },
|
9408 |
|
|
{ CODE_FOR_fipr, "__builtin_sh_media_FIPR_S", SH_BLTIN_3 },
|
9409 |
|
|
{ CODE_FOR_ftrv, "__builtin_sh_media_FTRV_S", SH_BLTIN_3 },
|
9410 |
|
|
{ CODE_FOR_mac_media, "__builtin_sh_media_FMAC_S", SH_BLTIN_3 },
|
9411 |
|
|
{ CODE_FOR_sqrtdf2, "__builtin_sh_media_FSQRT_D", SH_BLTIN_2 },
|
9412 |
|
|
{ CODE_FOR_sqrtsf2, "__builtin_sh_media_FSQRT_S", SH_BLTIN_2 },
|
9413 |
|
|
{ CODE_FOR_fsrra_s, "__builtin_sh_media_FSRRA_S", SH_BLTIN_2 },
|
9414 |
|
|
{ CODE_FOR_ldhi_l, "__builtin_sh_media_LDHI_L", SH_BLTIN_LDUA_L },
|
9415 |
|
|
{ CODE_FOR_ldhi_q, "__builtin_sh_media_LDHI_Q", SH_BLTIN_LDUA_Q },
|
9416 |
|
|
{ CODE_FOR_ldlo_l, "__builtin_sh_media_LDLO_L", SH_BLTIN_LDUA_L },
|
9417 |
|
|
{ CODE_FOR_ldlo_q, "__builtin_sh_media_LDLO_Q", SH_BLTIN_LDUA_Q },
|
9418 |
|
|
{ CODE_FOR_sthi_l, "__builtin_sh_media_STHI_L", SH_BLTIN_STUA_L },
|
9419 |
|
|
{ CODE_FOR_sthi_q, "__builtin_sh_media_STHI_Q", SH_BLTIN_STUA_Q },
|
9420 |
|
|
{ CODE_FOR_stlo_l, "__builtin_sh_media_STLO_L", SH_BLTIN_STUA_L },
|
9421 |
|
|
{ CODE_FOR_stlo_q, "__builtin_sh_media_STLO_Q", SH_BLTIN_STUA_Q },
|
9422 |
|
|
{ CODE_FOR_ldhi_l64, "__builtin_sh_media_LDHI_L", SH_BLTIN_LDUA_L64 },
|
9423 |
|
|
{ CODE_FOR_ldhi_q64, "__builtin_sh_media_LDHI_Q", SH_BLTIN_LDUA_Q64 },
|
9424 |
|
|
{ CODE_FOR_ldlo_l64, "__builtin_sh_media_LDLO_L", SH_BLTIN_LDUA_L64 },
|
9425 |
|
|
{ CODE_FOR_ldlo_q64, "__builtin_sh_media_LDLO_Q", SH_BLTIN_LDUA_Q64 },
|
9426 |
|
|
{ CODE_FOR_sthi_l64, "__builtin_sh_media_STHI_L", SH_BLTIN_STUA_L64 },
|
9427 |
|
|
{ CODE_FOR_sthi_q64, "__builtin_sh_media_STHI_Q", SH_BLTIN_STUA_Q64 },
|
9428 |
|
|
{ CODE_FOR_stlo_l64, "__builtin_sh_media_STLO_L", SH_BLTIN_STUA_L64 },
|
9429 |
|
|
{ CODE_FOR_stlo_q64, "__builtin_sh_media_STLO_Q", SH_BLTIN_STUA_Q64 },
|
9430 |
|
|
{ CODE_FOR_nsb, "__builtin_sh_media_NSB", SH_BLTIN_SU },
|
9431 |
|
|
{ CODE_FOR_byterev, "__builtin_sh_media_BYTEREV", SH_BLTIN_2 },
|
9432 |
|
|
{ CODE_FOR_prefetch, "__builtin_sh_media_PREFO", SH_BLTIN_PSSV },
|
9433 |
|
|
};
|
9434 |
|
|
|
9435 |
|
|
static void
|
9436 |
|
|
sh_media_init_builtins (void)
|
9437 |
|
|
{
|
9438 |
|
|
tree shared[SH_BLTIN_NUM_SHARED_SIGNATURES];
|
9439 |
|
|
const struct builtin_description *d;
|
9440 |
|
|
|
9441 |
|
|
memset (shared, 0, sizeof shared);
|
9442 |
|
|
for (d = bdesc; d - bdesc < (int) ARRAY_SIZE (bdesc); d++)
|
9443 |
|
|
{
|
9444 |
|
|
tree type, arg_type = 0;
|
9445 |
|
|
int signature = d->signature;
|
9446 |
|
|
int i;
|
9447 |
|
|
|
9448 |
|
|
if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES && shared[signature])
|
9449 |
|
|
type = shared[signature];
|
9450 |
|
|
else
|
9451 |
|
|
{
|
9452 |
|
|
int has_result = signature_args[signature][0] != 0;
|
9453 |
|
|
|
9454 |
|
|
if ((signature_args[signature][1] & 8)
|
9455 |
|
|
&& (((signature_args[signature][1] & 1) && TARGET_SHMEDIA32)
|
9456 |
|
|
|| ((signature_args[signature][1] & 2) && TARGET_SHMEDIA64)))
|
9457 |
|
|
continue;
|
9458 |
|
|
if (! TARGET_FPU_ANY
|
9459 |
|
|
&& FLOAT_MODE_P (insn_data[d->icode].operand[0].mode))
|
9460 |
|
|
continue;
|
9461 |
|
|
type = void_list_node;
|
9462 |
|
|
for (i = 3; ; i--)
|
9463 |
|
|
{
|
9464 |
|
|
int arg = signature_args[signature][i];
|
9465 |
|
|
int opno = i - 1 + has_result;
|
9466 |
|
|
|
9467 |
|
|
if (arg & 8)
|
9468 |
|
|
arg_type = ptr_type_node;
|
9469 |
|
|
else if (arg)
|
9470 |
|
|
arg_type = (*lang_hooks.types.type_for_mode)
|
9471 |
|
|
(insn_data[d->icode].operand[opno].mode,
|
9472 |
|
|
(arg & 1));
|
9473 |
|
|
else if (i)
|
9474 |
|
|
continue;
|
9475 |
|
|
else
|
9476 |
|
|
arg_type = void_type_node;
|
9477 |
|
|
if (i == 0)
|
9478 |
|
|
break;
|
9479 |
|
|
type = tree_cons (NULL_TREE, arg_type, type);
|
9480 |
|
|
}
|
9481 |
|
|
type = build_function_type (arg_type, type);
|
9482 |
|
|
if (signature < SH_BLTIN_NUM_SHARED_SIGNATURES)
|
9483 |
|
|
shared[signature] = type;
|
9484 |
|
|
}
|
9485 |
|
|
lang_hooks.builtin_function (d->name, type, d - bdesc, BUILT_IN_MD,
|
9486 |
|
|
NULL, NULL_TREE);
|
9487 |
|
|
}
|
9488 |
|
|
}
|
9489 |
|
|
|
9490 |
|
|
/* Implements target hook vector_mode_supported_p. */
|
9491 |
|
|
bool
|
9492 |
|
|
sh_vector_mode_supported_p (enum machine_mode mode)
|
9493 |
|
|
{
|
9494 |
|
|
if (TARGET_FPU_ANY
|
9495 |
|
|
&& ((mode == V2SFmode)
|
9496 |
|
|
|| (mode == V4SFmode)
|
9497 |
|
|
|| (mode == V16SFmode)))
|
9498 |
|
|
return true;
|
9499 |
|
|
|
9500 |
|
|
else if (TARGET_SHMEDIA
|
9501 |
|
|
&& ((mode == V8QImode)
|
9502 |
|
|
|| (mode == V2HImode)
|
9503 |
|
|
|| (mode == V4HImode)
|
9504 |
|
|
|| (mode == V2SImode)))
|
9505 |
|
|
return true;
|
9506 |
|
|
|
9507 |
|
|
return false;
|
9508 |
|
|
}
|
9509 |
|
|
|
9510 |
|
|
/* Implements target hook dwarf_calling_convention. Return an enum
|
9511 |
|
|
of dwarf_calling_convention. */
|
9512 |
|
|
int
|
9513 |
|
|
sh_dwarf_calling_convention (tree func)
|
9514 |
|
|
{
|
9515 |
|
|
if (sh_attr_renesas_p (func))
|
9516 |
|
|
return DW_CC_GNU_renesas_sh;
|
9517 |
|
|
|
9518 |
|
|
return DW_CC_normal;
|
9519 |
|
|
}
|
9520 |
|
|
|
9521 |
|
|
static void
|
9522 |
|
|
sh_init_builtins (void)
|
9523 |
|
|
{
|
9524 |
|
|
if (TARGET_SHMEDIA)
|
9525 |
|
|
sh_media_init_builtins ();
|
9526 |
|
|
}
|
9527 |
|
|
|
9528 |
|
|
/* Expand an expression EXP that calls a built-in function,
|
9529 |
|
|
with result going to TARGET if that's convenient
|
9530 |
|
|
(and in mode MODE if that's convenient).
|
9531 |
|
|
SUBTARGET may be used as the target for computing one of EXP's operands.
|
9532 |
|
|
IGNORE is nonzero if the value is to be ignored. */
|
9533 |
|
|
|
9534 |
|
|
static rtx
|
9535 |
|
|
sh_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
|
9536 |
|
|
enum machine_mode mode ATTRIBUTE_UNUSED, int ignore)
|
9537 |
|
|
{
|
9538 |
|
|
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
|
9539 |
|
|
tree arglist = TREE_OPERAND (exp, 1);
|
9540 |
|
|
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
|
9541 |
|
|
const struct builtin_description *d = &bdesc[fcode];
|
9542 |
|
|
enum insn_code icode = d->icode;
|
9543 |
|
|
int signature = d->signature;
|
9544 |
|
|
enum machine_mode tmode = VOIDmode;
|
9545 |
|
|
int nop = 0, i;
|
9546 |
|
|
rtx op[4];
|
9547 |
|
|
rtx pat = 0;
|
9548 |
|
|
|
9549 |
|
|
if (signature_args[signature][0])
|
9550 |
|
|
{
|
9551 |
|
|
if (ignore)
|
9552 |
|
|
return 0;
|
9553 |
|
|
|
9554 |
|
|
tmode = insn_data[icode].operand[0].mode;
|
9555 |
|
|
if (! target
|
9556 |
|
|
|| GET_MODE (target) != tmode
|
9557 |
|
|
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
|
9558 |
|
|
target = gen_reg_rtx (tmode);
|
9559 |
|
|
op[nop++] = target;
|
9560 |
|
|
}
|
9561 |
|
|
else
|
9562 |
|
|
target = 0;
|
9563 |
|
|
|
9564 |
|
|
for (i = 1; i <= 3; i++, nop++)
|
9565 |
|
|
{
|
9566 |
|
|
tree arg;
|
9567 |
|
|
enum machine_mode opmode, argmode;
|
9568 |
|
|
tree optype;
|
9569 |
|
|
|
9570 |
|
|
if (! signature_args[signature][i])
|
9571 |
|
|
break;
|
9572 |
|
|
arg = TREE_VALUE (arglist);
|
9573 |
|
|
if (arg == error_mark_node)
|
9574 |
|
|
return const0_rtx;
|
9575 |
|
|
arglist = TREE_CHAIN (arglist);
|
9576 |
|
|
if (signature_args[signature][i] & 8)
|
9577 |
|
|
{
|
9578 |
|
|
opmode = ptr_mode;
|
9579 |
|
|
optype = ptr_type_node;
|
9580 |
|
|
}
|
9581 |
|
|
else
|
9582 |
|
|
{
|
9583 |
|
|
opmode = insn_data[icode].operand[nop].mode;
|
9584 |
|
|
optype = (*lang_hooks.types.type_for_mode) (opmode, 0);
|
9585 |
|
|
}
|
9586 |
|
|
argmode = TYPE_MODE (TREE_TYPE (arg));
|
9587 |
|
|
if (argmode != opmode)
|
9588 |
|
|
arg = build1 (NOP_EXPR, optype, arg);
|
9589 |
|
|
op[nop] = expand_expr (arg, NULL_RTX, opmode, 0);
|
9590 |
|
|
if (! (*insn_data[icode].operand[nop].predicate) (op[nop], opmode))
|
9591 |
|
|
op[nop] = copy_to_mode_reg (opmode, op[nop]);
|
9592 |
|
|
}
|
9593 |
|
|
|
9594 |
|
|
switch (nop)
|
9595 |
|
|
{
|
9596 |
|
|
case 1:
|
9597 |
|
|
pat = (*insn_data[d->icode].genfun) (op[0]);
|
9598 |
|
|
break;
|
9599 |
|
|
case 2:
|
9600 |
|
|
pat = (*insn_data[d->icode].genfun) (op[0], op[1]);
|
9601 |
|
|
break;
|
9602 |
|
|
case 3:
|
9603 |
|
|
pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2]);
|
9604 |
|
|
break;
|
9605 |
|
|
case 4:
|
9606 |
|
|
pat = (*insn_data[d->icode].genfun) (op[0], op[1], op[2], op[3]);
|
9607 |
|
|
break;
|
9608 |
|
|
default:
|
9609 |
|
|
gcc_unreachable ();
|
9610 |
|
|
}
|
9611 |
|
|
if (! pat)
|
9612 |
|
|
return 0;
|
9613 |
|
|
emit_insn (pat);
|
9614 |
|
|
return target;
|
9615 |
|
|
}
|
9616 |
|
|
|
9617 |
|
|
void
|
9618 |
|
|
sh_expand_unop_v2sf (enum rtx_code code, rtx op0, rtx op1)
|
9619 |
|
|
{
|
9620 |
|
|
rtx sel0 = const0_rtx;
|
9621 |
|
|
rtx sel1 = const1_rtx;
|
9622 |
|
|
rtx (*fn) (rtx, rtx, rtx, rtx, rtx) = gen_unary_sf_op;
|
9623 |
|
|
rtx op = gen_rtx_fmt_e (code, SFmode, op1);
|
9624 |
|
|
|
9625 |
|
|
emit_insn ((*fn) (op0, op1, op, sel0, sel0));
|
9626 |
|
|
emit_insn ((*fn) (op0, op1, op, sel1, sel1));
|
9627 |
|
|
}
|
9628 |
|
|
|
9629 |
|
|
void
|
9630 |
|
|
sh_expand_binop_v2sf (enum rtx_code code, rtx op0, rtx op1, rtx op2)
|
9631 |
|
|
{
|
9632 |
|
|
rtx sel0 = const0_rtx;
|
9633 |
|
|
rtx sel1 = const1_rtx;
|
9634 |
|
|
rtx (*fn) (rtx, rtx, rtx, rtx, rtx, rtx, rtx, rtx)
|
9635 |
|
|
= gen_binary_sf_op;
|
9636 |
|
|
rtx op = gen_rtx_fmt_ee (code, SFmode, op1, op2);
|
9637 |
|
|
|
9638 |
|
|
emit_insn ((*fn) (op0, op1, op2, op, sel0, sel0, sel0, sel1));
|
9639 |
|
|
emit_insn ((*fn) (op0, op1, op2, op, sel1, sel1, sel1, sel0));
|
9640 |
|
|
}
|
9641 |
|
|
|
9642 |
|
|
/* Return the class of registers for which a mode change from FROM to TO
|
9643 |
|
|
is invalid. */
|
9644 |
|
|
bool
|
9645 |
|
|
sh_cannot_change_mode_class (enum machine_mode from, enum machine_mode to,
|
9646 |
|
|
enum reg_class class)
|
9647 |
|
|
{
|
9648 |
|
|
/* We want to enable the use of SUBREGs as a means to
|
9649 |
|
|
VEC_SELECT a single element of a vector. */
|
9650 |
|
|
if (to == SFmode && VECTOR_MODE_P (from) && GET_MODE_INNER (from) == SFmode)
|
9651 |
|
|
return (reg_classes_intersect_p (GENERAL_REGS, class));
|
9652 |
|
|
|
9653 |
|
|
if (GET_MODE_SIZE (from) != GET_MODE_SIZE (to))
|
9654 |
|
|
{
|
9655 |
|
|
if (TARGET_LITTLE_ENDIAN)
|
9656 |
|
|
{
|
9657 |
|
|
if (GET_MODE_SIZE (to) < 8 || GET_MODE_SIZE (from) < 8)
|
9658 |
|
|
return reg_classes_intersect_p (DF_REGS, class);
|
9659 |
|
|
}
|
9660 |
|
|
else
|
9661 |
|
|
{
|
9662 |
|
|
if (GET_MODE_SIZE (from) < 8)
|
9663 |
|
|
return reg_classes_intersect_p (DF_HI_REGS, class);
|
9664 |
|
|
}
|
9665 |
|
|
}
|
9666 |
|
|
return 0;
|
9667 |
|
|
}
|
9668 |
|
|
|
9669 |
|
|
|
9670 |
|
|
/* If ADDRESS refers to a CODE_LABEL, add NUSES to the number of times
|
9671 |
|
|
that label is used. */
|
9672 |
|
|
|
9673 |
|
|
void
|
9674 |
|
|
sh_mark_label (rtx address, int nuses)
|
9675 |
|
|
{
|
9676 |
|
|
if (GOTOFF_P (address))
|
9677 |
|
|
{
|
9678 |
|
|
/* Extract the label or symbol. */
|
9679 |
|
|
address = XEXP (address, 0);
|
9680 |
|
|
if (GET_CODE (address) == PLUS)
|
9681 |
|
|
address = XEXP (address, 0);
|
9682 |
|
|
address = XVECEXP (address, 0, 0);
|
9683 |
|
|
}
|
9684 |
|
|
if (GET_CODE (address) == LABEL_REF
|
9685 |
|
|
&& GET_CODE (XEXP (address, 0)) == CODE_LABEL)
|
9686 |
|
|
LABEL_NUSES (XEXP (address, 0)) += nuses;
|
9687 |
|
|
}
|
9688 |
|
|
|
9689 |
|
|
/* Compute extra cost of moving data between one register class
|
9690 |
|
|
and another. */
|
9691 |
|
|
|
9692 |
|
|
/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
|
9693 |
|
|
uses this information. Hence, the general register <-> floating point
|
9694 |
|
|
register information here is not used for SFmode. */
|
9695 |
|
|
|
9696 |
|
|
int
|
9697 |
|
|
sh_register_move_cost (enum machine_mode mode,
|
9698 |
|
|
enum reg_class srcclass, enum reg_class dstclass)
|
9699 |
|
|
{
|
9700 |
|
|
if (dstclass == T_REGS || dstclass == PR_REGS)
|
9701 |
|
|
return 10;
|
9702 |
|
|
|
9703 |
|
|
if (dstclass == MAC_REGS && srcclass == MAC_REGS)
|
9704 |
|
|
return 4;
|
9705 |
|
|
|
9706 |
|
|
if (mode == SImode && ! TARGET_SHMEDIA && TARGET_FMOVD
|
9707 |
|
|
&& REGCLASS_HAS_FP_REG (srcclass)
|
9708 |
|
|
&& REGCLASS_HAS_FP_REG (dstclass))
|
9709 |
|
|
return 4;
|
9710 |
|
|
|
9711 |
|
|
if (REGCLASS_HAS_FP_REG (dstclass) && srcclass == T_REGS)
|
9712 |
|
|
return ((TARGET_HARD_SH4 && !optimize_size) ? 10 : 7);
|
9713 |
|
|
|
9714 |
|
|
if ((REGCLASS_HAS_FP_REG (dstclass) && srcclass == MAC_REGS)
|
9715 |
|
|
|| (dstclass == MAC_REGS && REGCLASS_HAS_FP_REG (srcclass)))
|
9716 |
|
|
return 9;
|
9717 |
|
|
|
9718 |
|
|
if ((REGCLASS_HAS_FP_REG (dstclass)
|
9719 |
|
|
&& REGCLASS_HAS_GENERAL_REG (srcclass))
|
9720 |
|
|
|| (REGCLASS_HAS_GENERAL_REG (dstclass)
|
9721 |
|
|
&& REGCLASS_HAS_FP_REG (srcclass)))
|
9722 |
|
|
return ((TARGET_SHMEDIA ? 4 : TARGET_FMOVD ? 8 : 12)
|
9723 |
|
|
* ((GET_MODE_SIZE (mode) + 7) / 8U));
|
9724 |
|
|
|
9725 |
|
|
if ((dstclass == FPUL_REGS
|
9726 |
|
|
&& REGCLASS_HAS_GENERAL_REG (srcclass))
|
9727 |
|
|
|| (srcclass == FPUL_REGS
|
9728 |
|
|
&& REGCLASS_HAS_GENERAL_REG (dstclass)))
|
9729 |
|
|
return 5;
|
9730 |
|
|
|
9731 |
|
|
if ((dstclass == FPUL_REGS
|
9732 |
|
|
&& (srcclass == PR_REGS || srcclass == MAC_REGS || srcclass == T_REGS))
|
9733 |
|
|
|| (srcclass == FPUL_REGS
|
9734 |
|
|
&& (dstclass == PR_REGS || dstclass == MAC_REGS)))
|
9735 |
|
|
return 7;
|
9736 |
|
|
|
9737 |
|
|
if ((srcclass == TARGET_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass))
|
9738 |
|
|
|| ((dstclass) == TARGET_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass)))
|
9739 |
|
|
return 20;
|
9740 |
|
|
|
9741 |
|
|
/* ??? ptabs faults on (value & 0x3) == 0x3 */
|
9742 |
|
|
if (TARGET_SHMEDIA
|
9743 |
|
|
&& ((srcclass) == TARGET_REGS || (srcclass) == SIBCALL_REGS))
|
9744 |
|
|
{
|
9745 |
|
|
if (sh_gettrcost >= 0)
|
9746 |
|
|
return sh_gettrcost;
|
9747 |
|
|
else if (!TARGET_PT_FIXED)
|
9748 |
|
|
return 100;
|
9749 |
|
|
}
|
9750 |
|
|
|
9751 |
|
|
if ((srcclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (dstclass))
|
9752 |
|
|
|| (dstclass == FPSCR_REGS && ! REGCLASS_HAS_GENERAL_REG (srcclass)))
|
9753 |
|
|
return 4;
|
9754 |
|
|
|
9755 |
|
|
if (TARGET_SHMEDIA
|
9756 |
|
|
|| (TARGET_FMOVD
|
9757 |
|
|
&& ! REGCLASS_HAS_GENERAL_REG (srcclass)
|
9758 |
|
|
&& ! REGCLASS_HAS_GENERAL_REG (dstclass)))
|
9759 |
|
|
return 2 * ((GET_MODE_SIZE (mode) + 7) / 8U);
|
9760 |
|
|
|
9761 |
|
|
return 2 * ((GET_MODE_SIZE (mode) + 3) / 4U);
|
9762 |
|
|
}
|
9763 |
|
|
|
9764 |
|
|
static rtx emit_load_ptr (rtx, rtx);
|
9765 |
|
|
|
9766 |
|
|
static rtx
|
9767 |
|
|
emit_load_ptr (rtx reg, rtx addr)
|
9768 |
|
|
{
|
9769 |
|
|
rtx mem = gen_const_mem (ptr_mode, addr);
|
9770 |
|
|
|
9771 |
|
|
if (Pmode != ptr_mode)
|
9772 |
|
|
mem = gen_rtx_SIGN_EXTEND (Pmode, mem);
|
9773 |
|
|
return emit_move_insn (reg, mem);
|
9774 |
|
|
}
|
9775 |
|
|
|
9776 |
|
|
static void
|
9777 |
|
|
sh_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
|
9778 |
|
|
HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
|
9779 |
|
|
tree function)
|
9780 |
|
|
{
|
9781 |
|
|
CUMULATIVE_ARGS cum;
|
9782 |
|
|
int structure_value_byref = 0;
|
9783 |
|
|
rtx this, this_value, sibcall, insns, funexp;
|
9784 |
|
|
tree funtype = TREE_TYPE (function);
|
9785 |
|
|
int simple_add = CONST_OK_FOR_ADD (delta);
|
9786 |
|
|
int did_load = 0;
|
9787 |
|
|
rtx scratch0, scratch1, scratch2;
|
9788 |
|
|
unsigned i;
|
9789 |
|
|
|
9790 |
|
|
reload_completed = 1;
|
9791 |
|
|
epilogue_completed = 1;
|
9792 |
|
|
no_new_pseudos = 1;
|
9793 |
|
|
current_function_uses_only_leaf_regs = 1;
|
9794 |
|
|
reset_block_changes ();
|
9795 |
|
|
|
9796 |
|
|
emit_note (NOTE_INSN_PROLOGUE_END);
|
9797 |
|
|
|
9798 |
|
|
/* Find the "this" pointer. We have such a wide range of ABIs for the
|
9799 |
|
|
SH that it's best to do this completely machine independently.
|
9800 |
|
|
"this" is passed as first argument, unless a structure return pointer
|
9801 |
|
|
comes first, in which case "this" comes second. */
|
9802 |
|
|
INIT_CUMULATIVE_ARGS (cum, funtype, NULL_RTX, 0, 1);
|
9803 |
|
|
#ifndef PCC_STATIC_STRUCT_RETURN
|
9804 |
|
|
if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
|
9805 |
|
|
structure_value_byref = 1;
|
9806 |
|
|
#endif /* not PCC_STATIC_STRUCT_RETURN */
|
9807 |
|
|
if (structure_value_byref && sh_struct_value_rtx (function, 0) == 0)
|
9808 |
|
|
{
|
9809 |
|
|
tree ptype = build_pointer_type (TREE_TYPE (funtype));
|
9810 |
|
|
|
9811 |
|
|
FUNCTION_ARG_ADVANCE (cum, Pmode, ptype, 1);
|
9812 |
|
|
}
|
9813 |
|
|
this = FUNCTION_ARG (cum, Pmode, ptr_type_node, 1);
|
9814 |
|
|
|
9815 |
|
|
/* For SHcompact, we only have r0 for a scratch register: r1 is the
|
9816 |
|
|
static chain pointer (even if you can't have nested virtual functions
|
9817 |
|
|
right now, someone might implement them sometime), and the rest of the
|
9818 |
|
|
registers are used for argument passing, are callee-saved, or reserved. */
|
9819 |
|
|
/* We need to check call_used_regs / fixed_regs in case -fcall_saved-reg /
|
9820 |
|
|
-ffixed-reg has been used. */
|
9821 |
|
|
if (! call_used_regs[0] || fixed_regs[0])
|
9822 |
|
|
error ("r0 needs to be available as a call-clobbered register");
|
9823 |
|
|
scratch0 = scratch1 = scratch2 = gen_rtx_REG (Pmode, 0);
|
9824 |
|
|
if (! TARGET_SH5)
|
9825 |
|
|
{
|
9826 |
|
|
if (call_used_regs[1] && ! fixed_regs[1])
|
9827 |
|
|
scratch1 = gen_rtx_REG (ptr_mode, 1);
|
9828 |
|
|
/* N.B., if not TARGET_HITACHI, register 2 is used to pass the pointer
|
9829 |
|
|
pointing where to return struct values. */
|
9830 |
|
|
if (call_used_regs[3] && ! fixed_regs[3])
|
9831 |
|
|
scratch2 = gen_rtx_REG (Pmode, 3);
|
9832 |
|
|
}
|
9833 |
|
|
else if (TARGET_SHMEDIA)
|
9834 |
|
|
{
|
9835 |
|
|
for (i = FIRST_GENERAL_REG; i <= LAST_GENERAL_REG; i++)
|
9836 |
|
|
if (i != REGNO (scratch0) &&
|
9837 |
|
|
call_used_regs[i] && ! fixed_regs[i] && ! FUNCTION_ARG_REGNO_P (i))
|
9838 |
|
|
{
|
9839 |
|
|
scratch1 = gen_rtx_REG (ptr_mode, i);
|
9840 |
|
|
break;
|
9841 |
|
|
}
|
9842 |
|
|
if (scratch1 == scratch0)
|
9843 |
|
|
error ("Need a second call-clobbered general purpose register");
|
9844 |
|
|
for (i = FIRST_TARGET_REG; i <= LAST_TARGET_REG; i++)
|
9845 |
|
|
if (call_used_regs[i] && ! fixed_regs[i])
|
9846 |
|
|
{
|
9847 |
|
|
scratch2 = gen_rtx_REG (Pmode, i);
|
9848 |
|
|
break;
|
9849 |
|
|
}
|
9850 |
|
|
if (scratch2 == scratch0)
|
9851 |
|
|
error ("Need a call-clobbered target register");
|
9852 |
|
|
}
|
9853 |
|
|
|
9854 |
|
|
this_value = plus_constant (this, delta);
|
9855 |
|
|
if (vcall_offset
|
9856 |
|
|
&& (simple_add || scratch0 != scratch1)
|
9857 |
|
|
&& strict_memory_address_p (ptr_mode, this_value))
|
9858 |
|
|
{
|
9859 |
|
|
emit_load_ptr (scratch0, this_value);
|
9860 |
|
|
did_load = 1;
|
9861 |
|
|
}
|
9862 |
|
|
|
9863 |
|
|
if (!delta)
|
9864 |
|
|
; /* Do nothing. */
|
9865 |
|
|
else if (simple_add)
|
9866 |
|
|
emit_move_insn (this, this_value);
|
9867 |
|
|
else
|
9868 |
|
|
{
|
9869 |
|
|
emit_move_insn (scratch1, GEN_INT (delta));
|
9870 |
|
|
emit_insn (gen_add2_insn (this, scratch1));
|
9871 |
|
|
}
|
9872 |
|
|
|
9873 |
|
|
if (vcall_offset)
|
9874 |
|
|
{
|
9875 |
|
|
rtx offset_addr;
|
9876 |
|
|
|
9877 |
|
|
if (!did_load)
|
9878 |
|
|
emit_load_ptr (scratch0, this);
|
9879 |
|
|
|
9880 |
|
|
offset_addr = plus_constant (scratch0, vcall_offset);
|
9881 |
|
|
if (strict_memory_address_p (ptr_mode, offset_addr))
|
9882 |
|
|
; /* Do nothing. */
|
9883 |
|
|
else if (! TARGET_SH5 && scratch0 != scratch1)
|
9884 |
|
|
{
|
9885 |
|
|
/* scratch0 != scratch1, and we have indexed loads. Get better
|
9886 |
|
|
schedule by loading the offset into r1 and using an indexed
|
9887 |
|
|
load - then the load of r1 can issue before the load from
|
9888 |
|
|
(this + delta) finishes. */
|
9889 |
|
|
emit_move_insn (scratch1, GEN_INT (vcall_offset));
|
9890 |
|
|
offset_addr = gen_rtx_PLUS (Pmode, scratch0, scratch1);
|
9891 |
|
|
}
|
9892 |
|
|
else if (CONST_OK_FOR_ADD (vcall_offset))
|
9893 |
|
|
{
|
9894 |
|
|
emit_insn (gen_add2_insn (scratch0, GEN_INT (vcall_offset)));
|
9895 |
|
|
offset_addr = scratch0;
|
9896 |
|
|
}
|
9897 |
|
|
else if (scratch0 != scratch1)
|
9898 |
|
|
{
|
9899 |
|
|
emit_move_insn (scratch1, GEN_INT (vcall_offset));
|
9900 |
|
|
emit_insn (gen_add2_insn (scratch0, scratch1));
|
9901 |
|
|
offset_addr = scratch0;
|
9902 |
|
|
}
|
9903 |
|
|
else
|
9904 |
|
|
gcc_unreachable (); /* FIXME */
|
9905 |
|
|
emit_load_ptr (scratch0, offset_addr);
|
9906 |
|
|
|
9907 |
|
|
if (Pmode != ptr_mode)
|
9908 |
|
|
scratch0 = gen_rtx_TRUNCATE (ptr_mode, scratch0);
|
9909 |
|
|
emit_insn (gen_add2_insn (this, scratch0));
|
9910 |
|
|
}
|
9911 |
|
|
|
9912 |
|
|
/* Generate a tail call to the target function. */
|
9913 |
|
|
if (! TREE_USED (function))
|
9914 |
|
|
{
|
9915 |
|
|
assemble_external (function);
|
9916 |
|
|
TREE_USED (function) = 1;
|
9917 |
|
|
}
|
9918 |
|
|
funexp = XEXP (DECL_RTL (function), 0);
|
9919 |
|
|
/* If the function is overridden, so is the thunk, hence we don't
|
9920 |
|
|
need GOT addressing even if this is a public symbol. */
|
9921 |
|
|
#if 0
|
9922 |
|
|
if (TARGET_SH1 && ! flag_weak)
|
9923 |
|
|
sibcall = gen_sibcalli_thunk (funexp, const0_rtx);
|
9924 |
|
|
else
|
9925 |
|
|
#endif
|
9926 |
|
|
if (TARGET_SH2 && flag_pic)
|
9927 |
|
|
{
|
9928 |
|
|
sibcall = gen_sibcall_pcrel (funexp, const0_rtx);
|
9929 |
|
|
XEXP (XVECEXP (sibcall, 0, 2), 0) = scratch2;
|
9930 |
|
|
}
|
9931 |
|
|
else
|
9932 |
|
|
{
|
9933 |
|
|
if (TARGET_SHMEDIA && flag_pic)
|
9934 |
|
|
{
|
9935 |
|
|
funexp = gen_sym2PIC (funexp);
|
9936 |
|
|
PUT_MODE (funexp, Pmode);
|
9937 |
|
|
}
|
9938 |
|
|
emit_move_insn (scratch2, funexp);
|
9939 |
|
|
funexp = gen_rtx_MEM (FUNCTION_MODE, scratch2);
|
9940 |
|
|
sibcall = gen_sibcall (funexp, const0_rtx, NULL_RTX);
|
9941 |
|
|
}
|
9942 |
|
|
sibcall = emit_call_insn (sibcall);
|
9943 |
|
|
SIBLING_CALL_P (sibcall) = 1;
|
9944 |
|
|
use_reg (&CALL_INSN_FUNCTION_USAGE (sibcall), this);
|
9945 |
|
|
emit_barrier ();
|
9946 |
|
|
|
9947 |
|
|
/* Run just enough of rest_of_compilation to do scheduling and get
|
9948 |
|
|
the insns emitted. Note that use_thunk calls
|
9949 |
|
|
assemble_start_function and assemble_end_function. */
|
9950 |
|
|
|
9951 |
|
|
insn_locators_initialize ();
|
9952 |
|
|
insns = get_insns ();
|
9953 |
|
|
|
9954 |
|
|
if (optimize > 0)
|
9955 |
|
|
{
|
9956 |
|
|
/* Initialize the bitmap obstacks. */
|
9957 |
|
|
bitmap_obstack_initialize (NULL);
|
9958 |
|
|
bitmap_obstack_initialize (®_obstack);
|
9959 |
|
|
if (! cfun->cfg)
|
9960 |
|
|
init_flow ();
|
9961 |
|
|
rtl_register_cfg_hooks ();
|
9962 |
|
|
init_rtl_bb_info (ENTRY_BLOCK_PTR);
|
9963 |
|
|
init_rtl_bb_info (EXIT_BLOCK_PTR);
|
9964 |
|
|
ENTRY_BLOCK_PTR->flags |= BB_RTL;
|
9965 |
|
|
EXIT_BLOCK_PTR->flags |= BB_RTL;
|
9966 |
|
|
find_basic_blocks (insns);
|
9967 |
|
|
|
9968 |
|
|
if (flag_schedule_insns_after_reload)
|
9969 |
|
|
{
|
9970 |
|
|
life_analysis (PROP_FINAL);
|
9971 |
|
|
|
9972 |
|
|
split_all_insns (1);
|
9973 |
|
|
|
9974 |
|
|
schedule_insns ();
|
9975 |
|
|
}
|
9976 |
|
|
/* We must split jmp insn in PIC case. */
|
9977 |
|
|
else if (flag_pic)
|
9978 |
|
|
split_all_insns_noflow ();
|
9979 |
|
|
}
|
9980 |
|
|
|
9981 |
|
|
sh_reorg ();
|
9982 |
|
|
|
9983 |
|
|
if (optimize > 0 && flag_delayed_branch)
|
9984 |
|
|
dbr_schedule (insns);
|
9985 |
|
|
|
9986 |
|
|
shorten_branches (insns);
|
9987 |
|
|
final_start_function (insns, file, 1);
|
9988 |
|
|
final (insns, file, 1);
|
9989 |
|
|
final_end_function ();
|
9990 |
|
|
|
9991 |
|
|
if (optimize > 0)
|
9992 |
|
|
{
|
9993 |
|
|
/* Release all memory allocated by flow. */
|
9994 |
|
|
free_basic_block_vars ();
|
9995 |
|
|
|
9996 |
|
|
/* Release the bitmap obstacks. */
|
9997 |
|
|
bitmap_obstack_release (®_obstack);
|
9998 |
|
|
bitmap_obstack_release (NULL);
|
9999 |
|
|
}
|
10000 |
|
|
|
10001 |
|
|
reload_completed = 0;
|
10002 |
|
|
epilogue_completed = 0;
|
10003 |
|
|
no_new_pseudos = 0;
|
10004 |
|
|
}
|
10005 |
|
|
|
10006 |
|
|
rtx
|
10007 |
|
|
function_symbol (rtx target, const char *name, enum sh_function_kind kind)
|
10008 |
|
|
{
|
10009 |
|
|
rtx sym;
|
10010 |
|
|
|
10011 |
|
|
/* If this is not an ordinary function, the name usually comes from a
|
10012 |
|
|
string literal or an sprintf buffer. Make sure we use the same
|
10013 |
|
|
string consistently, so that cse will be able to unify address loads. */
|
10014 |
|
|
if (kind != FUNCTION_ORDINARY)
|
10015 |
|
|
name = IDENTIFIER_POINTER (get_identifier (name));
|
10016 |
|
|
sym = gen_rtx_SYMBOL_REF (Pmode, name);
|
10017 |
|
|
SYMBOL_REF_FLAGS (sym) = SYMBOL_FLAG_FUNCTION;
|
10018 |
|
|
if (flag_pic)
|
10019 |
|
|
switch (kind)
|
10020 |
|
|
{
|
10021 |
|
|
case FUNCTION_ORDINARY:
|
10022 |
|
|
break;
|
10023 |
|
|
case SFUNC_GOT:
|
10024 |
|
|
{
|
10025 |
|
|
rtx reg = target ? target : gen_reg_rtx (Pmode);
|
10026 |
|
|
|
10027 |
|
|
emit_insn (gen_symGOT2reg (reg, sym));
|
10028 |
|
|
sym = reg;
|
10029 |
|
|
break;
|
10030 |
|
|
}
|
10031 |
|
|
case SFUNC_STATIC:
|
10032 |
|
|
{
|
10033 |
|
|
/* ??? To allow cse to work, we use GOTOFF relocations.
|
10034 |
|
|
we could add combiner patterns to transform this into
|
10035 |
|
|
straight pc-relative calls with sym2PIC / bsrf when
|
10036 |
|
|
label load and function call are still 1:1 and in the
|
10037 |
|
|
same basic block during combine. */
|
10038 |
|
|
rtx reg = target ? target : gen_reg_rtx (Pmode);
|
10039 |
|
|
|
10040 |
|
|
emit_insn (gen_symGOTOFF2reg (reg, sym));
|
10041 |
|
|
sym = reg;
|
10042 |
|
|
break;
|
10043 |
|
|
}
|
10044 |
|
|
}
|
10045 |
|
|
if (target && sym != target)
|
10046 |
|
|
{
|
10047 |
|
|
emit_move_insn (target, sym);
|
10048 |
|
|
return target;
|
10049 |
|
|
}
|
10050 |
|
|
return sym;
|
10051 |
|
|
}
|
10052 |
|
|
|
10053 |
|
|
/* Find the number of a general purpose register in S. */
|
10054 |
|
|
static int
|
10055 |
|
|
scavenge_reg (HARD_REG_SET *s)
|
10056 |
|
|
{
|
10057 |
|
|
int r;
|
10058 |
|
|
for (r = FIRST_GENERAL_REG; r <= LAST_GENERAL_REG; r++)
|
10059 |
|
|
if (TEST_HARD_REG_BIT (*s, r))
|
10060 |
|
|
return r;
|
10061 |
|
|
return -1;
|
10062 |
|
|
}
|
10063 |
|
|
|
10064 |
|
|
rtx
|
10065 |
|
|
sh_get_pr_initial_val (void)
|
10066 |
|
|
{
|
10067 |
|
|
rtx val;
|
10068 |
|
|
|
10069 |
|
|
/* ??? Unfortunately, get_hard_reg_initial_val doesn't always work for the
|
10070 |
|
|
PR register on SHcompact, because it might be clobbered by the prologue.
|
10071 |
|
|
We check first if that is known to be the case. */
|
10072 |
|
|
if (TARGET_SHCOMPACT
|
10073 |
|
|
&& ((current_function_args_info.call_cookie
|
10074 |
|
|
& ~ CALL_COOKIE_RET_TRAMP (1))
|
10075 |
|
|
|| current_function_has_nonlocal_label))
|
10076 |
|
|
return gen_frame_mem (SImode, return_address_pointer_rtx);
|
10077 |
|
|
|
10078 |
|
|
/* If we haven't finished rtl generation, there might be a nonlocal label
|
10079 |
|
|
that we haven't seen yet.
|
10080 |
|
|
??? get_hard_reg_initial_val fails if it is called while no_new_pseudos
|
10081 |
|
|
is set, unless it has been called before for the same register. And even
|
10082 |
|
|
then, we end in trouble if we didn't use the register in the same
|
10083 |
|
|
basic block before. So call get_hard_reg_initial_val now and wrap it
|
10084 |
|
|
in an unspec if we might need to replace it. */
|
10085 |
|
|
/* ??? We also must do this for TARGET_SH1 in general, because otherwise
|
10086 |
|
|
combine can put the pseudo returned by get_hard_reg_initial_val into
|
10087 |
|
|
instructions that need a general purpose registers, which will fail to
|
10088 |
|
|
be recognized when the pseudo becomes allocated to PR. */
|
10089 |
|
|
val
|
10090 |
|
|
= get_hard_reg_initial_val (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG);
|
10091 |
|
|
if (TARGET_SH1)
|
10092 |
|
|
return gen_rtx_UNSPEC (SImode, gen_rtvec (1, val), UNSPEC_RA);
|
10093 |
|
|
return val;
|
10094 |
|
|
}
|
10095 |
|
|
|
10096 |
|
|
int
|
10097 |
|
|
sh_expand_t_scc (enum rtx_code code, rtx target)
|
10098 |
|
|
{
|
10099 |
|
|
rtx result = target;
|
10100 |
|
|
HOST_WIDE_INT val;
|
10101 |
|
|
|
10102 |
|
|
if (GET_CODE (sh_compare_op0) != REG || REGNO (sh_compare_op0) != T_REG
|
10103 |
|
|
|| GET_CODE (sh_compare_op1) != CONST_INT)
|
10104 |
|
|
return 0;
|
10105 |
|
|
if (GET_CODE (result) != REG)
|
10106 |
|
|
result = gen_reg_rtx (SImode);
|
10107 |
|
|
val = INTVAL (sh_compare_op1);
|
10108 |
|
|
if ((code == EQ && val == 1) || (code == NE && val == 0))
|
10109 |
|
|
emit_insn (gen_movt (result));
|
10110 |
|
|
else if ((code == EQ && val == 0) || (code == NE && val == 1))
|
10111 |
|
|
{
|
10112 |
|
|
emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
|
10113 |
|
|
emit_insn (gen_subc (result, result, result));
|
10114 |
|
|
emit_insn (gen_addsi3 (result, result, const1_rtx));
|
10115 |
|
|
}
|
10116 |
|
|
else if (code == EQ || code == NE)
|
10117 |
|
|
emit_insn (gen_move_insn (result, GEN_INT (code == NE)));
|
10118 |
|
|
else
|
10119 |
|
|
return 0;
|
10120 |
|
|
if (result != target)
|
10121 |
|
|
emit_move_insn (target, result);
|
10122 |
|
|
return 1;
|
10123 |
|
|
}
|
10124 |
|
|
|
10125 |
|
|
/* INSN is an sfunc; return the rtx that describes the address used. */
|
10126 |
|
|
static rtx
|
10127 |
|
|
extract_sfunc_addr (rtx insn)
|
10128 |
|
|
{
|
10129 |
|
|
rtx pattern, part = NULL_RTX;
|
10130 |
|
|
int len, i;
|
10131 |
|
|
|
10132 |
|
|
pattern = PATTERN (insn);
|
10133 |
|
|
len = XVECLEN (pattern, 0);
|
10134 |
|
|
for (i = 0; i < len; i++)
|
10135 |
|
|
{
|
10136 |
|
|
part = XVECEXP (pattern, 0, i);
|
10137 |
|
|
if (GET_CODE (part) == USE && GET_MODE (XEXP (part, 0)) == Pmode
|
10138 |
|
|
&& GENERAL_REGISTER_P (true_regnum (XEXP (part, 0))))
|
10139 |
|
|
return XEXP (part, 0);
|
10140 |
|
|
}
|
10141 |
|
|
gcc_assert (GET_CODE (XVECEXP (pattern, 0, 0)) == UNSPEC_VOLATILE);
|
10142 |
|
|
return XVECEXP (XVECEXP (pattern, 0, 0), 0, 1);
|
10143 |
|
|
}
|
10144 |
|
|
|
10145 |
|
|
/* Verify that the register in use_sfunc_addr still agrees with the address
|
10146 |
|
|
used in the sfunc. This prevents fill_slots_from_thread from changing
|
10147 |
|
|
use_sfunc_addr.
|
10148 |
|
|
INSN is the use_sfunc_addr instruction, and REG is the register it
|
10149 |
|
|
guards. */
|
10150 |
|
|
int
|
10151 |
|
|
check_use_sfunc_addr (rtx insn, rtx reg)
|
10152 |
|
|
{
|
10153 |
|
|
/* Search for the sfunc. It should really come right after INSN. */
|
10154 |
|
|
while ((insn = NEXT_INSN (insn)))
|
10155 |
|
|
{
|
10156 |
|
|
if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
|
10157 |
|
|
break;
|
10158 |
|
|
if (! INSN_P (insn))
|
10159 |
|
|
continue;
|
10160 |
|
|
|
10161 |
|
|
if (GET_CODE (PATTERN (insn)) == SEQUENCE)
|
10162 |
|
|
insn = XVECEXP (PATTERN (insn), 0, 0);
|
10163 |
|
|
if (GET_CODE (PATTERN (insn)) != PARALLEL
|
10164 |
|
|
|| get_attr_type (insn) != TYPE_SFUNC)
|
10165 |
|
|
continue;
|
10166 |
|
|
return rtx_equal_p (extract_sfunc_addr (insn), reg);
|
10167 |
|
|
}
|
10168 |
|
|
gcc_unreachable ();
|
10169 |
|
|
}
|
10170 |
|
|
|
10171 |
|
|
/* This function returns a constant rtx that represents pi / 2**15 in
|
10172 |
|
|
SFmode. it's used to scale SFmode angles, in radians, to a
|
10173 |
|
|
fixed-point signed 16.16-bit fraction of a full circle, i.e., 2*pi
|
10174 |
|
|
maps to 0x10000). */
|
10175 |
|
|
|
10176 |
|
|
static GTY(()) rtx sh_fsca_sf2int_rtx;
|
10177 |
|
|
|
10178 |
|
|
rtx
|
10179 |
|
|
sh_fsca_sf2int (void)
|
10180 |
|
|
{
|
10181 |
|
|
if (! sh_fsca_sf2int_rtx)
|
10182 |
|
|
{
|
10183 |
|
|
REAL_VALUE_TYPE rv;
|
10184 |
|
|
|
10185 |
|
|
real_from_string (&rv, "10430.378350470453");
|
10186 |
|
|
sh_fsca_sf2int_rtx = const_double_from_real_value (rv, SFmode);
|
10187 |
|
|
}
|
10188 |
|
|
|
10189 |
|
|
return sh_fsca_sf2int_rtx;
|
10190 |
|
|
}
|
10191 |
|
|
|
10192 |
|
|
/* This function returns a constant rtx that represents pi / 2**15 in
|
10193 |
|
|
DFmode. it's used to scale DFmode angles, in radians, to a
|
10194 |
|
|
fixed-point signed 16.16-bit fraction of a full circle, i.e., 2*pi
|
10195 |
|
|
maps to 0x10000). */
|
10196 |
|
|
|
10197 |
|
|
static GTY(()) rtx sh_fsca_df2int_rtx;
|
10198 |
|
|
|
10199 |
|
|
rtx
|
10200 |
|
|
sh_fsca_df2int (void)
|
10201 |
|
|
{
|
10202 |
|
|
if (! sh_fsca_df2int_rtx)
|
10203 |
|
|
{
|
10204 |
|
|
REAL_VALUE_TYPE rv;
|
10205 |
|
|
|
10206 |
|
|
real_from_string (&rv, "10430.378350470453");
|
10207 |
|
|
sh_fsca_df2int_rtx = const_double_from_real_value (rv, DFmode);
|
10208 |
|
|
}
|
10209 |
|
|
|
10210 |
|
|
return sh_fsca_df2int_rtx;
|
10211 |
|
|
}
|
10212 |
|
|
|
10213 |
|
|
/* This function returns a constant rtx that represents 2**15 / pi in
|
10214 |
|
|
SFmode. it's used to scale a fixed-point signed 16.16-bit fraction
|
10215 |
|
|
of a full circle back to a SFmode value, i.e., 0x10000 maps to
|
10216 |
|
|
2*pi). */
|
10217 |
|
|
|
10218 |
|
|
static GTY(()) rtx sh_fsca_int2sf_rtx;
|
10219 |
|
|
|
10220 |
|
|
rtx
|
10221 |
|
|
sh_fsca_int2sf (void)
|
10222 |
|
|
{
|
10223 |
|
|
if (! sh_fsca_int2sf_rtx)
|
10224 |
|
|
{
|
10225 |
|
|
REAL_VALUE_TYPE rv;
|
10226 |
|
|
|
10227 |
|
|
real_from_string (&rv, "9.587379924285257e-5");
|
10228 |
|
|
sh_fsca_int2sf_rtx = const_double_from_real_value (rv, SFmode);
|
10229 |
|
|
}
|
10230 |
|
|
|
10231 |
|
|
return sh_fsca_int2sf_rtx;
|
10232 |
|
|
}
|
10233 |
|
|
|
10234 |
|
|
/* Initialize the CUMULATIVE_ARGS structure. */
|
10235 |
|
|
|
10236 |
|
|
void
|
10237 |
|
|
sh_init_cumulative_args (CUMULATIVE_ARGS * pcum,
|
10238 |
|
|
tree fntype,
|
10239 |
|
|
rtx libname ATTRIBUTE_UNUSED,
|
10240 |
|
|
tree fndecl,
|
10241 |
|
|
signed int n_named_args,
|
10242 |
|
|
enum machine_mode mode)
|
10243 |
|
|
{
|
10244 |
|
|
pcum->arg_count [(int) SH_ARG_FLOAT] = 0;
|
10245 |
|
|
pcum->free_single_fp_reg = 0;
|
10246 |
|
|
pcum->stack_regs = 0;
|
10247 |
|
|
pcum->byref_regs = 0;
|
10248 |
|
|
pcum->byref = 0;
|
10249 |
|
|
pcum->outgoing = (n_named_args == -1) ? 0 : 1;
|
10250 |
|
|
|
10251 |
|
|
/* XXX - Should we check TARGET_HITACHI here ??? */
|
10252 |
|
|
pcum->renesas_abi = sh_attr_renesas_p (fntype) ? 1 : 0;
|
10253 |
|
|
|
10254 |
|
|
if (fntype)
|
10255 |
|
|
{
|
10256 |
|
|
pcum->force_mem = ((TARGET_HITACHI || pcum->renesas_abi)
|
10257 |
|
|
&& aggregate_value_p (TREE_TYPE (fntype), fndecl));
|
10258 |
|
|
pcum->prototype_p = TYPE_ARG_TYPES (fntype) ? TRUE : FALSE;
|
10259 |
|
|
pcum->arg_count [(int) SH_ARG_INT]
|
10260 |
|
|
= TARGET_SH5 && aggregate_value_p (TREE_TYPE (fntype), fndecl);
|
10261 |
|
|
|
10262 |
|
|
pcum->call_cookie
|
10263 |
|
|
= CALL_COOKIE_RET_TRAMP (TARGET_SHCOMPACT
|
10264 |
|
|
&& pcum->arg_count [(int) SH_ARG_INT] == 0
|
10265 |
|
|
&& (TYPE_MODE (TREE_TYPE (fntype)) == BLKmode
|
10266 |
|
|
? int_size_in_bytes (TREE_TYPE (fntype))
|
10267 |
|
|
: GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (fntype)))) > 4
|
10268 |
|
|
&& (BASE_RETURN_VALUE_REG (TYPE_MODE (TREE_TYPE (fntype)))
|
10269 |
|
|
== FIRST_RET_REG));
|
10270 |
|
|
}
|
10271 |
|
|
else
|
10272 |
|
|
{
|
10273 |
|
|
pcum->arg_count [(int) SH_ARG_INT] = 0;
|
10274 |
|
|
pcum->prototype_p = FALSE;
|
10275 |
|
|
if (mode != VOIDmode)
|
10276 |
|
|
{
|
10277 |
|
|
pcum->call_cookie =
|
10278 |
|
|
CALL_COOKIE_RET_TRAMP (TARGET_SHCOMPACT
|
10279 |
|
|
&& GET_MODE_SIZE (mode) > 4
|
10280 |
|
|
&& BASE_RETURN_VALUE_REG (mode) == FIRST_RET_REG);
|
10281 |
|
|
|
10282 |
|
|
/* If the default ABI is the Renesas ABI then all library
|
10283 |
|
|
calls must assume that the library will be using the
|
10284 |
|
|
Renesas ABI. So if the function would return its result
|
10285 |
|
|
in memory then we must force the address of this memory
|
10286 |
|
|
block onto the stack. Ideally we would like to call
|
10287 |
|
|
targetm.calls.return_in_memory() here but we do not have
|
10288 |
|
|
the TYPE or the FNDECL available so we synthesize the
|
10289 |
|
|
contents of that function as best we can. */
|
10290 |
|
|
pcum->force_mem =
|
10291 |
|
|
(TARGET_DEFAULT & MASK_HITACHI)
|
10292 |
|
|
&& (mode == BLKmode
|
10293 |
|
|
|| (GET_MODE_SIZE (mode) > 4
|
10294 |
|
|
&& !(mode == DFmode
|
10295 |
|
|
&& TARGET_FPU_DOUBLE)));
|
10296 |
|
|
}
|
10297 |
|
|
else
|
10298 |
|
|
{
|
10299 |
|
|
pcum->call_cookie = 0;
|
10300 |
|
|
pcum->force_mem = FALSE;
|
10301 |
|
|
}
|
10302 |
|
|
}
|
10303 |
|
|
}
|
10304 |
|
|
|
10305 |
|
|
/* Determine if two hard register sets intersect.
|
10306 |
|
|
Return 1 if they do. */
|
10307 |
|
|
|
10308 |
|
|
static int
|
10309 |
|
|
hard_regs_intersect_p (HARD_REG_SET *a, HARD_REG_SET *b)
|
10310 |
|
|
{
|
10311 |
|
|
HARD_REG_SET c;
|
10312 |
|
|
COPY_HARD_REG_SET (c, *a);
|
10313 |
|
|
AND_HARD_REG_SET (c, *b);
|
10314 |
|
|
GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
|
10315 |
|
|
return 1;
|
10316 |
|
|
lose:
|
10317 |
|
|
return 0;
|
10318 |
|
|
}
|
10319 |
|
|
|
10320 |
|
|
#ifdef TARGET_ADJUST_UNROLL_MAX
|
10321 |
|
|
static int
|
10322 |
|
|
sh_adjust_unroll_max (struct loop * loop, int insn_count,
|
10323 |
|
|
int max_unrolled_insns, int strength_reduce_p,
|
10324 |
|
|
int unroll_type)
|
10325 |
|
|
{
|
10326 |
|
|
/* This doesn't work in 4.0 because the old unroller & loop.h is gone. */
|
10327 |
|
|
if (TARGET_ADJUST_UNROLL && TARGET_SHMEDIA)
|
10328 |
|
|
{
|
10329 |
|
|
/* Throttle back loop unrolling so that the costs of using more
|
10330 |
|
|
targets than the eight target register we have don't outweigh
|
10331 |
|
|
the benefits of unrolling. */
|
10332 |
|
|
rtx insn;
|
10333 |
|
|
int n_labels = 0, n_calls = 0, n_exit_dest = 0, n_inner_loops = -1;
|
10334 |
|
|
int n_barriers = 0;
|
10335 |
|
|
rtx dest;
|
10336 |
|
|
int i;
|
10337 |
|
|
rtx exit_dest[8];
|
10338 |
|
|
int threshold;
|
10339 |
|
|
int unroll_benefit = 0, mem_latency = 0;
|
10340 |
|
|
int base_cost, best_cost, cost;
|
10341 |
|
|
int factor, best_factor;
|
10342 |
|
|
int n_dest;
|
10343 |
|
|
unsigned max_iterations = 32767;
|
10344 |
|
|
int n_iterations;
|
10345 |
|
|
int need_precond = 0, precond = 0;
|
10346 |
|
|
basic_block * bbs = get_loop_body (loop);
|
10347 |
|
|
struct niter_desc *desc;
|
10348 |
|
|
|
10349 |
|
|
/* Assume that all labels inside the loop are used from inside the
|
10350 |
|
|
loop. If the loop has multiple entry points, it is unlikely to
|
10351 |
|
|
be unrolled anyways.
|
10352 |
|
|
Also assume that all calls are to different functions. That is
|
10353 |
|
|
somewhat pessimistic, but if you have lots of calls, unrolling the
|
10354 |
|
|
loop is not likely to gain you much in the first place. */
|
10355 |
|
|
i = loop->num_nodes - 1;
|
10356 |
|
|
for (insn = BB_HEAD (bbs[i]); ; )
|
10357 |
|
|
{
|
10358 |
|
|
if (GET_CODE (insn) == CODE_LABEL)
|
10359 |
|
|
n_labels++;
|
10360 |
|
|
else if (GET_CODE (insn) == CALL_INSN)
|
10361 |
|
|
n_calls++;
|
10362 |
|
|
else if (GET_CODE (insn) == NOTE
|
10363 |
|
|
&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
|
10364 |
|
|
n_inner_loops++;
|
10365 |
|
|
else if (GET_CODE (insn) == BARRIER)
|
10366 |
|
|
n_barriers++;
|
10367 |
|
|
if (insn != BB_END (bbs[i]))
|
10368 |
|
|
insn = NEXT_INSN (insn);
|
10369 |
|
|
else if (--i >= 0)
|
10370 |
|
|
insn = BB_HEAD (bbs[i]);
|
10371 |
|
|
else
|
10372 |
|
|
break;
|
10373 |
|
|
}
|
10374 |
|
|
free (bbs);
|
10375 |
|
|
/* One label for the loop top is normal, and it won't be duplicated by
|
10376 |
|
|
unrolling. */
|
10377 |
|
|
if (n_labels <= 1)
|
10378 |
|
|
return max_unrolled_insns;
|
10379 |
|
|
if (n_inner_loops > 0)
|
10380 |
|
|
return 0;
|
10381 |
|
|
for (dest = loop->exit_labels; dest && n_exit_dest < 8;
|
10382 |
|
|
dest = LABEL_NEXTREF (dest))
|
10383 |
|
|
{
|
10384 |
|
|
for (i = n_exit_dest - 1;
|
10385 |
|
|
i >= 0 && XEXP (dest, 0) != XEXP (exit_dest[i], 0); i--);
|
10386 |
|
|
if (i < 0)
|
10387 |
|
|
exit_dest[n_exit_dest++] = dest;
|
10388 |
|
|
}
|
10389 |
|
|
/* If the loop top and call and exit destinations are enough to fill up
|
10390 |
|
|
the target registers, we're unlikely to do any more damage by
|
10391 |
|
|
unrolling. */
|
10392 |
|
|
if (n_calls + n_exit_dest >= 7)
|
10393 |
|
|
return max_unrolled_insns;
|
10394 |
|
|
|
10395 |
|
|
/* ??? In the new loop unroller, there is no longer any strength
|
10396 |
|
|
reduction information available. Thus, when it comes to unrolling,
|
10397 |
|
|
we know the cost of everything, but we know the value of nothing. */
|
10398 |
|
|
#if 0
|
10399 |
|
|
if (strength_reduce_p
|
10400 |
|
|
&& (unroll_type == LPT_UNROLL_RUNTIME
|
10401 |
|
|
|| unroll_type == LPT_UNROLL_CONSTANT
|
10402 |
|
|
|| unroll_type == LPT_PEEL_COMPLETELY))
|
10403 |
|
|
{
|
10404 |
|
|
struct loop_ivs *ivs = LOOP_IVS (loop);
|
10405 |
|
|
struct iv_class *bl;
|
10406 |
|
|
|
10407 |
|
|
/* We'll save one compare-and-branch in each loop body copy
|
10408 |
|
|
but the last one. */
|
10409 |
|
|
unroll_benefit = 1;
|
10410 |
|
|
/* Assess the benefit of removing biv & giv updates. */
|
10411 |
|
|
for (bl = ivs->list; bl; bl = bl->next)
|
10412 |
|
|
{
|
10413 |
|
|
rtx increment = biv_total_increment (bl);
|
10414 |
|
|
struct induction *v;
|
10415 |
|
|
|
10416 |
|
|
if (increment && GET_CODE (increment) == CONST_INT)
|
10417 |
|
|
{
|
10418 |
|
|
unroll_benefit++;
|
10419 |
|
|
for (v = bl->giv; v; v = v->next_iv)
|
10420 |
|
|
{
|
10421 |
|
|
if (! v->ignore && v->same == 0
|
10422 |
|
|
&& GET_CODE (v->mult_val) == CONST_INT)
|
10423 |
|
|
unroll_benefit++;
|
10424 |
|
|
/* If this giv uses an array, try to determine
|
10425 |
|
|
a maximum iteration count from the size of the
|
10426 |
|
|
array. This need not be correct all the time,
|
10427 |
|
|
but should not be too far off the mark too often. */
|
10428 |
|
|
while (v->giv_type == DEST_ADDR)
|
10429 |
|
|
{
|
10430 |
|
|
rtx mem = PATTERN (v->insn);
|
10431 |
|
|
tree mem_expr, type, size_tree;
|
10432 |
|
|
|
10433 |
|
|
if (GET_CODE (SET_SRC (mem)) == MEM)
|
10434 |
|
|
mem = SET_SRC (mem);
|
10435 |
|
|
else if (GET_CODE (SET_DEST (mem)) == MEM)
|
10436 |
|
|
mem = SET_DEST (mem);
|
10437 |
|
|
else
|
10438 |
|
|
break;
|
10439 |
|
|
mem_expr = MEM_EXPR (mem);
|
10440 |
|
|
if (! mem_expr)
|
10441 |
|
|
break;
|
10442 |
|
|
type = TREE_TYPE (mem_expr);
|
10443 |
|
|
if (TREE_CODE (type) != ARRAY_TYPE
|
10444 |
|
|
|| ! TYPE_SIZE (type) || ! TYPE_SIZE_UNIT (type))
|
10445 |
|
|
break;
|
10446 |
|
|
size_tree = fold_build2 (TRUNC_DIV_EXPR,
|
10447 |
|
|
bitsizetype,
|
10448 |
|
|
TYPE_SIZE (type),
|
10449 |
|
|
TYPE_SIZE_UNIT (type));
|
10450 |
|
|
if (TREE_CODE (size_tree) == INTEGER_CST
|
10451 |
|
|
&& ! TREE_INT_CST_HIGH (size_tree)
|
10452 |
|
|
&& TREE_INT_CST_LOW (size_tree) < max_iterations)
|
10453 |
|
|
max_iterations = TREE_INT_CST_LOW (size_tree);
|
10454 |
|
|
break;
|
10455 |
|
|
}
|
10456 |
|
|
}
|
10457 |
|
|
}
|
10458 |
|
|
}
|
10459 |
|
|
}
|
10460 |
|
|
#else /* 0 */
|
10461 |
|
|
/* Assume there is at least some benefit. */
|
10462 |
|
|
unroll_benefit = 1;
|
10463 |
|
|
#endif /* 0 */
|
10464 |
|
|
|
10465 |
|
|
desc = get_simple_loop_desc (loop);
|
10466 |
|
|
n_iterations = desc->const_iter ? desc->niter : 0;
|
10467 |
|
|
max_iterations
|
10468 |
|
|
= max_iterations < desc->niter_max ? max_iterations : desc->niter_max;
|
10469 |
|
|
|
10470 |
|
|
if (! strength_reduce_p || ! n_iterations)
|
10471 |
|
|
need_precond = 1;
|
10472 |
|
|
if (! n_iterations)
|
10473 |
|
|
{
|
10474 |
|
|
n_iterations
|
10475 |
|
|
= max_iterations < 3 ? max_iterations : max_iterations * 3 / 4;
|
10476 |
|
|
if (! n_iterations)
|
10477 |
|
|
return 0;
|
10478 |
|
|
}
|
10479 |
|
|
#if 0 /* ??? See above - missing induction variable information. */
|
10480 |
|
|
while (unroll_benefit > 1) /* no loop */
|
10481 |
|
|
{
|
10482 |
|
|
/* We include the benefit of biv/ giv updates. Check if some or
|
10483 |
|
|
all of these updates are likely to fit into a scheduling
|
10484 |
|
|
bubble of a load.
|
10485 |
|
|
We check for the following case:
|
10486 |
|
|
- All the insns leading to the first JUMP_INSN are in a strict
|
10487 |
|
|
dependency chain.
|
10488 |
|
|
- there is at least one memory reference in them.
|
10489 |
|
|
|
10490 |
|
|
When we find such a pattern, we assume that we can hide as many
|
10491 |
|
|
updates as the total of the load latency is, if we have an
|
10492 |
|
|
unroll factor of at least two. We might or might not also do
|
10493 |
|
|
this without unrolling, so rather than considering this as an
|
10494 |
|
|
extra unroll benefit, discount it in the unroll benefits of unroll
|
10495 |
|
|
factors higher than two. */
|
10496 |
|
|
|
10497 |
|
|
rtx set, last_set;
|
10498 |
|
|
|
10499 |
|
|
insn = next_active_insn (loop->start);
|
10500 |
|
|
last_set = single_set (insn);
|
10501 |
|
|
if (! last_set)
|
10502 |
|
|
break;
|
10503 |
|
|
if (GET_CODE (SET_SRC (last_set)) == MEM)
|
10504 |
|
|
mem_latency += 2;
|
10505 |
|
|
for (insn = NEXT_INSN (insn); insn != end; insn = NEXT_INSN (insn))
|
10506 |
|
|
{
|
10507 |
|
|
if (! INSN_P (insn))
|
10508 |
|
|
continue;
|
10509 |
|
|
if (GET_CODE (insn) == JUMP_INSN)
|
10510 |
|
|
break;
|
10511 |
|
|
if (! reg_referenced_p (SET_DEST (last_set), PATTERN (insn)))
|
10512 |
|
|
{
|
10513 |
|
|
/* Check if this is a to-be-reduced giv insn. */
|
10514 |
|
|
struct loop_ivs *ivs = LOOP_IVS (loop);
|
10515 |
|
|
struct iv_class *bl;
|
10516 |
|
|
struct induction *v;
|
10517 |
|
|
for (bl = ivs->list; bl; bl = bl->next)
|
10518 |
|
|
{
|
10519 |
|
|
if (bl->biv->insn == insn)
|
10520 |
|
|
goto is_biv;
|
10521 |
|
|
for (v = bl->giv; v; v = v->next_iv)
|
10522 |
|
|
if (v->insn == insn)
|
10523 |
|
|
goto is_giv;
|
10524 |
|
|
}
|
10525 |
|
|
mem_latency--;
|
10526 |
|
|
is_biv:
|
10527 |
|
|
is_giv:
|
10528 |
|
|
continue;
|
10529 |
|
|
}
|
10530 |
|
|
set = single_set (insn);
|
10531 |
|
|
if (! set)
|
10532 |
|
|
continue;
|
10533 |
|
|
if (GET_CODE (SET_SRC (set)) == MEM)
|
10534 |
|
|
mem_latency += 2;
|
10535 |
|
|
last_set = set;
|
10536 |
|
|
}
|
10537 |
|
|
if (mem_latency < 0)
|
10538 |
|
|
mem_latency = 0;
|
10539 |
|
|
else if (mem_latency > unroll_benefit - 1)
|
10540 |
|
|
mem_latency = unroll_benefit - 1;
|
10541 |
|
|
break;
|
10542 |
|
|
}
|
10543 |
|
|
#endif /* 0 */
|
10544 |
|
|
if (n_labels + (unroll_benefit + n_labels * 8) / n_iterations
|
10545 |
|
|
<= unroll_benefit)
|
10546 |
|
|
return max_unrolled_insns;
|
10547 |
|
|
|
10548 |
|
|
n_dest = n_labels + n_calls + n_exit_dest;
|
10549 |
|
|
base_cost = n_dest <= 8 ? 0 : n_dest - 7;
|
10550 |
|
|
best_cost = 0;
|
10551 |
|
|
best_factor = 1;
|
10552 |
|
|
if (n_barriers * 2 > n_labels - 1)
|
10553 |
|
|
n_barriers = (n_labels - 1) / 2;
|
10554 |
|
|
for (factor = 2; factor <= 8; factor++)
|
10555 |
|
|
{
|
10556 |
|
|
/* Bump up preconditioning cost for each power of two. */
|
10557 |
|
|
if (! (factor & (factor-1)))
|
10558 |
|
|
precond += 4;
|
10559 |
|
|
/* When preconditioning, only powers of two will be considered. */
|
10560 |
|
|
else if (need_precond)
|
10561 |
|
|
continue;
|
10562 |
|
|
n_dest = ((unroll_type != LPT_PEEL_COMPLETELY)
|
10563 |
|
|
+ (n_labels - 1) * factor + n_calls + n_exit_dest
|
10564 |
|
|
- (n_barriers * factor >> 1)
|
10565 |
|
|
+ need_precond);
|
10566 |
|
|
cost
|
10567 |
|
|
= ((n_dest <= 8 ? 0 : n_dest - 7)
|
10568 |
|
|
- base_cost * factor
|
10569 |
|
|
- ((factor > 2 ? unroll_benefit - mem_latency : unroll_benefit)
|
10570 |
|
|
* (factor - (unroll_type != LPT_PEEL_COMPLETELY)))
|
10571 |
|
|
+ ((unroll_benefit + 1 + (n_labels - 1) * factor)
|
10572 |
|
|
/ n_iterations));
|
10573 |
|
|
if (need_precond)
|
10574 |
|
|
cost += (precond + unroll_benefit * factor / 2) / n_iterations;
|
10575 |
|
|
if (cost < best_cost)
|
10576 |
|
|
{
|
10577 |
|
|
best_cost = cost;
|
10578 |
|
|
best_factor = factor;
|
10579 |
|
|
}
|
10580 |
|
|
}
|
10581 |
|
|
threshold = best_factor * insn_count;
|
10582 |
|
|
if (max_unrolled_insns > threshold)
|
10583 |
|
|
max_unrolled_insns = threshold;
|
10584 |
|
|
}
|
10585 |
|
|
return max_unrolled_insns;
|
10586 |
|
|
}
|
10587 |
|
|
#endif /* TARGET_ADJUST_UNROLL_MAX */
|
10588 |
|
|
|
10589 |
|
|
/* Replace any occurrence of FROM(n) in X with TO(n). The function does
|
10590 |
|
|
not enter into CONST_DOUBLE for the replace.
|
10591 |
|
|
|
10592 |
|
|
Note that copying is not done so X must not be shared unless all copies
|
10593 |
|
|
are to be modified.
|
10594 |
|
|
|
10595 |
|
|
This is like replace_rtx, except that we operate on N_REPLACEMENTS
|
10596 |
|
|
replacements simultaneously - FROM(n) is replacements[n*2] and to(n) is
|
10597 |
|
|
replacements[n*2+1] - and that we take mode changes into account.
|
10598 |
|
|
|
10599 |
|
|
If a replacement is ambiguous, return NULL_RTX.
|
10600 |
|
|
|
10601 |
|
|
If MODIFY is zero, don't modify any rtl in place,
|
10602 |
|
|
just return zero or nonzero for failure / success. */
|
10603 |
|
|
|
10604 |
|
|
rtx
|
10605 |
|
|
replace_n_hard_rtx (rtx x, rtx *replacements, int n_replacements, int modify)
|
10606 |
|
|
{
|
10607 |
|
|
int i, j;
|
10608 |
|
|
const char *fmt;
|
10609 |
|
|
|
10610 |
|
|
/* The following prevents loops occurrence when we change MEM in
|
10611 |
|
|
CONST_DOUBLE onto the same CONST_DOUBLE. */
|
10612 |
|
|
if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
|
10613 |
|
|
return x;
|
10614 |
|
|
|
10615 |
|
|
for (i = n_replacements - 1; i >= 0 ; i--)
|
10616 |
|
|
if (x == replacements[i*2] && GET_MODE (x) == GET_MODE (replacements[i*2+1]))
|
10617 |
|
|
return replacements[i*2+1];
|
10618 |
|
|
|
10619 |
|
|
/* Allow this function to make replacements in EXPR_LISTs. */
|
10620 |
|
|
if (x == 0)
|
10621 |
|
|
return 0;
|
10622 |
|
|
|
10623 |
|
|
if (GET_CODE (x) == SUBREG)
|
10624 |
|
|
{
|
10625 |
|
|
rtx new = replace_n_hard_rtx (SUBREG_REG (x), replacements,
|
10626 |
|
|
n_replacements, modify);
|
10627 |
|
|
|
10628 |
|
|
if (GET_CODE (new) == CONST_INT)
|
10629 |
|
|
{
|
10630 |
|
|
x = simplify_subreg (GET_MODE (x), new,
|
10631 |
|
|
GET_MODE (SUBREG_REG (x)),
|
10632 |
|
|
SUBREG_BYTE (x));
|
10633 |
|
|
if (! x)
|
10634 |
|
|
abort ();
|
10635 |
|
|
}
|
10636 |
|
|
else if (modify)
|
10637 |
|
|
SUBREG_REG (x) = new;
|
10638 |
|
|
|
10639 |
|
|
return x;
|
10640 |
|
|
}
|
10641 |
|
|
else if (GET_CODE (x) == REG)
|
10642 |
|
|
{
|
10643 |
|
|
unsigned regno = REGNO (x);
|
10644 |
|
|
unsigned nregs = (regno < FIRST_PSEUDO_REGISTER
|
10645 |
|
|
? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
|
10646 |
|
|
rtx result = NULL_RTX;
|
10647 |
|
|
|
10648 |
|
|
for (i = n_replacements - 1; i >= 0; i--)
|
10649 |
|
|
{
|
10650 |
|
|
rtx from = replacements[i*2];
|
10651 |
|
|
rtx to = replacements[i*2+1];
|
10652 |
|
|
unsigned from_regno, from_nregs, to_regno, new_regno;
|
10653 |
|
|
|
10654 |
|
|
if (GET_CODE (from) != REG)
|
10655 |
|
|
continue;
|
10656 |
|
|
from_regno = REGNO (from);
|
10657 |
|
|
from_nregs = (from_regno < FIRST_PSEUDO_REGISTER
|
10658 |
|
|
? HARD_REGNO_NREGS (from_regno, GET_MODE (from)) : 1);
|
10659 |
|
|
if (regno < from_regno + from_nregs && regno + nregs > from_regno)
|
10660 |
|
|
{
|
10661 |
|
|
if (regno < from_regno
|
10662 |
|
|
|| regno + nregs > from_regno + nregs
|
10663 |
|
|
|| GET_CODE (to) != REG
|
10664 |
|
|
|| result)
|
10665 |
|
|
return NULL_RTX;
|
10666 |
|
|
to_regno = REGNO (to);
|
10667 |
|
|
if (to_regno < FIRST_PSEUDO_REGISTER)
|
10668 |
|
|
{
|
10669 |
|
|
new_regno = regno + to_regno - from_regno;
|
10670 |
|
|
if ((unsigned) HARD_REGNO_NREGS (new_regno, GET_MODE (x))
|
10671 |
|
|
!= nregs)
|
10672 |
|
|
return NULL_RTX;
|
10673 |
|
|
result = gen_rtx_REG (GET_MODE (x), new_regno);
|
10674 |
|
|
}
|
10675 |
|
|
else if (GET_MODE (x) <= GET_MODE (to))
|
10676 |
|
|
result = gen_lowpart_common (GET_MODE (x), to);
|
10677 |
|
|
else
|
10678 |
|
|
result = gen_lowpart_SUBREG (GET_MODE (x), to);
|
10679 |
|
|
}
|
10680 |
|
|
}
|
10681 |
|
|
return result ? result : x;
|
10682 |
|
|
}
|
10683 |
|
|
else if (GET_CODE (x) == ZERO_EXTEND)
|
10684 |
|
|
{
|
10685 |
|
|
rtx new = replace_n_hard_rtx (XEXP (x, 0), replacements,
|
10686 |
|
|
n_replacements, modify);
|
10687 |
|
|
|
10688 |
|
|
if (GET_CODE (new) == CONST_INT)
|
10689 |
|
|
{
|
10690 |
|
|
x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
|
10691 |
|
|
new, GET_MODE (XEXP (x, 0)));
|
10692 |
|
|
if (! x)
|
10693 |
|
|
abort ();
|
10694 |
|
|
}
|
10695 |
|
|
else if (modify)
|
10696 |
|
|
XEXP (x, 0) = new;
|
10697 |
|
|
|
10698 |
|
|
return x;
|
10699 |
|
|
}
|
10700 |
|
|
|
10701 |
|
|
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
10702 |
|
|
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
10703 |
|
|
{
|
10704 |
|
|
rtx new;
|
10705 |
|
|
|
10706 |
|
|
if (fmt[i] == 'e')
|
10707 |
|
|
{
|
10708 |
|
|
new = replace_n_hard_rtx (XEXP (x, i), replacements,
|
10709 |
|
|
n_replacements, modify);
|
10710 |
|
|
if (!new)
|
10711 |
|
|
return NULL_RTX;
|
10712 |
|
|
if (modify)
|
10713 |
|
|
XEXP (x, i) = new;
|
10714 |
|
|
}
|
10715 |
|
|
else if (fmt[i] == 'E')
|
10716 |
|
|
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
10717 |
|
|
{
|
10718 |
|
|
new = replace_n_hard_rtx (XVECEXP (x, i, j), replacements,
|
10719 |
|
|
n_replacements, modify);
|
10720 |
|
|
if (!new)
|
10721 |
|
|
return NULL_RTX;
|
10722 |
|
|
if (modify)
|
10723 |
|
|
XVECEXP (x, i, j) = new;
|
10724 |
|
|
}
|
10725 |
|
|
}
|
10726 |
|
|
|
10727 |
|
|
return x;
|
10728 |
|
|
}
|
10729 |
|
|
|
10730 |
|
|
rtx
|
10731 |
|
|
sh_gen_truncate (enum machine_mode mode, rtx x, int need_sign_ext)
|
10732 |
|
|
{
|
10733 |
|
|
enum rtx_code code = TRUNCATE;
|
10734 |
|
|
|
10735 |
|
|
if (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
|
10736 |
|
|
{
|
10737 |
|
|
rtx inner = XEXP (x, 0);
|
10738 |
|
|
enum machine_mode inner_mode = GET_MODE (inner);
|
10739 |
|
|
|
10740 |
|
|
if (inner_mode == mode)
|
10741 |
|
|
return inner;
|
10742 |
|
|
else if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
|
10743 |
|
|
x = inner;
|
10744 |
|
|
else if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode)
|
10745 |
|
|
&& (! need_sign_ext || GET_CODE (x) == SIGN_EXTEND))
|
10746 |
|
|
{
|
10747 |
|
|
code = GET_CODE (x);
|
10748 |
|
|
x = inner;
|
10749 |
|
|
}
|
10750 |
|
|
}
|
10751 |
|
|
return gen_rtx_fmt_e (code, mode, x);
|
10752 |
|
|
}
|
10753 |
|
|
|
10754 |
|
|
/* called via for_each_rtx after reload, to clean up truncates of
|
10755 |
|
|
registers that span multiple actual hard registers. */
|
10756 |
|
|
int
|
10757 |
|
|
shmedia_cleanup_truncate (rtx *p, void *n_changes)
|
10758 |
|
|
{
|
10759 |
|
|
rtx x = *p, reg;
|
10760 |
|
|
|
10761 |
|
|
if (GET_CODE (x) != TRUNCATE)
|
10762 |
|
|
return 0;
|
10763 |
|
|
reg = XEXP (x, 0);
|
10764 |
|
|
if (GET_MODE_SIZE (GET_MODE (reg)) > 8 && GET_CODE (reg) == REG)
|
10765 |
|
|
{
|
10766 |
|
|
enum machine_mode reg_mode = GET_MODE (reg);
|
10767 |
|
|
XEXP (x, 0) = simplify_subreg (DImode, reg, reg_mode,
|
10768 |
|
|
subreg_lowpart_offset (DImode, reg_mode));
|
10769 |
|
|
*(int*) n_changes += 1;
|
10770 |
|
|
return -1;
|
10771 |
|
|
}
|
10772 |
|
|
return 0;
|
10773 |
|
|
}
|
10774 |
|
|
|
10775 |
|
|
/* Load and store depend on the highpart of the address. However,
|
10776 |
|
|
set_attr_alternative does not give well-defined results before reload,
|
10777 |
|
|
so we must look at the rtl ourselves to see if any of the feeding
|
10778 |
|
|
registers is used in a memref. */
|
10779 |
|
|
|
10780 |
|
|
/* Called by sh_contains_memref_p via for_each_rtx. */
|
10781 |
|
|
static int
|
10782 |
|
|
sh_contains_memref_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
10783 |
|
|
{
|
10784 |
|
|
return (GET_CODE (*loc) == MEM);
|
10785 |
|
|
}
|
10786 |
|
|
|
10787 |
|
|
/* Return nonzero iff INSN contains a MEM. */
|
10788 |
|
|
int
|
10789 |
|
|
sh_contains_memref_p (rtx insn)
|
10790 |
|
|
{
|
10791 |
|
|
return for_each_rtx (&PATTERN (insn), &sh_contains_memref_p_1, NULL);
|
10792 |
|
|
}
|
10793 |
|
|
|
10794 |
|
|
/* FNADDR is the MEM expression from a call expander. Return an address
|
10795 |
|
|
to use in an SHmedia insn pattern. */
|
10796 |
|
|
rtx
|
10797 |
|
|
shmedia_prepare_call_address (rtx fnaddr, int is_sibcall)
|
10798 |
|
|
{
|
10799 |
|
|
int is_sym;
|
10800 |
|
|
|
10801 |
|
|
fnaddr = XEXP (fnaddr, 0);
|
10802 |
|
|
is_sym = GET_CODE (fnaddr) == SYMBOL_REF;
|
10803 |
|
|
if (flag_pic && is_sym)
|
10804 |
|
|
{
|
10805 |
|
|
if (! SYMBOL_REF_LOCAL_P (fnaddr))
|
10806 |
|
|
{
|
10807 |
|
|
rtx reg = gen_reg_rtx (Pmode);
|
10808 |
|
|
|
10809 |
|
|
/* We must not use GOTPLT for sibcalls, because PIC_REG
|
10810 |
|
|
must be restored before the PLT code gets to run. */
|
10811 |
|
|
if (is_sibcall)
|
10812 |
|
|
emit_insn (gen_symGOT2reg (reg, fnaddr));
|
10813 |
|
|
else
|
10814 |
|
|
emit_insn (gen_symGOTPLT2reg (reg, fnaddr));
|
10815 |
|
|
fnaddr = reg;
|
10816 |
|
|
}
|
10817 |
|
|
else
|
10818 |
|
|
{
|
10819 |
|
|
fnaddr = gen_sym2PIC (fnaddr);
|
10820 |
|
|
PUT_MODE (fnaddr, Pmode);
|
10821 |
|
|
}
|
10822 |
|
|
}
|
10823 |
|
|
/* If ptabs might trap, make this visible to the rest of the compiler.
|
10824 |
|
|
We generally assume that symbols pertain to valid locations, but
|
10825 |
|
|
it is possible to generate invalid symbols with asm or linker tricks.
|
10826 |
|
|
In a list of functions where each returns its successor, an invalid
|
10827 |
|
|
symbol might denote an empty list. */
|
10828 |
|
|
if (!TARGET_PT_FIXED
|
10829 |
|
|
&& (!is_sym || TARGET_INVALID_SYMBOLS)
|
10830 |
|
|
&& (!REG_P (fnaddr) || ! TARGET_REGISTER_P (REGNO (fnaddr))))
|
10831 |
|
|
{
|
10832 |
|
|
rtx tr = gen_reg_rtx (PDImode);
|
10833 |
|
|
|
10834 |
|
|
emit_insn (gen_ptabs (tr, fnaddr));
|
10835 |
|
|
fnaddr = tr;
|
10836 |
|
|
}
|
10837 |
|
|
else if (! target_reg_operand (fnaddr, Pmode))
|
10838 |
|
|
fnaddr = copy_to_mode_reg (Pmode, fnaddr);
|
10839 |
|
|
return fnaddr;
|
10840 |
|
|
}
|
10841 |
|
|
|
10842 |
|
|
enum reg_class
|
10843 |
|
|
sh_secondary_reload (bool in_p, rtx x, enum reg_class class,
|
10844 |
|
|
enum machine_mode mode, secondary_reload_info *sri)
|
10845 |
|
|
{
|
10846 |
|
|
if (in_p)
|
10847 |
|
|
{
|
10848 |
|
|
if (REGCLASS_HAS_FP_REG (class)
|
10849 |
|
|
&& ! TARGET_SHMEDIA
|
10850 |
|
|
&& immediate_operand ((x), mode)
|
10851 |
|
|
&& ! ((fp_zero_operand (x) || fp_one_operand (x))
|
10852 |
|
|
&& mode == SFmode && fldi_ok ()))
|
10853 |
|
|
switch (mode)
|
10854 |
|
|
{
|
10855 |
|
|
case SFmode:
|
10856 |
|
|
sri->icode = CODE_FOR_reload_insf__frn;
|
10857 |
|
|
return NO_REGS;
|
10858 |
|
|
case DFmode:
|
10859 |
|
|
sri->icode = CODE_FOR_reload_indf__frn;
|
10860 |
|
|
return NO_REGS;
|
10861 |
|
|
case SImode:
|
10862 |
|
|
/* ??? If we knew that we are in the appropriate mode -
|
10863 |
|
|
single precision - we could use a reload pattern directly. */
|
10864 |
|
|
return FPUL_REGS;
|
10865 |
|
|
default:
|
10866 |
|
|
abort ();
|
10867 |
|
|
}
|
10868 |
|
|
if (class == FPUL_REGS
|
10869 |
|
|
&& ((GET_CODE (x) == REG
|
10870 |
|
|
&& (REGNO (x) == MACL_REG || REGNO (x) == MACH_REG
|
10871 |
|
|
|| REGNO (x) == T_REG))
|
10872 |
|
|
|| GET_CODE (x) == PLUS))
|
10873 |
|
|
return GENERAL_REGS;
|
10874 |
|
|
if (class == FPUL_REGS && immediate_operand (x, mode))
|
10875 |
|
|
{
|
10876 |
|
|
if (GET_CODE (x) == CONST_INT && CONST_OK_FOR_I08 (INTVAL (x)))
|
10877 |
|
|
return GENERAL_REGS;
|
10878 |
|
|
sri->icode = CODE_FOR_reload_insi__i_fpul;
|
10879 |
|
|
return NO_REGS;
|
10880 |
|
|
}
|
10881 |
|
|
if (class == FPSCR_REGS
|
10882 |
|
|
&& ((GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
|
10883 |
|
|
|| (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == PLUS)))
|
10884 |
|
|
return GENERAL_REGS;
|
10885 |
|
|
if (REGCLASS_HAS_FP_REG (class)
|
10886 |
|
|
&& TARGET_SHMEDIA
|
10887 |
|
|
&& immediate_operand (x, mode)
|
10888 |
|
|
&& x != CONST0_RTX (GET_MODE (x))
|
10889 |
|
|
&& GET_MODE (x) != V4SFmode)
|
10890 |
|
|
return GENERAL_REGS;
|
10891 |
|
|
if ((mode == QImode || mode == HImode)
|
10892 |
|
|
&& TARGET_SHMEDIA && inqhi_operand (x, mode))
|
10893 |
|
|
{
|
10894 |
|
|
sri->icode = ((mode == QImode)
|
10895 |
|
|
? CODE_FOR_reload_inqi : CODE_FOR_reload_inhi);
|
10896 |
|
|
return NO_REGS;
|
10897 |
|
|
}
|
10898 |
|
|
if (TARGET_SHMEDIA && class == GENERAL_REGS
|
10899 |
|
|
&& (GET_CODE (x) == LABEL_REF || PIC_DIRECT_ADDR_P (x)))
|
10900 |
|
|
return TARGET_REGS;
|
10901 |
|
|
} /* end of input-only processing. */
|
10902 |
|
|
|
10903 |
|
|
if (((REGCLASS_HAS_FP_REG (class)
|
10904 |
|
|
&& (GET_CODE (x) == REG
|
10905 |
|
|
&& (GENERAL_OR_AP_REGISTER_P (REGNO (x))
|
10906 |
|
|
|| (FP_REGISTER_P (REGNO (x)) && mode == SImode
|
10907 |
|
|
&& TARGET_FMOVD))))
|
10908 |
|
|
|| (REGCLASS_HAS_GENERAL_REG (class)
|
10909 |
|
|
&& GET_CODE (x) == REG
|
10910 |
|
|
&& FP_REGISTER_P (REGNO (x))))
|
10911 |
|
|
&& ! TARGET_SHMEDIA
|
10912 |
|
|
&& (mode == SFmode || mode == SImode))
|
10913 |
|
|
return FPUL_REGS;
|
10914 |
|
|
if ((class == FPUL_REGS
|
10915 |
|
|
|| (REGCLASS_HAS_FP_REG (class)
|
10916 |
|
|
&& ! TARGET_SHMEDIA && mode == SImode))
|
10917 |
|
|
&& (GET_CODE (x) == MEM
|
10918 |
|
|
|| (GET_CODE (x) == REG
|
10919 |
|
|
&& (REGNO (x) >= FIRST_PSEUDO_REGISTER
|
10920 |
|
|
|| REGNO (x) == T_REG
|
10921 |
|
|
|| system_reg_operand (x, VOIDmode)))))
|
10922 |
|
|
{
|
10923 |
|
|
if (class == FPUL_REGS)
|
10924 |
|
|
return GENERAL_REGS;
|
10925 |
|
|
return FPUL_REGS;
|
10926 |
|
|
}
|
10927 |
|
|
if ((class == TARGET_REGS
|
10928 |
|
|
|| (TARGET_SHMEDIA && class == SIBCALL_REGS))
|
10929 |
|
|
&& !EXTRA_CONSTRAINT_Csy (x)
|
10930 |
|
|
&& (GET_CODE (x) != REG || ! GENERAL_REGISTER_P (REGNO (x))))
|
10931 |
|
|
return GENERAL_REGS;
|
10932 |
|
|
if ((class == MAC_REGS || class == PR_REGS)
|
10933 |
|
|
&& GET_CODE (x) == REG && ! GENERAL_REGISTER_P (REGNO (x))
|
10934 |
|
|
&& class != REGNO_REG_CLASS (REGNO (x)))
|
10935 |
|
|
return GENERAL_REGS;
|
10936 |
|
|
if (class != GENERAL_REGS && GET_CODE (x) == REG
|
10937 |
|
|
&& TARGET_REGISTER_P (REGNO (x)))
|
10938 |
|
|
return GENERAL_REGS;
|
10939 |
|
|
return NO_REGS;
|
10940 |
|
|
}
|
10941 |
|
|
|
10942 |
|
|
enum sh_divide_strategy_e sh_div_strategy = SH_DIV_STRATEGY_DEFAULT;
|
10943 |
|
|
|
10944 |
|
|
#include "gt-sh.h"
|