1 |
38 |
julius |
/* Definitions of target machine for GNU compiler for Renesas / SuperH SH.
|
2 |
|
|
Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
|
3 |
|
|
2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
4 |
|
|
Contributed by Steve Chamberlain (sac@cygnus.com).
|
5 |
|
|
Improved by Jim Wilson (wilson@cygnus.com).
|
6 |
|
|
|
7 |
|
|
This file is part of GCC.
|
8 |
|
|
|
9 |
|
|
GCC is free software; you can redistribute it and/or modify
|
10 |
|
|
it under the terms of the GNU General Public License as published by
|
11 |
|
|
the Free Software Foundation; either version 3, or (at your option)
|
12 |
|
|
any later version.
|
13 |
|
|
|
14 |
|
|
GCC is distributed in the hope that it will be useful,
|
15 |
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
16 |
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
17 |
|
|
GNU General Public License for more details.
|
18 |
|
|
|
19 |
|
|
You should have received a copy of the GNU General Public License
|
20 |
|
|
along with GCC; see the file COPYING3. If not see
|
21 |
|
|
<http://www.gnu.org/licenses/>. */
|
22 |
|
|
|
23 |
|
|
#ifndef GCC_SH_H
|
24 |
|
|
#define GCC_SH_H
|
25 |
|
|
|
26 |
|
|
#define TARGET_VERSION \
|
27 |
|
|
fputs (" (Hitachi SH)", stderr);
|
28 |
|
|
|
29 |
|
|
/* Unfortunately, insn-attrtab.c doesn't include insn-codes.h. We can't
|
30 |
|
|
include it here, because bconfig.h is also included by gencodes.c . */
|
31 |
|
|
/* ??? No longer true. */
|
32 |
|
|
extern int code_for_indirect_jump_scratch;
|
33 |
|
|
|
34 |
|
|
#define TARGET_CPU_CPP_BUILTINS() \
|
35 |
|
|
do { \
|
36 |
|
|
builtin_define ("__sh__"); \
|
37 |
|
|
builtin_assert ("cpu=sh"); \
|
38 |
|
|
builtin_assert ("machine=sh"); \
|
39 |
|
|
switch ((int) sh_cpu) \
|
40 |
|
|
{ \
|
41 |
|
|
case PROCESSOR_SH1: \
|
42 |
|
|
builtin_define ("__sh1__"); \
|
43 |
|
|
break; \
|
44 |
|
|
case PROCESSOR_SH2: \
|
45 |
|
|
builtin_define ("__sh2__"); \
|
46 |
|
|
break; \
|
47 |
|
|
case PROCESSOR_SH2E: \
|
48 |
|
|
builtin_define ("__SH2E__"); \
|
49 |
|
|
break; \
|
50 |
|
|
case PROCESSOR_SH2A: \
|
51 |
|
|
builtin_define ("__SH2A__"); \
|
52 |
|
|
builtin_define (TARGET_SH2A_DOUBLE \
|
53 |
|
|
? (TARGET_FPU_SINGLE ? "__SH2A_SINGLE__" : "__SH2A_DOUBLE__") \
|
54 |
|
|
: TARGET_FPU_ANY ? "__SH2A_SINGLE_ONLY__" \
|
55 |
|
|
: "__SH2A_NOFPU__"); \
|
56 |
|
|
break; \
|
57 |
|
|
case PROCESSOR_SH3: \
|
58 |
|
|
builtin_define ("__sh3__"); \
|
59 |
|
|
builtin_define ("__SH3__"); \
|
60 |
|
|
if (TARGET_HARD_SH4) \
|
61 |
|
|
builtin_define ("__SH4_NOFPU__"); \
|
62 |
|
|
break; \
|
63 |
|
|
case PROCESSOR_SH3E: \
|
64 |
|
|
builtin_define (TARGET_HARD_SH4 ? "__SH4_SINGLE_ONLY__" : "__SH3E__"); \
|
65 |
|
|
break; \
|
66 |
|
|
case PROCESSOR_SH4: \
|
67 |
|
|
builtin_define (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__"); \
|
68 |
|
|
break; \
|
69 |
|
|
case PROCESSOR_SH4A: \
|
70 |
|
|
builtin_define ("__SH4A__"); \
|
71 |
|
|
builtin_define (TARGET_SH4 \
|
72 |
|
|
? (TARGET_FPU_SINGLE ? "__SH4_SINGLE__" : "__SH4__") \
|
73 |
|
|
: TARGET_FPU_ANY ? "__SH4_SINGLE_ONLY__" \
|
74 |
|
|
: "__SH4_NOFPU__"); \
|
75 |
|
|
break; \
|
76 |
|
|
case PROCESSOR_SH5: \
|
77 |
|
|
{ \
|
78 |
|
|
builtin_define_with_value ("__SH5__", \
|
79 |
|
|
TARGET_SHMEDIA64 ? "64" : "32", 0); \
|
80 |
|
|
builtin_define_with_value ("__SHMEDIA__", \
|
81 |
|
|
TARGET_SHMEDIA ? "1" : "0", 0); \
|
82 |
|
|
if (! TARGET_FPU_DOUBLE) \
|
83 |
|
|
builtin_define ("__SH4_NOFPU__"); \
|
84 |
|
|
} \
|
85 |
|
|
} \
|
86 |
|
|
if (TARGET_FPU_ANY) \
|
87 |
|
|
builtin_define ("__SH_FPU_ANY__"); \
|
88 |
|
|
if (TARGET_FPU_DOUBLE) \
|
89 |
|
|
builtin_define ("__SH_FPU_DOUBLE__"); \
|
90 |
|
|
if (TARGET_HITACHI) \
|
91 |
|
|
builtin_define ("__HITACHI__"); \
|
92 |
|
|
builtin_define (TARGET_LITTLE_ENDIAN \
|
93 |
|
|
? "__LITTLE_ENDIAN__" : "__BIG_ENDIAN__"); \
|
94 |
|
|
} while (0)
|
95 |
|
|
|
96 |
|
|
/* We can not debug without a frame pointer. */
|
97 |
|
|
/* #define CAN_DEBUG_WITHOUT_FP */
|
98 |
|
|
|
99 |
|
|
#define CONDITIONAL_REGISTER_USAGE do \
|
100 |
|
|
{ \
|
101 |
|
|
int regno; \
|
102 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++) \
|
103 |
|
|
if (! VALID_REGISTER_P (regno)) \
|
104 |
|
|
fixed_regs[regno] = call_used_regs[regno] = 1; \
|
105 |
|
|
/* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. */ \
|
106 |
|
|
if (TARGET_SH5) \
|
107 |
|
|
{ \
|
108 |
|
|
call_used_regs[FIRST_GENERAL_REG + 8] \
|
109 |
|
|
= call_used_regs[FIRST_GENERAL_REG + 9] = 1; \
|
110 |
|
|
call_really_used_regs[FIRST_GENERAL_REG + 8] \
|
111 |
|
|
= call_really_used_regs[FIRST_GENERAL_REG + 9] = 1; \
|
112 |
|
|
} \
|
113 |
|
|
if (TARGET_SHMEDIA) \
|
114 |
|
|
{ \
|
115 |
|
|
regno_reg_class[FIRST_GENERAL_REG] = GENERAL_REGS; \
|
116 |
|
|
CLEAR_HARD_REG_SET (reg_class_contents[FP0_REGS]); \
|
117 |
|
|
regno_reg_class[FIRST_FP_REG] = FP_REGS; \
|
118 |
|
|
} \
|
119 |
|
|
if (flag_pic) \
|
120 |
|
|
{ \
|
121 |
|
|
fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
122 |
|
|
call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \
|
123 |
|
|
} \
|
124 |
|
|
/* Renesas saves and restores mac registers on call. */ \
|
125 |
|
|
if (TARGET_HITACHI && ! TARGET_NOMACSAVE) \
|
126 |
|
|
{ \
|
127 |
|
|
call_really_used_regs[MACH_REG] = 0; \
|
128 |
|
|
call_really_used_regs[MACL_REG] = 0; \
|
129 |
|
|
} \
|
130 |
|
|
for (regno = FIRST_FP_REG + (TARGET_LITTLE_ENDIAN != 0); \
|
131 |
|
|
regno <= LAST_FP_REG; regno += 2) \
|
132 |
|
|
SET_HARD_REG_BIT (reg_class_contents[DF_HI_REGS], regno); \
|
133 |
|
|
if (TARGET_SHMEDIA) \
|
134 |
|
|
{ \
|
135 |
|
|
for (regno = FIRST_TARGET_REG; regno <= LAST_TARGET_REG; regno ++)\
|
136 |
|
|
if (! fixed_regs[regno] && call_really_used_regs[regno]) \
|
137 |
|
|
SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
|
138 |
|
|
} \
|
139 |
|
|
else \
|
140 |
|
|
for (regno = FIRST_GENERAL_REG; regno <= LAST_GENERAL_REG; regno++) \
|
141 |
|
|
if (! fixed_regs[regno] && call_really_used_regs[regno]) \
|
142 |
|
|
SET_HARD_REG_BIT (reg_class_contents[SIBCALL_REGS], regno); \
|
143 |
|
|
} while (0)
|
144 |
|
|
|
145 |
|
|
/* Nonzero if this is an ELF target - compile time only */
|
146 |
|
|
#define TARGET_ELF 0
|
147 |
|
|
|
148 |
|
|
/* Nonzero if we should generate code using type 2E insns. */
|
149 |
|
|
#define TARGET_SH2E (TARGET_SH2 && TARGET_SH_E)
|
150 |
|
|
|
151 |
|
|
/* Nonzero if we should generate code using type 2A insns. */
|
152 |
|
|
#define TARGET_SH2A TARGET_HARD_SH2A
|
153 |
|
|
/* Nonzero if we should generate code using type 2A SF insns. */
|
154 |
|
|
#define TARGET_SH2A_SINGLE (TARGET_SH2A && TARGET_SH2E)
|
155 |
|
|
/* Nonzero if we should generate code using type 2A DF insns. */
|
156 |
|
|
#define TARGET_SH2A_DOUBLE (TARGET_HARD_SH2A_DOUBLE && TARGET_SH2A)
|
157 |
|
|
|
158 |
|
|
/* Nonzero if we should generate code using type 3E insns. */
|
159 |
|
|
#define TARGET_SH3E (TARGET_SH3 && TARGET_SH_E)
|
160 |
|
|
|
161 |
|
|
/* Nonzero if the cache line size is 32. */
|
162 |
|
|
#define TARGET_CACHE32 (TARGET_HARD_SH4 || TARGET_SH5)
|
163 |
|
|
|
164 |
|
|
/* Nonzero if we schedule for a superscalar implementation. */
|
165 |
|
|
#define TARGET_SUPERSCALAR TARGET_HARD_SH4
|
166 |
|
|
|
167 |
|
|
/* Nonzero if the target has separate instruction and data caches. */
|
168 |
|
|
#define TARGET_HARVARD (TARGET_HARD_SH4 || TARGET_SH5)
|
169 |
|
|
|
170 |
|
|
/* Nonzero if a double-precision FPU is available. */
|
171 |
|
|
#define TARGET_FPU_DOUBLE \
|
172 |
|
|
((target_flags & MASK_SH4) != 0 || TARGET_SH2A_DOUBLE)
|
173 |
|
|
|
174 |
|
|
/* Nonzero if an FPU is available. */
|
175 |
|
|
#define TARGET_FPU_ANY (TARGET_SH2E || TARGET_FPU_DOUBLE)
|
176 |
|
|
|
177 |
|
|
/* Nonzero if we should generate code using type 4 insns. */
|
178 |
|
|
#undef TARGET_SH4
|
179 |
|
|
#define TARGET_SH4 ((target_flags & MASK_SH4) != 0 && TARGET_SH1)
|
180 |
|
|
|
181 |
|
|
/* Nonzero if we're generating code for the common subset of
|
182 |
|
|
instructions present on both SH4a and SH4al-dsp. */
|
183 |
|
|
#define TARGET_SH4A_ARCH TARGET_SH4A
|
184 |
|
|
|
185 |
|
|
/* Nonzero if we're generating code for SH4a, unless the use of the
|
186 |
|
|
FPU is disabled (which makes it compatible with SH4al-dsp). */
|
187 |
|
|
#define TARGET_SH4A_FP (TARGET_SH4A_ARCH && TARGET_FPU_ANY)
|
188 |
|
|
|
189 |
|
|
/* Nonzero if we should generate code using the SHcompact instruction
|
190 |
|
|
set and 32-bit ABI. */
|
191 |
|
|
#define TARGET_SHCOMPACT (TARGET_SH5 && TARGET_SH1)
|
192 |
|
|
|
193 |
|
|
/* Nonzero if we should generate code using the SHmedia instruction
|
194 |
|
|
set and ABI. */
|
195 |
|
|
#define TARGET_SHMEDIA (TARGET_SH5 && ! TARGET_SH1)
|
196 |
|
|
|
197 |
|
|
/* Nonzero if we should generate code using the SHmedia ISA and 32-bit
|
198 |
|
|
ABI. */
|
199 |
|
|
#define TARGET_SHMEDIA32 (TARGET_SH5 && ! TARGET_SH1 && TARGET_SH_E)
|
200 |
|
|
|
201 |
|
|
/* Nonzero if we should generate code using the SHmedia ISA and 64-bit
|
202 |
|
|
ABI. */
|
203 |
|
|
#define TARGET_SHMEDIA64 (TARGET_SH5 && ! TARGET_SH1 && ! TARGET_SH_E)
|
204 |
|
|
|
205 |
|
|
/* Nonzero if we should generate code using SHmedia FPU instructions. */
|
206 |
|
|
#define TARGET_SHMEDIA_FPU (TARGET_SHMEDIA && TARGET_FPU_DOUBLE)
|
207 |
|
|
|
208 |
|
|
/* This is not used by the SH2E calling convention */
|
209 |
|
|
#define TARGET_VARARGS_PRETEND_ARGS(FUN_DECL) \
|
210 |
|
|
(TARGET_SH1 && ! TARGET_SH2E && ! TARGET_SH5 \
|
211 |
|
|
&& ! (TARGET_HITACHI || sh_attr_renesas_p (FUN_DECL)))
|
212 |
|
|
|
213 |
|
|
#ifndef TARGET_CPU_DEFAULT
|
214 |
|
|
#define TARGET_CPU_DEFAULT SELECT_SH1
|
215 |
|
|
#define SUPPORT_SH1 1
|
216 |
|
|
#define SUPPORT_SH2E 1
|
217 |
|
|
#define SUPPORT_SH4 1
|
218 |
|
|
#define SUPPORT_SH4_SINGLE 1
|
219 |
|
|
#define SUPPORT_SH2A 1
|
220 |
|
|
#define SUPPORT_SH2A_SINGLE 1
|
221 |
|
|
#endif
|
222 |
|
|
|
223 |
|
|
#define TARGET_DIVIDE_INV \
|
224 |
|
|
(sh_div_strategy == SH_DIV_INV || sh_div_strategy == SH_DIV_INV_MINLAT \
|
225 |
|
|
|| sh_div_strategy == SH_DIV_INV20U || sh_div_strategy == SH_DIV_INV20L \
|
226 |
|
|
|| sh_div_strategy == SH_DIV_INV_CALL \
|
227 |
|
|
|| sh_div_strategy == SH_DIV_INV_CALL2 || sh_div_strategy == SH_DIV_INV_FP)
|
228 |
|
|
#define TARGET_DIVIDE_FP (sh_div_strategy == SH_DIV_FP)
|
229 |
|
|
#define TARGET_DIVIDE_INV_FP (sh_div_strategy == SH_DIV_INV_FP)
|
230 |
|
|
#define TARGET_DIVIDE_CALL2 (sh_div_strategy == SH_DIV_CALL2)
|
231 |
|
|
#define TARGET_DIVIDE_INV_MINLAT (sh_div_strategy == SH_DIV_INV_MINLAT)
|
232 |
|
|
#define TARGET_DIVIDE_INV20U (sh_div_strategy == SH_DIV_INV20U)
|
233 |
|
|
#define TARGET_DIVIDE_INV20L (sh_div_strategy == SH_DIV_INV20L)
|
234 |
|
|
#define TARGET_DIVIDE_INV_CALL (sh_div_strategy == SH_DIV_INV_CALL)
|
235 |
|
|
#define TARGET_DIVIDE_INV_CALL2 (sh_div_strategy == SH_DIV_INV_CALL2)
|
236 |
|
|
#define TARGET_DIVIDE_CALL_DIV1 (sh_div_strategy == SH_DIV_CALL_DIV1)
|
237 |
|
|
#define TARGET_DIVIDE_CALL_FP (sh_div_strategy == SH_DIV_CALL_FP)
|
238 |
|
|
#define TARGET_DIVIDE_CALL_TABLE (sh_div_strategy == SH_DIV_CALL_TABLE)
|
239 |
|
|
|
240 |
|
|
#define SELECT_SH1 (MASK_SH1)
|
241 |
|
|
#define SELECT_SH2 (MASK_SH2 | SELECT_SH1)
|
242 |
|
|
#define SELECT_SH2E (MASK_SH_E | MASK_SH2 | MASK_SH1 \
|
243 |
|
|
| MASK_FPU_SINGLE)
|
244 |
|
|
#define SELECT_SH2A (MASK_SH_E | MASK_HARD_SH2A \
|
245 |
|
|
| MASK_HARD_SH2A_DOUBLE \
|
246 |
|
|
| MASK_SH2 | MASK_SH1)
|
247 |
|
|
#define SELECT_SH2A_NOFPU (MASK_HARD_SH2A | MASK_SH2 | MASK_SH1)
|
248 |
|
|
#define SELECT_SH2A_SINGLE_ONLY (MASK_SH_E | MASK_HARD_SH2A | MASK_SH2 \
|
249 |
|
|
| MASK_SH1 | MASK_FPU_SINGLE)
|
250 |
|
|
#define SELECT_SH2A_SINGLE (MASK_SH_E | MASK_HARD_SH2A \
|
251 |
|
|
| MASK_FPU_SINGLE | MASK_HARD_SH2A_DOUBLE \
|
252 |
|
|
| MASK_SH2 | MASK_SH1)
|
253 |
|
|
#define SELECT_SH3 (MASK_SH3 | SELECT_SH2)
|
254 |
|
|
#define SELECT_SH3E (MASK_SH_E | MASK_FPU_SINGLE | SELECT_SH3)
|
255 |
|
|
#define SELECT_SH4_NOFPU (MASK_HARD_SH4 | SELECT_SH3)
|
256 |
|
|
#define SELECT_SH4_SINGLE_ONLY (MASK_HARD_SH4 | SELECT_SH3E)
|
257 |
|
|
#define SELECT_SH4 (MASK_SH4 | MASK_SH_E | MASK_HARD_SH4 \
|
258 |
|
|
| SELECT_SH3)
|
259 |
|
|
#define SELECT_SH4_SINGLE (MASK_FPU_SINGLE | SELECT_SH4)
|
260 |
|
|
#define SELECT_SH4A_NOFPU (MASK_SH4A | SELECT_SH4_NOFPU)
|
261 |
|
|
#define SELECT_SH4A_SINGLE_ONLY (MASK_SH4A | SELECT_SH4_SINGLE_ONLY)
|
262 |
|
|
#define SELECT_SH4A (MASK_SH4A | SELECT_SH4)
|
263 |
|
|
#define SELECT_SH4A_SINGLE (MASK_SH4A | SELECT_SH4_SINGLE)
|
264 |
|
|
#define SELECT_SH5_64MEDIA (MASK_SH5 | MASK_SH4)
|
265 |
|
|
#define SELECT_SH5_64MEDIA_NOFPU (MASK_SH5)
|
266 |
|
|
#define SELECT_SH5_32MEDIA (MASK_SH5 | MASK_SH4 | MASK_SH_E)
|
267 |
|
|
#define SELECT_SH5_32MEDIA_NOFPU (MASK_SH5 | MASK_SH_E)
|
268 |
|
|
#define SELECT_SH5_COMPACT (MASK_SH5 | MASK_SH4 | SELECT_SH3E)
|
269 |
|
|
#define SELECT_SH5_COMPACT_NOFPU (MASK_SH5 | SELECT_SH3)
|
270 |
|
|
|
271 |
|
|
#if SUPPORT_SH1
|
272 |
|
|
#define SUPPORT_SH2 1
|
273 |
|
|
#endif
|
274 |
|
|
#if SUPPORT_SH2
|
275 |
|
|
#define SUPPORT_SH3 1
|
276 |
|
|
#endif
|
277 |
|
|
#if SUPPORT_SH3
|
278 |
|
|
#define SUPPORT_SH4_NOFPU 1
|
279 |
|
|
#endif
|
280 |
|
|
#if SUPPORT_SH4_NOFPU
|
281 |
|
|
#define SUPPORT_SH4A_NOFPU 1
|
282 |
|
|
#define SUPPORT_SH4AL 1
|
283 |
|
|
#define SUPPORT_SH2A_NOFPU 1
|
284 |
|
|
#endif
|
285 |
|
|
|
286 |
|
|
#if SUPPORT_SH2E
|
287 |
|
|
#define SUPPORT_SH3E 1
|
288 |
|
|
#endif
|
289 |
|
|
#if SUPPORT_SH3E
|
290 |
|
|
#define SUPPORT_SH4_SINGLE_ONLY 1
|
291 |
|
|
#define SUPPORT_SH4A_SINGLE_ONLY 1
|
292 |
|
|
#define SUPPORT_SH2A_SINGLE_ONLY 1
|
293 |
|
|
#endif
|
294 |
|
|
|
295 |
|
|
#if SUPPORT_SH4
|
296 |
|
|
#define SUPPORT_SH4A 1
|
297 |
|
|
#endif
|
298 |
|
|
|
299 |
|
|
#if SUPPORT_SH4_SINGLE
|
300 |
|
|
#define SUPPORT_SH4A_SINGLE 1
|
301 |
|
|
#endif
|
302 |
|
|
|
303 |
|
|
#if SUPPORT_SH5_COMPAT
|
304 |
|
|
#define SUPPORT_SH5_32MEDIA 1
|
305 |
|
|
#endif
|
306 |
|
|
|
307 |
|
|
#if SUPPORT_SH5_COMPACT_NOFPU
|
308 |
|
|
#define SUPPORT_SH5_32MEDIA_NOFPU 1
|
309 |
|
|
#endif
|
310 |
|
|
|
311 |
|
|
#define SUPPORT_ANY_SH5_32MEDIA \
|
312 |
|
|
(SUPPORT_SH5_32MEDIA || SUPPORT_SH5_32MEDIA_NOFPU)
|
313 |
|
|
#define SUPPORT_ANY_SH5_64MEDIA \
|
314 |
|
|
(SUPPORT_SH5_64MEDIA || SUPPORT_SH5_64MEDIA_NOFPU)
|
315 |
|
|
#define SUPPORT_ANY_SH5 \
|
316 |
|
|
(SUPPORT_ANY_SH5_32MEDIA || SUPPORT_ANY_SH5_64MEDIA)
|
317 |
|
|
|
318 |
|
|
/* Reset all target-selection flags. */
|
319 |
|
|
#define MASK_ARCH (MASK_SH1 | MASK_SH2 | MASK_SH3 | MASK_SH_E | MASK_SH4 \
|
320 |
|
|
| MASK_HARD_SH2A | MASK_HARD_SH2A_DOUBLE | MASK_SH4A \
|
321 |
|
|
| MASK_HARD_SH4 | MASK_FPU_SINGLE | MASK_SH5)
|
322 |
|
|
|
323 |
|
|
/* This defaults us to big-endian. */
|
324 |
|
|
#ifndef TARGET_ENDIAN_DEFAULT
|
325 |
|
|
#define TARGET_ENDIAN_DEFAULT 0
|
326 |
|
|
#endif
|
327 |
|
|
|
328 |
|
|
#ifndef TARGET_OPT_DEFAULT
|
329 |
|
|
#define TARGET_OPT_DEFAULT MASK_ADJUST_UNROLL
|
330 |
|
|
#endif
|
331 |
|
|
|
332 |
|
|
#define TARGET_DEFAULT \
|
333 |
|
|
(TARGET_CPU_DEFAULT | TARGET_ENDIAN_DEFAULT | TARGET_OPT_DEFAULT)
|
334 |
|
|
|
335 |
|
|
#ifndef SH_MULTILIB_CPU_DEFAULT
|
336 |
|
|
#define SH_MULTILIB_CPU_DEFAULT "m1"
|
337 |
|
|
#endif
|
338 |
|
|
|
339 |
|
|
#if TARGET_ENDIAN_DEFAULT
|
340 |
|
|
#define MULTILIB_DEFAULTS { "ml", SH_MULTILIB_CPU_DEFAULT }
|
341 |
|
|
#else
|
342 |
|
|
#define MULTILIB_DEFAULTS { "mb", SH_MULTILIB_CPU_DEFAULT }
|
343 |
|
|
#endif
|
344 |
|
|
|
345 |
|
|
#define CPP_SPEC " %(subtarget_cpp_spec) "
|
346 |
|
|
|
347 |
|
|
#ifndef SUBTARGET_CPP_SPEC
|
348 |
|
|
#define SUBTARGET_CPP_SPEC ""
|
349 |
|
|
#endif
|
350 |
|
|
|
351 |
|
|
#ifndef SUBTARGET_EXTRA_SPECS
|
352 |
|
|
#define SUBTARGET_EXTRA_SPECS
|
353 |
|
|
#endif
|
354 |
|
|
|
355 |
|
|
#define EXTRA_SPECS \
|
356 |
|
|
{ "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
|
357 |
|
|
{ "link_emul_prefix", LINK_EMUL_PREFIX }, \
|
358 |
|
|
{ "link_default_cpu_emul", LINK_DEFAULT_CPU_EMUL }, \
|
359 |
|
|
{ "subtarget_link_emul_suffix", SUBTARGET_LINK_EMUL_SUFFIX }, \
|
360 |
|
|
{ "subtarget_link_spec", SUBTARGET_LINK_SPEC }, \
|
361 |
|
|
{ "subtarget_asm_endian_spec", SUBTARGET_ASM_ENDIAN_SPEC }, \
|
362 |
|
|
{ "subtarget_asm_relax_spec", SUBTARGET_ASM_RELAX_SPEC }, \
|
363 |
|
|
{ "subtarget_asm_isa_spec", SUBTARGET_ASM_ISA_SPEC }, \
|
364 |
|
|
{ "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
|
365 |
|
|
SUBTARGET_EXTRA_SPECS
|
366 |
|
|
|
367 |
|
|
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4
|
368 |
|
|
#define SUBTARGET_ASM_RELAX_SPEC "%{!m1:%{!m2:%{!m3*:%{!m5*:-isa=sh4-up}}}}"
|
369 |
|
|
#else
|
370 |
|
|
#define SUBTARGET_ASM_RELAX_SPEC "%{m4*:-isa=sh4-up}"
|
371 |
|
|
#endif
|
372 |
|
|
|
373 |
|
|
#define SH_ASM_SPEC \
|
374 |
|
|
"%(subtarget_asm_endian_spec) %{mrelax:-relax %(subtarget_asm_relax_spec)}\
|
375 |
|
|
%(subtarget_asm_isa_spec) %(subtarget_asm_spec)\
|
376 |
|
|
%{m2a:--isa=sh2a} \
|
377 |
|
|
%{m2a-single:--isa=sh2a} \
|
378 |
|
|
%{m2a-single-only:--isa=sh2a} \
|
379 |
|
|
%{m2a-nofpu:--isa=sh2a-nofpu} \
|
380 |
|
|
%{m5-compact*:--isa=SHcompact} \
|
381 |
|
|
%{m5-32media*:--isa=SHmedia --abi=32} \
|
382 |
|
|
%{m5-64media*:--isa=SHmedia --abi=64} \
|
383 |
|
|
%{m4al:-dsp} %{mcut2-workaround:-cut2-workaround}"
|
384 |
|
|
|
385 |
|
|
#define ASM_SPEC SH_ASM_SPEC
|
386 |
|
|
|
387 |
|
|
#ifndef SUBTARGET_ASM_ENDIAN_SPEC
|
388 |
|
|
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
|
389 |
|
|
#define SUBTARGET_ASM_ENDIAN_SPEC "%{mb:-big} %{!mb:-little}"
|
390 |
|
|
#else
|
391 |
|
|
#define SUBTARGET_ASM_ENDIAN_SPEC "%{ml:-little} %{!ml:-big}"
|
392 |
|
|
#endif
|
393 |
|
|
#endif
|
394 |
|
|
|
395 |
|
|
#if STRICT_NOFPU == 1
|
396 |
|
|
/* Strict nofpu means that the compiler should tell the assembler
|
397 |
|
|
to reject FPU instructions. E.g. from ASM inserts. */
|
398 |
|
|
#if TARGET_CPU_DEFAULT & MASK_HARD_SH4 && !(TARGET_CPU_DEFAULT & MASK_SH_E)
|
399 |
|
|
#define SUBTARGET_ASM_ISA_SPEC "%{!m1:%{!m2:%{!m3*:%{m4-nofpu|!m4*:%{!m5:-isa=sh4-nofpu}}}}}"
|
400 |
|
|
#else
|
401 |
|
|
/* If there were an -isa option for sh5-nofpu then it would also go here. */
|
402 |
|
|
#define SUBTARGET_ASM_ISA_SPEC \
|
403 |
|
|
"%{m4-nofpu:-isa=sh4-nofpu} " ASM_ISA_DEFAULT_SPEC
|
404 |
|
|
#endif
|
405 |
|
|
#else /* ! STRICT_NOFPU */
|
406 |
|
|
#define SUBTARGET_ASM_ISA_SPEC ASM_ISA_DEFAULT_SPEC
|
407 |
|
|
#endif
|
408 |
|
|
|
409 |
|
|
#ifndef SUBTARGET_ASM_SPEC
|
410 |
|
|
#define SUBTARGET_ASM_SPEC ""
|
411 |
|
|
#endif
|
412 |
|
|
|
413 |
|
|
#if TARGET_ENDIAN_DEFAULT == MASK_LITTLE_ENDIAN
|
414 |
|
|
#define LINK_EMUL_PREFIX "sh%{!mb:l}"
|
415 |
|
|
#else
|
416 |
|
|
#define LINK_EMUL_PREFIX "sh%{ml:l}"
|
417 |
|
|
#endif
|
418 |
|
|
|
419 |
|
|
#if TARGET_CPU_DEFAULT & MASK_SH5
|
420 |
|
|
#if TARGET_CPU_DEFAULT & MASK_SH_E
|
421 |
|
|
#define LINK_DEFAULT_CPU_EMUL "32"
|
422 |
|
|
#if TARGET_CPU_DEFAULT & MASK_SH1
|
423 |
|
|
#define ASM_ISA_SPEC_DEFAULT "--isa=SHcompact"
|
424 |
|
|
#else
|
425 |
|
|
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=32"
|
426 |
|
|
#endif /* MASK_SH1 */
|
427 |
|
|
#else /* !MASK_SH_E */
|
428 |
|
|
#define LINK_DEFAULT_CPU_EMUL "64"
|
429 |
|
|
#define ASM_ISA_SPEC_DEFAULT "--isa=SHmedia --abi=64"
|
430 |
|
|
#endif /* MASK_SH_E */
|
431 |
|
|
#define ASM_ISA_DEFAULT_SPEC \
|
432 |
|
|
" %{!m1:%{!m2*:%{!m3*:%{!m4*:%{!m5*:" ASM_ISA_SPEC_DEFAULT "}}}}}"
|
433 |
|
|
#else /* !MASK_SH5 */
|
434 |
|
|
#define LINK_DEFAULT_CPU_EMUL ""
|
435 |
|
|
#define ASM_ISA_DEFAULT_SPEC ""
|
436 |
|
|
#endif /* MASK_SH5 */
|
437 |
|
|
|
438 |
|
|
#define SUBTARGET_LINK_EMUL_SUFFIX ""
|
439 |
|
|
#define SUBTARGET_LINK_SPEC ""
|
440 |
|
|
|
441 |
|
|
/* svr4.h redefines LINK_SPEC inappropriately, so go via SH_LINK_SPEC,
|
442 |
|
|
so that we can undo the damage without code replication. */
|
443 |
|
|
#define LINK_SPEC SH_LINK_SPEC
|
444 |
|
|
|
445 |
|
|
#define SH_LINK_SPEC "\
|
446 |
|
|
-m %(link_emul_prefix)\
|
447 |
|
|
%{m5-compact*|m5-32media*:32}\
|
448 |
|
|
%{m5-64media*:64}\
|
449 |
|
|
%{!m1:%{!m2:%{!m3*:%{!m4*:%{!m5*:%(link_default_cpu_emul)}}}}}\
|
450 |
|
|
%(subtarget_link_emul_suffix) \
|
451 |
|
|
%{mrelax:-relax} %(subtarget_link_spec)"
|
452 |
|
|
|
453 |
|
|
#ifndef SH_DIV_STR_FOR_SIZE
|
454 |
|
|
#define SH_DIV_STR_FOR_SIZE "call"
|
455 |
|
|
#endif
|
456 |
|
|
|
457 |
|
|
#define DRIVER_SELF_SPECS "%{m2a:%{ml:%eSH2a does not support little-endian}}"
|
458 |
|
|
#define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
|
459 |
|
|
do { \
|
460 |
|
|
if (LEVEL) \
|
461 |
|
|
{ \
|
462 |
|
|
flag_omit_frame_pointer = -1; \
|
463 |
|
|
if (! SIZE) \
|
464 |
|
|
sh_div_str = "inv:minlat"; \
|
465 |
|
|
} \
|
466 |
|
|
if (SIZE) \
|
467 |
|
|
{ \
|
468 |
|
|
target_flags |= MASK_SMALLCODE; \
|
469 |
|
|
sh_div_str = SH_DIV_STR_FOR_SIZE ; \
|
470 |
|
|
} \
|
471 |
|
|
/* We can't meaningfully test TARGET_SHMEDIA here, because -m options \
|
472 |
|
|
haven't been parsed yet, hence we'd read only the default. \
|
473 |
|
|
sh_target_reg_class will return NO_REGS if this is not SHMEDIA, so \
|
474 |
|
|
it's OK to always set flag_branch_target_load_optimize. */ \
|
475 |
|
|
if (LEVEL > 1) \
|
476 |
|
|
{ \
|
477 |
|
|
flag_branch_target_load_optimize = 1; \
|
478 |
|
|
if (! (SIZE)) \
|
479 |
|
|
target_flags |= MASK_SAVE_ALL_TARGET_REGS; \
|
480 |
|
|
} \
|
481 |
|
|
/* Likewise, we can't meaningfully test TARGET_SH2E / TARGET_IEEE \
|
482 |
|
|
here, so leave it to OVERRIDE_OPTIONS to set \
|
483 |
|
|
flag_finite_math_only. We set it to 2 here so we know if the user \
|
484 |
|
|
explicitly requested this to be on or off. */ \
|
485 |
|
|
flag_finite_math_only = 2; \
|
486 |
|
|
/* If flag_schedule_insns is 1, we set it to 2 here so we know if \
|
487 |
|
|
the user explicitly requested this to be on or off. */ \
|
488 |
|
|
if (flag_schedule_insns > 0) \
|
489 |
|
|
flag_schedule_insns = 2; \
|
490 |
|
|
} while (0)
|
491 |
|
|
|
492 |
|
|
#define ASSEMBLER_DIALECT assembler_dialect
|
493 |
|
|
|
494 |
|
|
extern int assembler_dialect;
|
495 |
|
|
|
496 |
|
|
enum sh_divide_strategy_e {
|
497 |
|
|
/* SH5 strategies. */
|
498 |
|
|
SH_DIV_CALL,
|
499 |
|
|
SH_DIV_CALL2,
|
500 |
|
|
SH_DIV_FP, /* We could do this also for SH4. */
|
501 |
|
|
SH_DIV_INV,
|
502 |
|
|
SH_DIV_INV_MINLAT,
|
503 |
|
|
SH_DIV_INV20U,
|
504 |
|
|
SH_DIV_INV20L,
|
505 |
|
|
SH_DIV_INV_CALL,
|
506 |
|
|
SH_DIV_INV_CALL2,
|
507 |
|
|
SH_DIV_INV_FP,
|
508 |
|
|
/* SH1 .. SH4 strategies. Because of the small number of registers
|
509 |
|
|
available, the compiler uses knowledge of the actual set of registers
|
510 |
|
|
being clobbered by the different functions called. */
|
511 |
|
|
SH_DIV_CALL_DIV1, /* No FPU, medium size, highest latency. */
|
512 |
|
|
SH_DIV_CALL_FP, /* FPU needed, small size, high latency. */
|
513 |
|
|
SH_DIV_CALL_TABLE, /* No FPU, large size, medium latency. */
|
514 |
|
|
SH_DIV_INTRINSIC
|
515 |
|
|
};
|
516 |
|
|
|
517 |
|
|
extern enum sh_divide_strategy_e sh_div_strategy;
|
518 |
|
|
|
519 |
|
|
#ifndef SH_DIV_STRATEGY_DEFAULT
|
520 |
|
|
#define SH_DIV_STRATEGY_DEFAULT SH_DIV_CALL
|
521 |
|
|
#endif
|
522 |
|
|
|
523 |
|
|
#define OVERRIDE_OPTIONS \
|
524 |
|
|
do { \
|
525 |
|
|
int regno; \
|
526 |
|
|
\
|
527 |
|
|
if (flag_finite_math_only == 2) \
|
528 |
|
|
flag_finite_math_only \
|
529 |
|
|
= !flag_signaling_nans && TARGET_SH2E && ! TARGET_IEEE; \
|
530 |
|
|
if (TARGET_SH2E && !flag_finite_math_only) \
|
531 |
|
|
target_flags |= MASK_IEEE; \
|
532 |
|
|
sh_cpu = CPU_SH1; \
|
533 |
|
|
assembler_dialect = 0; \
|
534 |
|
|
if (TARGET_SH2) \
|
535 |
|
|
sh_cpu = CPU_SH2; \
|
536 |
|
|
if (TARGET_SH2E) \
|
537 |
|
|
sh_cpu = CPU_SH2E; \
|
538 |
|
|
if (TARGET_SH2A) \
|
539 |
|
|
{ \
|
540 |
|
|
sh_cpu = CPU_SH2A; \
|
541 |
|
|
if (TARGET_SH2A_DOUBLE) \
|
542 |
|
|
target_flags |= MASK_FMOVD; \
|
543 |
|
|
} \
|
544 |
|
|
if (TARGET_SH3) \
|
545 |
|
|
sh_cpu = CPU_SH3; \
|
546 |
|
|
if (TARGET_SH3E) \
|
547 |
|
|
sh_cpu = CPU_SH3E; \
|
548 |
|
|
if (TARGET_SH4) \
|
549 |
|
|
{ \
|
550 |
|
|
assembler_dialect = 1; \
|
551 |
|
|
sh_cpu = CPU_SH4; \
|
552 |
|
|
} \
|
553 |
|
|
if (TARGET_SH4A_ARCH) \
|
554 |
|
|
{ \
|
555 |
|
|
assembler_dialect = 1; \
|
556 |
|
|
sh_cpu = CPU_SH4A; \
|
557 |
|
|
} \
|
558 |
|
|
if (TARGET_SH5) \
|
559 |
|
|
{ \
|
560 |
|
|
sh_cpu = CPU_SH5; \
|
561 |
|
|
target_flags |= MASK_ALIGN_DOUBLE; \
|
562 |
|
|
if (TARGET_SHMEDIA_FPU) \
|
563 |
|
|
target_flags |= MASK_FMOVD; \
|
564 |
|
|
if (TARGET_SHMEDIA) \
|
565 |
|
|
{ \
|
566 |
|
|
/* There are no delay slots on SHmedia. */ \
|
567 |
|
|
flag_delayed_branch = 0; \
|
568 |
|
|
/* Relaxation isn't yet supported for SHmedia */ \
|
569 |
|
|
target_flags &= ~MASK_RELAX; \
|
570 |
|
|
/* After reload, if conversion does little good but can cause \
|
571 |
|
|
ICEs: \
|
572 |
|
|
- find_if_block doesn't do anything for SH because we don't\
|
573 |
|
|
have conditional execution patterns. (We use conditional\
|
574 |
|
|
move patterns, which are handled differently, and only \
|
575 |
|
|
before reload). \
|
576 |
|
|
- find_cond_trap doesn't do anything for the SH because we \
|
577 |
|
|
don't have conditional traps. \
|
578 |
|
|
- find_if_case_1 uses redirect_edge_and_branch_force in \
|
579 |
|
|
the only path that does an optimization, and this causes \
|
580 |
|
|
an ICE when branch targets are in registers. \
|
581 |
|
|
- find_if_case_2 doesn't do anything for the SHmedia after \
|
582 |
|
|
reload except when it can redirect a tablejump - and \
|
583 |
|
|
that's rather rare. */ \
|
584 |
|
|
flag_if_conversion2 = 0; \
|
585 |
|
|
if (! strcmp (sh_div_str, "call")) \
|
586 |
|
|
sh_div_strategy = SH_DIV_CALL; \
|
587 |
|
|
else if (! strcmp (sh_div_str, "call2")) \
|
588 |
|
|
sh_div_strategy = SH_DIV_CALL2; \
|
589 |
|
|
if (! strcmp (sh_div_str, "fp") && TARGET_FPU_ANY) \
|
590 |
|
|
sh_div_strategy = SH_DIV_FP; \
|
591 |
|
|
else if (! strcmp (sh_div_str, "inv")) \
|
592 |
|
|
sh_div_strategy = SH_DIV_INV; \
|
593 |
|
|
else if (! strcmp (sh_div_str, "inv:minlat")) \
|
594 |
|
|
sh_div_strategy = SH_DIV_INV_MINLAT; \
|
595 |
|
|
else if (! strcmp (sh_div_str, "inv20u")) \
|
596 |
|
|
sh_div_strategy = SH_DIV_INV20U; \
|
597 |
|
|
else if (! strcmp (sh_div_str, "inv20l")) \
|
598 |
|
|
sh_div_strategy = SH_DIV_INV20L; \
|
599 |
|
|
else if (! strcmp (sh_div_str, "inv:call2")) \
|
600 |
|
|
sh_div_strategy = SH_DIV_INV_CALL2; \
|
601 |
|
|
else if (! strcmp (sh_div_str, "inv:call")) \
|
602 |
|
|
sh_div_strategy = SH_DIV_INV_CALL; \
|
603 |
|
|
else if (! strcmp (sh_div_str, "inv:fp")) \
|
604 |
|
|
{ \
|
605 |
|
|
if (TARGET_FPU_ANY) \
|
606 |
|
|
sh_div_strategy = SH_DIV_INV_FP; \
|
607 |
|
|
else \
|
608 |
|
|
sh_div_strategy = SH_DIV_INV; \
|
609 |
|
|
} \
|
610 |
|
|
} \
|
611 |
|
|
/* -fprofile-arcs needs a working libgcov . In unified tree \
|
612 |
|
|
configurations with newlib, this requires to configure with \
|
613 |
|
|
--with-newlib --with-headers. But there is no way to check \
|
614 |
|
|
here we have a working libgcov, so just assume that we have. */\
|
615 |
|
|
if (profile_flag) \
|
616 |
|
|
warning (0, "profiling is still experimental for this target");\
|
617 |
|
|
} \
|
618 |
|
|
else \
|
619 |
|
|
{ \
|
620 |
|
|
/* Only the sh64-elf assembler fully supports .quad properly. */\
|
621 |
|
|
targetm.asm_out.aligned_op.di = NULL; \
|
622 |
|
|
targetm.asm_out.unaligned_op.di = NULL; \
|
623 |
|
|
} \
|
624 |
|
|
if (TARGET_SH1) \
|
625 |
|
|
{ \
|
626 |
|
|
if (! strcmp (sh_div_str, "call-div1")) \
|
627 |
|
|
sh_div_strategy = SH_DIV_CALL_DIV1; \
|
628 |
|
|
else if (! strcmp (sh_div_str, "call-fp") \
|
629 |
|
|
&& (TARGET_FPU_DOUBLE \
|
630 |
|
|
|| (TARGET_HARD_SH4 && TARGET_SH2E) \
|
631 |
|
|
|| (TARGET_SHCOMPACT && TARGET_FPU_ANY))) \
|
632 |
|
|
sh_div_strategy = SH_DIV_CALL_FP; \
|
633 |
|
|
else if (! strcmp (sh_div_str, "call-table") && TARGET_SH2) \
|
634 |
|
|
sh_div_strategy = SH_DIV_CALL_TABLE; \
|
635 |
|
|
else \
|
636 |
|
|
/* Pick one that makes most sense for the target in general. \
|
637 |
|
|
It is not much good to use different functions depending \
|
638 |
|
|
on -Os, since then we'll end up with two different functions \
|
639 |
|
|
when some of the code is compiled for size, and some for \
|
640 |
|
|
speed. */ \
|
641 |
|
|
\
|
642 |
|
|
/* SH4 tends to emphasize speed. */ \
|
643 |
|
|
if (TARGET_HARD_SH4) \
|
644 |
|
|
sh_div_strategy = SH_DIV_CALL_TABLE; \
|
645 |
|
|
/* These have their own way of doing things. */ \
|
646 |
|
|
else if (TARGET_SH2A) \
|
647 |
|
|
sh_div_strategy = SH_DIV_INTRINSIC; \
|
648 |
|
|
/* ??? Should we use the integer SHmedia function instead? */ \
|
649 |
|
|
else if (TARGET_SHCOMPACT && TARGET_FPU_ANY) \
|
650 |
|
|
sh_div_strategy = SH_DIV_CALL_FP; \
|
651 |
|
|
/* SH1 .. SH3 cores often go into small-footprint systems, so \
|
652 |
|
|
default to the smallest implementation available. */ \
|
653 |
|
|
else if (TARGET_SH2) /* ??? EXPERIMENTAL */ \
|
654 |
|
|
sh_div_strategy = SH_DIV_CALL_TABLE; \
|
655 |
|
|
else \
|
656 |
|
|
sh_div_strategy = SH_DIV_CALL_DIV1; \
|
657 |
|
|
} \
|
658 |
|
|
if (!TARGET_SH1) \
|
659 |
|
|
TARGET_PRETEND_CMOVE = 0; \
|
660 |
|
|
if (sh_divsi3_libfunc[0]) \
|
661 |
|
|
; /* User supplied - leave it alone. */ \
|
662 |
|
|
else if (TARGET_DIVIDE_CALL_FP) \
|
663 |
|
|
sh_divsi3_libfunc = "__sdivsi3_i4"; \
|
664 |
|
|
else if (TARGET_DIVIDE_CALL_TABLE) \
|
665 |
|
|
sh_divsi3_libfunc = "__sdivsi3_i4i"; \
|
666 |
|
|
else if (TARGET_SH5) \
|
667 |
|
|
sh_divsi3_libfunc = "__sdivsi3_1"; \
|
668 |
|
|
else \
|
669 |
|
|
sh_divsi3_libfunc = "__sdivsi3"; \
|
670 |
|
|
if (TARGET_FMOVD) \
|
671 |
|
|
reg_class_from_letter['e' - 'a'] = NO_REGS; \
|
672 |
|
|
\
|
673 |
|
|
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++) \
|
674 |
|
|
if (! VALID_REGISTER_P (regno)) \
|
675 |
|
|
sh_register_names[regno][0] = '\0'; \
|
676 |
|
|
\
|
677 |
|
|
for (regno = 0; regno < ADDREGNAMES_SIZE; regno++) \
|
678 |
|
|
if (! VALID_REGISTER_P (ADDREGNAMES_REGNO (regno))) \
|
679 |
|
|
sh_additional_register_names[regno][0] = '\0'; \
|
680 |
|
|
\
|
681 |
|
|
if (flag_omit_frame_pointer < 0) \
|
682 |
|
|
{ \
|
683 |
|
|
/* The debugging information is sufficient, \
|
684 |
|
|
but gdb doesn't implement this yet */ \
|
685 |
|
|
if (0) \
|
686 |
|
|
flag_omit_frame_pointer \
|
687 |
|
|
= (PREFERRED_DEBUGGING_TYPE == DWARF2_DEBUG); \
|
688 |
|
|
else \
|
689 |
|
|
flag_omit_frame_pointer = 0; \
|
690 |
|
|
} \
|
691 |
|
|
\
|
692 |
|
|
if ((flag_pic && ! TARGET_PREFERGOT) \
|
693 |
|
|
|| (TARGET_SHMEDIA && !TARGET_PT_FIXED)) \
|
694 |
|
|
flag_no_function_cse = 1; \
|
695 |
|
|
\
|
696 |
|
|
if (SMALL_REGISTER_CLASSES) \
|
697 |
|
|
{ \
|
698 |
|
|
/* Never run scheduling before reload, since that can \
|
699 |
|
|
break global alloc, and generates slower code anyway due \
|
700 |
|
|
to the pressure on R0. */ \
|
701 |
|
|
/* Enable sched1 for SH4; ready queue will be reordered by \
|
702 |
|
|
the target hooks when pressure is high. We can not do this for \
|
703 |
|
|
SH3 and lower as they give spill failures for R0. */ \
|
704 |
|
|
if (!TARGET_HARD_SH4) \
|
705 |
|
|
flag_schedule_insns = 0; \
|
706 |
|
|
/* ??? Current exception handling places basic block boundaries \
|
707 |
|
|
after call_insns. It causes the high pressure on R0 and gives \
|
708 |
|
|
spill failures for R0 in reload. See PR 22553 and the thread \
|
709 |
|
|
on gcc-patches \
|
710 |
|
|
<http://gcc.gnu.org/ml/gcc-patches/2005-10/msg00816.html>. */ \
|
711 |
|
|
else if (flag_exceptions) \
|
712 |
|
|
{ \
|
713 |
|
|
if (flag_schedule_insns == 1) \
|
714 |
|
|
warning (0, "ignoring -fschedule-insns because of exception handling bug"); \
|
715 |
|
|
flag_schedule_insns = 0; \
|
716 |
|
|
} \
|
717 |
|
|
} \
|
718 |
|
|
\
|
719 |
|
|
if (align_loops == 0) \
|
720 |
|
|
align_loops = 1 << (TARGET_SH5 ? 3 : 2); \
|
721 |
|
|
if (align_jumps == 0) \
|
722 |
|
|
align_jumps = 1 << CACHE_LOG; \
|
723 |
|
|
else if (align_jumps < (TARGET_SHMEDIA ? 4 : 2)) \
|
724 |
|
|
align_jumps = TARGET_SHMEDIA ? 4 : 2; \
|
725 |
|
|
\
|
726 |
|
|
/* Allocation boundary (in *bytes*) for the code of a function. \
|
727 |
|
|
SH1: 32 bit alignment is faster, because instructions are always \
|
728 |
|
|
fetched as a pair from a longword boundary. \
|
729 |
|
|
SH2 .. SH5 : align to cache line start. */ \
|
730 |
|
|
if (align_functions == 0) \
|
731 |
|
|
align_functions \
|
732 |
|
|
= TARGET_SMALLCODE ? FUNCTION_BOUNDARY/8 : (1 << CACHE_LOG); \
|
733 |
|
|
/* The linker relaxation code breaks when a function contains \
|
734 |
|
|
alignments that are larger than that at the start of a \
|
735 |
|
|
compilation unit. */ \
|
736 |
|
|
if (TARGET_RELAX) \
|
737 |
|
|
{ \
|
738 |
|
|
int min_align \
|
739 |
|
|
= align_loops > align_jumps ? align_loops : align_jumps; \
|
740 |
|
|
\
|
741 |
|
|
/* Also take possible .long constants / mova tables int account. */\
|
742 |
|
|
if (min_align < 4) \
|
743 |
|
|
min_align = 4; \
|
744 |
|
|
if (align_functions < min_align) \
|
745 |
|
|
align_functions = min_align; \
|
746 |
|
|
} \
|
747 |
|
|
} while (0)
|
748 |
|
|
|
749 |
|
|
/* Target machine storage layout. */
|
750 |
|
|
|
751 |
|
|
/* Define this if most significant bit is lowest numbered
|
752 |
|
|
in instructions that operate on numbered bit-fields. */
|
753 |
|
|
|
754 |
|
|
#define BITS_BIG_ENDIAN 0
|
755 |
|
|
|
756 |
|
|
/* Define this if most significant byte of a word is the lowest numbered. */
|
757 |
|
|
#define BYTES_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
|
758 |
|
|
|
759 |
|
|
/* Define this if most significant word of a multiword number is the lowest
|
760 |
|
|
numbered. */
|
761 |
|
|
#define WORDS_BIG_ENDIAN (TARGET_LITTLE_ENDIAN == 0)
|
762 |
|
|
|
763 |
|
|
/* Define this to set the endianness to use in libgcc2.c, which can
|
764 |
|
|
not depend on target_flags. */
|
765 |
|
|
#if defined(__LITTLE_ENDIAN__)
|
766 |
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 0
|
767 |
|
|
#else
|
768 |
|
|
#define LIBGCC2_WORDS_BIG_ENDIAN 1
|
769 |
|
|
#endif
|
770 |
|
|
|
771 |
|
|
#define MAX_BITS_PER_WORD 64
|
772 |
|
|
|
773 |
|
|
/* Width in bits of an `int'. We want just 32-bits, even if words are
|
774 |
|
|
longer. */
|
775 |
|
|
#define INT_TYPE_SIZE 32
|
776 |
|
|
|
777 |
|
|
/* Width in bits of a `long'. */
|
778 |
|
|
#define LONG_TYPE_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
|
779 |
|
|
|
780 |
|
|
/* Width in bits of a `long long'. */
|
781 |
|
|
#define LONG_LONG_TYPE_SIZE 64
|
782 |
|
|
|
783 |
|
|
/* Width in bits of a `long double'. */
|
784 |
|
|
#define LONG_DOUBLE_TYPE_SIZE 64
|
785 |
|
|
|
786 |
|
|
/* Width of a word, in units (bytes). */
|
787 |
|
|
#define UNITS_PER_WORD (TARGET_SHMEDIA ? 8 : 4)
|
788 |
|
|
#define MIN_UNITS_PER_WORD 4
|
789 |
|
|
|
790 |
|
|
/* Scaling factor for Dwarf data offsets for CFI information.
|
791 |
|
|
The dwarf2out.c default would use -UNITS_PER_WORD, which is -8 for
|
792 |
|
|
SHmedia; however, since we do partial register saves for the registers
|
793 |
|
|
visible to SHcompact, and for target registers for SHMEDIA32, we have
|
794 |
|
|
to allow saves that are only 4-byte aligned. */
|
795 |
|
|
#define DWARF_CIE_DATA_ALIGNMENT -4
|
796 |
|
|
|
797 |
|
|
/* Width in bits of a pointer.
|
798 |
|
|
See also the macro `Pmode' defined below. */
|
799 |
|
|
#define POINTER_SIZE (TARGET_SHMEDIA64 ? 64 : 32)
|
800 |
|
|
|
801 |
|
|
/* Allocation boundary (in *bits*) for storing arguments in argument list. */
|
802 |
|
|
#define PARM_BOUNDARY (TARGET_SH5 ? 64 : 32)
|
803 |
|
|
|
804 |
|
|
/* Boundary (in *bits*) on which stack pointer should be aligned. */
|
805 |
|
|
#define STACK_BOUNDARY BIGGEST_ALIGNMENT
|
806 |
|
|
|
807 |
|
|
/* The log (base 2) of the cache line size, in bytes. Processors prior to
|
808 |
|
|
SH2 have no actual cache, but they fetch code in chunks of 4 bytes.
|
809 |
|
|
The SH2/3 have 16 byte cache lines, and the SH4 has a 32 byte cache line */
|
810 |
|
|
#define CACHE_LOG (TARGET_CACHE32 ? 5 : TARGET_SH2 ? 4 : 2)
|
811 |
|
|
|
812 |
|
|
/* ABI given & required minimum allocation boundary (in *bits*) for the
|
813 |
|
|
code of a function. */
|
814 |
|
|
#define FUNCTION_BOUNDARY (16 << TARGET_SHMEDIA)
|
815 |
|
|
|
816 |
|
|
/* On SH5, the lowest bit is used to indicate SHmedia functions, so
|
817 |
|
|
the vbit must go into the delta field of
|
818 |
|
|
pointers-to-member-functions. */
|
819 |
|
|
#define TARGET_PTRMEMFUNC_VBIT_LOCATION \
|
820 |
|
|
(TARGET_SH5 ? ptrmemfunc_vbit_in_delta : ptrmemfunc_vbit_in_pfn)
|
821 |
|
|
|
822 |
|
|
/* Alignment of field after `int : 0' in a structure. */
|
823 |
|
|
#define EMPTY_FIELD_BOUNDARY 32
|
824 |
|
|
|
825 |
|
|
/* No data type wants to be aligned rounder than this. */
|
826 |
|
|
#define BIGGEST_ALIGNMENT (TARGET_ALIGN_DOUBLE ? 64 : 32)
|
827 |
|
|
|
828 |
|
|
/* The best alignment to use in cases where we have a choice. */
|
829 |
|
|
#define FASTEST_ALIGNMENT (TARGET_SH5 ? 64 : 32)
|
830 |
|
|
|
831 |
|
|
/* Make strings word-aligned so strcpy from constants will be faster. */
|
832 |
|
|
#define CONSTANT_ALIGNMENT(EXP, ALIGN) \
|
833 |
|
|
((TREE_CODE (EXP) == STRING_CST \
|
834 |
|
|
&& (ALIGN) < FASTEST_ALIGNMENT) \
|
835 |
|
|
? FASTEST_ALIGNMENT : (ALIGN))
|
836 |
|
|
|
837 |
|
|
/* get_mode_alignment assumes complex values are always held in multiple
|
838 |
|
|
registers, but that is not the case on the SH; CQImode and CHImode are
|
839 |
|
|
held in a single integer register. SH5 also holds CSImode and SCmode
|
840 |
|
|
values in integer registers. This is relevant for argument passing on
|
841 |
|
|
SHcompact as we use a stack temp in order to pass CSImode by reference. */
|
842 |
|
|
#define LOCAL_ALIGNMENT(TYPE, ALIGN) \
|
843 |
|
|
((GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_INT \
|
844 |
|
|
|| GET_MODE_CLASS (TYPE_MODE (TYPE)) == MODE_COMPLEX_FLOAT) \
|
845 |
|
|
? (unsigned) MIN (BIGGEST_ALIGNMENT, GET_MODE_BITSIZE (TYPE_MODE (TYPE))) \
|
846 |
|
|
: (unsigned) ALIGN)
|
847 |
|
|
|
848 |
|
|
/* Make arrays of chars word-aligned for the same reasons. */
|
849 |
|
|
#define DATA_ALIGNMENT(TYPE, ALIGN) \
|
850 |
|
|
(TREE_CODE (TYPE) == ARRAY_TYPE \
|
851 |
|
|
&& TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
|
852 |
|
|
&& (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN))
|
853 |
|
|
|
854 |
|
|
/* Number of bits which any structure or union's size must be a
|
855 |
|
|
multiple of. Each structure or union's size is rounded up to a
|
856 |
|
|
multiple of this. */
|
857 |
|
|
#define STRUCTURE_SIZE_BOUNDARY (TARGET_PADSTRUCT ? 32 : 8)
|
858 |
|
|
|
859 |
|
|
/* Set this nonzero if move instructions will actually fail to work
|
860 |
|
|
when given unaligned data. */
|
861 |
|
|
#define STRICT_ALIGNMENT 1
|
862 |
|
|
|
863 |
|
|
/* If LABEL_AFTER_BARRIER demands an alignment, return its base 2 logarithm. */
|
864 |
|
|
#define LABEL_ALIGN_AFTER_BARRIER(LABEL_AFTER_BARRIER) \
|
865 |
|
|
barrier_align (LABEL_AFTER_BARRIER)
|
866 |
|
|
|
867 |
|
|
#define LOOP_ALIGN(A_LABEL) \
|
868 |
|
|
((! optimize || TARGET_HARD_SH4 || TARGET_SMALLCODE) \
|
869 |
|
|
? 0 : sh_loop_align (A_LABEL))
|
870 |
|
|
|
871 |
|
|
#define LABEL_ALIGN(A_LABEL) \
|
872 |
|
|
( \
|
873 |
|
|
(PREV_INSN (A_LABEL) \
|
874 |
|
|
&& GET_CODE (PREV_INSN (A_LABEL)) == INSN \
|
875 |
|
|
&& GET_CODE (PATTERN (PREV_INSN (A_LABEL))) == UNSPEC_VOLATILE \
|
876 |
|
|
&& XINT (PATTERN (PREV_INSN (A_LABEL)), 1) == UNSPECV_ALIGN) \
|
877 |
|
|
/* explicit alignment insn in constant tables. */ \
|
878 |
|
|
? INTVAL (XVECEXP (PATTERN (PREV_INSN (A_LABEL)), 0, 0)) \
|
879 |
|
|
: 0)
|
880 |
|
|
|
881 |
|
|
/* Jump tables must be 32 bit aligned, no matter the size of the element. */
|
882 |
|
|
#define ADDR_VEC_ALIGN(ADDR_VEC) 2
|
883 |
|
|
|
884 |
|
|
/* The base two logarithm of the known minimum alignment of an insn length. */
|
885 |
|
|
#define INSN_LENGTH_ALIGNMENT(A_INSN) \
|
886 |
|
|
(GET_CODE (A_INSN) == INSN \
|
887 |
|
|
? 1 << TARGET_SHMEDIA \
|
888 |
|
|
: GET_CODE (A_INSN) == JUMP_INSN || GET_CODE (A_INSN) == CALL_INSN \
|
889 |
|
|
? 1 << TARGET_SHMEDIA \
|
890 |
|
|
: CACHE_LOG)
|
891 |
|
|
|
892 |
|
|
/* Standard register usage. */
|
893 |
|
|
|
894 |
|
|
/* Register allocation for the Renesas calling convention:
|
895 |
|
|
|
896 |
|
|
r0 arg return
|
897 |
|
|
r1..r3 scratch
|
898 |
|
|
r4..r7 args in
|
899 |
|
|
r8..r13 call saved
|
900 |
|
|
r14 frame pointer/call saved
|
901 |
|
|
r15 stack pointer
|
902 |
|
|
ap arg pointer (doesn't really exist, always eliminated)
|
903 |
|
|
pr subroutine return address
|
904 |
|
|
t t bit
|
905 |
|
|
mach multiply/accumulate result, high part
|
906 |
|
|
macl multiply/accumulate result, low part.
|
907 |
|
|
fpul fp/int communication register
|
908 |
|
|
rap return address pointer register
|
909 |
|
|
fr0 fp arg return
|
910 |
|
|
fr1..fr3 scratch floating point registers
|
911 |
|
|
fr4..fr11 fp args in
|
912 |
|
|
fr12..fr15 call saved floating point registers */
|
913 |
|
|
|
914 |
|
|
#define MAX_REGISTER_NAME_LENGTH 5
|
915 |
|
|
extern char sh_register_names[][MAX_REGISTER_NAME_LENGTH + 1];
|
916 |
|
|
|
917 |
|
|
#define SH_REGISTER_NAMES_INITIALIZER \
|
918 |
|
|
{ \
|
919 |
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
|
920 |
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
|
921 |
|
|
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
|
922 |
|
|
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
|
923 |
|
|
"r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", \
|
924 |
|
|
"r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", \
|
925 |
|
|
"r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", \
|
926 |
|
|
"r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", \
|
927 |
|
|
"fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
|
928 |
|
|
"fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
|
929 |
|
|
"fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
|
930 |
|
|
"fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
|
931 |
|
|
"fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
|
932 |
|
|
"fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
|
933 |
|
|
"fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
|
934 |
|
|
"fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
|
935 |
|
|
"tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7", \
|
936 |
|
|
"xd0", "xd2", "xd4", "xd6", "xd8", "xd10", "xd12", "xd14", \
|
937 |
|
|
"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", \
|
938 |
|
|
"rap", "sfp" \
|
939 |
|
|
}
|
940 |
|
|
|
941 |
|
|
#define REGNAMES_ARR_INDEX_1(index) \
|
942 |
|
|
(sh_register_names[index])
|
943 |
|
|
#define REGNAMES_ARR_INDEX_2(index) \
|
944 |
|
|
REGNAMES_ARR_INDEX_1 ((index)), REGNAMES_ARR_INDEX_1 ((index)+1)
|
945 |
|
|
#define REGNAMES_ARR_INDEX_4(index) \
|
946 |
|
|
REGNAMES_ARR_INDEX_2 ((index)), REGNAMES_ARR_INDEX_2 ((index)+2)
|
947 |
|
|
#define REGNAMES_ARR_INDEX_8(index) \
|
948 |
|
|
REGNAMES_ARR_INDEX_4 ((index)), REGNAMES_ARR_INDEX_4 ((index)+4)
|
949 |
|
|
#define REGNAMES_ARR_INDEX_16(index) \
|
950 |
|
|
REGNAMES_ARR_INDEX_8 ((index)), REGNAMES_ARR_INDEX_8 ((index)+8)
|
951 |
|
|
#define REGNAMES_ARR_INDEX_32(index) \
|
952 |
|
|
REGNAMES_ARR_INDEX_16 ((index)), REGNAMES_ARR_INDEX_16 ((index)+16)
|
953 |
|
|
#define REGNAMES_ARR_INDEX_64(index) \
|
954 |
|
|
REGNAMES_ARR_INDEX_32 ((index)), REGNAMES_ARR_INDEX_32 ((index)+32)
|
955 |
|
|
|
956 |
|
|
#define REGISTER_NAMES \
|
957 |
|
|
{ \
|
958 |
|
|
REGNAMES_ARR_INDEX_64 (0), \
|
959 |
|
|
REGNAMES_ARR_INDEX_64 (64), \
|
960 |
|
|
REGNAMES_ARR_INDEX_8 (128), \
|
961 |
|
|
REGNAMES_ARR_INDEX_8 (136), \
|
962 |
|
|
REGNAMES_ARR_INDEX_8 (144), \
|
963 |
|
|
REGNAMES_ARR_INDEX_2 (152) \
|
964 |
|
|
}
|
965 |
|
|
|
966 |
|
|
#define ADDREGNAMES_SIZE 32
|
967 |
|
|
#define MAX_ADDITIONAL_REGISTER_NAME_LENGTH 4
|
968 |
|
|
extern char sh_additional_register_names[ADDREGNAMES_SIZE] \
|
969 |
|
|
[MAX_ADDITIONAL_REGISTER_NAME_LENGTH + 1];
|
970 |
|
|
|
971 |
|
|
#define SH_ADDITIONAL_REGISTER_NAMES_INITIALIZER \
|
972 |
|
|
{ \
|
973 |
|
|
"dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14", \
|
974 |
|
|
"dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30", \
|
975 |
|
|
"dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46", \
|
976 |
|
|
"dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62" \
|
977 |
|
|
}
|
978 |
|
|
|
979 |
|
|
#define ADDREGNAMES_REGNO(index) \
|
980 |
|
|
((index < 32) ? (FIRST_FP_REG + (index) * 2) \
|
981 |
|
|
: (-1))
|
982 |
|
|
|
983 |
|
|
#define ADDREGNAMES_ARR_INDEX_1(index) \
|
984 |
|
|
{ (sh_additional_register_names[index]), ADDREGNAMES_REGNO (index) }
|
985 |
|
|
#define ADDREGNAMES_ARR_INDEX_2(index) \
|
986 |
|
|
ADDREGNAMES_ARR_INDEX_1 ((index)), ADDREGNAMES_ARR_INDEX_1 ((index)+1)
|
987 |
|
|
#define ADDREGNAMES_ARR_INDEX_4(index) \
|
988 |
|
|
ADDREGNAMES_ARR_INDEX_2 ((index)), ADDREGNAMES_ARR_INDEX_2 ((index)+2)
|
989 |
|
|
#define ADDREGNAMES_ARR_INDEX_8(index) \
|
990 |
|
|
ADDREGNAMES_ARR_INDEX_4 ((index)), ADDREGNAMES_ARR_INDEX_4 ((index)+4)
|
991 |
|
|
#define ADDREGNAMES_ARR_INDEX_16(index) \
|
992 |
|
|
ADDREGNAMES_ARR_INDEX_8 ((index)), ADDREGNAMES_ARR_INDEX_8 ((index)+8)
|
993 |
|
|
#define ADDREGNAMES_ARR_INDEX_32(index) \
|
994 |
|
|
ADDREGNAMES_ARR_INDEX_16 ((index)), ADDREGNAMES_ARR_INDEX_16 ((index)+16)
|
995 |
|
|
|
996 |
|
|
#define ADDITIONAL_REGISTER_NAMES \
|
997 |
|
|
{ \
|
998 |
|
|
ADDREGNAMES_ARR_INDEX_32 (0) \
|
999 |
|
|
}
|
1000 |
|
|
|
1001 |
|
|
/* Number of actual hardware registers.
|
1002 |
|
|
The hardware registers are assigned numbers for the compiler
|
1003 |
|
|
from 0 to just below FIRST_PSEUDO_REGISTER.
|
1004 |
|
|
All registers that the compiler knows about must be given numbers,
|
1005 |
|
|
even those that are not normally considered general registers. */
|
1006 |
|
|
|
1007 |
|
|
/* There are many other relevant definitions in sh.md's md_constants. */
|
1008 |
|
|
|
1009 |
|
|
#define FIRST_GENERAL_REG R0_REG
|
1010 |
|
|
#define LAST_GENERAL_REG (FIRST_GENERAL_REG + (TARGET_SHMEDIA ? 63 : 15))
|
1011 |
|
|
#define FIRST_FP_REG DR0_REG
|
1012 |
|
|
#define LAST_FP_REG (FIRST_FP_REG + \
|
1013 |
|
|
(TARGET_SHMEDIA_FPU ? 63 : TARGET_SH2E ? 15 : -1))
|
1014 |
|
|
#define FIRST_XD_REG XD0_REG
|
1015 |
|
|
#define LAST_XD_REG (FIRST_XD_REG + ((TARGET_SH4 && TARGET_FMOVD) ? 7 : -1))
|
1016 |
|
|
#define FIRST_TARGET_REG TR0_REG
|
1017 |
|
|
#define LAST_TARGET_REG (FIRST_TARGET_REG + (TARGET_SHMEDIA ? 7 : -1))
|
1018 |
|
|
|
1019 |
|
|
#define GENERAL_REGISTER_P(REGNO) \
|
1020 |
|
|
IN_RANGE ((REGNO), \
|
1021 |
|
|
(unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
|
1022 |
|
|
(unsigned HOST_WIDE_INT) LAST_GENERAL_REG)
|
1023 |
|
|
|
1024 |
|
|
#define GENERAL_OR_AP_REGISTER_P(REGNO) \
|
1025 |
|
|
(GENERAL_REGISTER_P (REGNO) || ((REGNO) == AP_REG) \
|
1026 |
|
|
|| ((REGNO) == FRAME_POINTER_REGNUM))
|
1027 |
|
|
|
1028 |
|
|
#define FP_REGISTER_P(REGNO) \
|
1029 |
|
|
((int) (REGNO) >= FIRST_FP_REG && (int) (REGNO) <= LAST_FP_REG)
|
1030 |
|
|
|
1031 |
|
|
#define XD_REGISTER_P(REGNO) \
|
1032 |
|
|
((int) (REGNO) >= FIRST_XD_REG && (int) (REGNO) <= LAST_XD_REG)
|
1033 |
|
|
|
1034 |
|
|
#define FP_OR_XD_REGISTER_P(REGNO) \
|
1035 |
|
|
(FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO))
|
1036 |
|
|
|
1037 |
|
|
#define FP_ANY_REGISTER_P(REGNO) \
|
1038 |
|
|
(FP_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) || (REGNO) == FPUL_REG)
|
1039 |
|
|
|
1040 |
|
|
#define SPECIAL_REGISTER_P(REGNO) \
|
1041 |
|
|
((REGNO) == GBR_REG || (REGNO) == T_REG \
|
1042 |
|
|
|| (REGNO) == MACH_REG || (REGNO) == MACL_REG)
|
1043 |
|
|
|
1044 |
|
|
#define TARGET_REGISTER_P(REGNO) \
|
1045 |
|
|
((int) (REGNO) >= FIRST_TARGET_REG && (int) (REGNO) <= LAST_TARGET_REG)
|
1046 |
|
|
|
1047 |
|
|
#define SHMEDIA_REGISTER_P(REGNO) \
|
1048 |
|
|
(GENERAL_REGISTER_P (REGNO) || FP_REGISTER_P (REGNO) \
|
1049 |
|
|
|| TARGET_REGISTER_P (REGNO))
|
1050 |
|
|
|
1051 |
|
|
/* This is to be used in CONDITIONAL_REGISTER_USAGE, to mark registers
|
1052 |
|
|
that should be fixed. */
|
1053 |
|
|
#define VALID_REGISTER_P(REGNO) \
|
1054 |
|
|
(SHMEDIA_REGISTER_P (REGNO) || XD_REGISTER_P (REGNO) \
|
1055 |
|
|
|| (REGNO) == AP_REG || (REGNO) == RAP_REG \
|
1056 |
|
|
|| (REGNO) == FRAME_POINTER_REGNUM \
|
1057 |
|
|
|| (TARGET_SH1 && (SPECIAL_REGISTER_P (REGNO) || (REGNO) == PR_REG)) \
|
1058 |
|
|
|| (TARGET_SH2E && (REGNO) == FPUL_REG))
|
1059 |
|
|
|
1060 |
|
|
/* The mode that should be generally used to store a register by
|
1061 |
|
|
itself in the stack, or to load it back. */
|
1062 |
|
|
#define REGISTER_NATURAL_MODE(REGNO) \
|
1063 |
|
|
(FP_REGISTER_P (REGNO) ? SFmode \
|
1064 |
|
|
: XD_REGISTER_P (REGNO) ? DFmode \
|
1065 |
|
|
: TARGET_SHMEDIA && ! HARD_REGNO_CALL_PART_CLOBBERED ((REGNO), DImode) \
|
1066 |
|
|
? DImode \
|
1067 |
|
|
: SImode)
|
1068 |
|
|
|
1069 |
|
|
#define FIRST_PSEUDO_REGISTER 154
|
1070 |
|
|
|
1071 |
|
|
/* Don't count soft frame pointer. */
|
1072 |
|
|
#define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 1)
|
1073 |
|
|
|
1074 |
|
|
/* 1 for registers that have pervasive standard uses
|
1075 |
|
|
and are not available for the register allocator.
|
1076 |
|
|
|
1077 |
|
|
Mach register is fixed 'cause it's only 10 bits wide for SH1.
|
1078 |
|
|
It is 32 bits wide for SH2. */
|
1079 |
|
|
|
1080 |
|
|
#define FIXED_REGISTERS \
|
1081 |
|
|
{ \
|
1082 |
|
|
/* Regular registers. */ \
|
1083 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1084 |
|
|
0, 0, 0, 0, 0, 0, 0, 1, \
|
1085 |
|
|
/* r16 is reserved, r18 is the former pr. */ \
|
1086 |
|
|
1, 0, 0, 0, 0, 0, 0, 0, \
|
1087 |
|
|
/* r24 is reserved for the OS; r25, for the assembler or linker. */ \
|
1088 |
|
|
/* r26 is a global variable data pointer; r27 is for constants. */ \
|
1089 |
|
|
1, 1, 1, 1, 0, 0, 0, 0, \
|
1090 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1091 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1092 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1093 |
|
|
0, 0, 0, 0, 0, 0, 0, 1, \
|
1094 |
|
|
/* FP registers. */ \
|
1095 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1096 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1097 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1098 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1099 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1100 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1101 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1102 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1103 |
|
|
/* Branch target registers. */ \
|
1104 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1105 |
|
|
/* XD registers. */ \
|
1106 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1107 |
|
|
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
|
1108 |
|
|
1, 1, 1, 1, 1, 1, 0, 1, \
|
1109 |
|
|
/*"rap", "sfp" */ \
|
1110 |
|
|
1, 1, \
|
1111 |
|
|
}
|
1112 |
|
|
|
1113 |
|
|
/* 1 for registers not available across function calls.
|
1114 |
|
|
These must include the FIXED_REGISTERS and also any
|
1115 |
|
|
registers that can be used without being saved.
|
1116 |
|
|
The latter must include the registers where values are returned
|
1117 |
|
|
and the register where structure-value addresses are passed.
|
1118 |
|
|
Aside from that, you can include as many other registers as you like. */
|
1119 |
|
|
|
1120 |
|
|
#define CALL_USED_REGISTERS \
|
1121 |
|
|
{ \
|
1122 |
|
|
/* Regular registers. */ \
|
1123 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
1124 |
|
|
/* R8 and R9 are call-clobbered on SH5, but not on earlier SH ABIs. \
|
1125 |
|
|
Only the lower 32bits of R10-R14 are guaranteed to be preserved \
|
1126 |
|
|
across SH5 function calls. */ \
|
1127 |
|
|
0, 0, 0, 0, 0, 0, 0, 1, \
|
1128 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
1129 |
|
|
1, 1, 1, 1, 0, 0, 0, 0, \
|
1130 |
|
|
0, 0, 0, 0, 1, 1, 1, 1, \
|
1131 |
|
|
1, 1, 1, 1, 0, 0, 0, 0, \
|
1132 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1133 |
|
|
0, 0, 0, 0, 1, 1, 1, 1, \
|
1134 |
|
|
/* FP registers. */ \
|
1135 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
1136 |
|
|
1, 1, 1, 1, 0, 0, 0, 0, \
|
1137 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
1138 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
1139 |
|
|
1, 1, 1, 1, 0, 0, 0, 0, \
|
1140 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1141 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1142 |
|
|
0, 0, 0, 0, 0, 0, 0, 0, \
|
1143 |
|
|
/* Branch target registers. */ \
|
1144 |
|
|
1, 1, 1, 1, 1, 0, 0, 0, \
|
1145 |
|
|
/* XD registers. */ \
|
1146 |
|
|
1, 1, 1, 1, 1, 1, 0, 0, \
|
1147 |
|
|
/*"gbr", "ap", "pr", "t", "mach", "macl", "fpul", "fpscr", */ \
|
1148 |
|
|
1, 1, 1, 1, 1, 1, 1, 1, \
|
1149 |
|
|
/*"rap", "sfp" */ \
|
1150 |
|
|
1, 1, \
|
1151 |
|
|
}
|
1152 |
|
|
|
1153 |
|
|
/* CONDITIONAL_REGISTER_USAGE might want to make a register call-used, yet
|
1154 |
|
|
fixed, like PIC_OFFSET_TABLE_REGNUM. */
|
1155 |
|
|
#define CALL_REALLY_USED_REGISTERS CALL_USED_REGISTERS
|
1156 |
|
|
|
1157 |
|
|
/* Only the lower 32-bits of R10-R14 are guaranteed to be preserved
|
1158 |
|
|
across SHcompact function calls. We can't tell whether a called
|
1159 |
|
|
function is SHmedia or SHcompact, so we assume it may be when
|
1160 |
|
|
compiling SHmedia code with the 32-bit ABI, since that's the only
|
1161 |
|
|
ABI that can be linked with SHcompact code. */
|
1162 |
|
|
#define HARD_REGNO_CALL_PART_CLOBBERED(REGNO,MODE) \
|
1163 |
|
|
(TARGET_SHMEDIA32 \
|
1164 |
|
|
&& GET_MODE_SIZE (MODE) > 4 \
|
1165 |
|
|
&& (((REGNO) >= FIRST_GENERAL_REG + 10 \
|
1166 |
|
|
&& (REGNO) <= FIRST_GENERAL_REG + 15) \
|
1167 |
|
|
|| TARGET_REGISTER_P (REGNO) \
|
1168 |
|
|
|| (REGNO) == PR_MEDIA_REG))
|
1169 |
|
|
|
1170 |
|
|
/* Return number of consecutive hard regs needed starting at reg REGNO
|
1171 |
|
|
to hold something of mode MODE.
|
1172 |
|
|
This is ordinarily the length in words of a value of mode MODE
|
1173 |
|
|
but can be less for certain modes in special long registers.
|
1174 |
|
|
|
1175 |
|
|
On the SH all but the XD regs are UNITS_PER_WORD bits wide. */
|
1176 |
|
|
|
1177 |
|
|
#define HARD_REGNO_NREGS(REGNO, MODE) \
|
1178 |
|
|
(XD_REGISTER_P (REGNO) \
|
1179 |
|
|
? ((GET_MODE_SIZE (MODE) + (2*UNITS_PER_WORD - 1)) / (2*UNITS_PER_WORD)) \
|
1180 |
|
|
: (TARGET_SHMEDIA && FP_REGISTER_P (REGNO)) \
|
1181 |
|
|
? ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2)) \
|
1182 |
|
|
: ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
|
1183 |
|
|
|
1184 |
|
|
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
|
1185 |
|
|
We can allow any mode in any general register. The special registers
|
1186 |
|
|
only allow SImode. Don't allow any mode in the PR. */
|
1187 |
|
|
|
1188 |
|
|
/* We cannot hold DCmode values in the XD registers because alter_reg
|
1189 |
|
|
handles subregs of them incorrectly. We could work around this by
|
1190 |
|
|
spacing the XD registers like the DR registers, but this would require
|
1191 |
|
|
additional memory in every compilation to hold larger register vectors.
|
1192 |
|
|
We could hold SFmode / SCmode values in XD registers, but that
|
1193 |
|
|
would require a tertiary reload when reloading from / to memory,
|
1194 |
|
|
and a secondary reload to reload from / to general regs; that
|
1195 |
|
|
seems to be a loosing proposition. */
|
1196 |
|
|
/* We want to allow TImode FP regs so that when V4SFmode is loaded as TImode,
|
1197 |
|
|
it won't be ferried through GP registers first. */
|
1198 |
|
|
#define HARD_REGNO_MODE_OK(REGNO, MODE) \
|
1199 |
|
|
(SPECIAL_REGISTER_P (REGNO) ? (MODE) == SImode \
|
1200 |
|
|
: (REGNO) == FPUL_REG ? (MODE) == SImode || (MODE) == SFmode \
|
1201 |
|
|
: FP_REGISTER_P (REGNO) && (MODE) == SFmode \
|
1202 |
|
|
? 1 \
|
1203 |
|
|
: (MODE) == V2SFmode \
|
1204 |
|
|
? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 2 == 0) \
|
1205 |
|
|
|| GENERAL_REGISTER_P (REGNO)) \
|
1206 |
|
|
: (MODE) == V4SFmode \
|
1207 |
|
|
? ((FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 4 == 0) \
|
1208 |
|
|
|| GENERAL_REGISTER_P (REGNO)) \
|
1209 |
|
|
: (MODE) == V16SFmode \
|
1210 |
|
|
? (TARGET_SHMEDIA \
|
1211 |
|
|
? (FP_REGISTER_P (REGNO) && ((REGNO) - FIRST_FP_REG) % 16 == 0) \
|
1212 |
|
|
: (REGNO) == FIRST_XD_REG) \
|
1213 |
|
|
: FP_REGISTER_P (REGNO) \
|
1214 |
|
|
? ((MODE) == SFmode || (MODE) == SImode \
|
1215 |
|
|
|| ((TARGET_SH2E || TARGET_SHMEDIA) && (MODE) == SCmode) \
|
1216 |
|
|
|| ((((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) || (MODE) == DCmode \
|
1217 |
|
|
|| (TARGET_SHMEDIA && ((MODE) == DFmode || (MODE) == DImode \
|
1218 |
|
|
|| (MODE) == V2SFmode || (MODE) == TImode))) \
|
1219 |
|
|
&& (((REGNO) - FIRST_FP_REG) & 1) == 0) \
|
1220 |
|
|
|| ((TARGET_SH4 || TARGET_SHMEDIA) \
|
1221 |
|
|
&& (MODE) == TImode \
|
1222 |
|
|
&& (((REGNO) - FIRST_FP_REG) & 3) == 0)) \
|
1223 |
|
|
: XD_REGISTER_P (REGNO) \
|
1224 |
|
|
? (MODE) == DFmode \
|
1225 |
|
|
: TARGET_REGISTER_P (REGNO) \
|
1226 |
|
|
? ((MODE) == DImode || (MODE) == SImode || (MODE) == PDImode) \
|
1227 |
|
|
: (REGNO) == PR_REG ? (MODE) == SImode \
|
1228 |
|
|
: (REGNO) == FPSCR_REG ? (MODE) == PSImode \
|
1229 |
|
|
: 1)
|
1230 |
|
|
|
1231 |
|
|
/* Value is 1 if it is a good idea to tie two pseudo registers
|
1232 |
|
|
when one has mode MODE1 and one has mode MODE2.
|
1233 |
|
|
If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
|
1234 |
|
|
for any hard reg, then this must be 0 for correct output.
|
1235 |
|
|
That's the case for xd registers: we don't hold SFmode values in
|
1236 |
|
|
them, so we can't tie an SFmode pseudos with one in another
|
1237 |
|
|
floating-point mode. */
|
1238 |
|
|
|
1239 |
|
|
#define MODES_TIEABLE_P(MODE1, MODE2) \
|
1240 |
|
|
((MODE1) == (MODE2) \
|
1241 |
|
|
|| (TARGET_SHMEDIA \
|
1242 |
|
|
&& GET_MODE_SIZE (MODE1) == GET_MODE_SIZE (MODE2) \
|
1243 |
|
|
&& INTEGRAL_MODE_P (MODE1) && INTEGRAL_MODE_P (MODE2)) \
|
1244 |
|
|
|| (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2) \
|
1245 |
|
|
&& (TARGET_SHMEDIA ? ((GET_MODE_SIZE (MODE1) <= 4) \
|
1246 |
|
|
&& (GET_MODE_SIZE (MODE2) <= 4)) \
|
1247 |
|
|
: ((MODE1) != SFmode && (MODE2) != SFmode))))
|
1248 |
|
|
|
1249 |
|
|
/* A C expression that is nonzero if hard register NEW_REG can be
|
1250 |
|
|
considered for use as a rename register for OLD_REG register */
|
1251 |
|
|
|
1252 |
|
|
#define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
|
1253 |
|
|
sh_hard_regno_rename_ok (OLD_REG, NEW_REG)
|
1254 |
|
|
|
1255 |
|
|
/* Specify the registers used for certain standard purposes.
|
1256 |
|
|
The values of these macros are register numbers. */
|
1257 |
|
|
|
1258 |
|
|
/* Define this if the program counter is overloaded on a register. */
|
1259 |
|
|
/* #define PC_REGNUM 15*/
|
1260 |
|
|
|
1261 |
|
|
/* Register to use for pushing function arguments. */
|
1262 |
|
|
#define STACK_POINTER_REGNUM SP_REG
|
1263 |
|
|
|
1264 |
|
|
/* Base register for access to local variables of the function. */
|
1265 |
|
|
#define HARD_FRAME_POINTER_REGNUM FP_REG
|
1266 |
|
|
|
1267 |
|
|
/* Base register for access to local variables of the function. */
|
1268 |
|
|
#define FRAME_POINTER_REGNUM 153
|
1269 |
|
|
|
1270 |
|
|
/* Fake register that holds the address on the stack of the
|
1271 |
|
|
current function's return address. */
|
1272 |
|
|
#define RETURN_ADDRESS_POINTER_REGNUM RAP_REG
|
1273 |
|
|
|
1274 |
|
|
/* Register to hold the addressing base for position independent
|
1275 |
|
|
code access to data items. */
|
1276 |
|
|
#define PIC_OFFSET_TABLE_REGNUM (flag_pic ? PIC_REG : INVALID_REGNUM)
|
1277 |
|
|
|
1278 |
|
|
#define GOT_SYMBOL_NAME "*_GLOBAL_OFFSET_TABLE_"
|
1279 |
|
|
|
1280 |
|
|
/* Value should be nonzero if functions must have frame pointers.
|
1281 |
|
|
Zero means the frame pointer need not be set up (and parms may be accessed
|
1282 |
|
|
via the stack pointer) in functions that seem suitable. */
|
1283 |
|
|
|
1284 |
|
|
#define FRAME_POINTER_REQUIRED 0
|
1285 |
|
|
|
1286 |
|
|
/* Definitions for register eliminations.
|
1287 |
|
|
|
1288 |
|
|
We have three registers that can be eliminated on the SH. First, the
|
1289 |
|
|
frame pointer register can often be eliminated in favor of the stack
|
1290 |
|
|
pointer register. Secondly, the argument pointer register can always be
|
1291 |
|
|
eliminated; it is replaced with either the stack or frame pointer.
|
1292 |
|
|
Third, there is the return address pointer, which can also be replaced
|
1293 |
|
|
with either the stack or the frame pointer. */
|
1294 |
|
|
|
1295 |
|
|
/* This is an array of structures. Each structure initializes one pair
|
1296 |
|
|
of eliminable registers. The "from" register number is given first,
|
1297 |
|
|
followed by "to". Eliminations of the same "from" register are listed
|
1298 |
|
|
in order of preference. */
|
1299 |
|
|
|
1300 |
|
|
/* If you add any registers here that are not actually hard registers,
|
1301 |
|
|
and that have any alternative of elimination that doesn't always
|
1302 |
|
|
apply, you need to amend calc_live_regs to exclude it, because
|
1303 |
|
|
reload spills all eliminable registers where it sees an
|
1304 |
|
|
can_eliminate == 0 entry, thus making them 'live' .
|
1305 |
|
|
If you add any hard registers that can be eliminated in different
|
1306 |
|
|
ways, you have to patch reload to spill them only when all alternatives
|
1307 |
|
|
of elimination fail. */
|
1308 |
|
|
|
1309 |
|
|
#define ELIMINABLE_REGS \
|
1310 |
|
|
{{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
1311 |
|
|
{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
1312 |
|
|
{ FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
1313 |
|
|
{ RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
1314 |
|
|
{ RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
|
1315 |
|
|
{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
|
1316 |
|
|
{ ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},}
|
1317 |
|
|
|
1318 |
|
|
/* Given FROM and TO register numbers, say whether this elimination
|
1319 |
|
|
is allowed. */
|
1320 |
|
|
#define CAN_ELIMINATE(FROM, TO) \
|
1321 |
|
|
(!((FROM) == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED))
|
1322 |
|
|
|
1323 |
|
|
/* Define the offset between two registers, one to be eliminated, and the other
|
1324 |
|
|
its replacement, at the start of a routine. */
|
1325 |
|
|
|
1326 |
|
|
#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
|
1327 |
|
|
OFFSET = initial_elimination_offset ((FROM), (TO))
|
1328 |
|
|
|
1329 |
|
|
/* Base register for access to arguments of the function. */
|
1330 |
|
|
#define ARG_POINTER_REGNUM AP_REG
|
1331 |
|
|
|
1332 |
|
|
/* Register in which the static-chain is passed to a function. */
|
1333 |
|
|
#define STATIC_CHAIN_REGNUM (TARGET_SH5 ? 1 : 3)
|
1334 |
|
|
|
1335 |
|
|
/* Don't default to pcc-struct-return, because we have already specified
|
1336 |
|
|
exactly how to return structures in the TARGET_RETURN_IN_MEMORY
|
1337 |
|
|
target hook. */
|
1338 |
|
|
|
1339 |
|
|
#define DEFAULT_PCC_STRUCT_RETURN 0
|
1340 |
|
|
|
1341 |
|
|
#define SHMEDIA_REGS_STACK_ADJUST() \
|
1342 |
|
|
(TARGET_SHCOMPACT && current_function_has_nonlocal_label \
|
1343 |
|
|
? (8 * (/* r28-r35 */ 8 + /* r44-r59 */ 16 + /* tr5-tr7 */ 3) \
|
1344 |
|
|
+ (TARGET_FPU_ANY ? 4 * (/* fr36 - fr63 */ 28) : 0)) \
|
1345 |
|
|
: 0)
|
1346 |
|
|
|
1347 |
|
|
|
1348 |
|
|
/* Define the classes of registers for register constraints in the
|
1349 |
|
|
machine description. Also define ranges of constants.
|
1350 |
|
|
|
1351 |
|
|
One of the classes must always be named ALL_REGS and include all hard regs.
|
1352 |
|
|
If there is more than one class, another class must be named NO_REGS
|
1353 |
|
|
and contain no registers.
|
1354 |
|
|
|
1355 |
|
|
The name GENERAL_REGS must be the name of a class (or an alias for
|
1356 |
|
|
another name such as ALL_REGS). This is the class of registers
|
1357 |
|
|
that is allowed by "g" or "r" in a register constraint.
|
1358 |
|
|
Also, registers outside this class are allocated only when
|
1359 |
|
|
instructions express preferences for them.
|
1360 |
|
|
|
1361 |
|
|
The classes must be numbered in nondecreasing order; that is,
|
1362 |
|
|
a larger-numbered class must never be contained completely
|
1363 |
|
|
in a smaller-numbered class.
|
1364 |
|
|
|
1365 |
|
|
For any two classes, it is very desirable that there be another
|
1366 |
|
|
class that represents their union. */
|
1367 |
|
|
|
1368 |
|
|
/* The SH has two sorts of general registers, R0 and the rest. R0 can
|
1369 |
|
|
be used as the destination of some of the arithmetic ops. There are
|
1370 |
|
|
also some special purpose registers; the T bit register, the
|
1371 |
|
|
Procedure Return Register and the Multiply Accumulate Registers. */
|
1372 |
|
|
/* Place GENERAL_REGS after FPUL_REGS so that it will be preferred by
|
1373 |
|
|
reg_class_subunion. We don't want to have an actual union class
|
1374 |
|
|
of these, because it would only be used when both classes are calculated
|
1375 |
|
|
to give the same cost, but there is only one FPUL register.
|
1376 |
|
|
Besides, regclass fails to notice the different REGISTER_MOVE_COSTS
|
1377 |
|
|
applying to the actual instruction alternative considered. E.g., the
|
1378 |
|
|
y/r alternative of movsi_ie is considered to have no more cost that
|
1379 |
|
|
the r/r alternative, which is patently untrue. */
|
1380 |
|
|
|
1381 |
|
|
enum reg_class
|
1382 |
|
|
{
|
1383 |
|
|
NO_REGS,
|
1384 |
|
|
R0_REGS,
|
1385 |
|
|
PR_REGS,
|
1386 |
|
|
T_REGS,
|
1387 |
|
|
MAC_REGS,
|
1388 |
|
|
FPUL_REGS,
|
1389 |
|
|
SIBCALL_REGS,
|
1390 |
|
|
GENERAL_REGS,
|
1391 |
|
|
FP0_REGS,
|
1392 |
|
|
FP_REGS,
|
1393 |
|
|
DF_HI_REGS,
|
1394 |
|
|
DF_REGS,
|
1395 |
|
|
FPSCR_REGS,
|
1396 |
|
|
GENERAL_FP_REGS,
|
1397 |
|
|
GENERAL_DF_REGS,
|
1398 |
|
|
TARGET_REGS,
|
1399 |
|
|
ALL_REGS,
|
1400 |
|
|
LIM_REG_CLASSES
|
1401 |
|
|
};
|
1402 |
|
|
|
1403 |
|
|
#define N_REG_CLASSES (int) LIM_REG_CLASSES
|
1404 |
|
|
|
1405 |
|
|
/* Give names of register classes as strings for dump file. */
|
1406 |
|
|
#define REG_CLASS_NAMES \
|
1407 |
|
|
{ \
|
1408 |
|
|
"NO_REGS", \
|
1409 |
|
|
"R0_REGS", \
|
1410 |
|
|
"PR_REGS", \
|
1411 |
|
|
"T_REGS", \
|
1412 |
|
|
"MAC_REGS", \
|
1413 |
|
|
"FPUL_REGS", \
|
1414 |
|
|
"SIBCALL_REGS", \
|
1415 |
|
|
"GENERAL_REGS", \
|
1416 |
|
|
"FP0_REGS", \
|
1417 |
|
|
"FP_REGS", \
|
1418 |
|
|
"DF_HI_REGS", \
|
1419 |
|
|
"DF_REGS", \
|
1420 |
|
|
"FPSCR_REGS", \
|
1421 |
|
|
"GENERAL_FP_REGS", \
|
1422 |
|
|
"GENERAL_DF_REGS", \
|
1423 |
|
|
"TARGET_REGS", \
|
1424 |
|
|
"ALL_REGS", \
|
1425 |
|
|
}
|
1426 |
|
|
|
1427 |
|
|
/* Define which registers fit in which classes.
|
1428 |
|
|
This is an initializer for a vector of HARD_REG_SET
|
1429 |
|
|
of length N_REG_CLASSES. */
|
1430 |
|
|
|
1431 |
|
|
#define REG_CLASS_CONTENTS \
|
1432 |
|
|
{ \
|
1433 |
|
|
/* NO_REGS: */ \
|
1434 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
|
1435 |
|
|
/* R0_REGS: */ \
|
1436 |
|
|
{ 0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
|
1437 |
|
|
/* PR_REGS: */ \
|
1438 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00040000 }, \
|
1439 |
|
|
/* T_REGS: */ \
|
1440 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00080000 }, \
|
1441 |
|
|
/* MAC_REGS: */ \
|
1442 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00300000 }, \
|
1443 |
|
|
/* FPUL_REGS: */ \
|
1444 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000001, 0x00400000 }, \
|
1445 |
|
|
/* SIBCALL_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
|
1446 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
|
1447 |
|
|
/* GENERAL_REGS: */ \
|
1448 |
|
|
{ 0xffffffff, 0xffffffff, 0x00000000, 0x00000000, 0x03020000 }, \
|
1449 |
|
|
/* FP0_REGS: */ \
|
1450 |
|
|
{ 0x00000000, 0x00000000, 0x00000001, 0x00000000, 0x00000000 }, \
|
1451 |
|
|
/* FP_REGS: */ \
|
1452 |
|
|
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
|
1453 |
|
|
/* DF_HI_REGS: Initialized in CONDITIONAL_REGISTER_USAGE. */ \
|
1454 |
|
|
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
|
1455 |
|
|
/* DF_REGS: */ \
|
1456 |
|
|
{ 0x00000000, 0x00000000, 0xffffffff, 0xffffffff, 0x0000ff00 }, \
|
1457 |
|
|
/* FPSCR_REGS: */ \
|
1458 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00800000 }, \
|
1459 |
|
|
/* GENERAL_FP_REGS: */ \
|
1460 |
|
|
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03020000 }, \
|
1461 |
|
|
/* GENERAL_DF_REGS: */ \
|
1462 |
|
|
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x0302ff00 }, \
|
1463 |
|
|
/* TARGET_REGS: */ \
|
1464 |
|
|
{ 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x000000ff }, \
|
1465 |
|
|
/* ALL_REGS: */ \
|
1466 |
|
|
{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff, 0x03ffffff }, \
|
1467 |
|
|
}
|
1468 |
|
|
|
1469 |
|
|
/* The same information, inverted:
|
1470 |
|
|
Return the class number of the smallest class containing
|
1471 |
|
|
reg number REGNO. This could be a conditional expression
|
1472 |
|
|
or could index an array. */
|
1473 |
|
|
|
1474 |
|
|
extern enum reg_class regno_reg_class[FIRST_PSEUDO_REGISTER];
|
1475 |
|
|
#define REGNO_REG_CLASS(REGNO) regno_reg_class[(REGNO)]
|
1476 |
|
|
|
1477 |
|
|
/* When defined, the compiler allows registers explicitly used in the
|
1478 |
|
|
rtl to be used as spill registers but prevents the compiler from
|
1479 |
|
|
extending the lifetime of these registers. */
|
1480 |
|
|
|
1481 |
|
|
#define SMALL_REGISTER_CLASSES (! TARGET_SHMEDIA)
|
1482 |
|
|
|
1483 |
|
|
/* The order in which register should be allocated. */
|
1484 |
|
|
/* Sometimes FP0_REGS becomes the preferred class of a floating point pseudo,
|
1485 |
|
|
and GENERAL_FP_REGS the alternate class. Since FP0 is likely to be
|
1486 |
|
|
spilled or used otherwise, we better have the FP_REGS allocated first. */
|
1487 |
|
|
#define REG_ALLOC_ORDER \
|
1488 |
|
|
{/* Caller-saved FPRs */ \
|
1489 |
|
|
65, 66, 67, 68, 69, 70, 71, 64, \
|
1490 |
|
|
72, 73, 74, 75, 80, 81, 82, 83, \
|
1491 |
|
|
84, 85, 86, 87, 88, 89, 90, 91, \
|
1492 |
|
|
92, 93, 94, 95, 96, 97, 98, 99, \
|
1493 |
|
|
/* Callee-saved FPRs */ \
|
1494 |
|
|
76, 77, 78, 79,100,101,102,103, \
|
1495 |
|
|
104,105,106,107,108,109,110,111, \
|
1496 |
|
|
112,113,114,115,116,117,118,119, \
|
1497 |
|
|
120,121,122,123,124,125,126,127, \
|
1498 |
|
|
136,137,138,139,140,141,142,143, \
|
1499 |
|
|
/* FPSCR */ 151, \
|
1500 |
|
|
/* Caller-saved GPRs (except 8/9 on SH1-4) */ \
|
1501 |
|
|
1, 2, 3, 7, 6, 5, 4, 0, \
|
1502 |
|
|
8, 9, 17, 19, 20, 21, 22, 23, \
|
1503 |
|
|
36, 37, 38, 39, 40, 41, 42, 43, \
|
1504 |
|
|
60, 61, 62, \
|
1505 |
|
|
/* SH1-4 callee-saved saved GPRs / SH5 partially-saved GPRs */ \
|
1506 |
|
|
10, 11, 12, 13, 14, 18, \
|
1507 |
|
|
/* SH5 callee-saved GPRs */ \
|
1508 |
|
|
28, 29, 30, 31, 32, 33, 34, 35, \
|
1509 |
|
|
44, 45, 46, 47, 48, 49, 50, 51, \
|
1510 |
|
|
52, 53, 54, 55, 56, 57, 58, 59, \
|
1511 |
|
|
/* FPUL */ 150, \
|
1512 |
|
|
/* SH5 branch target registers */ \
|
1513 |
|
|
128,129,130,131,132,133,134,135, \
|
1514 |
|
|
/* Fixed registers */ \
|
1515 |
|
|
15, 16, 24, 25, 26, 27, 63,144, \
|
1516 |
|
|
145,146,147,148,149,152,153 }
|
1517 |
|
|
|
1518 |
|
|
/* The class value for index registers, and the one for base regs. */
|
1519 |
|
|
#define INDEX_REG_CLASS \
|
1520 |
|
|
(!ALLOW_INDEXED_ADDRESS ? NO_REGS : TARGET_SHMEDIA ? GENERAL_REGS : R0_REGS)
|
1521 |
|
|
#define BASE_REG_CLASS GENERAL_REGS
|
1522 |
|
|
|
1523 |
|
|
/* Get reg_class from a letter such as appears in the machine
|
1524 |
|
|
description. */
|
1525 |
|
|
extern enum reg_class reg_class_from_letter[];
|
1526 |
|
|
|
1527 |
|
|
/* We might use 'Rxx' constraints in the future for exotic reg classes.*/
|
1528 |
|
|
#define REG_CLASS_FROM_CONSTRAINT(C, STR) \
|
1529 |
|
|
(ISLOWER (C) ? reg_class_from_letter[(C)-'a'] : NO_REGS )
|
1530 |
|
|
|
1531 |
|
|
/* Overview of uppercase letter constraints:
|
1532 |
|
|
A: Addresses (constraint len == 3)
|
1533 |
|
|
Ac4: sh4 cache operations
|
1534 |
|
|
Ac5: sh5 cache operations
|
1535 |
|
|
Bxx: miscellaneous constraints
|
1536 |
|
|
Bsc: SCRATCH - for the scratch register in movsi_ie in the
|
1537 |
|
|
fldi0 / fldi0 cases
|
1538 |
|
|
C: Constants other than only CONST_INT (constraint len == 3)
|
1539 |
|
|
Css: signed 16 bit constant, literal or symbolic
|
1540 |
|
|
Csu: unsigned 16 bit constant, literal or symbolic
|
1541 |
|
|
Csy: label or symbol
|
1542 |
|
|
Cpg: non-explicit constants that can be directly loaded into a general
|
1543 |
|
|
purpose register in PIC code. like 's' except we don't allow
|
1544 |
|
|
PIC_DIRECT_ADDR_P
|
1545 |
|
|
IJKLMNOP: CONT_INT constants
|
1546 |
|
|
Ixx: signed xx bit
|
1547 |
|
|
J16: 0xffffffff00000000 | 0x00000000ffffffff
|
1548 |
|
|
Kxx: unsigned xx bit
|
1549 |
|
|
M: 1
|
1550 |
|
|
N: 0
|
1551 |
|
|
P27: 1 | 2 | 8 | 16
|
1552 |
|
|
Q: pc relative load operand
|
1553 |
|
|
Rxx: reserved for exotic register classes.
|
1554 |
|
|
S: extra memory (storage) constraints (constraint len == 3)
|
1555 |
|
|
Sua: unaligned memory operations
|
1556 |
|
|
W: vector
|
1557 |
|
|
Z: zero in any mode
|
1558 |
|
|
|
1559 |
|
|
unused CONST_INT constraint letters: LO
|
1560 |
|
|
unused EXTRA_CONSTRAINT letters: D T U Y */
|
1561 |
|
|
|
1562 |
|
|
#define CONSTRAINT_LEN(C,STR) \
|
1563 |
|
|
(((C) == 'A' || (C) == 'B' || (C) == 'C' \
|
1564 |
|
|
|| (C) == 'I' || (C) == 'J' || (C) == 'K' || (C) == 'P' \
|
1565 |
|
|
|| (C) == 'R' || (C) == 'S') \
|
1566 |
|
|
? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
|
1567 |
|
|
|
1568 |
|
|
/* The letters I, J, K, L and M in a register constraint string
|
1569 |
|
|
can be used to stand for particular ranges of immediate operands.
|
1570 |
|
|
This macro defines what the ranges are.
|
1571 |
|
|
C is the letter, and VALUE is a constant value.
|
1572 |
|
|
Return 1 if VALUE is in the range specified by C.
|
1573 |
|
|
I08: arithmetic operand -127..128, as used in add, sub, etc
|
1574 |
|
|
I16: arithmetic operand -32768..32767, as used in SHmedia movi
|
1575 |
|
|
K16: arithmetic operand 0..65535, as used in SHmedia shori
|
1576 |
|
|
P27: shift operand 1,2,8 or 16
|
1577 |
|
|
K08: logical operand 0..255, as used in and, or, etc.
|
1578 |
|
|
M: constant 1
|
1579 |
|
|
N: constant 0
|
1580 |
|
|
I06: arithmetic operand -32..31, as used in SHmedia beqi, bnei and xori
|
1581 |
|
|
I10: arithmetic operand -512..511, as used in SHmedia andi, ori
|
1582 |
|
|
*/
|
1583 |
|
|
|
1584 |
|
|
#define CONST_OK_FOR_I06(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32 \
|
1585 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 31)
|
1586 |
|
|
#define CONST_OK_FOR_I08(VALUE) (((HOST_WIDE_INT)(VALUE))>= -128 \
|
1587 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 127)
|
1588 |
|
|
#define CONST_OK_FOR_I10(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -512 \
|
1589 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 511)
|
1590 |
|
|
#define CONST_OK_FOR_I16(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -32768 \
|
1591 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 32767)
|
1592 |
|
|
#define CONST_OK_FOR_I20(VALUE) (((HOST_WIDE_INT)(VALUE)) >= -524288 \
|
1593 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 524287 \
|
1594 |
|
|
&& TARGET_SH2A)
|
1595 |
|
|
#define CONST_OK_FOR_I(VALUE, STR) \
|
1596 |
|
|
((STR)[1] == '0' && (STR)[2] == '6' ? CONST_OK_FOR_I06 (VALUE) \
|
1597 |
|
|
: (STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_I08 (VALUE) \
|
1598 |
|
|
: (STR)[1] == '1' && (STR)[2] == '0' ? CONST_OK_FOR_I10 (VALUE) \
|
1599 |
|
|
: (STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_I16 (VALUE) \
|
1600 |
|
|
: (STR)[1] == '2' && (STR)[2] == '0' ? CONST_OK_FOR_I20 (VALUE) \
|
1601 |
|
|
: 0)
|
1602 |
|
|
|
1603 |
|
|
#define CONST_OK_FOR_J16(VALUE) \
|
1604 |
|
|
((HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) 0xffffffff) \
|
1605 |
|
|
|| (HOST_BITS_PER_WIDE_INT >= 64 && (VALUE) == (HOST_WIDE_INT) -1 << 32))
|
1606 |
|
|
#define CONST_OK_FOR_J(VALUE, STR) \
|
1607 |
|
|
((STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_J16 (VALUE) \
|
1608 |
|
|
: 0)
|
1609 |
|
|
|
1610 |
|
|
#define CONST_OK_FOR_K08(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
|
1611 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 255)
|
1612 |
|
|
#define CONST_OK_FOR_K16(VALUE) (((HOST_WIDE_INT)(VALUE))>= 0 \
|
1613 |
|
|
&& ((HOST_WIDE_INT)(VALUE)) <= 65535)
|
1614 |
|
|
#define CONST_OK_FOR_K(VALUE, STR) \
|
1615 |
|
|
((STR)[1] == '0' && (STR)[2] == '8' ? CONST_OK_FOR_K08 (VALUE) \
|
1616 |
|
|
: (STR)[1] == '1' && (STR)[2] == '6' ? CONST_OK_FOR_K16 (VALUE) \
|
1617 |
|
|
: 0)
|
1618 |
|
|
#define CONST_OK_FOR_P27(VALUE) \
|
1619 |
|
|
((VALUE)==1||(VALUE)==2||(VALUE)==8||(VALUE)==16)
|
1620 |
|
|
#define CONST_OK_FOR_P(VALUE, STR) \
|
1621 |
|
|
((STR)[1] == '2' && (STR)[2] == '7' ? CONST_OK_FOR_P27 (VALUE) \
|
1622 |
|
|
: 0)
|
1623 |
|
|
#define CONST_OK_FOR_M(VALUE) ((VALUE)==1)
|
1624 |
|
|
#define CONST_OK_FOR_N(VALUE) ((VALUE)==0)
|
1625 |
|
|
#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \
|
1626 |
|
|
((C) == 'I' ? CONST_OK_FOR_I ((VALUE), (STR)) \
|
1627 |
|
|
: (C) == 'J' ? CONST_OK_FOR_J ((VALUE), (STR)) \
|
1628 |
|
|
: (C) == 'K' ? CONST_OK_FOR_K ((VALUE), (STR)) \
|
1629 |
|
|
: (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
|
1630 |
|
|
: (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
|
1631 |
|
|
: (C) == 'P' ? CONST_OK_FOR_P ((VALUE), (STR)) \
|
1632 |
|
|
: 0)
|
1633 |
|
|
|
1634 |
|
|
/* Similar, but for floating constants, and defining letters G and H.
|
1635 |
|
|
Here VALUE is the CONST_DOUBLE rtx itself. */
|
1636 |
|
|
|
1637 |
|
|
#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
|
1638 |
|
|
((C) == 'G' ? (fp_zero_operand (VALUE) && fldi_ok ()) \
|
1639 |
|
|
: (C) == 'H' ? (fp_one_operand (VALUE) && fldi_ok ()) \
|
1640 |
|
|
: (C) == 'F')
|
1641 |
|
|
|
1642 |
|
|
/* Given an rtx X being reloaded into a reg required to be
|
1643 |
|
|
in class CLASS, return the class of reg to actually use.
|
1644 |
|
|
In general this is just CLASS; but on some machines
|
1645 |
|
|
in some cases it is preferable to use a more restrictive class. */
|
1646 |
|
|
|
1647 |
|
|
#define PREFERRED_RELOAD_CLASS(X, CLASS) \
|
1648 |
|
|
((CLASS) == NO_REGS && TARGET_SHMEDIA \
|
1649 |
|
|
&& (GET_CODE (X) == CONST_DOUBLE \
|
1650 |
|
|
|| GET_CODE (X) == SYMBOL_REF \
|
1651 |
|
|
|| PIC_DIRECT_ADDR_P (X)) \
|
1652 |
|
|
? GENERAL_REGS \
|
1653 |
|
|
: (CLASS)) \
|
1654 |
|
|
|
1655 |
|
|
#if 0
|
1656 |
|
|
#define SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,ELSE) \
|
1657 |
|
|
((((REGCLASS_HAS_FP_REG (CLASS) \
|
1658 |
|
|
&& (GET_CODE (X) == REG \
|
1659 |
|
|
&& (GENERAL_OR_AP_REGISTER_P (REGNO (X)) \
|
1660 |
|
|
|| (FP_REGISTER_P (REGNO (X)) && (MODE) == SImode \
|
1661 |
|
|
&& TARGET_FMOVD)))) \
|
1662 |
|
|
|| (REGCLASS_HAS_GENERAL_REG (CLASS) \
|
1663 |
|
|
&& GET_CODE (X) == REG \
|
1664 |
|
|
&& FP_REGISTER_P (REGNO (X)))) \
|
1665 |
|
|
&& ! TARGET_SHMEDIA \
|
1666 |
|
|
&& ((MODE) == SFmode || (MODE) == SImode)) \
|
1667 |
|
|
? FPUL_REGS \
|
1668 |
|
|
: (((CLASS) == FPUL_REGS \
|
1669 |
|
|
|| (REGCLASS_HAS_FP_REG (CLASS) \
|
1670 |
|
|
&& ! TARGET_SHMEDIA && MODE == SImode)) \
|
1671 |
|
|
&& (GET_CODE (X) == MEM \
|
1672 |
|
|
|| (GET_CODE (X) == REG \
|
1673 |
|
|
&& (REGNO (X) >= FIRST_PSEUDO_REGISTER \
|
1674 |
|
|
|| REGNO (X) == T_REG \
|
1675 |
|
|
|| system_reg_operand (X, VOIDmode))))) \
|
1676 |
|
|
? GENERAL_REGS \
|
1677 |
|
|
: (((CLASS) == TARGET_REGS \
|
1678 |
|
|
|| (TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS)) \
|
1679 |
|
|
&& !EXTRA_CONSTRAINT_Csy (X) \
|
1680 |
|
|
&& (GET_CODE (X) != REG || ! GENERAL_REGISTER_P (REGNO (X)))) \
|
1681 |
|
|
? GENERAL_REGS \
|
1682 |
|
|
: (((CLASS) == MAC_REGS || (CLASS) == PR_REGS) \
|
1683 |
|
|
&& GET_CODE (X) == REG && ! GENERAL_REGISTER_P (REGNO (X)) \
|
1684 |
|
|
&& (CLASS) != REGNO_REG_CLASS (REGNO (X))) \
|
1685 |
|
|
? GENERAL_REGS \
|
1686 |
|
|
: ((CLASS) != GENERAL_REGS && GET_CODE (X) == REG \
|
1687 |
|
|
&& TARGET_REGISTER_P (REGNO (X))) \
|
1688 |
|
|
? GENERAL_REGS : (ELSE))
|
1689 |
|
|
|
1690 |
|
|
#define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS,MODE,X) \
|
1691 |
|
|
SECONDARY_INOUT_RELOAD_CLASS(CLASS,MODE,X,NO_REGS)
|
1692 |
|
|
|
1693 |
|
|
#define SECONDARY_INPUT_RELOAD_CLASS(CLASS,MODE,X) \
|
1694 |
|
|
((REGCLASS_HAS_FP_REG (CLASS) \
|
1695 |
|
|
&& ! TARGET_SHMEDIA \
|
1696 |
|
|
&& immediate_operand ((X), (MODE)) \
|
1697 |
|
|
&& ! ((fp_zero_operand (X) || fp_one_operand (X)) \
|
1698 |
|
|
&& (MODE) == SFmode && fldi_ok ())) \
|
1699 |
|
|
? R0_REGS \
|
1700 |
|
|
: ((CLASS) == FPUL_REGS \
|
1701 |
|
|
&& ((GET_CODE (X) == REG \
|
1702 |
|
|
&& (REGNO (X) == MACL_REG || REGNO (X) == MACH_REG \
|
1703 |
|
|
|| REGNO (X) == T_REG)) \
|
1704 |
|
|
|| GET_CODE (X) == PLUS)) \
|
1705 |
|
|
? GENERAL_REGS \
|
1706 |
|
|
: (CLASS) == FPUL_REGS && immediate_operand ((X), (MODE)) \
|
1707 |
|
|
? (GET_CODE (X) == CONST_INT && CONST_OK_FOR_I08 (INTVAL (X)) \
|
1708 |
|
|
? GENERAL_REGS \
|
1709 |
|
|
: R0_REGS) \
|
1710 |
|
|
: ((CLASS) == FPSCR_REGS \
|
1711 |
|
|
&& ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
|
1712 |
|
|
|| (GET_CODE (X) == MEM && GET_CODE (XEXP ((X), 0)) == PLUS)))\
|
1713 |
|
|
? GENERAL_REGS \
|
1714 |
|
|
: (REGCLASS_HAS_FP_REG (CLASS) \
|
1715 |
|
|
&& TARGET_SHMEDIA \
|
1716 |
|
|
&& immediate_operand ((X), (MODE)) \
|
1717 |
|
|
&& (X) != CONST0_RTX (GET_MODE (X)) \
|
1718 |
|
|
&& GET_MODE (X) != V4SFmode) \
|
1719 |
|
|
? GENERAL_REGS \
|
1720 |
|
|
: (((MODE) == QImode || (MODE) == HImode) \
|
1721 |
|
|
&& TARGET_SHMEDIA && inqhi_operand ((X), (MODE))) \
|
1722 |
|
|
? GENERAL_REGS \
|
1723 |
|
|
: (TARGET_SHMEDIA && (CLASS) == GENERAL_REGS \
|
1724 |
|
|
&& (GET_CODE (X) == LABEL_REF || PIC_DIRECT_ADDR_P (X))) \
|
1725 |
|
|
? TARGET_REGS \
|
1726 |
|
|
: SECONDARY_INOUT_RELOAD_CLASS((CLASS),(MODE),(X), NO_REGS))
|
1727 |
|
|
#else
|
1728 |
|
|
#define HAVE_SECONDARY_RELOADS
|
1729 |
|
|
#endif
|
1730 |
|
|
|
1731 |
|
|
/* Return the maximum number of consecutive registers
|
1732 |
|
|
needed to represent mode MODE in a register of class CLASS.
|
1733 |
|
|
|
1734 |
|
|
If TARGET_SHMEDIA, we need two FP registers per word.
|
1735 |
|
|
Otherwise we will need at most one register per word. */
|
1736 |
|
|
#define CLASS_MAX_NREGS(CLASS, MODE) \
|
1737 |
|
|
(TARGET_SHMEDIA \
|
1738 |
|
|
&& TEST_HARD_REG_BIT (reg_class_contents[CLASS], FIRST_FP_REG) \
|
1739 |
|
|
? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD/2 - 1) / (UNITS_PER_WORD/2) \
|
1740 |
|
|
: (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
1741 |
|
|
|
1742 |
|
|
/* If defined, gives a class of registers that cannot be used as the
|
1743 |
|
|
operand of a SUBREG that changes the mode of the object illegally. */
|
1744 |
|
|
/* ??? We need to renumber the internal numbers for the frnn registers
|
1745 |
|
|
when in little endian in order to allow mode size changes. */
|
1746 |
|
|
|
1747 |
|
|
#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
|
1748 |
|
|
sh_cannot_change_mode_class (FROM, TO, CLASS)
|
1749 |
|
|
|
1750 |
|
|
/* Stack layout; function entry, exit and calling. */
|
1751 |
|
|
|
1752 |
|
|
/* Define the number of registers that can hold parameters.
|
1753 |
|
|
These macros are used only in other macro definitions below. */
|
1754 |
|
|
|
1755 |
|
|
#define NPARM_REGS(MODE) \
|
1756 |
|
|
(TARGET_FPU_ANY && (MODE) == SFmode \
|
1757 |
|
|
? (TARGET_SH5 ? 12 : 8) \
|
1758 |
|
|
: (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
1759 |
|
|
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
|
1760 |
|
|
? (TARGET_SH5 ? 12 : 8) \
|
1761 |
|
|
: (TARGET_SH5 ? 8 : 4))
|
1762 |
|
|
|
1763 |
|
|
#define FIRST_PARM_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 4))
|
1764 |
|
|
#define FIRST_RET_REG (FIRST_GENERAL_REG + (TARGET_SH5 ? 2 : 0))
|
1765 |
|
|
|
1766 |
|
|
#define FIRST_FP_PARM_REG (FIRST_FP_REG + (TARGET_SH5 ? 0 : 4))
|
1767 |
|
|
#define FIRST_FP_RET_REG FIRST_FP_REG
|
1768 |
|
|
|
1769 |
|
|
/* Define this if pushing a word on the stack
|
1770 |
|
|
makes the stack pointer a smaller address. */
|
1771 |
|
|
#define STACK_GROWS_DOWNWARD
|
1772 |
|
|
|
1773 |
|
|
/* Define this macro to nonzero if the addresses of local variable slots
|
1774 |
|
|
are at negative offsets from the frame pointer. */
|
1775 |
|
|
#define FRAME_GROWS_DOWNWARD 1
|
1776 |
|
|
|
1777 |
|
|
/* Offset from the frame pointer to the first local variable slot to
|
1778 |
|
|
be allocated. */
|
1779 |
|
|
#define STARTING_FRAME_OFFSET 0
|
1780 |
|
|
|
1781 |
|
|
/* If we generate an insn to push BYTES bytes,
|
1782 |
|
|
this says how many the stack pointer really advances by. */
|
1783 |
|
|
/* Don't define PUSH_ROUNDING, since the hardware doesn't do this.
|
1784 |
|
|
When PUSH_ROUNDING is not defined, PARM_BOUNDARY will cause gcc to
|
1785 |
|
|
do correct alignment. */
|
1786 |
|
|
#if 0
|
1787 |
|
|
#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3)
|
1788 |
|
|
#endif
|
1789 |
|
|
|
1790 |
|
|
/* Offset of first parameter from the argument pointer register value. */
|
1791 |
|
|
#define FIRST_PARM_OFFSET(FNDECL) 0
|
1792 |
|
|
|
1793 |
|
|
/* Value is the number of byte of arguments automatically
|
1794 |
|
|
popped when returning from a subroutine call.
|
1795 |
|
|
FUNDECL is the declaration node of the function (as a tree),
|
1796 |
|
|
FUNTYPE is the data type of the function (as a tree),
|
1797 |
|
|
or for a library call it is an identifier node for the subroutine name.
|
1798 |
|
|
SIZE is the number of bytes of arguments passed on the stack.
|
1799 |
|
|
|
1800 |
|
|
On the SH, the caller does not pop any of its arguments that were passed
|
1801 |
|
|
on the stack. */
|
1802 |
|
|
#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
|
1803 |
|
|
|
1804 |
|
|
/* Value is the number of bytes of arguments automatically popped when
|
1805 |
|
|
calling a subroutine.
|
1806 |
|
|
CUM is the accumulated argument list.
|
1807 |
|
|
|
1808 |
|
|
On SHcompact, the call trampoline pops arguments off the stack. */
|
1809 |
|
|
#define CALL_POPS_ARGS(CUM) (TARGET_SHCOMPACT ? (CUM).stack_regs * 8 : 0)
|
1810 |
|
|
|
1811 |
|
|
/* Some subroutine macros specific to this machine. */
|
1812 |
|
|
|
1813 |
|
|
#define BASE_RETURN_VALUE_REG(MODE) \
|
1814 |
|
|
((TARGET_FPU_ANY && ((MODE) == SFmode)) \
|
1815 |
|
|
? FIRST_FP_RET_REG \
|
1816 |
|
|
: TARGET_FPU_ANY && (MODE) == SCmode \
|
1817 |
|
|
? FIRST_FP_RET_REG \
|
1818 |
|
|
: (TARGET_FPU_DOUBLE \
|
1819 |
|
|
&& ((MODE) == DFmode || (MODE) == SFmode \
|
1820 |
|
|
|| (MODE) == DCmode || (MODE) == SCmode )) \
|
1821 |
|
|
? FIRST_FP_RET_REG \
|
1822 |
|
|
: FIRST_RET_REG)
|
1823 |
|
|
|
1824 |
|
|
#define BASE_ARG_REG(MODE) \
|
1825 |
|
|
((TARGET_SH2E && ((MODE) == SFmode)) \
|
1826 |
|
|
? FIRST_FP_PARM_REG \
|
1827 |
|
|
: (TARGET_SH4 || TARGET_SH2A_DOUBLE) && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
1828 |
|
|
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT)\
|
1829 |
|
|
? FIRST_FP_PARM_REG \
|
1830 |
|
|
: FIRST_PARM_REG)
|
1831 |
|
|
|
1832 |
|
|
/* Define how to find the value returned by a function.
|
1833 |
|
|
VALTYPE is the data type of the value (as a tree).
|
1834 |
|
|
If the precise function being called is known, FUNC is its FUNCTION_DECL;
|
1835 |
|
|
otherwise, FUNC is 0.
|
1836 |
|
|
For the SH, this is like LIBCALL_VALUE, except that we must change the
|
1837 |
|
|
mode like PROMOTE_MODE does.
|
1838 |
|
|
??? PROMOTE_MODE is ignored for non-scalar types. The set of types
|
1839 |
|
|
tested here has to be kept in sync with the one in explow.c:promote_mode. */
|
1840 |
|
|
|
1841 |
|
|
#define FUNCTION_VALUE(VALTYPE, FUNC) \
|
1842 |
|
|
gen_rtx_REG ( \
|
1843 |
|
|
((GET_MODE_CLASS (TYPE_MODE (VALTYPE)) == MODE_INT \
|
1844 |
|
|
&& GET_MODE_SIZE (TYPE_MODE (VALTYPE)) < 4 \
|
1845 |
|
|
&& (TREE_CODE (VALTYPE) == INTEGER_TYPE \
|
1846 |
|
|
|| TREE_CODE (VALTYPE) == ENUMERAL_TYPE \
|
1847 |
|
|
|| TREE_CODE (VALTYPE) == BOOLEAN_TYPE \
|
1848 |
|
|
|| TREE_CODE (VALTYPE) == REAL_TYPE \
|
1849 |
|
|
|| TREE_CODE (VALTYPE) == OFFSET_TYPE)) \
|
1850 |
|
|
&& sh_promote_prototypes (VALTYPE) \
|
1851 |
|
|
? (TARGET_SHMEDIA64 ? DImode : SImode) : TYPE_MODE (VALTYPE)), \
|
1852 |
|
|
BASE_RETURN_VALUE_REG (TYPE_MODE (VALTYPE)))
|
1853 |
|
|
|
1854 |
|
|
/* Define how to find the value returned by a library function
|
1855 |
|
|
assuming the value has mode MODE. */
|
1856 |
|
|
#define LIBCALL_VALUE(MODE) \
|
1857 |
|
|
gen_rtx_REG ((MODE), BASE_RETURN_VALUE_REG (MODE));
|
1858 |
|
|
|
1859 |
|
|
/* 1 if N is a possible register number for a function value. */
|
1860 |
|
|
#define FUNCTION_VALUE_REGNO_P(REGNO) \
|
1861 |
|
|
((REGNO) == FIRST_RET_REG || (TARGET_SH2E && (REGNO) == FIRST_FP_RET_REG) \
|
1862 |
|
|
|| (TARGET_SHMEDIA_FPU && (REGNO) == FIRST_FP_RET_REG))
|
1863 |
|
|
|
1864 |
|
|
/* 1 if N is a possible register number for function argument passing. */
|
1865 |
|
|
/* ??? There are some callers that pass REGNO as int, and others that pass
|
1866 |
|
|
it as unsigned. We get warnings unless we do casts everywhere. */
|
1867 |
|
|
#define FUNCTION_ARG_REGNO_P(REGNO) \
|
1868 |
|
|
(((unsigned) (REGNO) >= (unsigned) FIRST_PARM_REG \
|
1869 |
|
|
&& (unsigned) (REGNO) < (unsigned) (FIRST_PARM_REG + NPARM_REGS (SImode)))\
|
1870 |
|
|
|| (TARGET_FPU_ANY \
|
1871 |
|
|
&& (unsigned) (REGNO) >= (unsigned) FIRST_FP_PARM_REG \
|
1872 |
|
|
&& (unsigned) (REGNO) < (unsigned) (FIRST_FP_PARM_REG \
|
1873 |
|
|
+ NPARM_REGS (SFmode))))
|
1874 |
|
|
|
1875 |
|
|
/* Define a data type for recording info about an argument list
|
1876 |
|
|
during the scan of that argument list. This data type should
|
1877 |
|
|
hold all necessary information about the function itself
|
1878 |
|
|
and about the args processed so far, enough to enable macros
|
1879 |
|
|
such as FUNCTION_ARG to determine where the next arg should go.
|
1880 |
|
|
|
1881 |
|
|
On SH, this is a single integer, which is a number of words
|
1882 |
|
|
of arguments scanned so far (including the invisible argument,
|
1883 |
|
|
if any, which holds the structure-value-address).
|
1884 |
|
|
Thus NARGREGS or more means all following args should go on the stack. */
|
1885 |
|
|
|
1886 |
|
|
enum sh_arg_class { SH_ARG_INT = 0, SH_ARG_FLOAT = 1 };
|
1887 |
|
|
struct sh_args {
|
1888 |
|
|
int arg_count[2];
|
1889 |
|
|
int force_mem;
|
1890 |
|
|
/* Nonzero if a prototype is available for the function. */
|
1891 |
|
|
int prototype_p;
|
1892 |
|
|
/* The number of an odd floating-point register, that should be used
|
1893 |
|
|
for the next argument of type float. */
|
1894 |
|
|
int free_single_fp_reg;
|
1895 |
|
|
/* Whether we're processing an outgoing function call. */
|
1896 |
|
|
int outgoing;
|
1897 |
|
|
/* The number of general-purpose registers that should have been
|
1898 |
|
|
used to pass partial arguments, that are passed totally on the
|
1899 |
|
|
stack. On SHcompact, a call trampoline will pop them off the
|
1900 |
|
|
stack before calling the actual function, and, if the called
|
1901 |
|
|
function is implemented in SHcompact mode, the incoming arguments
|
1902 |
|
|
decoder will push such arguments back onto the stack. For
|
1903 |
|
|
incoming arguments, STACK_REGS also takes into account other
|
1904 |
|
|
arguments passed by reference, that the decoder will also push
|
1905 |
|
|
onto the stack. */
|
1906 |
|
|
int stack_regs;
|
1907 |
|
|
/* The number of general-purpose registers that should have been
|
1908 |
|
|
used to pass arguments, if the arguments didn't have to be passed
|
1909 |
|
|
by reference. */
|
1910 |
|
|
int byref_regs;
|
1911 |
|
|
/* Set as by shcompact_byref if the current argument is to be passed
|
1912 |
|
|
by reference. */
|
1913 |
|
|
int byref;
|
1914 |
|
|
|
1915 |
|
|
/* call_cookie is a bitmask used by call expanders, as well as
|
1916 |
|
|
function prologue and epilogues, to allow SHcompact to comply
|
1917 |
|
|
with the SH5 32-bit ABI, that requires 64-bit registers to be
|
1918 |
|
|
used even though only the lower 32-bit half is visible in
|
1919 |
|
|
SHcompact mode. The strategy is to call SHmedia trampolines.
|
1920 |
|
|
|
1921 |
|
|
The alternatives for each of the argument-passing registers are
|
1922 |
|
|
(a) leave it unchanged; (b) pop it off the stack; (c) load its
|
1923 |
|
|
contents from the address in it; (d) add 8 to it, storing the
|
1924 |
|
|
result in the next register, then (c); (e) copy it from some
|
1925 |
|
|
floating-point register,
|
1926 |
|
|
|
1927 |
|
|
Regarding copies from floating-point registers, r2 may only be
|
1928 |
|
|
copied from dr0. r3 may be copied from dr0 or dr2. r4 maybe
|
1929 |
|
|
copied from dr0, dr2 or dr4. r5 maybe copied from dr0, dr2,
|
1930 |
|
|
dr4 or dr6. r6 may be copied from dr0, dr2, dr4, dr6 or dr8.
|
1931 |
|
|
r7 through to r9 may be copied from dr0, dr2, dr4, dr8, dr8 or
|
1932 |
|
|
dr10.
|
1933 |
|
|
|
1934 |
|
|
The bit mask is structured as follows:
|
1935 |
|
|
|
1936 |
|
|
- 1 bit to tell whether to set up a return trampoline.
|
1937 |
|
|
|
1938 |
|
|
- 3 bits to count the number consecutive registers to pop off the
|
1939 |
|
|
stack.
|
1940 |
|
|
|
1941 |
|
|
- 4 bits for each of r9, r8, r7 and r6.
|
1942 |
|
|
|
1943 |
|
|
- 3 bits for each of r5, r4, r3 and r2.
|
1944 |
|
|
|
1945 |
|
|
- 3 bits set to 0 (the most significant ones)
|
1946 |
|
|
|
1947 |
|
|
3 2 1 0
|
1948 |
|
|
1098 7654 3210 9876 5432 1098 7654 3210
|
1949 |
|
|
FLPF LPFL PFLP FFLP FFLP FFLP FFLP SSST
|
1950 |
|
|
2223 3344 4555 6666 7777 8888 9999 SSS-
|
1951 |
|
|
|
1952 |
|
|
- If F is set, the register must be copied from an FP register,
|
1953 |
|
|
whose number is encoded in the remaining bits.
|
1954 |
|
|
|
1955 |
|
|
- Else, if L is set, the register must be loaded from the address
|
1956 |
|
|
contained in it. If the P bit is *not* set, the address of the
|
1957 |
|
|
following dword should be computed first, and stored in the
|
1958 |
|
|
following register.
|
1959 |
|
|
|
1960 |
|
|
- Else, if P is set, the register alone should be popped off the
|
1961 |
|
|
stack.
|
1962 |
|
|
|
1963 |
|
|
- After all this processing, the number of registers represented
|
1964 |
|
|
in SSS will be popped off the stack. This is an optimization
|
1965 |
|
|
for pushing/popping consecutive registers, typically used for
|
1966 |
|
|
varargs and large arguments partially passed in registers.
|
1967 |
|
|
|
1968 |
|
|
- If T is set, a return trampoline will be set up for 64-bit
|
1969 |
|
|
return values to be split into 2 32-bit registers. */
|
1970 |
|
|
#define CALL_COOKIE_RET_TRAMP_SHIFT 0
|
1971 |
|
|
#define CALL_COOKIE_RET_TRAMP(VAL) ((VAL) << CALL_COOKIE_RET_TRAMP_SHIFT)
|
1972 |
|
|
#define CALL_COOKIE_STACKSEQ_SHIFT 1
|
1973 |
|
|
#define CALL_COOKIE_STACKSEQ(VAL) ((VAL) << CALL_COOKIE_STACKSEQ_SHIFT)
|
1974 |
|
|
#define CALL_COOKIE_STACKSEQ_GET(COOKIE) \
|
1975 |
|
|
(((COOKIE) >> CALL_COOKIE_STACKSEQ_SHIFT) & 7)
|
1976 |
|
|
#define CALL_COOKIE_INT_REG_SHIFT(REG) \
|
1977 |
|
|
(4 * (7 - (REG)) + (((REG) <= 2) ? ((REG) - 2) : 1) + 3)
|
1978 |
|
|
#define CALL_COOKIE_INT_REG(REG, VAL) \
|
1979 |
|
|
((VAL) << CALL_COOKIE_INT_REG_SHIFT (REG))
|
1980 |
|
|
#define CALL_COOKIE_INT_REG_GET(COOKIE, REG) \
|
1981 |
|
|
(((COOKIE) >> CALL_COOKIE_INT_REG_SHIFT (REG)) & ((REG) < 4 ? 7 : 15))
|
1982 |
|
|
long call_cookie;
|
1983 |
|
|
|
1984 |
|
|
/* This is set to nonzero when the call in question must use the Renesas ABI,
|
1985 |
|
|
even without the -mrenesas option. */
|
1986 |
|
|
int renesas_abi;
|
1987 |
|
|
};
|
1988 |
|
|
|
1989 |
|
|
#define CUMULATIVE_ARGS struct sh_args
|
1990 |
|
|
|
1991 |
|
|
#define GET_SH_ARG_CLASS(MODE) \
|
1992 |
|
|
((TARGET_FPU_ANY && (MODE) == SFmode) \
|
1993 |
|
|
? SH_ARG_FLOAT \
|
1994 |
|
|
/* There's no mention of complex float types in the SH5 ABI, so we
|
1995 |
|
|
should presumably handle them as aggregate types. */ \
|
1996 |
|
|
: TARGET_SH5 && GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT \
|
1997 |
|
|
? SH_ARG_INT \
|
1998 |
|
|
: TARGET_FPU_DOUBLE && (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
1999 |
|
|
|| GET_MODE_CLASS (MODE) == MODE_COMPLEX_FLOAT) \
|
2000 |
|
|
? SH_ARG_FLOAT : SH_ARG_INT)
|
2001 |
|
|
|
2002 |
|
|
#define ROUND_ADVANCE(SIZE) \
|
2003 |
|
|
(((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
|
2004 |
|
|
|
2005 |
|
|
/* Round a register number up to a proper boundary for an arg of mode
|
2006 |
|
|
MODE.
|
2007 |
|
|
|
2008 |
|
|
The SH doesn't care about double alignment, so we only
|
2009 |
|
|
round doubles to even regs when asked to explicitly. */
|
2010 |
|
|
|
2011 |
|
|
#define ROUND_REG(CUM, MODE) \
|
2012 |
|
|
(((TARGET_ALIGN_DOUBLE \
|
2013 |
|
|
|| ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && ((MODE) == DFmode || (MODE) == DCmode) \
|
2014 |
|
|
&& (CUM).arg_count[(int) SH_ARG_FLOAT] < NPARM_REGS (MODE)))\
|
2015 |
|
|
&& GET_MODE_UNIT_SIZE ((MODE)) > UNITS_PER_WORD) \
|
2016 |
|
|
? ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] \
|
2017 |
|
|
+ ((CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)] & 1)) \
|
2018 |
|
|
: (CUM).arg_count[(int) GET_SH_ARG_CLASS (MODE)])
|
2019 |
|
|
|
2020 |
|
|
/* Initialize a variable CUM of type CUMULATIVE_ARGS
|
2021 |
|
|
for a call to a function whose data type is FNTYPE.
|
2022 |
|
|
For a library call, FNTYPE is 0.
|
2023 |
|
|
|
2024 |
|
|
On SH, the offset always starts at 0: the first parm reg is always
|
2025 |
|
|
the same reg for a given argument class.
|
2026 |
|
|
|
2027 |
|
|
For TARGET_HITACHI, the structure value pointer is passed in memory. */
|
2028 |
|
|
|
2029 |
|
|
#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
|
2030 |
|
|
sh_init_cumulative_args (& (CUM), (FNTYPE), (LIBNAME), (FNDECL), (N_NAMED_ARGS), VOIDmode)
|
2031 |
|
|
|
2032 |
|
|
#define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
|
2033 |
|
|
sh_init_cumulative_args (& (CUM), NULL_TREE, (LIBNAME), NULL_TREE, 0, (MODE))
|
2034 |
|
|
|
2035 |
|
|
#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
|
2036 |
|
|
sh_function_arg_advance (&(CUM), (MODE), (TYPE), (NAMED))
|
2037 |
|
|
#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
|
2038 |
|
|
sh_function_arg (&(CUM), (MODE), (TYPE), (NAMED))
|
2039 |
|
|
|
2040 |
|
|
/* Return boolean indicating arg of mode MODE will be passed in a reg.
|
2041 |
|
|
This macro is only used in this file. */
|
2042 |
|
|
|
2043 |
|
|
#define PASS_IN_REG_P(CUM, MODE, TYPE) \
|
2044 |
|
|
(((TYPE) == 0 \
|
2045 |
|
|
|| (! TREE_ADDRESSABLE ((tree)(TYPE)) \
|
2046 |
|
|
&& (! (TARGET_HITACHI || (CUM).renesas_abi) \
|
2047 |
|
|
|| ! (AGGREGATE_TYPE_P (TYPE) \
|
2048 |
|
|
|| (!TARGET_FPU_ANY \
|
2049 |
|
|
&& (GET_MODE_CLASS (MODE) == MODE_FLOAT \
|
2050 |
|
|
&& GET_MODE_SIZE (MODE) > GET_MODE_SIZE (SFmode))))))) \
|
2051 |
|
|
&& ! (CUM).force_mem \
|
2052 |
|
|
&& (TARGET_SH2E \
|
2053 |
|
|
? ((MODE) == BLKmode \
|
2054 |
|
|
? (((CUM).arg_count[(int) SH_ARG_INT] * UNITS_PER_WORD \
|
2055 |
|
|
+ int_size_in_bytes (TYPE)) \
|
2056 |
|
|
<= NPARM_REGS (SImode) * UNITS_PER_WORD) \
|
2057 |
|
|
: ((ROUND_REG((CUM), (MODE)) \
|
2058 |
|
|
+ HARD_REGNO_NREGS (BASE_ARG_REG (MODE), (MODE))) \
|
2059 |
|
|
<= NPARM_REGS (MODE))) \
|
2060 |
|
|
: ROUND_REG ((CUM), (MODE)) < NPARM_REGS (MODE)))
|
2061 |
|
|
|
2062 |
|
|
/* By accident we got stuck with passing SCmode on SH4 little endian
|
2063 |
|
|
in two registers that are nominally successive - which is different from
|
2064 |
|
|
two single SFmode values, where we take endianness translation into
|
2065 |
|
|
account. That does not work at all if an odd number of registers is
|
2066 |
|
|
already in use, so that got fixed, but library functions are still more
|
2067 |
|
|
likely to use complex numbers without mixing them with SFmode arguments
|
2068 |
|
|
(which in C would have to be structures), so for the sake of ABI
|
2069 |
|
|
compatibility the way SCmode values are passed when an even number of
|
2070 |
|
|
FP registers is in use remains different from a pair of SFmode values for
|
2071 |
|
|
now.
|
2072 |
|
|
I.e.:
|
2073 |
|
|
foo (double); a: fr5,fr4
|
2074 |
|
|
foo (float a, float b); a: fr5 b: fr4
|
2075 |
|
|
foo (__complex float a); a.real fr4 a.imag: fr5 - for consistency,
|
2076 |
|
|
this should be the other way round...
|
2077 |
|
|
foo (float a, __complex float b); a: fr5 b.real: fr4 b.imag: fr7 */
|
2078 |
|
|
#define FUNCTION_ARG_SCmode_WART 1
|
2079 |
|
|
|
2080 |
|
|
/* If an argument of size 5, 6 or 7 bytes is to be passed in a 64-bit
|
2081 |
|
|
register in SHcompact mode, it must be padded in the most
|
2082 |
|
|
significant end. This means that passing it by reference wouldn't
|
2083 |
|
|
pad properly on a big-endian machine. In this particular case, we
|
2084 |
|
|
pass this argument on the stack, in a way that the call trampoline
|
2085 |
|
|
will load its value into the appropriate register. */
|
2086 |
|
|
#define SHCOMPACT_FORCE_ON_STACK(MODE,TYPE) \
|
2087 |
|
|
((MODE) == BLKmode \
|
2088 |
|
|
&& TARGET_SHCOMPACT \
|
2089 |
|
|
&& ! TARGET_LITTLE_ENDIAN \
|
2090 |
|
|
&& int_size_in_bytes (TYPE) > 4 \
|
2091 |
|
|
&& int_size_in_bytes (TYPE) < 8)
|
2092 |
|
|
|
2093 |
|
|
/* Minimum alignment for an argument to be passed by callee-copy
|
2094 |
|
|
reference. We need such arguments to be aligned to 8 byte
|
2095 |
|
|
boundaries, because they'll be loaded using quad loads. */
|
2096 |
|
|
#define SH_MIN_ALIGN_FOR_CALLEE_COPY (8 * BITS_PER_UNIT)
|
2097 |
|
|
|
2098 |
|
|
/* The SH5 ABI requires floating-point arguments to be passed to
|
2099 |
|
|
functions without a prototype in both an FP register and a regular
|
2100 |
|
|
register or the stack. When passing the argument in both FP and
|
2101 |
|
|
general-purpose registers, list the FP register first. */
|
2102 |
|
|
#define SH5_PROTOTYPELESS_FLOAT_ARG(CUM,MODE) \
|
2103 |
|
|
(gen_rtx_PARALLEL \
|
2104 |
|
|
((MODE), \
|
2105 |
|
|
gen_rtvec (2, \
|
2106 |
|
|
gen_rtx_EXPR_LIST \
|
2107 |
|
|
(VOIDmode, \
|
2108 |
|
|
((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
|
2109 |
|
|
? gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
|
2110 |
|
|
+ (CUM).arg_count[(int) SH_ARG_FLOAT]) \
|
2111 |
|
|
: NULL_RTX), \
|
2112 |
|
|
const0_rtx), \
|
2113 |
|
|
gen_rtx_EXPR_LIST \
|
2114 |
|
|
(VOIDmode, \
|
2115 |
|
|
((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
|
2116 |
|
|
? gen_rtx_REG ((MODE), FIRST_PARM_REG \
|
2117 |
|
|
+ (CUM).arg_count[(int) SH_ARG_INT]) \
|
2118 |
|
|
: gen_rtx_REG ((MODE), FIRST_FP_PARM_REG \
|
2119 |
|
|
+ (CUM).arg_count[(int) SH_ARG_FLOAT])), \
|
2120 |
|
|
const0_rtx))))
|
2121 |
|
|
|
2122 |
|
|
/* The SH5 ABI requires regular registers or stack slots to be
|
2123 |
|
|
reserved for floating-point arguments. Registers are taken care of
|
2124 |
|
|
in FUNCTION_ARG_ADVANCE, but stack slots must be reserved here.
|
2125 |
|
|
Unfortunately, there's no way to just reserve a stack slot, so
|
2126 |
|
|
we'll end up needlessly storing a copy of the argument in the
|
2127 |
|
|
stack. For incoming arguments, however, the PARALLEL will be
|
2128 |
|
|
optimized to the register-only form, and the value in the stack
|
2129 |
|
|
slot won't be used at all. */
|
2130 |
|
|
#define SH5_PROTOTYPED_FLOAT_ARG(CUM,MODE,REG) \
|
2131 |
|
|
((CUM).arg_count[(int) SH_ARG_INT] < NPARM_REGS (SImode) \
|
2132 |
|
|
? gen_rtx_REG ((MODE), (REG)) \
|
2133 |
|
|
: gen_rtx_PARALLEL ((MODE), \
|
2134 |
|
|
gen_rtvec (2, \
|
2135 |
|
|
gen_rtx_EXPR_LIST \
|
2136 |
|
|
(VOIDmode, NULL_RTX, \
|
2137 |
|
|
const0_rtx), \
|
2138 |
|
|
gen_rtx_EXPR_LIST \
|
2139 |
|
|
(VOIDmode, gen_rtx_REG ((MODE), \
|
2140 |
|
|
(REG)), \
|
2141 |
|
|
const0_rtx))))
|
2142 |
|
|
|
2143 |
|
|
#define SH5_WOULD_BE_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
|
2144 |
|
|
(TARGET_SH5 \
|
2145 |
|
|
&& ((MODE) == BLKmode || (MODE) == TImode || (MODE) == CDImode \
|
2146 |
|
|
|| (MODE) == DCmode) \
|
2147 |
|
|
&& ((CUM).arg_count[(int) SH_ARG_INT] \
|
2148 |
|
|
+ (((MODE) == BLKmode ? int_size_in_bytes (TYPE) \
|
2149 |
|
|
: GET_MODE_SIZE (MODE)) \
|
2150 |
|
|
+ 7) / 8) > NPARM_REGS (SImode))
|
2151 |
|
|
|
2152 |
|
|
/* Perform any needed actions needed for a function that is receiving a
|
2153 |
|
|
variable number of arguments. */
|
2154 |
|
|
|
2155 |
|
|
/* Implement `va_start' for varargs and stdarg. */
|
2156 |
|
|
#define EXPAND_BUILTIN_VA_START(valist, nextarg) \
|
2157 |
|
|
sh_va_start (valist, nextarg)
|
2158 |
|
|
|
2159 |
|
|
/* Call the function profiler with a given profile label.
|
2160 |
|
|
We use two .aligns, so as to make sure that both the .long is aligned
|
2161 |
|
|
on a 4 byte boundary, and that the .long is a fixed distance (2 bytes)
|
2162 |
|
|
from the trapa instruction. */
|
2163 |
|
|
|
2164 |
|
|
#define FUNCTION_PROFILER(STREAM,LABELNO) \
|
2165 |
|
|
{ \
|
2166 |
|
|
if (TARGET_SHMEDIA) \
|
2167 |
|
|
{ \
|
2168 |
|
|
fprintf((STREAM), "\tmovi\t33,r0\n"); \
|
2169 |
|
|
fprintf((STREAM), "\ttrapa\tr0\n"); \
|
2170 |
|
|
asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
|
2171 |
|
|
} \
|
2172 |
|
|
else \
|
2173 |
|
|
{ \
|
2174 |
|
|
fprintf((STREAM), "\t.align\t2\n"); \
|
2175 |
|
|
fprintf((STREAM), "\ttrapa\t#33\n"); \
|
2176 |
|
|
fprintf((STREAM), "\t.align\t2\n"); \
|
2177 |
|
|
asm_fprintf((STREAM), "\t.long\t%LLP%d\n", (LABELNO)); \
|
2178 |
|
|
} \
|
2179 |
|
|
}
|
2180 |
|
|
|
2181 |
|
|
/* Define this macro if the code for function profiling should come
|
2182 |
|
|
before the function prologue. Normally, the profiling code comes
|
2183 |
|
|
after. */
|
2184 |
|
|
|
2185 |
|
|
#define PROFILE_BEFORE_PROLOGUE
|
2186 |
|
|
|
2187 |
|
|
/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
|
2188 |
|
|
the stack pointer does not matter. The value is tested only in
|
2189 |
|
|
functions that have frame pointers.
|
2190 |
|
|
No definition is equivalent to always zero. */
|
2191 |
|
|
|
2192 |
|
|
#define EXIT_IGNORE_STACK 1
|
2193 |
|
|
|
2194 |
|
|
/*
|
2195 |
|
|
On the SH, the trampoline looks like
|
2196 |
|
|
2 0002 D202 mov.l l2,r2
|
2197 |
|
|
1 0000 D301 mov.l l1,r3
|
2198 |
|
|
3 0004 422B jmp @r2
|
2199 |
|
|
4 0006 0009 nop
|
2200 |
|
|
5 0008 00000000 l1: .long area
|
2201 |
|
|
6 000c 00000000 l2: .long function */
|
2202 |
|
|
|
2203 |
|
|
/* Length in units of the trampoline for entering a nested function. */
|
2204 |
|
|
#define TRAMPOLINE_SIZE (TARGET_SHMEDIA64 ? 40 : TARGET_SH5 ? 24 : 16)
|
2205 |
|
|
|
2206 |
|
|
/* Alignment required for a trampoline in bits . */
|
2207 |
|
|
#define TRAMPOLINE_ALIGNMENT \
|
2208 |
|
|
((CACHE_LOG < 3 || (TARGET_SMALLCODE && ! TARGET_HARVARD)) ? 32 \
|
2209 |
|
|
: TARGET_SHMEDIA ? 256 : 64)
|
2210 |
|
|
|
2211 |
|
|
/* Emit RTL insns to initialize the variable parts of a trampoline.
|
2212 |
|
|
FNADDR is an RTX for the address of the function's pure code.
|
2213 |
|
|
CXT is an RTX for the static chain value for the function. */
|
2214 |
|
|
|
2215 |
|
|
#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
|
2216 |
|
|
sh_initialize_trampoline ((TRAMP), (FNADDR), (CXT))
|
2217 |
|
|
|
2218 |
|
|
/* On SH5, trampolines are SHmedia code, so add 1 to the address. */
|
2219 |
|
|
|
2220 |
|
|
#define TRAMPOLINE_ADJUST_ADDRESS(TRAMP) do \
|
2221 |
|
|
{ \
|
2222 |
|
|
if (TARGET_SHMEDIA) \
|
2223 |
|
|
(TRAMP) = expand_simple_binop (Pmode, PLUS, (TRAMP), const1_rtx, \
|
2224 |
|
|
gen_reg_rtx (Pmode), 0, \
|
2225 |
|
|
OPTAB_LIB_WIDEN); \
|
2226 |
|
|
} while (0)
|
2227 |
|
|
|
2228 |
|
|
/* A C expression whose value is RTL representing the value of the return
|
2229 |
|
|
address for the frame COUNT steps up from the current frame.
|
2230 |
|
|
FRAMEADDR is already the frame pointer of the COUNT frame, so we
|
2231 |
|
|
can ignore COUNT. */
|
2232 |
|
|
|
2233 |
|
|
#define RETURN_ADDR_RTX(COUNT, FRAME) \
|
2234 |
|
|
(((COUNT) == 0) ? sh_get_pr_initial_val () : (rtx) 0)
|
2235 |
|
|
|
2236 |
|
|
/* A C expression whose value is RTL representing the location of the
|
2237 |
|
|
incoming return address at the beginning of any function, before the
|
2238 |
|
|
prologue. This RTL is either a REG, indicating that the return
|
2239 |
|
|
value is saved in REG, or a MEM representing a location in
|
2240 |
|
|
the stack. */
|
2241 |
|
|
#define INCOMING_RETURN_ADDR_RTX \
|
2242 |
|
|
gen_rtx_REG (Pmode, TARGET_SHMEDIA ? PR_MEDIA_REG : PR_REG)
|
2243 |
|
|
|
2244 |
|
|
/* Addressing modes, and classification of registers for them. */
|
2245 |
|
|
#define HAVE_POST_INCREMENT TARGET_SH1
|
2246 |
|
|
#define HAVE_PRE_DECREMENT TARGET_SH1
|
2247 |
|
|
|
2248 |
|
|
#define USE_LOAD_POST_INCREMENT(mode) ((mode == SImode || mode == DImode) \
|
2249 |
|
|
? 0 : TARGET_SH1)
|
2250 |
|
|
#define USE_LOAD_PRE_DECREMENT(mode) 0
|
2251 |
|
|
#define USE_STORE_POST_INCREMENT(mode) 0
|
2252 |
|
|
#define USE_STORE_PRE_DECREMENT(mode) ((mode == SImode || mode == DImode) \
|
2253 |
|
|
? 0 : TARGET_SH1)
|
2254 |
|
|
|
2255 |
|
|
#define MOVE_BY_PIECES_P(SIZE, ALIGN) \
|
2256 |
|
|
(move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
|
2257 |
|
|
< (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
|
2258 |
|
|
|
2259 |
|
|
#define STORE_BY_PIECES_P(SIZE, ALIGN) \
|
2260 |
|
|
(move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
|
2261 |
|
|
< (TARGET_SMALLCODE ? 2 : ((ALIGN >= 32) ? 16 : 2)))
|
2262 |
|
|
|
2263 |
|
|
/* Macros to check register numbers against specific register classes. */
|
2264 |
|
|
|
2265 |
|
|
/* These assume that REGNO is a hard or pseudo reg number.
|
2266 |
|
|
They give nonzero only if REGNO is a hard reg of the suitable class
|
2267 |
|
|
or a pseudo reg currently allocated to a suitable hard reg.
|
2268 |
|
|
Since they use reg_renumber, they are safe only once reg_renumber
|
2269 |
|
|
has been allocated, which happens in local-alloc.c. */
|
2270 |
|
|
|
2271 |
|
|
#define REGNO_OK_FOR_BASE_P(REGNO) \
|
2272 |
|
|
(GENERAL_OR_AP_REGISTER_P (REGNO) \
|
2273 |
|
|
|| GENERAL_OR_AP_REGISTER_P (reg_renumber[(REGNO)]))
|
2274 |
|
|
#define REGNO_OK_FOR_INDEX_P(REGNO) \
|
2275 |
|
|
(TARGET_SHMEDIA \
|
2276 |
|
|
? (GENERAL_REGISTER_P (REGNO) \
|
2277 |
|
|
|| GENERAL_REGISTER_P ((unsigned) reg_renumber[(REGNO)])) \
|
2278 |
|
|
: (REGNO) == R0_REG || (unsigned) reg_renumber[(REGNO)] == R0_REG)
|
2279 |
|
|
|
2280 |
|
|
/* Maximum number of registers that can appear in a valid memory
|
2281 |
|
|
address. */
|
2282 |
|
|
|
2283 |
|
|
#define MAX_REGS_PER_ADDRESS 2
|
2284 |
|
|
|
2285 |
|
|
/* Recognize any constant value that is a valid address. */
|
2286 |
|
|
|
2287 |
|
|
#define CONSTANT_ADDRESS_P(X) (GET_CODE (X) == LABEL_REF)
|
2288 |
|
|
|
2289 |
|
|
/* Nonzero if the constant value X is a legitimate general operand. */
|
2290 |
|
|
|
2291 |
|
|
#define LEGITIMATE_CONSTANT_P(X) \
|
2292 |
|
|
(TARGET_SHMEDIA \
|
2293 |
|
|
? ((GET_MODE (X) != DFmode \
|
2294 |
|
|
&& GET_MODE_CLASS (GET_MODE (X)) != MODE_VECTOR_FLOAT) \
|
2295 |
|
|
|| (X) == CONST0_RTX (GET_MODE (X)) \
|
2296 |
|
|
|| ! TARGET_SHMEDIA_FPU \
|
2297 |
|
|
|| TARGET_SHMEDIA64) \
|
2298 |
|
|
: (GET_CODE (X) != CONST_DOUBLE \
|
2299 |
|
|
|| GET_MODE (X) == DFmode || GET_MODE (X) == SFmode \
|
2300 |
|
|
|| (TARGET_SH2E && (fp_zero_operand (X) || fp_one_operand (X)))))
|
2301 |
|
|
|
2302 |
|
|
/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
|
2303 |
|
|
and check its validity for a certain class.
|
2304 |
|
|
We have two alternate definitions for each of them.
|
2305 |
|
|
The usual definition accepts all pseudo regs; the other rejects
|
2306 |
|
|
them unless they have been allocated suitable hard regs.
|
2307 |
|
|
The symbol REG_OK_STRICT causes the latter definition to be used. */
|
2308 |
|
|
|
2309 |
|
|
#ifndef REG_OK_STRICT
|
2310 |
|
|
|
2311 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg
|
2312 |
|
|
or if it is a pseudo reg. */
|
2313 |
|
|
#define REG_OK_FOR_BASE_P(X) \
|
2314 |
|
|
(GENERAL_OR_AP_REGISTER_P (REGNO (X)) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
2315 |
|
|
|
2316 |
|
|
/* Nonzero if X is a hard reg that can be used as an index
|
2317 |
|
|
or if it is a pseudo reg. */
|
2318 |
|
|
#define REG_OK_FOR_INDEX_P(X) \
|
2319 |
|
|
((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
|
2320 |
|
|
: REGNO (X) == R0_REG) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
2321 |
|
|
|
2322 |
|
|
/* Nonzero if X/OFFSET is a hard reg that can be used as an index
|
2323 |
|
|
or if X is a pseudo reg. */
|
2324 |
|
|
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
|
2325 |
|
|
((TARGET_SHMEDIA ? GENERAL_REGISTER_P (REGNO (X)) \
|
2326 |
|
|
: REGNO (X) == R0_REG && OFFSET == 0) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
|
2327 |
|
|
|
2328 |
|
|
#else
|
2329 |
|
|
|
2330 |
|
|
/* Nonzero if X is a hard reg that can be used as a base reg. */
|
2331 |
|
|
#define REG_OK_FOR_BASE_P(X) \
|
2332 |
|
|
REGNO_OK_FOR_BASE_P (REGNO (X))
|
2333 |
|
|
|
2334 |
|
|
/* Nonzero if X is a hard reg that can be used as an index. */
|
2335 |
|
|
#define REG_OK_FOR_INDEX_P(X) \
|
2336 |
|
|
REGNO_OK_FOR_INDEX_P (REGNO (X))
|
2337 |
|
|
|
2338 |
|
|
/* Nonzero if X/OFFSET is a hard reg that can be used as an index. */
|
2339 |
|
|
#define SUBREG_OK_FOR_INDEX_P(X, OFFSET) \
|
2340 |
|
|
(REGNO_OK_FOR_INDEX_P (REGNO (X)) && (OFFSET) == 0)
|
2341 |
|
|
|
2342 |
|
|
#endif
|
2343 |
|
|
|
2344 |
|
|
/* The 'Q' constraint is a pc relative load operand. */
|
2345 |
|
|
#define EXTRA_CONSTRAINT_Q(OP) \
|
2346 |
|
|
(GET_CODE (OP) == MEM \
|
2347 |
|
|
&& ((GET_CODE (XEXP ((OP), 0)) == LABEL_REF) \
|
2348 |
|
|
|| (GET_CODE (XEXP ((OP), 0)) == CONST \
|
2349 |
|
|
&& GET_CODE (XEXP (XEXP ((OP), 0), 0)) == PLUS \
|
2350 |
|
|
&& GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == LABEL_REF \
|
2351 |
|
|
&& GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 1)) == CONST_INT)))
|
2352 |
|
|
|
2353 |
|
|
/* Extra address constraints. */
|
2354 |
|
|
#define EXTRA_CONSTRAINT_A(OP, STR) 0
|
2355 |
|
|
|
2356 |
|
|
/* Constraint for selecting FLDI0 or FLDI1 instruction. If the clobber
|
2357 |
|
|
operand is not SCRATCH (i.e. REG) then R0 is probably being
|
2358 |
|
|
used, hence mova is being used, hence do not select this pattern */
|
2359 |
|
|
#define EXTRA_CONSTRAINT_Bsc(OP) (GET_CODE(OP) == SCRATCH)
|
2360 |
|
|
#define EXTRA_CONSTRAINT_B(OP, STR) \
|
2361 |
|
|
((STR)[1] == 's' && (STR)[2] == 'c' ? EXTRA_CONSTRAINT_Bsc (OP) \
|
2362 |
|
|
: 0)
|
2363 |
|
|
|
2364 |
|
|
/* The `Css' constraint is a signed 16-bit constant, literal or symbolic. */
|
2365 |
|
|
#define EXTRA_CONSTRAINT_Css(OP) \
|
2366 |
|
|
(GET_CODE (OP) == CONST \
|
2367 |
|
|
&& GET_CODE (XEXP ((OP), 0)) == SIGN_EXTEND \
|
2368 |
|
|
&& (GET_MODE (XEXP ((OP), 0)) == DImode \
|
2369 |
|
|
|| GET_MODE (XEXP ((OP), 0)) == SImode) \
|
2370 |
|
|
&& GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
|
2371 |
|
|
&& GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
|
2372 |
|
|
&& (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
|
2373 |
|
|
|| (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
|
2374 |
|
|
&& (MOVI_SHORI_BASE_OPERAND_P \
|
2375 |
|
|
(XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
|
2376 |
|
|
&& GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
|
2377 |
|
|
1)) == CONST_INT)))
|
2378 |
|
|
|
2379 |
|
|
/* The `Csu' constraint is an unsigned 16-bit constant, literal or symbolic. */
|
2380 |
|
|
#define EXTRA_CONSTRAINT_Csu(OP) \
|
2381 |
|
|
(GET_CODE (OP) == CONST \
|
2382 |
|
|
&& GET_CODE (XEXP ((OP), 0)) == ZERO_EXTEND \
|
2383 |
|
|
&& (GET_MODE (XEXP ((OP), 0)) == DImode \
|
2384 |
|
|
|| GET_MODE (XEXP ((OP), 0)) == SImode) \
|
2385 |
|
|
&& GET_CODE (XEXP (XEXP ((OP), 0), 0)) == TRUNCATE \
|
2386 |
|
|
&& GET_MODE (XEXP (XEXP ((OP), 0), 0)) == HImode \
|
2387 |
|
|
&& (MOVI_SHORI_BASE_OPERAND_P (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) \
|
2388 |
|
|
|| (GET_CODE (XEXP (XEXP (XEXP ((OP), 0), 0), 0)) == ASHIFTRT \
|
2389 |
|
|
&& (MOVI_SHORI_BASE_OPERAND_P \
|
2390 |
|
|
(XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), 0))) \
|
2391 |
|
|
&& GET_CODE (XEXP (XEXP (XEXP (XEXP ((OP), 0), 0), 0), \
|
2392 |
|
|
1)) == CONST_INT)))
|
2393 |
|
|
|
2394 |
|
|
/* Check whether OP is a datalabel unspec. */
|
2395 |
|
|
#define DATALABEL_REF_NO_CONST_P(OP) \
|
2396 |
|
|
(GET_CODE (OP) == UNSPEC \
|
2397 |
|
|
&& XINT ((OP), 1) == UNSPEC_DATALABEL \
|
2398 |
|
|
&& XVECLEN ((OP), 0) == 1 \
|
2399 |
|
|
&& GET_CODE (XVECEXP ((OP), 0, 0)) == LABEL_REF)
|
2400 |
|
|
|
2401 |
|
|
#define GOT_ENTRY_P(OP) \
|
2402 |
|
|
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
|
2403 |
|
|
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_GOT)
|
2404 |
|
|
|
2405 |
|
|
#define GOTPLT_ENTRY_P(OP) \
|
2406 |
|
|
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
|
2407 |
|
|
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_GOTPLT)
|
2408 |
|
|
|
2409 |
|
|
#define UNSPEC_GOTOFF_P(OP) \
|
2410 |
|
|
(GET_CODE (OP) == UNSPEC && XINT ((OP), 1) == UNSPEC_GOTOFF)
|
2411 |
|
|
|
2412 |
|
|
#define GOTOFF_P(OP) \
|
2413 |
|
|
(GET_CODE (OP) == CONST \
|
2414 |
|
|
&& (UNSPEC_GOTOFF_P (XEXP ((OP), 0)) \
|
2415 |
|
|
|| (GET_CODE (XEXP ((OP), 0)) == PLUS \
|
2416 |
|
|
&& UNSPEC_GOTOFF_P (XEXP (XEXP ((OP), 0), 0)) \
|
2417 |
|
|
&& GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT)))
|
2418 |
|
|
|
2419 |
|
|
#define PIC_ADDR_P(OP) \
|
2420 |
|
|
(GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == UNSPEC \
|
2421 |
|
|
&& XINT (XEXP ((OP), 0), 1) == UNSPEC_PIC)
|
2422 |
|
|
|
2423 |
|
|
#define PIC_OFFSET_P(OP) \
|
2424 |
|
|
(PIC_ADDR_P (OP) \
|
2425 |
|
|
&& GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) == MINUS \
|
2426 |
|
|
&& reg_mentioned_p (pc_rtx, XEXP (XVECEXP (XEXP ((OP), 0), 0, 0), 1)))
|
2427 |
|
|
|
2428 |
|
|
#define PIC_DIRECT_ADDR_P(OP) \
|
2429 |
|
|
(PIC_ADDR_P (OP) && GET_CODE (XVECEXP (XEXP ((OP), 0), 0, 0)) != MINUS)
|
2430 |
|
|
|
2431 |
|
|
#define NON_PIC_REFERENCE_P(OP) \
|
2432 |
|
|
(GET_CODE (OP) == LABEL_REF || GET_CODE (OP) == SYMBOL_REF \
|
2433 |
|
|
|| (GET_CODE (OP) == CONST \
|
2434 |
|
|
&& (GET_CODE (XEXP ((OP), 0)) == LABEL_REF \
|
2435 |
|
|
|| GET_CODE (XEXP ((OP), 0)) == SYMBOL_REF \
|
2436 |
|
|
|| DATALABEL_REF_NO_CONST_P (XEXP ((OP), 0)))) \
|
2437 |
|
|
|| (GET_CODE (OP) == CONST && GET_CODE (XEXP ((OP), 0)) == PLUS \
|
2438 |
|
|
&& (GET_CODE (XEXP (XEXP ((OP), 0), 0)) == SYMBOL_REF \
|
2439 |
|
|
|| GET_CODE (XEXP (XEXP ((OP), 0), 0)) == LABEL_REF \
|
2440 |
|
|
|| DATALABEL_REF_NO_CONST_P (XEXP (XEXP ((OP), 0), 0))) \
|
2441 |
|
|
&& GET_CODE (XEXP (XEXP ((OP), 0), 1)) == CONST_INT))
|
2442 |
|
|
|
2443 |
|
|
#define PIC_REFERENCE_P(OP) \
|
2444 |
|
|
(GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) \
|
2445 |
|
|
|| GOTOFF_P (OP) || PIC_ADDR_P (OP))
|
2446 |
|
|
|
2447 |
|
|
#define MOVI_SHORI_BASE_OPERAND_P(OP) \
|
2448 |
|
|
(flag_pic \
|
2449 |
|
|
? (GOT_ENTRY_P (OP) || GOTPLT_ENTRY_P (OP) || GOTOFF_P (OP) \
|
2450 |
|
|
|| PIC_OFFSET_P (OP)) \
|
2451 |
|
|
: NON_PIC_REFERENCE_P (OP))
|
2452 |
|
|
|
2453 |
|
|
/* The `Csy' constraint is a label or a symbol. */
|
2454 |
|
|
#define EXTRA_CONSTRAINT_Csy(OP) \
|
2455 |
|
|
(NON_PIC_REFERENCE_P (OP) || PIC_DIRECT_ADDR_P (OP))
|
2456 |
|
|
|
2457 |
|
|
/* A zero in any shape or form. */
|
2458 |
|
|
#define EXTRA_CONSTRAINT_Z(OP) \
|
2459 |
|
|
((OP) == CONST0_RTX (GET_MODE (OP)))
|
2460 |
|
|
|
2461 |
|
|
/* Any vector constant we can handle. */
|
2462 |
|
|
#define EXTRA_CONSTRAINT_W(OP) \
|
2463 |
|
|
(GET_CODE (OP) == CONST_VECTOR \
|
2464 |
|
|
&& (sh_rep_vec ((OP), VOIDmode) \
|
2465 |
|
|
|| (HOST_BITS_PER_WIDE_INT >= 64 \
|
2466 |
|
|
? sh_const_vec ((OP), VOIDmode) \
|
2467 |
|
|
: sh_1el_vec ((OP), VOIDmode))))
|
2468 |
|
|
|
2469 |
|
|
/* A non-explicit constant that can be loaded directly into a general purpose
|
2470 |
|
|
register. This is like 's' except we don't allow PIC_DIRECT_ADDR_P. */
|
2471 |
|
|
#define EXTRA_CONSTRAINT_Cpg(OP) \
|
2472 |
|
|
(CONSTANT_P (OP) \
|
2473 |
|
|
&& GET_CODE (OP) != CONST_INT \
|
2474 |
|
|
&& GET_CODE (OP) != CONST_DOUBLE \
|
2475 |
|
|
&& (!flag_pic \
|
2476 |
|
|
|| (LEGITIMATE_PIC_OPERAND_P (OP) \
|
2477 |
|
|
&& (! PIC_ADDR_P (OP) || PIC_OFFSET_P (OP)) \
|
2478 |
|
|
&& GET_CODE (OP) != LABEL_REF)))
|
2479 |
|
|
#define EXTRA_CONSTRAINT_C(OP, STR) \
|
2480 |
|
|
((STR)[1] == 's' && (STR)[2] == 's' ? EXTRA_CONSTRAINT_Css (OP) \
|
2481 |
|
|
: (STR)[1] == 's' && (STR)[2] == 'u' ? EXTRA_CONSTRAINT_Csu (OP) \
|
2482 |
|
|
: (STR)[1] == 's' && (STR)[2] == 'y' ? EXTRA_CONSTRAINT_Csy (OP) \
|
2483 |
|
|
: (STR)[1] == 'p' && (STR)[2] == 'g' ? EXTRA_CONSTRAINT_Cpg (OP) \
|
2484 |
|
|
: 0)
|
2485 |
|
|
|
2486 |
|
|
#define EXTRA_MEMORY_CONSTRAINT(C,STR) ((C) == 'S')
|
2487 |
|
|
#define EXTRA_CONSTRAINT_Sr0(OP) \
|
2488 |
|
|
(memory_operand((OP), GET_MODE (OP)) \
|
2489 |
|
|
&& ! refers_to_regno_p (R0_REG, R0_REG + 1, OP, (rtx *)0))
|
2490 |
|
|
#define EXTRA_CONSTRAINT_Sua(OP) \
|
2491 |
|
|
(memory_operand((OP), GET_MODE (OP)) \
|
2492 |
|
|
&& GET_CODE (XEXP (OP, 0)) != PLUS)
|
2493 |
|
|
#define EXTRA_CONSTRAINT_S(OP, STR) \
|
2494 |
|
|
((STR)[1] == 'r' && (STR)[2] == '0' ? EXTRA_CONSTRAINT_Sr0 (OP) \
|
2495 |
|
|
: (STR)[1] == 'u' && (STR)[2] == 'a' ? EXTRA_CONSTRAINT_Sua (OP) \
|
2496 |
|
|
: 0)
|
2497 |
|
|
|
2498 |
|
|
#define EXTRA_CONSTRAINT_STR(OP, C, STR) \
|
2499 |
|
|
((C) == 'Q' ? EXTRA_CONSTRAINT_Q (OP) \
|
2500 |
|
|
: (C) == 'A' ? EXTRA_CONSTRAINT_A ((OP), (STR)) \
|
2501 |
|
|
: (C) == 'B' ? EXTRA_CONSTRAINT_B ((OP), (STR)) \
|
2502 |
|
|
: (C) == 'C' ? EXTRA_CONSTRAINT_C ((OP), (STR)) \
|
2503 |
|
|
: (C) == 'S' ? EXTRA_CONSTRAINT_S ((OP), (STR)) \
|
2504 |
|
|
: (C) == 'W' ? EXTRA_CONSTRAINT_W (OP) \
|
2505 |
|
|
: (C) == 'Z' ? EXTRA_CONSTRAINT_Z (OP) \
|
2506 |
|
|
: 0)
|
2507 |
|
|
|
2508 |
|
|
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
|
2509 |
|
|
that is a valid memory address for an instruction.
|
2510 |
|
|
The MODE argument is the machine mode for the MEM expression
|
2511 |
|
|
that wants to use this address. */
|
2512 |
|
|
|
2513 |
|
|
#define MODE_DISP_OK_4(X,MODE) \
|
2514 |
|
|
(GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
|
2515 |
|
|
&& ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode))
|
2516 |
|
|
|
2517 |
|
|
#define MODE_DISP_OK_8(X,MODE) \
|
2518 |
|
|
((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
|
2519 |
|
|
&& ! (INTVAL(X) & 3) && ! (TARGET_SH4 && (MODE) == DFmode))
|
2520 |
|
|
|
2521 |
|
|
#undef MODE_DISP_OK_4
|
2522 |
|
|
#define MODE_DISP_OK_4(X,MODE) \
|
2523 |
|
|
((GET_MODE_SIZE (MODE) == 4 && (unsigned) INTVAL (X) < 64 \
|
2524 |
|
|
&& ! (INTVAL (X) & 3) && ! (TARGET_SH2E && (MODE) == SFmode)) \
|
2525 |
|
|
|| ((GET_MODE_SIZE(MODE)==4) && ((unsigned)INTVAL(X)<16383) \
|
2526 |
|
|
&& ! (INTVAL(X) & 3) && TARGET_SH2A))
|
2527 |
|
|
|
2528 |
|
|
#undef MODE_DISP_OK_8
|
2529 |
|
|
#define MODE_DISP_OK_8(X,MODE) \
|
2530 |
|
|
(((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<60) \
|
2531 |
|
|
&& ! (INTVAL(X) & 3) && ! ((TARGET_SH4 || TARGET_SH2A) && (MODE) == DFmode)) \
|
2532 |
|
|
|| ((GET_MODE_SIZE(MODE)==8) && ((unsigned)INTVAL(X)<8192) \
|
2533 |
|
|
&& ! (INTVAL(X) & (TARGET_SH2A_DOUBLE ? 7 : 3)) && (TARGET_SH2A && (MODE) == DFmode)))
|
2534 |
|
|
|
2535 |
|
|
#define BASE_REGISTER_RTX_P(X) \
|
2536 |
|
|
((GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
|
2537 |
|
|
|| (GET_CODE (X) == SUBREG \
|
2538 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
|
2539 |
|
|
GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
|
2540 |
|
|
&& GET_CODE (SUBREG_REG (X)) == REG \
|
2541 |
|
|
&& REG_OK_FOR_BASE_P (SUBREG_REG (X))))
|
2542 |
|
|
|
2543 |
|
|
/* Since this must be r0, which is a single register class, we must check
|
2544 |
|
|
SUBREGs more carefully, to be sure that we don't accept one that extends
|
2545 |
|
|
outside the class. */
|
2546 |
|
|
#define INDEX_REGISTER_RTX_P(X) \
|
2547 |
|
|
((GET_CODE (X) == REG && REG_OK_FOR_INDEX_P (X)) \
|
2548 |
|
|
|| (GET_CODE (X) == SUBREG \
|
2549 |
|
|
&& TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE ((X))), \
|
2550 |
|
|
GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (X)))) \
|
2551 |
|
|
&& GET_CODE (SUBREG_REG (X)) == REG \
|
2552 |
|
|
&& SUBREG_OK_FOR_INDEX_P (SUBREG_REG (X), SUBREG_BYTE (X))))
|
2553 |
|
|
|
2554 |
|
|
/* Jump to LABEL if X is a valid address RTX. This must also take
|
2555 |
|
|
REG_OK_STRICT into account when deciding about valid registers, but it uses
|
2556 |
|
|
the above macros so we are in luck.
|
2557 |
|
|
|
2558 |
|
|
Allow REG
|
2559 |
|
|
REG+disp
|
2560 |
|
|
REG+r0
|
2561 |
|
|
REG++
|
2562 |
|
|
--REG */
|
2563 |
|
|
|
2564 |
|
|
/* ??? The SH2e does not have the REG+disp addressing mode when loading values
|
2565 |
|
|
into the FRx registers. We implement this by setting the maximum offset
|
2566 |
|
|
to zero when the value is SFmode. This also restricts loading of SFmode
|
2567 |
|
|
values into the integer registers, but that can't be helped. */
|
2568 |
|
|
|
2569 |
|
|
/* The SH allows a displacement in a QI or HI amode, but only when the
|
2570 |
|
|
other operand is R0. GCC doesn't handle this very well, so we forgo
|
2571 |
|
|
all of that.
|
2572 |
|
|
|
2573 |
|
|
A legitimate index for a QI or HI is 0, SI can be any number 0..63,
|
2574 |
|
|
DI can be any number 0..60. */
|
2575 |
|
|
|
2576 |
|
|
#define GO_IF_LEGITIMATE_INDEX(MODE, OP, LABEL) \
|
2577 |
|
|
do { \
|
2578 |
|
|
if (GET_CODE (OP) == CONST_INT) \
|
2579 |
|
|
{ \
|
2580 |
|
|
if (TARGET_SHMEDIA) \
|
2581 |
|
|
{ \
|
2582 |
|
|
int MODE_SIZE; \
|
2583 |
|
|
/* Check if this the address of an unaligned load / store. */\
|
2584 |
|
|
if ((MODE) == VOIDmode) \
|
2585 |
|
|
{ \
|
2586 |
|
|
if (CONST_OK_FOR_I06 (INTVAL (OP))) \
|
2587 |
|
|
goto LABEL; \
|
2588 |
|
|
break; \
|
2589 |
|
|
} \
|
2590 |
|
|
MODE_SIZE = GET_MODE_SIZE (MODE); \
|
2591 |
|
|
if (! (INTVAL (OP) & (MODE_SIZE - 1)) \
|
2592 |
|
|
&& INTVAL (OP) >= -512 * MODE_SIZE \
|
2593 |
|
|
&& INTVAL (OP) < 512 * MODE_SIZE) \
|
2594 |
|
|
goto LABEL; \
|
2595 |
|
|
else \
|
2596 |
|
|
break; \
|
2597 |
|
|
} \
|
2598 |
|
|
if (MODE_DISP_OK_4 ((OP), (MODE))) goto LABEL; \
|
2599 |
|
|
if (MODE_DISP_OK_8 ((OP), (MODE))) goto LABEL; \
|
2600 |
|
|
} \
|
2601 |
|
|
} while(0)
|
2602 |
|
|
|
2603 |
|
|
#define ALLOW_INDEXED_ADDRESS \
|
2604 |
|
|
((!TARGET_SHMEDIA32 && !TARGET_SHCOMPACT) || TARGET_ALLOW_INDEXED_ADDRESS)
|
2605 |
|
|
|
2606 |
|
|
#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
|
2607 |
|
|
{ \
|
2608 |
|
|
if (BASE_REGISTER_RTX_P (X)) \
|
2609 |
|
|
goto LABEL; \
|
2610 |
|
|
else if ((GET_CODE (X) == POST_INC || GET_CODE (X) == PRE_DEC) \
|
2611 |
|
|
&& ! TARGET_SHMEDIA \
|
2612 |
|
|
&& BASE_REGISTER_RTX_P (XEXP ((X), 0))) \
|
2613 |
|
|
goto LABEL; \
|
2614 |
|
|
else if (GET_CODE (X) == PLUS \
|
2615 |
|
|
&& ((MODE) != PSImode || reload_completed)) \
|
2616 |
|
|
{ \
|
2617 |
|
|
rtx xop0 = XEXP ((X), 0); \
|
2618 |
|
|
rtx xop1 = XEXP ((X), 1); \
|
2619 |
|
|
if (GET_MODE_SIZE (MODE) <= 8 && BASE_REGISTER_RTX_P (xop0)) \
|
2620 |
|
|
GO_IF_LEGITIMATE_INDEX ((MODE), xop1, LABEL); \
|
2621 |
|
|
if ((ALLOW_INDEXED_ADDRESS || GET_MODE (X) == DImode \
|
2622 |
|
|
|| ((xop0 == stack_pointer_rtx \
|
2623 |
|
|
|| xop0 == hard_frame_pointer_rtx) \
|
2624 |
|
|
&& REG_P (xop1) && REGNO (xop1) == R0_REG) \
|
2625 |
|
|
|| ((xop1 == stack_pointer_rtx \
|
2626 |
|
|
|| xop1 == hard_frame_pointer_rtx) \
|
2627 |
|
|
&& REG_P (xop0) && REGNO (xop0) == R0_REG)) \
|
2628 |
|
|
&& ((!TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 4) \
|
2629 |
|
|
|| (TARGET_SHMEDIA && GET_MODE_SIZE (MODE) <= 8) \
|
2630 |
|
|
|| ((TARGET_SH4 || TARGET_SH2A_DOUBLE) \
|
2631 |
|
|
&& TARGET_FMOVD && MODE == DFmode))) \
|
2632 |
|
|
{ \
|
2633 |
|
|
if (BASE_REGISTER_RTX_P (xop1) && INDEX_REGISTER_RTX_P (xop0))\
|
2634 |
|
|
goto LABEL; \
|
2635 |
|
|
if (INDEX_REGISTER_RTX_P (xop1) && BASE_REGISTER_RTX_P (xop0))\
|
2636 |
|
|
goto LABEL; \
|
2637 |
|
|
} \
|
2638 |
|
|
} \
|
2639 |
|
|
}
|
2640 |
|
|
|
2641 |
|
|
/* Try machine-dependent ways of modifying an illegitimate address
|
2642 |
|
|
to be legitimate. If we find one, return the new, valid address.
|
2643 |
|
|
This macro is used in only one place: `memory_address' in explow.c.
|
2644 |
|
|
|
2645 |
|
|
OLDX is the address as it was before break_out_memory_refs was called.
|
2646 |
|
|
In some cases it is useful to look at this to decide what needs to be done.
|
2647 |
|
|
|
2648 |
|
|
MODE and WIN are passed so that this macro can use
|
2649 |
|
|
GO_IF_LEGITIMATE_ADDRESS.
|
2650 |
|
|
|
2651 |
|
|
It is always safe for this macro to do nothing. It exists to recognize
|
2652 |
|
|
opportunities to optimize the output.
|
2653 |
|
|
|
2654 |
|
|
For the SH, if X is almost suitable for indexing, but the offset is
|
2655 |
|
|
out of range, convert it into a normal form so that cse has a chance
|
2656 |
|
|
of reducing the number of address registers used. */
|
2657 |
|
|
|
2658 |
|
|
#define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
|
2659 |
|
|
{ \
|
2660 |
|
|
if (flag_pic) \
|
2661 |
|
|
(X) = legitimize_pic_address (OLDX, MODE, NULL_RTX); \
|
2662 |
|
|
if (GET_CODE (X) == PLUS \
|
2663 |
|
|
&& (GET_MODE_SIZE (MODE) == 4 \
|
2664 |
|
|
|| GET_MODE_SIZE (MODE) == 8) \
|
2665 |
|
|
&& GET_CODE (XEXP ((X), 1)) == CONST_INT \
|
2666 |
|
|
&& BASE_REGISTER_RTX_P (XEXP ((X), 0)) \
|
2667 |
|
|
&& ! TARGET_SHMEDIA \
|
2668 |
|
|
&& ! ((TARGET_SH4 || TARGET_SH2A_DOUBLE) && (MODE) == DFmode) \
|
2669 |
|
|
&& ! (TARGET_SH2E && (MODE) == SFmode)) \
|
2670 |
|
|
{ \
|
2671 |
|
|
rtx index_rtx = XEXP ((X), 1); \
|
2672 |
|
|
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
|
2673 |
|
|
rtx sum; \
|
2674 |
|
|
\
|
2675 |
|
|
GO_IF_LEGITIMATE_INDEX ((MODE), index_rtx, WIN); \
|
2676 |
|
|
/* On rare occasions, we might get an unaligned pointer \
|
2677 |
|
|
that is indexed in a way to give an aligned address. \
|
2678 |
|
|
Therefore, keep the lower two bits in offset_base. */ \
|
2679 |
|
|
/* Instead of offset_base 128..131 use 124..127, so that \
|
2680 |
|
|
simple add suffices. */ \
|
2681 |
|
|
if (offset > 127) \
|
2682 |
|
|
{ \
|
2683 |
|
|
offset_base = ((offset + 4) & ~60) - 4; \
|
2684 |
|
|
} \
|
2685 |
|
|
else \
|
2686 |
|
|
offset_base = offset & ~60; \
|
2687 |
|
|
/* Sometimes the normal form does not suit DImode. We \
|
2688 |
|
|
could avoid that by using smaller ranges, but that \
|
2689 |
|
|
would give less optimized code when SImode is \
|
2690 |
|
|
prevalent. */ \
|
2691 |
|
|
if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
|
2692 |
|
|
{ \
|
2693 |
|
|
sum = expand_binop (Pmode, add_optab, XEXP ((X), 0), \
|
2694 |
|
|
GEN_INT (offset_base), NULL_RTX, 0, \
|
2695 |
|
|
OPTAB_LIB_WIDEN); \
|
2696 |
|
|
\
|
2697 |
|
|
(X) = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base)); \
|
2698 |
|
|
goto WIN; \
|
2699 |
|
|
} \
|
2700 |
|
|
} \
|
2701 |
|
|
}
|
2702 |
|
|
|
2703 |
|
|
/* A C compound statement that attempts to replace X, which is an address
|
2704 |
|
|
that needs reloading, with a valid memory address for an operand of
|
2705 |
|
|
mode MODE. WIN is a C statement label elsewhere in the code.
|
2706 |
|
|
|
2707 |
|
|
Like for LEGITIMIZE_ADDRESS, for the SH we try to get a normal form
|
2708 |
|
|
of the address. That will allow inheritance of the address reloads. */
|
2709 |
|
|
|
2710 |
|
|
#define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
|
2711 |
|
|
{ \
|
2712 |
|
|
if (GET_CODE (X) == PLUS \
|
2713 |
|
|
&& (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
|
2714 |
|
|
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
2715 |
|
|
&& BASE_REGISTER_RTX_P (XEXP (X, 0)) \
|
2716 |
|
|
&& ! TARGET_SHMEDIA \
|
2717 |
|
|
&& ! (TARGET_SH4 && (MODE) == DFmode) \
|
2718 |
|
|
&& ! ((MODE) == PSImode && (TYPE) == RELOAD_FOR_INPUT_ADDRESS) \
|
2719 |
|
|
&& (ALLOW_INDEXED_ADDRESS \
|
2720 |
|
|
|| XEXP ((X), 0) == stack_pointer_rtx \
|
2721 |
|
|
|| XEXP ((X), 0) == hard_frame_pointer_rtx)) \
|
2722 |
|
|
{ \
|
2723 |
|
|
rtx index_rtx = XEXP (X, 1); \
|
2724 |
|
|
HOST_WIDE_INT offset = INTVAL (index_rtx), offset_base; \
|
2725 |
|
|
rtx sum; \
|
2726 |
|
|
\
|
2727 |
|
|
if (TARGET_SH2A && (MODE) == DFmode && (offset & 0x7)) \
|
2728 |
|
|
{ \
|
2729 |
|
|
push_reload (X, NULL_RTX, &X, NULL, \
|
2730 |
|
|
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
|
2731 |
|
|
(TYPE)); \
|
2732 |
|
|
goto WIN; \
|
2733 |
|
|
} \
|
2734 |
|
|
if (TARGET_SH2E && MODE == SFmode) \
|
2735 |
|
|
{ \
|
2736 |
|
|
X = copy_rtx (X); \
|
2737 |
|
|
push_reload (index_rtx, NULL_RTX, &XEXP (X, 1), NULL, \
|
2738 |
|
|
R0_REGS, Pmode, VOIDmode, 0, 0, (OPNUM), \
|
2739 |
|
|
(TYPE)); \
|
2740 |
|
|
goto WIN; \
|
2741 |
|
|
} \
|
2742 |
|
|
/* Instead of offset_base 128..131 use 124..127, so that \
|
2743 |
|
|
simple add suffices. */ \
|
2744 |
|
|
if (offset > 127) \
|
2745 |
|
|
{ \
|
2746 |
|
|
offset_base = ((offset + 4) & ~60) - 4; \
|
2747 |
|
|
} \
|
2748 |
|
|
else \
|
2749 |
|
|
offset_base = offset & ~60; \
|
2750 |
|
|
/* Sometimes the normal form does not suit DImode. We \
|
2751 |
|
|
could avoid that by using smaller ranges, but that \
|
2752 |
|
|
would give less optimized code when SImode is \
|
2753 |
|
|
prevalent. */ \
|
2754 |
|
|
if (GET_MODE_SIZE (MODE) + offset - offset_base <= 64) \
|
2755 |
|
|
{ \
|
2756 |
|
|
sum = gen_rtx_PLUS (Pmode, XEXP (X, 0), \
|
2757 |
|
|
GEN_INT (offset_base)); \
|
2758 |
|
|
X = gen_rtx_PLUS (Pmode, sum, GEN_INT (offset - offset_base));\
|
2759 |
|
|
push_reload (sum, NULL_RTX, &XEXP (X, 0), NULL, \
|
2760 |
|
|
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), \
|
2761 |
|
|
(TYPE)); \
|
2762 |
|
|
goto WIN; \
|
2763 |
|
|
} \
|
2764 |
|
|
} \
|
2765 |
|
|
/* We must re-recognize what we created before. */ \
|
2766 |
|
|
else if (GET_CODE (X) == PLUS \
|
2767 |
|
|
&& (GET_MODE_SIZE (MODE) == 4 || GET_MODE_SIZE (MODE) == 8) \
|
2768 |
|
|
&& GET_CODE (XEXP (X, 0)) == PLUS \
|
2769 |
|
|
&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
|
2770 |
|
|
&& BASE_REGISTER_RTX_P (XEXP (XEXP (X, 0), 0)) \
|
2771 |
|
|
&& GET_CODE (XEXP (X, 1)) == CONST_INT \
|
2772 |
|
|
&& ! TARGET_SHMEDIA \
|
2773 |
|
|
&& ! (TARGET_SH2E && MODE == SFmode)) \
|
2774 |
|
|
{ \
|
2775 |
|
|
/* Because this address is so complex, we know it must have \
|
2776 |
|
|
been created by LEGITIMIZE_RELOAD_ADDRESS before; thus, \
|
2777 |
|
|
it is already unshared, and needs no further unsharing. */ \
|
2778 |
|
|
push_reload (XEXP ((X), 0), NULL_RTX, &XEXP ((X), 0), NULL, \
|
2779 |
|
|
BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, (OPNUM), (TYPE));\
|
2780 |
|
|
goto WIN; \
|
2781 |
|
|
} \
|
2782 |
|
|
}
|
2783 |
|
|
|
2784 |
|
|
/* Go to LABEL if ADDR (a legitimate address expression)
|
2785 |
|
|
has an effect that depends on the machine mode it is used for.
|
2786 |
|
|
|
2787 |
|
|
??? Strictly speaking, we should also include all indexed addressing,
|
2788 |
|
|
because the index scale factor is the length of the operand.
|
2789 |
|
|
However, the impact of GO_IF_MODE_DEPENDENT_ADDRESS would be to
|
2790 |
|
|
high if we did that. So we rely on reload to fix things up. */
|
2791 |
|
|
|
2792 |
|
|
#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
|
2793 |
|
|
{ \
|
2794 |
|
|
if (GET_CODE(ADDR) == PRE_DEC || GET_CODE(ADDR) == POST_INC) \
|
2795 |
|
|
goto LABEL; \
|
2796 |
|
|
}
|
2797 |
|
|
|
2798 |
|
|
/* Specify the machine mode that this machine uses
|
2799 |
|
|
for the index in the tablejump instruction. */
|
2800 |
|
|
#define CASE_VECTOR_MODE ((! optimize || TARGET_BIGTABLE) ? SImode : HImode)
|
2801 |
|
|
|
2802 |
|
|
#define CASE_VECTOR_SHORTEN_MODE(MIN_OFFSET, MAX_OFFSET, BODY) \
|
2803 |
|
|
((MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 127 \
|
2804 |
|
|
? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 0, QImode) \
|
2805 |
|
|
: (MIN_OFFSET) >= 0 && (MAX_OFFSET) <= 255 \
|
2806 |
|
|
? (ADDR_DIFF_VEC_FLAGS (BODY).offset_unsigned = 1, QImode) \
|
2807 |
|
|
: (MIN_OFFSET) >= -32768 && (MAX_OFFSET) <= 32767 ? HImode \
|
2808 |
|
|
: SImode)
|
2809 |
|
|
|
2810 |
|
|
/* Define as C expression which evaluates to nonzero if the tablejump
|
2811 |
|
|
instruction expects the table to contain offsets from the address of the
|
2812 |
|
|
table.
|
2813 |
|
|
Do not define this if the table should contain absolute addresses. */
|
2814 |
|
|
#define CASE_VECTOR_PC_RELATIVE 1
|
2815 |
|
|
|
2816 |
|
|
/* Define it here, so that it doesn't get bumped to 64-bits on SHmedia. */
|
2817 |
|
|
#define FLOAT_TYPE_SIZE 32
|
2818 |
|
|
|
2819 |
|
|
/* Since the SH2e has only `float' support, it is desirable to make all
|
2820 |
|
|
floating point types equivalent to `float'. */
|
2821 |
|
|
#define DOUBLE_TYPE_SIZE ((TARGET_SH2E && ! TARGET_SH4 && ! TARGET_SH2A_DOUBLE) ? 32 : 64)
|
2822 |
|
|
|
2823 |
|
|
#if defined(__SH2E__) || defined(__SH3E__) || defined( __SH4_SINGLE_ONLY__)
|
2824 |
|
|
#define LIBGCC2_DOUBLE_TYPE_SIZE 32
|
2825 |
|
|
#else
|
2826 |
|
|
#define LIBGCC2_DOUBLE_TYPE_SIZE 64
|
2827 |
|
|
#endif
|
2828 |
|
|
|
2829 |
|
|
/* 'char' is signed by default. */
|
2830 |
|
|
#define DEFAULT_SIGNED_CHAR 1
|
2831 |
|
|
|
2832 |
|
|
/* The type of size_t unsigned int. */
|
2833 |
|
|
#define SIZE_TYPE (TARGET_SH5 ? "long unsigned int" : "unsigned int")
|
2834 |
|
|
|
2835 |
|
|
#undef PTRDIFF_TYPE
|
2836 |
|
|
#define PTRDIFF_TYPE (TARGET_SH5 ? "long int" : "int")
|
2837 |
|
|
|
2838 |
|
|
#define WCHAR_TYPE "short unsigned int"
|
2839 |
|
|
#define WCHAR_TYPE_SIZE 16
|
2840 |
|
|
|
2841 |
|
|
#define SH_ELF_WCHAR_TYPE "long int"
|
2842 |
|
|
|
2843 |
|
|
/* Max number of bytes we can move from memory to memory
|
2844 |
|
|
in one reasonably fast instruction. */
|
2845 |
|
|
#define MOVE_MAX (TARGET_SHMEDIA ? 8 : 4)
|
2846 |
|
|
|
2847 |
|
|
/* Maximum value possibly taken by MOVE_MAX. Must be defined whenever
|
2848 |
|
|
MOVE_MAX is not a compile-time constant. */
|
2849 |
|
|
#define MAX_MOVE_MAX 8
|
2850 |
|
|
|
2851 |
|
|
/* Max number of bytes we want move_by_pieces to be able to copy
|
2852 |
|
|
efficiently. */
|
2853 |
|
|
#define MOVE_MAX_PIECES (TARGET_SH4 || TARGET_SHMEDIA ? 8 : 4)
|
2854 |
|
|
|
2855 |
|
|
/* Define if operations between registers always perform the operation
|
2856 |
|
|
on the full register even if a narrower mode is specified. */
|
2857 |
|
|
#define WORD_REGISTER_OPERATIONS
|
2858 |
|
|
|
2859 |
|
|
/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
|
2860 |
|
|
will either zero-extend or sign-extend. The value of this macro should
|
2861 |
|
|
be the code that says which one of the two operations is implicitly
|
2862 |
|
|
done, UNKNOWN if none. */
|
2863 |
|
|
/* For SHmedia, we can truncate to QImode easier using zero extension. */
|
2864 |
|
|
/* FP registers can load SImode values, but don't implicitly sign-extend
|
2865 |
|
|
them to DImode. */
|
2866 |
|
|
#define LOAD_EXTEND_OP(MODE) \
|
2867 |
|
|
(((MODE) == QImode && TARGET_SHMEDIA) ? ZERO_EXTEND \
|
2868 |
|
|
: (MODE) != SImode ? SIGN_EXTEND : UNKNOWN)
|
2869 |
|
|
|
2870 |
|
|
/* Define if loading short immediate values into registers sign extends. */
|
2871 |
|
|
#define SHORT_IMMEDIATES_SIGN_EXTEND
|
2872 |
|
|
|
2873 |
|
|
/* Nonzero if access to memory by bytes is no faster than for words. */
|
2874 |
|
|
#define SLOW_BYTE_ACCESS 1
|
2875 |
|
|
|
2876 |
|
|
/* Immediate shift counts are truncated by the output routines (or was it
|
2877 |
|
|
the assembler?). Shift counts in a register are truncated by SH. Note
|
2878 |
|
|
that the native compiler puts too large (> 32) immediate shift counts
|
2879 |
|
|
into a register and shifts by the register, letting the SH decide what
|
2880 |
|
|
to do instead of doing that itself. */
|
2881 |
|
|
/* ??? The library routines in lib1funcs.asm truncate the shift count.
|
2882 |
|
|
However, the SH3 has hardware shifts that do not truncate exactly as gcc
|
2883 |
|
|
expects - the sign bit is significant - so it appears that we need to
|
2884 |
|
|
leave this zero for correct SH3 code. */
|
2885 |
|
|
#define SHIFT_COUNT_TRUNCATED (! TARGET_SH3 && ! TARGET_SH2A)
|
2886 |
|
|
|
2887 |
|
|
/* All integers have the same format so truncation is easy. */
|
2888 |
|
|
/* But SHmedia must sign-extend DImode when truncating to SImode. */
|
2889 |
|
|
#define TRULY_NOOP_TRUNCATION(OUTPREC,INPREC) \
|
2890 |
|
|
(!TARGET_SHMEDIA || (INPREC) < 64 || (OUTPREC) >= 64)
|
2891 |
|
|
|
2892 |
|
|
/* Define this if addresses of constant functions
|
2893 |
|
|
shouldn't be put through pseudo regs where they can be cse'd.
|
2894 |
|
|
Desirable on machines where ordinary constants are expensive
|
2895 |
|
|
but a CALL with constant address is cheap. */
|
2896 |
|
|
/*#define NO_FUNCTION_CSE 1*/
|
2897 |
|
|
|
2898 |
|
|
/* The machine modes of pointers and functions. */
|
2899 |
|
|
#define Pmode (TARGET_SHMEDIA64 ? DImode : SImode)
|
2900 |
|
|
#define FUNCTION_MODE Pmode
|
2901 |
|
|
|
2902 |
|
|
/* The multiply insn on the SH1 and the divide insns on the SH1 and SH2
|
2903 |
|
|
are actually function calls with some special constraints on arguments
|
2904 |
|
|
and register usage.
|
2905 |
|
|
|
2906 |
|
|
These macros tell reorg that the references to arguments and
|
2907 |
|
|
register clobbers for insns of type sfunc do not appear to happen
|
2908 |
|
|
until after the millicode call. This allows reorg to put insns
|
2909 |
|
|
which set the argument registers into the delay slot of the millicode
|
2910 |
|
|
call -- thus they act more like traditional CALL_INSNs.
|
2911 |
|
|
|
2912 |
|
|
get_attr_is_sfunc will try to recognize the given insn, so make sure to
|
2913 |
|
|
filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
|
2914 |
|
|
in particular. */
|
2915 |
|
|
|
2916 |
|
|
#define INSN_SETS_ARE_DELAYED(X) \
|
2917 |
|
|
((GET_CODE (X) == INSN \
|
2918 |
|
|
&& GET_CODE (PATTERN (X)) != SEQUENCE \
|
2919 |
|
|
&& GET_CODE (PATTERN (X)) != USE \
|
2920 |
|
|
&& GET_CODE (PATTERN (X)) != CLOBBER \
|
2921 |
|
|
&& get_attr_is_sfunc (X)))
|
2922 |
|
|
|
2923 |
|
|
#define INSN_REFERENCES_ARE_DELAYED(X) \
|
2924 |
|
|
((GET_CODE (X) == INSN \
|
2925 |
|
|
&& GET_CODE (PATTERN (X)) != SEQUENCE \
|
2926 |
|
|
&& GET_CODE (PATTERN (X)) != USE \
|
2927 |
|
|
&& GET_CODE (PATTERN (X)) != CLOBBER \
|
2928 |
|
|
&& get_attr_is_sfunc (X)))
|
2929 |
|
|
|
2930 |
|
|
|
2931 |
|
|
/* Position Independent Code. */
|
2932 |
|
|
|
2933 |
|
|
/* We can't directly access anything that contains a symbol,
|
2934 |
|
|
nor can we indirect via the constant pool. */
|
2935 |
|
|
#define LEGITIMATE_PIC_OPERAND_P(X) \
|
2936 |
|
|
((! nonpic_symbol_mentioned_p (X) \
|
2937 |
|
|
&& (GET_CODE (X) != SYMBOL_REF \
|
2938 |
|
|
|| ! CONSTANT_POOL_ADDRESS_P (X) \
|
2939 |
|
|
|| ! nonpic_symbol_mentioned_p (get_pool_constant (X)))) \
|
2940 |
|
|
|| (TARGET_SHMEDIA && GET_CODE (X) == LABEL_REF))
|
2941 |
|
|
|
2942 |
|
|
#define SYMBOLIC_CONST_P(X) \
|
2943 |
|
|
((GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == LABEL_REF) \
|
2944 |
|
|
&& nonpic_symbol_mentioned_p (X))
|
2945 |
|
|
|
2946 |
|
|
/* Compute extra cost of moving data between one register class
|
2947 |
|
|
and another. */
|
2948 |
|
|
|
2949 |
|
|
/* If SECONDARY*_RELOAD_CLASS says something about the src/dst pair, regclass
|
2950 |
|
|
uses this information. Hence, the general register <-> floating point
|
2951 |
|
|
register information here is not used for SFmode. */
|
2952 |
|
|
|
2953 |
|
|
#define REGCLASS_HAS_GENERAL_REG(CLASS) \
|
2954 |
|
|
((CLASS) == GENERAL_REGS || (CLASS) == R0_REGS \
|
2955 |
|
|
|| (! TARGET_SHMEDIA && (CLASS) == SIBCALL_REGS))
|
2956 |
|
|
|
2957 |
|
|
#define REGCLASS_HAS_FP_REG(CLASS) \
|
2958 |
|
|
((CLASS) == FP0_REGS || (CLASS) == FP_REGS \
|
2959 |
|
|
|| (CLASS) == DF_REGS || (CLASS) == DF_HI_REGS)
|
2960 |
|
|
|
2961 |
|
|
#define REGISTER_MOVE_COST(MODE, SRCCLASS, DSTCLASS) \
|
2962 |
|
|
sh_register_move_cost ((MODE), (SRCCLASS), (DSTCLASS))
|
2963 |
|
|
|
2964 |
|
|
/* ??? Perhaps make MEMORY_MOVE_COST depend on compiler option? This
|
2965 |
|
|
would be so that people with slow memory systems could generate
|
2966 |
|
|
different code that does fewer memory accesses. */
|
2967 |
|
|
|
2968 |
|
|
/* A C expression for the cost of a branch instruction. A value of 1
|
2969 |
|
|
is the default; other values are interpreted relative to that.
|
2970 |
|
|
The SH1 does not have delay slots, hence we get a pipeline stall
|
2971 |
|
|
at every branch. The SH4 is superscalar, so the single delay slot
|
2972 |
|
|
is not sufficient to keep both pipelines filled. */
|
2973 |
|
|
#define BRANCH_COST (TARGET_SH5 ? 1 : ! TARGET_SH2 || TARGET_HARD_SH4 ? 2 : 1)
|
2974 |
|
|
|
2975 |
|
|
/* Assembler output control. */
|
2976 |
|
|
|
2977 |
|
|
/* A C string constant describing how to begin a comment in the target
|
2978 |
|
|
assembler language. The compiler assumes that the comment will end at
|
2979 |
|
|
the end of the line. */
|
2980 |
|
|
#define ASM_COMMENT_START "!"
|
2981 |
|
|
|
2982 |
|
|
#define ASM_APP_ON ""
|
2983 |
|
|
#define ASM_APP_OFF ""
|
2984 |
|
|
#define FILE_ASM_OP "\t.file\n"
|
2985 |
|
|
#define SET_ASM_OP "\t.set\t"
|
2986 |
|
|
|
2987 |
|
|
/* How to change between sections. */
|
2988 |
|
|
|
2989 |
|
|
#define TEXT_SECTION_ASM_OP (TARGET_SHMEDIA32 ? "\t.section\t.text..SHmedia32,\"ax\"" : "\t.text")
|
2990 |
|
|
#define DATA_SECTION_ASM_OP "\t.data"
|
2991 |
|
|
|
2992 |
|
|
#if defined CRT_BEGIN || defined CRT_END
|
2993 |
|
|
/* Arrange for TEXT_SECTION_ASM_OP to be a compile-time constant. */
|
2994 |
|
|
# undef TEXT_SECTION_ASM_OP
|
2995 |
|
|
# if __SHMEDIA__ == 1 && __SH5__ == 32
|
2996 |
|
|
# define TEXT_SECTION_ASM_OP "\t.section\t.text..SHmedia32,\"ax\""
|
2997 |
|
|
# else
|
2998 |
|
|
# define TEXT_SECTION_ASM_OP "\t.text"
|
2999 |
|
|
# endif
|
3000 |
|
|
#endif
|
3001 |
|
|
|
3002 |
|
|
|
3003 |
|
|
/* If defined, a C expression whose value is a string containing the
|
3004 |
|
|
assembler operation to identify the following data as
|
3005 |
|
|
uninitialized global data. If not defined, and neither
|
3006 |
|
|
`ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
|
3007 |
|
|
uninitialized global data will be output in the data section if
|
3008 |
|
|
`-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
|
3009 |
|
|
used. */
|
3010 |
|
|
#ifndef BSS_SECTION_ASM_OP
|
3011 |
|
|
#define BSS_SECTION_ASM_OP "\t.section\t.bss"
|
3012 |
|
|
#endif
|
3013 |
|
|
|
3014 |
|
|
/* Like `ASM_OUTPUT_BSS' except takes the required alignment as a
|
3015 |
|
|
separate, explicit argument. If you define this macro, it is used
|
3016 |
|
|
in place of `ASM_OUTPUT_BSS', and gives you more flexibility in
|
3017 |
|
|
handling the required alignment of the variable. The alignment is
|
3018 |
|
|
specified as the number of bits.
|
3019 |
|
|
|
3020 |
|
|
Try to use function `asm_output_aligned_bss' defined in file
|
3021 |
|
|
`varasm.c' when defining this macro. */
|
3022 |
|
|
#ifndef ASM_OUTPUT_ALIGNED_BSS
|
3023 |
|
|
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
|
3024 |
|
|
asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
|
3025 |
|
|
#endif
|
3026 |
|
|
|
3027 |
|
|
/* Define this so that jump tables go in same section as the current function,
|
3028 |
|
|
which could be text or it could be a user defined section. */
|
3029 |
|
|
#define JUMP_TABLES_IN_TEXT_SECTION 1
|
3030 |
|
|
|
3031 |
|
|
#undef DO_GLOBAL_CTORS_BODY
|
3032 |
|
|
#define DO_GLOBAL_CTORS_BODY \
|
3033 |
|
|
{ \
|
3034 |
|
|
typedef (*pfunc)(); \
|
3035 |
|
|
extern pfunc __ctors[]; \
|
3036 |
|
|
extern pfunc __ctors_end[]; \
|
3037 |
|
|
pfunc *p; \
|
3038 |
|
|
for (p = __ctors_end; p > __ctors; ) \
|
3039 |
|
|
{ \
|
3040 |
|
|
(*--p)(); \
|
3041 |
|
|
} \
|
3042 |
|
|
}
|
3043 |
|
|
|
3044 |
|
|
#undef DO_GLOBAL_DTORS_BODY
|
3045 |
|
|
#define DO_GLOBAL_DTORS_BODY \
|
3046 |
|
|
{ \
|
3047 |
|
|
typedef (*pfunc)(); \
|
3048 |
|
|
extern pfunc __dtors[]; \
|
3049 |
|
|
extern pfunc __dtors_end[]; \
|
3050 |
|
|
pfunc *p; \
|
3051 |
|
|
for (p = __dtors; p < __dtors_end; p++) \
|
3052 |
|
|
{ \
|
3053 |
|
|
(*p)(); \
|
3054 |
|
|
} \
|
3055 |
|
|
}
|
3056 |
|
|
|
3057 |
|
|
#define ASM_OUTPUT_REG_PUSH(file, v) \
|
3058 |
|
|
{ \
|
3059 |
|
|
if (TARGET_SHMEDIA) \
|
3060 |
|
|
{ \
|
3061 |
|
|
fprintf ((file), "\taddi.l\tr15,-8,r15\n"); \
|
3062 |
|
|
fprintf ((file), "\tst.q\tr15,0,r%d\n", (v)); \
|
3063 |
|
|
} \
|
3064 |
|
|
else \
|
3065 |
|
|
fprintf ((file), "\tmov.l\tr%d,@-r15\n", (v)); \
|
3066 |
|
|
}
|
3067 |
|
|
|
3068 |
|
|
#define ASM_OUTPUT_REG_POP(file, v) \
|
3069 |
|
|
{ \
|
3070 |
|
|
if (TARGET_SHMEDIA) \
|
3071 |
|
|
{ \
|
3072 |
|
|
fprintf ((file), "\tld.q\tr15,0,r%d\n", (v)); \
|
3073 |
|
|
fprintf ((file), "\taddi.l\tr15,8,r15\n"); \
|
3074 |
|
|
} \
|
3075 |
|
|
else \
|
3076 |
|
|
fprintf ((file), "\tmov.l\t@r15+,r%d\n", (v)); \
|
3077 |
|
|
}
|
3078 |
|
|
|
3079 |
|
|
/* DBX register number for a given compiler register number. */
|
3080 |
|
|
/* GDB has FPUL at 23 and FP0 at 25, so we must add one to all FP registers
|
3081 |
|
|
to match gdb. */
|
3082 |
|
|
/* svr4.h undefines this macro, yet we really want to use the same numbers
|
3083 |
|
|
for coff as for elf, so we go via another macro: SH_DBX_REGISTER_NUMBER. */
|
3084 |
|
|
/* expand_builtin_init_dwarf_reg_sizes uses this to test if a
|
3085 |
|
|
register exists, so we should return -1 for invalid register numbers. */
|
3086 |
|
|
#define DBX_REGISTER_NUMBER(REGNO) SH_DBX_REGISTER_NUMBER (REGNO)
|
3087 |
|
|
|
3088 |
|
|
/* SHcompact PR_REG used to use the encoding 241, and SHcompact FP registers
|
3089 |
|
|
used to use the encodings 245..260, but that doesn't make sense:
|
3090 |
|
|
PR_REG and PR_MEDIA_REG are actually the same register, and likewise
|
3091 |
|
|
the FP registers stay the same when switching between compact and media
|
3092 |
|
|
mode. Hence, we also need to use the same dwarf frame columns.
|
3093 |
|
|
Likewise, we need to support unwind information for SHmedia registers
|
3094 |
|
|
even in compact code. */
|
3095 |
|
|
#define SH_DBX_REGISTER_NUMBER(REGNO) \
|
3096 |
|
|
(IN_RANGE ((REGNO), \
|
3097 |
|
|
(unsigned HOST_WIDE_INT) FIRST_GENERAL_REG, \
|
3098 |
|
|
FIRST_GENERAL_REG + (TARGET_SH5 ? 63U :15U)) \
|
3099 |
|
|
? ((unsigned) (REGNO) - FIRST_GENERAL_REG) \
|
3100 |
|
|
: ((int) (REGNO) >= FIRST_FP_REG \
|
3101 |
|
|
&& ((int) (REGNO) \
|
3102 |
|
|
<= (FIRST_FP_REG + \
|
3103 |
|
|
((TARGET_SH5 && TARGET_FPU_ANY) ? 63 : TARGET_SH2E ? 15 : -1)))) \
|
3104 |
|
|
? ((unsigned) (REGNO) - FIRST_FP_REG \
|
3105 |
|
|
+ (TARGET_SH5 ? 77 : 25)) \
|
3106 |
|
|
: XD_REGISTER_P (REGNO) \
|
3107 |
|
|
? ((unsigned) (REGNO) - FIRST_XD_REG + (TARGET_SH5 ? 289 : 87)) \
|
3108 |
|
|
: TARGET_REGISTER_P (REGNO) \
|
3109 |
|
|
? ((unsigned) (REGNO) - FIRST_TARGET_REG + 68) \
|
3110 |
|
|
: (REGNO) == PR_REG \
|
3111 |
|
|
? (TARGET_SH5 ? 18 : 17) \
|
3112 |
|
|
: (REGNO) == PR_MEDIA_REG \
|
3113 |
|
|
? (TARGET_SH5 ? 18 : (unsigned) -1) \
|
3114 |
|
|
: (REGNO) == T_REG \
|
3115 |
|
|
? (TARGET_SH5 ? 242 : 18) \
|
3116 |
|
|
: (REGNO) == GBR_REG \
|
3117 |
|
|
? (TARGET_SH5 ? 238 : 19) \
|
3118 |
|
|
: (REGNO) == MACH_REG \
|
3119 |
|
|
? (TARGET_SH5 ? 239 : 20) \
|
3120 |
|
|
: (REGNO) == MACL_REG \
|
3121 |
|
|
? (TARGET_SH5 ? 240 : 21) \
|
3122 |
|
|
: (REGNO) == FPUL_REG \
|
3123 |
|
|
? (TARGET_SH5 ? 244 : 23) \
|
3124 |
|
|
: (unsigned) -1)
|
3125 |
|
|
|
3126 |
|
|
/* This is how to output a reference to a symbol_ref. On SH5,
|
3127 |
|
|
references to non-code symbols must be preceded by `datalabel'. */
|
3128 |
|
|
#define ASM_OUTPUT_SYMBOL_REF(FILE,SYM) \
|
3129 |
|
|
do \
|
3130 |
|
|
{ \
|
3131 |
|
|
if (TARGET_SH5 && !SYMBOL_REF_FUNCTION_P (SYM)) \
|
3132 |
|
|
fputs ("datalabel ", (FILE)); \
|
3133 |
|
|
assemble_name ((FILE), XSTR ((SYM), 0)); \
|
3134 |
|
|
} \
|
3135 |
|
|
while (0)
|
3136 |
|
|
|
3137 |
|
|
/* This is how to output an assembler line
|
3138 |
|
|
that says to advance the location counter
|
3139 |
|
|
to a multiple of 2**LOG bytes. */
|
3140 |
|
|
|
3141 |
|
|
#define ASM_OUTPUT_ALIGN(FILE,LOG) \
|
3142 |
|
|
if ((LOG) != 0) \
|
3143 |
|
|
fprintf ((FILE), "\t.align %d\n", (LOG))
|
3144 |
|
|
|
3145 |
|
|
/* Globalizing directive for a label. */
|
3146 |
|
|
#define GLOBAL_ASM_OP "\t.global\t"
|
3147 |
|
|
|
3148 |
|
|
/* #define ASM_OUTPUT_CASE_END(STREAM,NUM,TABLE) */
|
3149 |
|
|
|
3150 |
|
|
/* Output a relative address table. */
|
3151 |
|
|
|
3152 |
|
|
#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL) \
|
3153 |
|
|
switch (GET_MODE (BODY)) \
|
3154 |
|
|
{ \
|
3155 |
|
|
case SImode: \
|
3156 |
|
|
if (TARGET_SH5) \
|
3157 |
|
|
{ \
|
3158 |
|
|
asm_fprintf ((STREAM), "\t.long\t%LL%d-datalabel %LL%d\n", \
|
3159 |
|
|
(VALUE), (REL)); \
|
3160 |
|
|
break; \
|
3161 |
|
|
} \
|
3162 |
|
|
asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL)); \
|
3163 |
|
|
break; \
|
3164 |
|
|
case HImode: \
|
3165 |
|
|
if (TARGET_SH5) \
|
3166 |
|
|
{ \
|
3167 |
|
|
asm_fprintf ((STREAM), "\t.word\t%LL%d-datalabel %LL%d\n", \
|
3168 |
|
|
(VALUE), (REL)); \
|
3169 |
|
|
break; \
|
3170 |
|
|
} \
|
3171 |
|
|
asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL)); \
|
3172 |
|
|
break; \
|
3173 |
|
|
case QImode: \
|
3174 |
|
|
if (TARGET_SH5) \
|
3175 |
|
|
{ \
|
3176 |
|
|
asm_fprintf ((STREAM), "\t.byte\t%LL%d-datalabel %LL%d\n", \
|
3177 |
|
|
(VALUE), (REL)); \
|
3178 |
|
|
break; \
|
3179 |
|
|
} \
|
3180 |
|
|
asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL)); \
|
3181 |
|
|
break; \
|
3182 |
|
|
default: \
|
3183 |
|
|
break; \
|
3184 |
|
|
}
|
3185 |
|
|
|
3186 |
|
|
/* Output an absolute table element. */
|
3187 |
|
|
|
3188 |
|
|
#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM,VALUE) \
|
3189 |
|
|
if (! optimize || TARGET_BIGTABLE) \
|
3190 |
|
|
asm_fprintf ((STREAM), "\t.long\t%LL%d\n", (VALUE)); \
|
3191 |
|
|
else \
|
3192 |
|
|
asm_fprintf ((STREAM), "\t.word\t%LL%d\n", (VALUE));
|
3193 |
|
|
|
3194 |
|
|
|
3195 |
|
|
/* A C statement to be executed just prior to the output of
|
3196 |
|
|
assembler code for INSN, to modify the extracted operands so
|
3197 |
|
|
they will be output differently.
|
3198 |
|
|
|
3199 |
|
|
Here the argument OPVEC is the vector containing the operands
|
3200 |
|
|
extracted from INSN, and NOPERANDS is the number of elements of
|
3201 |
|
|
the vector which contain meaningful data for this insn.
|
3202 |
|
|
The contents of this vector are what will be used to convert the insn
|
3203 |
|
|
template into assembler code, so you can change the assembler output
|
3204 |
|
|
by changing the contents of the vector. */
|
3205 |
|
|
|
3206 |
|
|
#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
|
3207 |
|
|
final_prescan_insn ((INSN), (OPVEC), (NOPERANDS))
|
3208 |
|
|
|
3209 |
|
|
/* Print operand X (an rtx) in assembler syntax to file FILE.
|
3210 |
|
|
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
|
3211 |
|
|
For `%' followed by punctuation, CODE is the punctuation and X is null. */
|
3212 |
|
|
|
3213 |
|
|
#define PRINT_OPERAND(STREAM, X, CODE) print_operand ((STREAM), (X), (CODE))
|
3214 |
|
|
|
3215 |
|
|
/* Print a memory address as an operand to reference that memory location. */
|
3216 |
|
|
|
3217 |
|
|
#define PRINT_OPERAND_ADDRESS(STREAM,X) print_operand_address ((STREAM), (X))
|
3218 |
|
|
|
3219 |
|
|
#define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
|
3220 |
|
|
((CHAR) == '.' || (CHAR) == '#' || (CHAR) == '@' || (CHAR) == ',' \
|
3221 |
|
|
|| (CHAR) == '$' || (CHAR) == '\'' || (CHAR) == '>')
|
3222 |
|
|
|
3223 |
|
|
/* Recognize machine-specific patterns that may appear within
|
3224 |
|
|
constants. Used for PIC-specific UNSPECs. */
|
3225 |
|
|
#define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
|
3226 |
|
|
do \
|
3227 |
|
|
if (GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
|
3228 |
|
|
{ \
|
3229 |
|
|
switch (XINT ((X), 1)) \
|
3230 |
|
|
{ \
|
3231 |
|
|
case UNSPEC_DATALABEL: \
|
3232 |
|
|
fputs ("datalabel ", (STREAM)); \
|
3233 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3234 |
|
|
break; \
|
3235 |
|
|
case UNSPEC_PIC: \
|
3236 |
|
|
/* GLOBAL_OFFSET_TABLE or local symbols, no suffix. */ \
|
3237 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3238 |
|
|
break; \
|
3239 |
|
|
case UNSPEC_GOT: \
|
3240 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3241 |
|
|
fputs ("@GOT", (STREAM)); \
|
3242 |
|
|
break; \
|
3243 |
|
|
case UNSPEC_GOTOFF: \
|
3244 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3245 |
|
|
fputs ("@GOTOFF", (STREAM)); \
|
3246 |
|
|
break; \
|
3247 |
|
|
case UNSPEC_PLT: \
|
3248 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3249 |
|
|
fputs ("@PLT", (STREAM)); \
|
3250 |
|
|
break; \
|
3251 |
|
|
case UNSPEC_GOTPLT: \
|
3252 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3253 |
|
|
fputs ("@GOTPLT", (STREAM)); \
|
3254 |
|
|
break; \
|
3255 |
|
|
case UNSPEC_DTPOFF: \
|
3256 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3257 |
|
|
fputs ("@DTPOFF", (STREAM)); \
|
3258 |
|
|
break; \
|
3259 |
|
|
case UNSPEC_GOTTPOFF: \
|
3260 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3261 |
|
|
fputs ("@GOTTPOFF", (STREAM)); \
|
3262 |
|
|
break; \
|
3263 |
|
|
case UNSPEC_TPOFF: \
|
3264 |
|
|
output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
|
3265 |
|
|
fputs ("@TPOFF", (STREAM)); \
|
3266 |
|
|
break; \
|
3267 |
|
|
case UNSPEC_CALLER: \
|
3268 |
|
|
{ \
|
3269 |
|
|
char name[32]; \
|
3270 |
|
|
/* LPCS stands for Label for PIC Call Site. */ \
|
3271 |
|
|
ASM_GENERATE_INTERNAL_LABEL \
|
3272 |
|
|
(name, "LPCS", INTVAL (XVECEXP ((X), 0, 0))); \
|
3273 |
|
|
assemble_name ((STREAM), name); \
|
3274 |
|
|
} \
|
3275 |
|
|
break; \
|
3276 |
|
|
default: \
|
3277 |
|
|
goto FAIL; \
|
3278 |
|
|
} \
|
3279 |
|
|
break; \
|
3280 |
|
|
} \
|
3281 |
|
|
else \
|
3282 |
|
|
goto FAIL; \
|
3283 |
|
|
while (0)
|
3284 |
|
|
|
3285 |
|
|
|
3286 |
|
|
extern struct rtx_def *sh_compare_op0;
|
3287 |
|
|
extern struct rtx_def *sh_compare_op1;
|
3288 |
|
|
|
3289 |
|
|
/* Which processor to schedule for. The elements of the enumeration must
|
3290 |
|
|
match exactly the cpu attribute in the sh.md file. */
|
3291 |
|
|
|
3292 |
|
|
enum processor_type {
|
3293 |
|
|
PROCESSOR_SH1,
|
3294 |
|
|
PROCESSOR_SH2,
|
3295 |
|
|
PROCESSOR_SH2E,
|
3296 |
|
|
PROCESSOR_SH2A,
|
3297 |
|
|
PROCESSOR_SH3,
|
3298 |
|
|
PROCESSOR_SH3E,
|
3299 |
|
|
PROCESSOR_SH4,
|
3300 |
|
|
PROCESSOR_SH4A,
|
3301 |
|
|
PROCESSOR_SH5
|
3302 |
|
|
};
|
3303 |
|
|
|
3304 |
|
|
#define sh_cpu_attr ((enum attr_cpu)sh_cpu)
|
3305 |
|
|
extern enum processor_type sh_cpu;
|
3306 |
|
|
|
3307 |
|
|
extern int optimize; /* needed for gen_casesi. */
|
3308 |
|
|
|
3309 |
|
|
enum mdep_reorg_phase_e
|
3310 |
|
|
{
|
3311 |
|
|
SH_BEFORE_MDEP_REORG,
|
3312 |
|
|
SH_INSERT_USES_LABELS,
|
3313 |
|
|
SH_SHORTEN_BRANCHES0,
|
3314 |
|
|
SH_FIXUP_PCLOAD,
|
3315 |
|
|
SH_SHORTEN_BRANCHES1,
|
3316 |
|
|
SH_AFTER_MDEP_REORG
|
3317 |
|
|
};
|
3318 |
|
|
|
3319 |
|
|
extern enum mdep_reorg_phase_e mdep_reorg_phase;
|
3320 |
|
|
|
3321 |
|
|
/* Handle Renesas compiler's pragmas. */
|
3322 |
|
|
#define REGISTER_TARGET_PRAGMAS() do { \
|
3323 |
|
|
c_register_pragma (0, "interrupt", sh_pr_interrupt); \
|
3324 |
|
|
c_register_pragma (0, "trapa", sh_pr_trapa); \
|
3325 |
|
|
c_register_pragma (0, "nosave_low_regs", sh_pr_nosave_low_regs); \
|
3326 |
|
|
} while (0)
|
3327 |
|
|
|
3328 |
|
|
extern tree sh_deferred_function_attributes;
|
3329 |
|
|
extern tree *sh_deferred_function_attributes_tail;
|
3330 |
|
|
|
3331 |
|
|
/* Set when processing a function with interrupt attribute. */
|
3332 |
|
|
|
3333 |
|
|
extern int current_function_interrupt;
|
3334 |
|
|
|
3335 |
|
|
|
3336 |
|
|
/* Instructions with unfilled delay slots take up an
|
3337 |
|
|
extra two bytes for the nop in the delay slot.
|
3338 |
|
|
sh-dsp parallel processing insns are four bytes long. */
|
3339 |
|
|
|
3340 |
|
|
#define ADJUST_INSN_LENGTH(X, LENGTH) \
|
3341 |
|
|
(LENGTH) += sh_insn_length_adjustment (X);
|
3342 |
|
|
|
3343 |
|
|
/* Define this macro if it is advisable to hold scalars in registers
|
3344 |
|
|
in a wider mode than that declared by the program. In such cases,
|
3345 |
|
|
the value is constrained to be within the bounds of the declared
|
3346 |
|
|
type, but kept valid in the wider mode. The signedness of the
|
3347 |
|
|
extension may differ from that of the type.
|
3348 |
|
|
|
3349 |
|
|
Leaving the unsignedp unchanged gives better code than always setting it
|
3350 |
|
|
to 0. This is despite the fact that we have only signed char and short
|
3351 |
|
|
load instructions. */
|
3352 |
|
|
#define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
|
3353 |
|
|
if (GET_MODE_CLASS (MODE) == MODE_INT \
|
3354 |
|
|
&& GET_MODE_SIZE (MODE) < 4/* ! UNITS_PER_WORD */)\
|
3355 |
|
|
(UNSIGNEDP) = ((MODE) == SImode ? 0 : (UNSIGNEDP)), \
|
3356 |
|
|
(MODE) = (TARGET_SH1 ? SImode \
|
3357 |
|
|
: TARGET_SHMEDIA32 ? SImode : DImode);
|
3358 |
|
|
|
3359 |
|
|
#define MAX_FIXED_MODE_SIZE (TARGET_SH5 ? 128 : 64)
|
3360 |
|
|
|
3361 |
|
|
#define SIDI_OFF (TARGET_LITTLE_ENDIAN ? 0 : 4)
|
3362 |
|
|
|
3363 |
|
|
/* ??? Define ACCUMULATE_OUTGOING_ARGS? This is more efficient than pushing
|
3364 |
|
|
and popping arguments. However, we do have push/pop instructions, and
|
3365 |
|
|
rather limited offsets (4 bits) in load/store instructions, so it isn't
|
3366 |
|
|
clear if this would give better code. If implemented, should check for
|
3367 |
|
|
compatibility problems. */
|
3368 |
|
|
|
3369 |
|
|
#define SH_DYNAMIC_SHIFT_COST \
|
3370 |
|
|
(TARGET_HARD_SH4 ? 1 : TARGET_SH3 ? (TARGET_SMALLCODE ? 1 : 2) : 20)
|
3371 |
|
|
|
3372 |
|
|
|
3373 |
|
|
#define NUM_MODES_FOR_MODE_SWITCHING { FP_MODE_NONE }
|
3374 |
|
|
|
3375 |
|
|
#define OPTIMIZE_MODE_SWITCHING(ENTITY) (TARGET_SH4 || TARGET_SH2A_DOUBLE)
|
3376 |
|
|
|
3377 |
|
|
#define ACTUAL_NORMAL_MODE(ENTITY) \
|
3378 |
|
|
(TARGET_FPU_SINGLE ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
|
3379 |
|
|
|
3380 |
|
|
#define NORMAL_MODE(ENTITY) \
|
3381 |
|
|
(sh_cfun_interrupt_handler_p () \
|
3382 |
|
|
? (TARGET_FMOVD ? FP_MODE_DOUBLE : FP_MODE_NONE) \
|
3383 |
|
|
: ACTUAL_NORMAL_MODE (ENTITY))
|
3384 |
|
|
|
3385 |
|
|
#define MODE_ENTRY(ENTITY) NORMAL_MODE (ENTITY)
|
3386 |
|
|
|
3387 |
|
|
#define MODE_EXIT(ENTITY) \
|
3388 |
|
|
(sh_cfun_attr_renesas_p () ? FP_MODE_NONE : NORMAL_MODE (ENTITY))
|
3389 |
|
|
|
3390 |
|
|
#define EPILOGUE_USES(REGNO) ((TARGET_SH2E || TARGET_SH4) \
|
3391 |
|
|
&& (REGNO) == FPSCR_REG)
|
3392 |
|
|
|
3393 |
|
|
#define MODE_NEEDED(ENTITY, INSN) \
|
3394 |
|
|
(recog_memoized (INSN) >= 0 \
|
3395 |
|
|
? get_attr_fp_mode (INSN) \
|
3396 |
|
|
: FP_MODE_NONE)
|
3397 |
|
|
|
3398 |
|
|
#define MODE_AFTER(MODE, INSN) \
|
3399 |
|
|
(TARGET_HITACHI \
|
3400 |
|
|
&& recog_memoized (INSN) >= 0 \
|
3401 |
|
|
&& get_attr_fp_set (INSN) != FP_SET_NONE \
|
3402 |
|
|
? (int) get_attr_fp_set (INSN) \
|
3403 |
|
|
: (MODE))
|
3404 |
|
|
|
3405 |
|
|
#define MODE_PRIORITY_TO_MODE(ENTITY, N) \
|
3406 |
|
|
((TARGET_FPU_SINGLE != 0) ^ (N) ? FP_MODE_SINGLE : FP_MODE_DOUBLE)
|
3407 |
|
|
|
3408 |
|
|
#define EMIT_MODE_SET(ENTITY, MODE, HARD_REGS_LIVE) \
|
3409 |
|
|
fpscr_set_from_mem ((MODE), (HARD_REGS_LIVE))
|
3410 |
|
|
|
3411 |
|
|
#define MD_CAN_REDIRECT_BRANCH(INSN, SEQ) \
|
3412 |
|
|
sh_can_redirect_branch ((INSN), (SEQ))
|
3413 |
|
|
|
3414 |
|
|
#define DWARF_FRAME_RETURN_COLUMN \
|
3415 |
|
|
(TARGET_SH5 ? DWARF_FRAME_REGNUM (PR_MEDIA_REG) : DWARF_FRAME_REGNUM (PR_REG))
|
3416 |
|
|
|
3417 |
|
|
#define EH_RETURN_DATA_REGNO(N) \
|
3418 |
|
|
((N) < 4 ? (N) + (TARGET_SH5 ? 2U : 4U) : INVALID_REGNUM)
|
3419 |
|
|
|
3420 |
|
|
#define EH_RETURN_STACKADJ_REGNO STATIC_CHAIN_REGNUM
|
3421 |
|
|
#define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, EH_RETURN_STACKADJ_REGNO)
|
3422 |
|
|
|
3423 |
|
|
/* We have to distinguish between code and data, so that we apply
|
3424 |
|
|
datalabel where and only where appropriate. Use sdataN for data. */
|
3425 |
|
|
#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
|
3426 |
|
|
((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \
|
3427 |
|
|
| (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \
|
3428 |
|
|
| ((CODE) ? 0 : (TARGET_SHMEDIA64 ? DW_EH_PE_sdata8 : DW_EH_PE_sdata4)))
|
3429 |
|
|
|
3430 |
|
|
/* Handle special EH pointer encodings. Absolute, pc-relative, and
|
3431 |
|
|
indirect are handled automatically. */
|
3432 |
|
|
#define ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX(FILE, ENCODING, SIZE, ADDR, DONE) \
|
3433 |
|
|
do { \
|
3434 |
|
|
if (((ENCODING) & 0xf) != DW_EH_PE_sdata4 \
|
3435 |
|
|
&& ((ENCODING) & 0xf) != DW_EH_PE_sdata8) \
|
3436 |
|
|
{ \
|
3437 |
|
|
gcc_assert (GET_CODE (ADDR) == SYMBOL_REF); \
|
3438 |
|
|
SYMBOL_REF_FLAGS (ADDR) |= SYMBOL_FLAG_FUNCTION; \
|
3439 |
|
|
if (0) goto DONE; \
|
3440 |
|
|
} \
|
3441 |
|
|
} while (0)
|
3442 |
|
|
|
3443 |
|
|
#if (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__
|
3444 |
|
|
/* SH constant pool breaks the devices in crtstuff.c to control section
|
3445 |
|
|
in where code resides. We have to write it as asm code. */
|
3446 |
|
|
#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
|
3447 |
|
|
asm (SECTION_OP "\n\
|
3448 |
|
|
mov.l 1f,r1\n\
|
3449 |
|
|
mova 2f,r0\n\
|
3450 |
|
|
braf r1\n\
|
3451 |
|
|
lds r0,pr\n\
|
3452 |
|
|
0: .p2align 2\n\
|
3453 |
|
|
1: .long " USER_LABEL_PREFIX #FUNC " - 0b\n\
|
3454 |
|
|
2:\n" TEXT_SECTION_ASM_OP);
|
3455 |
|
|
#endif /* (defined CRT_BEGIN || defined CRT_END) && ! __SHMEDIA__ */
|
3456 |
|
|
|
3457 |
|
|
#define SIMULTANEOUS_PREFETCHES 2
|
3458 |
|
|
|
3459 |
|
|
/* FIXME: middle-end support for highpart optimizations is missing. */
|
3460 |
|
|
#define high_life_started reload_in_progress
|
3461 |
|
|
|
3462 |
|
|
#endif /* ! GCC_SH_H */
|