| 1 |
38 |
julius |
/* Common subexpression elimination library for GNU compiler.
|
| 2 |
|
|
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
| 3 |
|
|
1999, 2000, 2001, 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
|
| 4 |
|
|
|
| 5 |
|
|
This file is part of GCC.
|
| 6 |
|
|
|
| 7 |
|
|
GCC is free software; you can redistribute it and/or modify it under
|
| 8 |
|
|
the terms of the GNU General Public License as published by the Free
|
| 9 |
|
|
Software Foundation; either version 3, or (at your option) any later
|
| 10 |
|
|
version.
|
| 11 |
|
|
|
| 12 |
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
| 13 |
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
| 14 |
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
| 15 |
|
|
for more details.
|
| 16 |
|
|
|
| 17 |
|
|
You should have received a copy of the GNU General Public License
|
| 18 |
|
|
along with GCC; see the file COPYING3. If not see
|
| 19 |
|
|
<http://www.gnu.org/licenses/>. */
|
| 20 |
|
|
|
| 21 |
|
|
#include "config.h"
|
| 22 |
|
|
#include "system.h"
|
| 23 |
|
|
#include "coretypes.h"
|
| 24 |
|
|
#include "tm.h"
|
| 25 |
|
|
|
| 26 |
|
|
#include "rtl.h"
|
| 27 |
|
|
#include "tm_p.h"
|
| 28 |
|
|
#include "regs.h"
|
| 29 |
|
|
#include "hard-reg-set.h"
|
| 30 |
|
|
#include "flags.h"
|
| 31 |
|
|
#include "real.h"
|
| 32 |
|
|
#include "insn-config.h"
|
| 33 |
|
|
#include "recog.h"
|
| 34 |
|
|
#include "function.h"
|
| 35 |
|
|
#include "emit-rtl.h"
|
| 36 |
|
|
#include "toplev.h"
|
| 37 |
|
|
#include "output.h"
|
| 38 |
|
|
#include "ggc.h"
|
| 39 |
|
|
#include "hashtab.h"
|
| 40 |
|
|
#include "cselib.h"
|
| 41 |
|
|
#include "params.h"
|
| 42 |
|
|
#include "alloc-pool.h"
|
| 43 |
|
|
#include "target.h"
|
| 44 |
|
|
|
| 45 |
|
|
static bool cselib_record_memory;
|
| 46 |
|
|
static int entry_and_rtx_equal_p (const void *, const void *);
|
| 47 |
|
|
static hashval_t get_value_hash (const void *);
|
| 48 |
|
|
static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
|
| 49 |
|
|
static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
|
| 50 |
|
|
static void unchain_one_value (cselib_val *);
|
| 51 |
|
|
static void unchain_one_elt_list (struct elt_list **);
|
| 52 |
|
|
static void unchain_one_elt_loc_list (struct elt_loc_list **);
|
| 53 |
|
|
static int discard_useless_locs (void **, void *);
|
| 54 |
|
|
static int discard_useless_values (void **, void *);
|
| 55 |
|
|
static void remove_useless_values (void);
|
| 56 |
|
|
static rtx wrap_constant (enum machine_mode, rtx);
|
| 57 |
|
|
static unsigned int cselib_hash_rtx (rtx, int);
|
| 58 |
|
|
static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
|
| 59 |
|
|
static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
|
| 60 |
|
|
static cselib_val *cselib_lookup_mem (rtx, int);
|
| 61 |
|
|
static void cselib_invalidate_regno (unsigned int, enum machine_mode);
|
| 62 |
|
|
static void cselib_invalidate_mem (rtx);
|
| 63 |
|
|
static void cselib_record_set (rtx, cselib_val *, cselib_val *);
|
| 64 |
|
|
static void cselib_record_sets (rtx);
|
| 65 |
|
|
|
| 66 |
|
|
/* There are three ways in which cselib can look up an rtx:
|
| 67 |
|
|
- for a REG, the reg_values table (which is indexed by regno) is used
|
| 68 |
|
|
- for a MEM, we recursively look up its address and then follow the
|
| 69 |
|
|
addr_list of that value
|
| 70 |
|
|
- for everything else, we compute a hash value and go through the hash
|
| 71 |
|
|
table. Since different rtx's can still have the same hash value,
|
| 72 |
|
|
this involves walking the table entries for a given value and comparing
|
| 73 |
|
|
the locations of the entries with the rtx we are looking up. */
|
| 74 |
|
|
|
| 75 |
|
|
/* A table that enables us to look up elts by their value. */
|
| 76 |
|
|
static htab_t cselib_hash_table;
|
| 77 |
|
|
|
| 78 |
|
|
/* This is a global so we don't have to pass this through every function.
|
| 79 |
|
|
It is used in new_elt_loc_list to set SETTING_INSN. */
|
| 80 |
|
|
static rtx cselib_current_insn;
|
| 81 |
|
|
static bool cselib_current_insn_in_libcall;
|
| 82 |
|
|
|
| 83 |
|
|
/* Every new unknown value gets a unique number. */
|
| 84 |
|
|
static unsigned int next_unknown_value;
|
| 85 |
|
|
|
| 86 |
|
|
/* The number of registers we had when the varrays were last resized. */
|
| 87 |
|
|
static unsigned int cselib_nregs;
|
| 88 |
|
|
|
| 89 |
|
|
/* Count values without known locations. Whenever this grows too big, we
|
| 90 |
|
|
remove these useless values from the table. */
|
| 91 |
|
|
static int n_useless_values;
|
| 92 |
|
|
|
| 93 |
|
|
/* Number of useless values before we remove them from the hash table. */
|
| 94 |
|
|
#define MAX_USELESS_VALUES 32
|
| 95 |
|
|
|
| 96 |
|
|
/* This table maps from register number to values. It does not
|
| 97 |
|
|
contain pointers to cselib_val structures, but rather elt_lists.
|
| 98 |
|
|
The purpose is to be able to refer to the same register in
|
| 99 |
|
|
different modes. The first element of the list defines the mode in
|
| 100 |
|
|
which the register was set; if the mode is unknown or the value is
|
| 101 |
|
|
no longer valid in that mode, ELT will be NULL for the first
|
| 102 |
|
|
element. */
|
| 103 |
|
|
static struct elt_list **reg_values;
|
| 104 |
|
|
static unsigned int reg_values_size;
|
| 105 |
|
|
#define REG_VALUES(i) reg_values[i]
|
| 106 |
|
|
|
| 107 |
|
|
/* The largest number of hard regs used by any entry added to the
|
| 108 |
|
|
REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
|
| 109 |
|
|
static unsigned int max_value_regs;
|
| 110 |
|
|
|
| 111 |
|
|
/* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
|
| 112 |
|
|
in cselib_clear_table() for fast emptying. */
|
| 113 |
|
|
static unsigned int *used_regs;
|
| 114 |
|
|
static unsigned int n_used_regs;
|
| 115 |
|
|
|
| 116 |
|
|
/* We pass this to cselib_invalidate_mem to invalidate all of
|
| 117 |
|
|
memory for a non-const call instruction. */
|
| 118 |
|
|
static GTY(()) rtx callmem;
|
| 119 |
|
|
|
| 120 |
|
|
/* Set by discard_useless_locs if it deleted the last location of any
|
| 121 |
|
|
value. */
|
| 122 |
|
|
static int values_became_useless;
|
| 123 |
|
|
|
| 124 |
|
|
/* Used as stop element of the containing_mem list so we can check
|
| 125 |
|
|
presence in the list by checking the next pointer. */
|
| 126 |
|
|
static cselib_val dummy_val;
|
| 127 |
|
|
|
| 128 |
|
|
/* Used to list all values that contain memory reference.
|
| 129 |
|
|
May or may not contain the useless values - the list is compacted
|
| 130 |
|
|
each time memory is invalidated. */
|
| 131 |
|
|
static cselib_val *first_containing_mem = &dummy_val;
|
| 132 |
|
|
static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
|
| 133 |
|
|
|
| 134 |
|
|
|
| 135 |
|
|
/* Allocate a struct elt_list and fill in its two elements with the
|
| 136 |
|
|
arguments. */
|
| 137 |
|
|
|
| 138 |
|
|
static inline struct elt_list *
|
| 139 |
|
|
new_elt_list (struct elt_list *next, cselib_val *elt)
|
| 140 |
|
|
{
|
| 141 |
|
|
struct elt_list *el;
|
| 142 |
|
|
el = pool_alloc (elt_list_pool);
|
| 143 |
|
|
el->next = next;
|
| 144 |
|
|
el->elt = elt;
|
| 145 |
|
|
return el;
|
| 146 |
|
|
}
|
| 147 |
|
|
|
| 148 |
|
|
/* Allocate a struct elt_loc_list and fill in its two elements with the
|
| 149 |
|
|
arguments. */
|
| 150 |
|
|
|
| 151 |
|
|
static inline struct elt_loc_list *
|
| 152 |
|
|
new_elt_loc_list (struct elt_loc_list *next, rtx loc)
|
| 153 |
|
|
{
|
| 154 |
|
|
struct elt_loc_list *el;
|
| 155 |
|
|
el = pool_alloc (elt_loc_list_pool);
|
| 156 |
|
|
el->next = next;
|
| 157 |
|
|
el->loc = loc;
|
| 158 |
|
|
el->setting_insn = cselib_current_insn;
|
| 159 |
|
|
el->in_libcall = cselib_current_insn_in_libcall;
|
| 160 |
|
|
return el;
|
| 161 |
|
|
}
|
| 162 |
|
|
|
| 163 |
|
|
/* The elt_list at *PL is no longer needed. Unchain it and free its
|
| 164 |
|
|
storage. */
|
| 165 |
|
|
|
| 166 |
|
|
static inline void
|
| 167 |
|
|
unchain_one_elt_list (struct elt_list **pl)
|
| 168 |
|
|
{
|
| 169 |
|
|
struct elt_list *l = *pl;
|
| 170 |
|
|
|
| 171 |
|
|
*pl = l->next;
|
| 172 |
|
|
pool_free (elt_list_pool, l);
|
| 173 |
|
|
}
|
| 174 |
|
|
|
| 175 |
|
|
/* Likewise for elt_loc_lists. */
|
| 176 |
|
|
|
| 177 |
|
|
static void
|
| 178 |
|
|
unchain_one_elt_loc_list (struct elt_loc_list **pl)
|
| 179 |
|
|
{
|
| 180 |
|
|
struct elt_loc_list *l = *pl;
|
| 181 |
|
|
|
| 182 |
|
|
*pl = l->next;
|
| 183 |
|
|
pool_free (elt_loc_list_pool, l);
|
| 184 |
|
|
}
|
| 185 |
|
|
|
| 186 |
|
|
/* Likewise for cselib_vals. This also frees the addr_list associated with
|
| 187 |
|
|
V. */
|
| 188 |
|
|
|
| 189 |
|
|
static void
|
| 190 |
|
|
unchain_one_value (cselib_val *v)
|
| 191 |
|
|
{
|
| 192 |
|
|
while (v->addr_list)
|
| 193 |
|
|
unchain_one_elt_list (&v->addr_list);
|
| 194 |
|
|
|
| 195 |
|
|
pool_free (cselib_val_pool, v);
|
| 196 |
|
|
}
|
| 197 |
|
|
|
| 198 |
|
|
/* Remove all entries from the hash table. Also used during
|
| 199 |
|
|
initialization. If CLEAR_ALL isn't set, then only clear the entries
|
| 200 |
|
|
which are known to have been used. */
|
| 201 |
|
|
|
| 202 |
|
|
void
|
| 203 |
|
|
cselib_clear_table (void)
|
| 204 |
|
|
{
|
| 205 |
|
|
unsigned int i;
|
| 206 |
|
|
|
| 207 |
|
|
for (i = 0; i < n_used_regs; i++)
|
| 208 |
|
|
REG_VALUES (used_regs[i]) = 0;
|
| 209 |
|
|
|
| 210 |
|
|
max_value_regs = 0;
|
| 211 |
|
|
|
| 212 |
|
|
n_used_regs = 0;
|
| 213 |
|
|
|
| 214 |
|
|
htab_empty (cselib_hash_table);
|
| 215 |
|
|
|
| 216 |
|
|
n_useless_values = 0;
|
| 217 |
|
|
|
| 218 |
|
|
next_unknown_value = 0;
|
| 219 |
|
|
|
| 220 |
|
|
first_containing_mem = &dummy_val;
|
| 221 |
|
|
}
|
| 222 |
|
|
|
| 223 |
|
|
/* The equality test for our hash table. The first argument ENTRY is a table
|
| 224 |
|
|
element (i.e. a cselib_val), while the second arg X is an rtx. We know
|
| 225 |
|
|
that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
|
| 226 |
|
|
CONST of an appropriate mode. */
|
| 227 |
|
|
|
| 228 |
|
|
static int
|
| 229 |
|
|
entry_and_rtx_equal_p (const void *entry, const void *x_arg)
|
| 230 |
|
|
{
|
| 231 |
|
|
struct elt_loc_list *l;
|
| 232 |
|
|
const cselib_val *v = (const cselib_val *) entry;
|
| 233 |
|
|
rtx x = (rtx) x_arg;
|
| 234 |
|
|
enum machine_mode mode = GET_MODE (x);
|
| 235 |
|
|
|
| 236 |
|
|
gcc_assert (GET_CODE (x) != CONST_INT
|
| 237 |
|
|
&& (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
|
| 238 |
|
|
|
| 239 |
|
|
if (mode != GET_MODE (v->u.val_rtx))
|
| 240 |
|
|
return 0;
|
| 241 |
|
|
|
| 242 |
|
|
/* Unwrap X if necessary. */
|
| 243 |
|
|
if (GET_CODE (x) == CONST
|
| 244 |
|
|
&& (GET_CODE (XEXP (x, 0)) == CONST_INT
|
| 245 |
|
|
|| GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
|
| 246 |
|
|
x = XEXP (x, 0);
|
| 247 |
|
|
|
| 248 |
|
|
/* We don't guarantee that distinct rtx's have different hash values,
|
| 249 |
|
|
so we need to do a comparison. */
|
| 250 |
|
|
for (l = v->locs; l; l = l->next)
|
| 251 |
|
|
if (rtx_equal_for_cselib_p (l->loc, x))
|
| 252 |
|
|
return 1;
|
| 253 |
|
|
|
| 254 |
|
|
return 0;
|
| 255 |
|
|
}
|
| 256 |
|
|
|
| 257 |
|
|
/* The hash function for our hash table. The value is always computed with
|
| 258 |
|
|
cselib_hash_rtx when adding an element; this function just extracts the
|
| 259 |
|
|
hash value from a cselib_val structure. */
|
| 260 |
|
|
|
| 261 |
|
|
static hashval_t
|
| 262 |
|
|
get_value_hash (const void *entry)
|
| 263 |
|
|
{
|
| 264 |
|
|
const cselib_val *v = (const cselib_val *) entry;
|
| 265 |
|
|
return v->value;
|
| 266 |
|
|
}
|
| 267 |
|
|
|
| 268 |
|
|
/* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
|
| 269 |
|
|
only return true for values which point to a cselib_val whose value
|
| 270 |
|
|
element has been set to zero, which implies the cselib_val will be
|
| 271 |
|
|
removed. */
|
| 272 |
|
|
|
| 273 |
|
|
int
|
| 274 |
|
|
references_value_p (rtx x, int only_useless)
|
| 275 |
|
|
{
|
| 276 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 277 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
| 278 |
|
|
int i, j;
|
| 279 |
|
|
|
| 280 |
|
|
if (GET_CODE (x) == VALUE
|
| 281 |
|
|
&& (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
|
| 282 |
|
|
return 1;
|
| 283 |
|
|
|
| 284 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 285 |
|
|
{
|
| 286 |
|
|
if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
|
| 287 |
|
|
return 1;
|
| 288 |
|
|
else if (fmt[i] == 'E')
|
| 289 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 290 |
|
|
if (references_value_p (XVECEXP (x, i, j), only_useless))
|
| 291 |
|
|
return 1;
|
| 292 |
|
|
}
|
| 293 |
|
|
|
| 294 |
|
|
return 0;
|
| 295 |
|
|
}
|
| 296 |
|
|
|
| 297 |
|
|
/* For all locations found in X, delete locations that reference useless
|
| 298 |
|
|
values (i.e. values without any location). Called through
|
| 299 |
|
|
htab_traverse. */
|
| 300 |
|
|
|
| 301 |
|
|
static int
|
| 302 |
|
|
discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
|
| 303 |
|
|
{
|
| 304 |
|
|
cselib_val *v = (cselib_val *)*x;
|
| 305 |
|
|
struct elt_loc_list **p = &v->locs;
|
| 306 |
|
|
int had_locs = v->locs != 0;
|
| 307 |
|
|
|
| 308 |
|
|
while (*p)
|
| 309 |
|
|
{
|
| 310 |
|
|
if (references_value_p ((*p)->loc, 1))
|
| 311 |
|
|
unchain_one_elt_loc_list (p);
|
| 312 |
|
|
else
|
| 313 |
|
|
p = &(*p)->next;
|
| 314 |
|
|
}
|
| 315 |
|
|
|
| 316 |
|
|
if (had_locs && v->locs == 0)
|
| 317 |
|
|
{
|
| 318 |
|
|
n_useless_values++;
|
| 319 |
|
|
values_became_useless = 1;
|
| 320 |
|
|
}
|
| 321 |
|
|
return 1;
|
| 322 |
|
|
}
|
| 323 |
|
|
|
| 324 |
|
|
/* If X is a value with no locations, remove it from the hashtable. */
|
| 325 |
|
|
|
| 326 |
|
|
static int
|
| 327 |
|
|
discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
|
| 328 |
|
|
{
|
| 329 |
|
|
cselib_val *v = (cselib_val *)*x;
|
| 330 |
|
|
|
| 331 |
|
|
if (v->locs == 0)
|
| 332 |
|
|
{
|
| 333 |
|
|
CSELIB_VAL_PTR (v->u.val_rtx) = NULL;
|
| 334 |
|
|
htab_clear_slot (cselib_hash_table, x);
|
| 335 |
|
|
unchain_one_value (v);
|
| 336 |
|
|
n_useless_values--;
|
| 337 |
|
|
}
|
| 338 |
|
|
|
| 339 |
|
|
return 1;
|
| 340 |
|
|
}
|
| 341 |
|
|
|
| 342 |
|
|
/* Clean out useless values (i.e. those which no longer have locations
|
| 343 |
|
|
associated with them) from the hash table. */
|
| 344 |
|
|
|
| 345 |
|
|
static void
|
| 346 |
|
|
remove_useless_values (void)
|
| 347 |
|
|
{
|
| 348 |
|
|
cselib_val **p, *v;
|
| 349 |
|
|
/* First pass: eliminate locations that reference the value. That in
|
| 350 |
|
|
turn can make more values useless. */
|
| 351 |
|
|
do
|
| 352 |
|
|
{
|
| 353 |
|
|
values_became_useless = 0;
|
| 354 |
|
|
htab_traverse (cselib_hash_table, discard_useless_locs, 0);
|
| 355 |
|
|
}
|
| 356 |
|
|
while (values_became_useless);
|
| 357 |
|
|
|
| 358 |
|
|
/* Second pass: actually remove the values. */
|
| 359 |
|
|
|
| 360 |
|
|
p = &first_containing_mem;
|
| 361 |
|
|
for (v = *p; v != &dummy_val; v = v->next_containing_mem)
|
| 362 |
|
|
if (v->locs)
|
| 363 |
|
|
{
|
| 364 |
|
|
*p = v;
|
| 365 |
|
|
p = &(*p)->next_containing_mem;
|
| 366 |
|
|
}
|
| 367 |
|
|
*p = &dummy_val;
|
| 368 |
|
|
|
| 369 |
|
|
htab_traverse (cselib_hash_table, discard_useless_values, 0);
|
| 370 |
|
|
|
| 371 |
|
|
gcc_assert (!n_useless_values);
|
| 372 |
|
|
}
|
| 373 |
|
|
|
| 374 |
|
|
/* Return the mode in which a register was last set. If X is not a
|
| 375 |
|
|
register, return its mode. If the mode in which the register was
|
| 376 |
|
|
set is not known, or the value was already clobbered, return
|
| 377 |
|
|
VOIDmode. */
|
| 378 |
|
|
|
| 379 |
|
|
enum machine_mode
|
| 380 |
|
|
cselib_reg_set_mode (rtx x)
|
| 381 |
|
|
{
|
| 382 |
|
|
if (!REG_P (x))
|
| 383 |
|
|
return GET_MODE (x);
|
| 384 |
|
|
|
| 385 |
|
|
if (REG_VALUES (REGNO (x)) == NULL
|
| 386 |
|
|
|| REG_VALUES (REGNO (x))->elt == NULL)
|
| 387 |
|
|
return VOIDmode;
|
| 388 |
|
|
|
| 389 |
|
|
return GET_MODE (REG_VALUES (REGNO (x))->elt->u.val_rtx);
|
| 390 |
|
|
}
|
| 391 |
|
|
|
| 392 |
|
|
/* Return nonzero if we can prove that X and Y contain the same value, taking
|
| 393 |
|
|
our gathered information into account. */
|
| 394 |
|
|
|
| 395 |
|
|
int
|
| 396 |
|
|
rtx_equal_for_cselib_p (rtx x, rtx y)
|
| 397 |
|
|
{
|
| 398 |
|
|
enum rtx_code code;
|
| 399 |
|
|
const char *fmt;
|
| 400 |
|
|
int i;
|
| 401 |
|
|
|
| 402 |
|
|
if (REG_P (x) || MEM_P (x))
|
| 403 |
|
|
{
|
| 404 |
|
|
cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
|
| 405 |
|
|
|
| 406 |
|
|
if (e)
|
| 407 |
|
|
x = e->u.val_rtx;
|
| 408 |
|
|
}
|
| 409 |
|
|
|
| 410 |
|
|
if (REG_P (y) || MEM_P (y))
|
| 411 |
|
|
{
|
| 412 |
|
|
cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
|
| 413 |
|
|
|
| 414 |
|
|
if (e)
|
| 415 |
|
|
y = e->u.val_rtx;
|
| 416 |
|
|
}
|
| 417 |
|
|
|
| 418 |
|
|
if (x == y)
|
| 419 |
|
|
return 1;
|
| 420 |
|
|
|
| 421 |
|
|
if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
|
| 422 |
|
|
return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
|
| 423 |
|
|
|
| 424 |
|
|
if (GET_CODE (x) == VALUE)
|
| 425 |
|
|
{
|
| 426 |
|
|
cselib_val *e = CSELIB_VAL_PTR (x);
|
| 427 |
|
|
struct elt_loc_list *l;
|
| 428 |
|
|
|
| 429 |
|
|
for (l = e->locs; l; l = l->next)
|
| 430 |
|
|
{
|
| 431 |
|
|
rtx t = l->loc;
|
| 432 |
|
|
|
| 433 |
|
|
/* Avoid infinite recursion. */
|
| 434 |
|
|
if (REG_P (t) || MEM_P (t))
|
| 435 |
|
|
continue;
|
| 436 |
|
|
else if (rtx_equal_for_cselib_p (t, y))
|
| 437 |
|
|
return 1;
|
| 438 |
|
|
}
|
| 439 |
|
|
|
| 440 |
|
|
return 0;
|
| 441 |
|
|
}
|
| 442 |
|
|
|
| 443 |
|
|
if (GET_CODE (y) == VALUE)
|
| 444 |
|
|
{
|
| 445 |
|
|
cselib_val *e = CSELIB_VAL_PTR (y);
|
| 446 |
|
|
struct elt_loc_list *l;
|
| 447 |
|
|
|
| 448 |
|
|
for (l = e->locs; l; l = l->next)
|
| 449 |
|
|
{
|
| 450 |
|
|
rtx t = l->loc;
|
| 451 |
|
|
|
| 452 |
|
|
if (REG_P (t) || MEM_P (t))
|
| 453 |
|
|
continue;
|
| 454 |
|
|
else if (rtx_equal_for_cselib_p (x, t))
|
| 455 |
|
|
return 1;
|
| 456 |
|
|
}
|
| 457 |
|
|
|
| 458 |
|
|
return 0;
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
|
| 462 |
|
|
return 0;
|
| 463 |
|
|
|
| 464 |
|
|
/* These won't be handled correctly by the code below. */
|
| 465 |
|
|
switch (GET_CODE (x))
|
| 466 |
|
|
{
|
| 467 |
|
|
case CONST_DOUBLE:
|
| 468 |
|
|
return 0;
|
| 469 |
|
|
|
| 470 |
|
|
case LABEL_REF:
|
| 471 |
|
|
return XEXP (x, 0) == XEXP (y, 0);
|
| 472 |
|
|
|
| 473 |
|
|
default:
|
| 474 |
|
|
break;
|
| 475 |
|
|
}
|
| 476 |
|
|
|
| 477 |
|
|
code = GET_CODE (x);
|
| 478 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 479 |
|
|
|
| 480 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 481 |
|
|
{
|
| 482 |
|
|
int j;
|
| 483 |
|
|
|
| 484 |
|
|
switch (fmt[i])
|
| 485 |
|
|
{
|
| 486 |
|
|
case 'w':
|
| 487 |
|
|
if (XWINT (x, i) != XWINT (y, i))
|
| 488 |
|
|
return 0;
|
| 489 |
|
|
break;
|
| 490 |
|
|
|
| 491 |
|
|
case 'n':
|
| 492 |
|
|
case 'i':
|
| 493 |
|
|
if (XINT (x, i) != XINT (y, i))
|
| 494 |
|
|
return 0;
|
| 495 |
|
|
break;
|
| 496 |
|
|
|
| 497 |
|
|
case 'V':
|
| 498 |
|
|
case 'E':
|
| 499 |
|
|
/* Two vectors must have the same length. */
|
| 500 |
|
|
if (XVECLEN (x, i) != XVECLEN (y, i))
|
| 501 |
|
|
return 0;
|
| 502 |
|
|
|
| 503 |
|
|
/* And the corresponding elements must match. */
|
| 504 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 505 |
|
|
if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
|
| 506 |
|
|
XVECEXP (y, i, j)))
|
| 507 |
|
|
return 0;
|
| 508 |
|
|
break;
|
| 509 |
|
|
|
| 510 |
|
|
case 'e':
|
| 511 |
|
|
if (i == 1
|
| 512 |
|
|
&& targetm.commutative_p (x, UNKNOWN)
|
| 513 |
|
|
&& rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
|
| 514 |
|
|
&& rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
|
| 515 |
|
|
return 1;
|
| 516 |
|
|
if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
|
| 517 |
|
|
return 0;
|
| 518 |
|
|
break;
|
| 519 |
|
|
|
| 520 |
|
|
case 'S':
|
| 521 |
|
|
case 's':
|
| 522 |
|
|
if (strcmp (XSTR (x, i), XSTR (y, i)))
|
| 523 |
|
|
return 0;
|
| 524 |
|
|
break;
|
| 525 |
|
|
|
| 526 |
|
|
case 'u':
|
| 527 |
|
|
/* These are just backpointers, so they don't matter. */
|
| 528 |
|
|
break;
|
| 529 |
|
|
|
| 530 |
|
|
case '0':
|
| 531 |
|
|
case 't':
|
| 532 |
|
|
break;
|
| 533 |
|
|
|
| 534 |
|
|
/* It is believed that rtx's at this level will never
|
| 535 |
|
|
contain anything but integers and other rtx's,
|
| 536 |
|
|
except for within LABEL_REFs and SYMBOL_REFs. */
|
| 537 |
|
|
default:
|
| 538 |
|
|
gcc_unreachable ();
|
| 539 |
|
|
}
|
| 540 |
|
|
}
|
| 541 |
|
|
return 1;
|
| 542 |
|
|
}
|
| 543 |
|
|
|
| 544 |
|
|
/* We need to pass down the mode of constants through the hash table
|
| 545 |
|
|
functions. For that purpose, wrap them in a CONST of the appropriate
|
| 546 |
|
|
mode. */
|
| 547 |
|
|
static rtx
|
| 548 |
|
|
wrap_constant (enum machine_mode mode, rtx x)
|
| 549 |
|
|
{
|
| 550 |
|
|
if (GET_CODE (x) != CONST_INT
|
| 551 |
|
|
&& (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
|
| 552 |
|
|
return x;
|
| 553 |
|
|
gcc_assert (mode != VOIDmode);
|
| 554 |
|
|
return gen_rtx_CONST (mode, x);
|
| 555 |
|
|
}
|
| 556 |
|
|
|
| 557 |
|
|
/* Hash an rtx. Return 0 if we couldn't hash the rtx.
|
| 558 |
|
|
For registers and memory locations, we look up their cselib_val structure
|
| 559 |
|
|
and return its VALUE element.
|
| 560 |
|
|
Possible reasons for return 0 are: the object is volatile, or we couldn't
|
| 561 |
|
|
find a register or memory location in the table and CREATE is zero. If
|
| 562 |
|
|
CREATE is nonzero, table elts are created for regs and mem.
|
| 563 |
|
|
N.B. this hash function returns the same hash value for RTXes that
|
| 564 |
|
|
differ only in the order of operands, thus it is suitable for comparisons
|
| 565 |
|
|
that take commutativity into account.
|
| 566 |
|
|
If we wanted to also support associative rules, we'd have to use a different
|
| 567 |
|
|
strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
|
| 568 |
|
|
We used to have a MODE argument for hashing for CONST_INTs, but that
|
| 569 |
|
|
didn't make sense, since it caused spurious hash differences between
|
| 570 |
|
|
(set (reg:SI 1) (const_int))
|
| 571 |
|
|
(plus:SI (reg:SI 2) (reg:SI 1))
|
| 572 |
|
|
and
|
| 573 |
|
|
(plus:SI (reg:SI 2) (const_int))
|
| 574 |
|
|
If the mode is important in any context, it must be checked specifically
|
| 575 |
|
|
in a comparison anyway, since relying on hash differences is unsafe. */
|
| 576 |
|
|
|
| 577 |
|
|
static unsigned int
|
| 578 |
|
|
cselib_hash_rtx (rtx x, int create)
|
| 579 |
|
|
{
|
| 580 |
|
|
cselib_val *e;
|
| 581 |
|
|
int i, j;
|
| 582 |
|
|
enum rtx_code code;
|
| 583 |
|
|
const char *fmt;
|
| 584 |
|
|
unsigned int hash = 0;
|
| 585 |
|
|
|
| 586 |
|
|
code = GET_CODE (x);
|
| 587 |
|
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
| 588 |
|
|
|
| 589 |
|
|
switch (code)
|
| 590 |
|
|
{
|
| 591 |
|
|
case MEM:
|
| 592 |
|
|
case REG:
|
| 593 |
|
|
e = cselib_lookup (x, GET_MODE (x), create);
|
| 594 |
|
|
if (! e)
|
| 595 |
|
|
return 0;
|
| 596 |
|
|
|
| 597 |
|
|
return e->value;
|
| 598 |
|
|
|
| 599 |
|
|
case CONST_INT:
|
| 600 |
|
|
hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
|
| 601 |
|
|
return hash ? hash : (unsigned int) CONST_INT;
|
| 602 |
|
|
|
| 603 |
|
|
case CONST_DOUBLE:
|
| 604 |
|
|
/* This is like the general case, except that it only counts
|
| 605 |
|
|
the integers representing the constant. */
|
| 606 |
|
|
hash += (unsigned) code + (unsigned) GET_MODE (x);
|
| 607 |
|
|
if (GET_MODE (x) != VOIDmode)
|
| 608 |
|
|
hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
|
| 609 |
|
|
else
|
| 610 |
|
|
hash += ((unsigned) CONST_DOUBLE_LOW (x)
|
| 611 |
|
|
+ (unsigned) CONST_DOUBLE_HIGH (x));
|
| 612 |
|
|
return hash ? hash : (unsigned int) CONST_DOUBLE;
|
| 613 |
|
|
|
| 614 |
|
|
case CONST_VECTOR:
|
| 615 |
|
|
{
|
| 616 |
|
|
int units;
|
| 617 |
|
|
rtx elt;
|
| 618 |
|
|
|
| 619 |
|
|
units = CONST_VECTOR_NUNITS (x);
|
| 620 |
|
|
|
| 621 |
|
|
for (i = 0; i < units; ++i)
|
| 622 |
|
|
{
|
| 623 |
|
|
elt = CONST_VECTOR_ELT (x, i);
|
| 624 |
|
|
hash += cselib_hash_rtx (elt, 0);
|
| 625 |
|
|
}
|
| 626 |
|
|
|
| 627 |
|
|
return hash;
|
| 628 |
|
|
}
|
| 629 |
|
|
|
| 630 |
|
|
/* Assume there is only one rtx object for any given label. */
|
| 631 |
|
|
case LABEL_REF:
|
| 632 |
|
|
/* We don't hash on the address of the CODE_LABEL to avoid bootstrap
|
| 633 |
|
|
differences and differences between each stage's debugging dumps. */
|
| 634 |
|
|
hash += (((unsigned int) LABEL_REF << 7)
|
| 635 |
|
|
+ CODE_LABEL_NUMBER (XEXP (x, 0)));
|
| 636 |
|
|
return hash ? hash : (unsigned int) LABEL_REF;
|
| 637 |
|
|
|
| 638 |
|
|
case SYMBOL_REF:
|
| 639 |
|
|
{
|
| 640 |
|
|
/* Don't hash on the symbol's address to avoid bootstrap differences.
|
| 641 |
|
|
Different hash values may cause expressions to be recorded in
|
| 642 |
|
|
different orders and thus different registers to be used in the
|
| 643 |
|
|
final assembler. This also avoids differences in the dump files
|
| 644 |
|
|
between various stages. */
|
| 645 |
|
|
unsigned int h = 0;
|
| 646 |
|
|
const unsigned char *p = (const unsigned char *) XSTR (x, 0);
|
| 647 |
|
|
|
| 648 |
|
|
while (*p)
|
| 649 |
|
|
h += (h << 7) + *p++; /* ??? revisit */
|
| 650 |
|
|
|
| 651 |
|
|
hash += ((unsigned int) SYMBOL_REF << 7) + h;
|
| 652 |
|
|
return hash ? hash : (unsigned int) SYMBOL_REF;
|
| 653 |
|
|
}
|
| 654 |
|
|
|
| 655 |
|
|
case PRE_DEC:
|
| 656 |
|
|
case PRE_INC:
|
| 657 |
|
|
case POST_DEC:
|
| 658 |
|
|
case POST_INC:
|
| 659 |
|
|
case POST_MODIFY:
|
| 660 |
|
|
case PRE_MODIFY:
|
| 661 |
|
|
case PC:
|
| 662 |
|
|
case CC0:
|
| 663 |
|
|
case CALL:
|
| 664 |
|
|
case UNSPEC_VOLATILE:
|
| 665 |
|
|
return 0;
|
| 666 |
|
|
|
| 667 |
|
|
case ASM_OPERANDS:
|
| 668 |
|
|
if (MEM_VOLATILE_P (x))
|
| 669 |
|
|
return 0;
|
| 670 |
|
|
|
| 671 |
|
|
break;
|
| 672 |
|
|
|
| 673 |
|
|
default:
|
| 674 |
|
|
break;
|
| 675 |
|
|
}
|
| 676 |
|
|
|
| 677 |
|
|
i = GET_RTX_LENGTH (code) - 1;
|
| 678 |
|
|
fmt = GET_RTX_FORMAT (code);
|
| 679 |
|
|
for (; i >= 0; i--)
|
| 680 |
|
|
{
|
| 681 |
|
|
switch (fmt[i])
|
| 682 |
|
|
{
|
| 683 |
|
|
case 'e':
|
| 684 |
|
|
{
|
| 685 |
|
|
rtx tem = XEXP (x, i);
|
| 686 |
|
|
unsigned int tem_hash = cselib_hash_rtx (tem, create);
|
| 687 |
|
|
|
| 688 |
|
|
if (tem_hash == 0)
|
| 689 |
|
|
return 0;
|
| 690 |
|
|
|
| 691 |
|
|
hash += tem_hash;
|
| 692 |
|
|
}
|
| 693 |
|
|
break;
|
| 694 |
|
|
case 'E':
|
| 695 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 696 |
|
|
{
|
| 697 |
|
|
unsigned int tem_hash
|
| 698 |
|
|
= cselib_hash_rtx (XVECEXP (x, i, j), create);
|
| 699 |
|
|
|
| 700 |
|
|
if (tem_hash == 0)
|
| 701 |
|
|
return 0;
|
| 702 |
|
|
|
| 703 |
|
|
hash += tem_hash;
|
| 704 |
|
|
}
|
| 705 |
|
|
break;
|
| 706 |
|
|
|
| 707 |
|
|
case 's':
|
| 708 |
|
|
{
|
| 709 |
|
|
const unsigned char *p = (const unsigned char *) XSTR (x, i);
|
| 710 |
|
|
|
| 711 |
|
|
if (p)
|
| 712 |
|
|
while (*p)
|
| 713 |
|
|
hash += *p++;
|
| 714 |
|
|
break;
|
| 715 |
|
|
}
|
| 716 |
|
|
|
| 717 |
|
|
case 'i':
|
| 718 |
|
|
hash += XINT (x, i);
|
| 719 |
|
|
break;
|
| 720 |
|
|
|
| 721 |
|
|
case '0':
|
| 722 |
|
|
case 't':
|
| 723 |
|
|
/* unused */
|
| 724 |
|
|
break;
|
| 725 |
|
|
|
| 726 |
|
|
default:
|
| 727 |
|
|
gcc_unreachable ();
|
| 728 |
|
|
}
|
| 729 |
|
|
}
|
| 730 |
|
|
|
| 731 |
|
|
return hash ? hash : 1 + (unsigned int) GET_CODE (x);
|
| 732 |
|
|
}
|
| 733 |
|
|
|
| 734 |
|
|
/* Create a new value structure for VALUE and initialize it. The mode of the
|
| 735 |
|
|
value is MODE. */
|
| 736 |
|
|
|
| 737 |
|
|
static inline cselib_val *
|
| 738 |
|
|
new_cselib_val (unsigned int value, enum machine_mode mode)
|
| 739 |
|
|
{
|
| 740 |
|
|
cselib_val *e = pool_alloc (cselib_val_pool);
|
| 741 |
|
|
|
| 742 |
|
|
gcc_assert (value);
|
| 743 |
|
|
|
| 744 |
|
|
e->value = value;
|
| 745 |
|
|
/* We use an alloc pool to allocate this RTL construct because it
|
| 746 |
|
|
accounts for about 8% of the overall memory usage. We know
|
| 747 |
|
|
precisely when we can have VALUE RTXen (when cselib is active)
|
| 748 |
|
|
so we don't need to put them in garbage collected memory.
|
| 749 |
|
|
??? Why should a VALUE be an RTX in the first place? */
|
| 750 |
|
|
e->u.val_rtx = pool_alloc (value_pool);
|
| 751 |
|
|
memset (e->u.val_rtx, 0, RTX_HDR_SIZE);
|
| 752 |
|
|
PUT_CODE (e->u.val_rtx, VALUE);
|
| 753 |
|
|
PUT_MODE (e->u.val_rtx, mode);
|
| 754 |
|
|
CSELIB_VAL_PTR (e->u.val_rtx) = e;
|
| 755 |
|
|
e->addr_list = 0;
|
| 756 |
|
|
e->locs = 0;
|
| 757 |
|
|
e->next_containing_mem = 0;
|
| 758 |
|
|
return e;
|
| 759 |
|
|
}
|
| 760 |
|
|
|
| 761 |
|
|
/* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
|
| 762 |
|
|
contains the data at this address. X is a MEM that represents the
|
| 763 |
|
|
value. Update the two value structures to represent this situation. */
|
| 764 |
|
|
|
| 765 |
|
|
static void
|
| 766 |
|
|
add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
|
| 767 |
|
|
{
|
| 768 |
|
|
struct elt_loc_list *l;
|
| 769 |
|
|
|
| 770 |
|
|
/* Avoid duplicates. */
|
| 771 |
|
|
for (l = mem_elt->locs; l; l = l->next)
|
| 772 |
|
|
if (MEM_P (l->loc)
|
| 773 |
|
|
&& CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
|
| 774 |
|
|
return;
|
| 775 |
|
|
|
| 776 |
|
|
addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
|
| 777 |
|
|
mem_elt->locs
|
| 778 |
|
|
= new_elt_loc_list (mem_elt->locs,
|
| 779 |
|
|
replace_equiv_address_nv (x, addr_elt->u.val_rtx));
|
| 780 |
|
|
if (mem_elt->next_containing_mem == NULL)
|
| 781 |
|
|
{
|
| 782 |
|
|
mem_elt->next_containing_mem = first_containing_mem;
|
| 783 |
|
|
first_containing_mem = mem_elt;
|
| 784 |
|
|
}
|
| 785 |
|
|
}
|
| 786 |
|
|
|
| 787 |
|
|
/* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
|
| 788 |
|
|
If CREATE, make a new one if we haven't seen it before. */
|
| 789 |
|
|
|
| 790 |
|
|
static cselib_val *
|
| 791 |
|
|
cselib_lookup_mem (rtx x, int create)
|
| 792 |
|
|
{
|
| 793 |
|
|
enum machine_mode mode = GET_MODE (x);
|
| 794 |
|
|
void **slot;
|
| 795 |
|
|
cselib_val *addr;
|
| 796 |
|
|
cselib_val *mem_elt;
|
| 797 |
|
|
struct elt_list *l;
|
| 798 |
|
|
|
| 799 |
|
|
if (MEM_VOLATILE_P (x) || mode == BLKmode
|
| 800 |
|
|
|| !cselib_record_memory
|
| 801 |
|
|
|| (FLOAT_MODE_P (mode) && flag_float_store))
|
| 802 |
|
|
return 0;
|
| 803 |
|
|
|
| 804 |
|
|
/* Look up the value for the address. */
|
| 805 |
|
|
addr = cselib_lookup (XEXP (x, 0), mode, create);
|
| 806 |
|
|
if (! addr)
|
| 807 |
|
|
return 0;
|
| 808 |
|
|
|
| 809 |
|
|
/* Find a value that describes a value of our mode at that address. */
|
| 810 |
|
|
for (l = addr->addr_list; l; l = l->next)
|
| 811 |
|
|
if (GET_MODE (l->elt->u.val_rtx) == mode)
|
| 812 |
|
|
return l->elt;
|
| 813 |
|
|
|
| 814 |
|
|
if (! create)
|
| 815 |
|
|
return 0;
|
| 816 |
|
|
|
| 817 |
|
|
mem_elt = new_cselib_val (++next_unknown_value, mode);
|
| 818 |
|
|
add_mem_for_addr (addr, mem_elt, x);
|
| 819 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
|
| 820 |
|
|
mem_elt->value, INSERT);
|
| 821 |
|
|
*slot = mem_elt;
|
| 822 |
|
|
return mem_elt;
|
| 823 |
|
|
}
|
| 824 |
|
|
|
| 825 |
|
|
/* Walk rtx X and replace all occurrences of REG and MEM subexpressions
|
| 826 |
|
|
with VALUE expressions. This way, it becomes independent of changes
|
| 827 |
|
|
to registers and memory.
|
| 828 |
|
|
X isn't actually modified; if modifications are needed, new rtl is
|
| 829 |
|
|
allocated. However, the return value can share rtl with X. */
|
| 830 |
|
|
|
| 831 |
|
|
rtx
|
| 832 |
|
|
cselib_subst_to_values (rtx x)
|
| 833 |
|
|
{
|
| 834 |
|
|
enum rtx_code code = GET_CODE (x);
|
| 835 |
|
|
const char *fmt = GET_RTX_FORMAT (code);
|
| 836 |
|
|
cselib_val *e;
|
| 837 |
|
|
struct elt_list *l;
|
| 838 |
|
|
rtx copy = x;
|
| 839 |
|
|
int i;
|
| 840 |
|
|
|
| 841 |
|
|
switch (code)
|
| 842 |
|
|
{
|
| 843 |
|
|
case REG:
|
| 844 |
|
|
l = REG_VALUES (REGNO (x));
|
| 845 |
|
|
if (l && l->elt == NULL)
|
| 846 |
|
|
l = l->next;
|
| 847 |
|
|
for (; l; l = l->next)
|
| 848 |
|
|
if (GET_MODE (l->elt->u.val_rtx) == GET_MODE (x))
|
| 849 |
|
|
return l->elt->u.val_rtx;
|
| 850 |
|
|
|
| 851 |
|
|
gcc_unreachable ();
|
| 852 |
|
|
|
| 853 |
|
|
case MEM:
|
| 854 |
|
|
e = cselib_lookup_mem (x, 0);
|
| 855 |
|
|
if (! e)
|
| 856 |
|
|
{
|
| 857 |
|
|
/* This happens for autoincrements. Assign a value that doesn't
|
| 858 |
|
|
match any other. */
|
| 859 |
|
|
e = new_cselib_val (++next_unknown_value, GET_MODE (x));
|
| 860 |
|
|
}
|
| 861 |
|
|
return e->u.val_rtx;
|
| 862 |
|
|
|
| 863 |
|
|
case CONST_DOUBLE:
|
| 864 |
|
|
case CONST_VECTOR:
|
| 865 |
|
|
case CONST_INT:
|
| 866 |
|
|
return x;
|
| 867 |
|
|
|
| 868 |
|
|
case POST_INC:
|
| 869 |
|
|
case PRE_INC:
|
| 870 |
|
|
case POST_DEC:
|
| 871 |
|
|
case PRE_DEC:
|
| 872 |
|
|
case POST_MODIFY:
|
| 873 |
|
|
case PRE_MODIFY:
|
| 874 |
|
|
e = new_cselib_val (++next_unknown_value, GET_MODE (x));
|
| 875 |
|
|
return e->u.val_rtx;
|
| 876 |
|
|
|
| 877 |
|
|
default:
|
| 878 |
|
|
break;
|
| 879 |
|
|
}
|
| 880 |
|
|
|
| 881 |
|
|
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
| 882 |
|
|
{
|
| 883 |
|
|
if (fmt[i] == 'e')
|
| 884 |
|
|
{
|
| 885 |
|
|
rtx t = cselib_subst_to_values (XEXP (x, i));
|
| 886 |
|
|
|
| 887 |
|
|
if (t != XEXP (x, i) && x == copy)
|
| 888 |
|
|
copy = shallow_copy_rtx (x);
|
| 889 |
|
|
|
| 890 |
|
|
XEXP (copy, i) = t;
|
| 891 |
|
|
}
|
| 892 |
|
|
else if (fmt[i] == 'E')
|
| 893 |
|
|
{
|
| 894 |
|
|
int j, k;
|
| 895 |
|
|
|
| 896 |
|
|
for (j = 0; j < XVECLEN (x, i); j++)
|
| 897 |
|
|
{
|
| 898 |
|
|
rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
|
| 899 |
|
|
|
| 900 |
|
|
if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
|
| 901 |
|
|
{
|
| 902 |
|
|
if (x == copy)
|
| 903 |
|
|
copy = shallow_copy_rtx (x);
|
| 904 |
|
|
|
| 905 |
|
|
XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
|
| 906 |
|
|
for (k = 0; k < j; k++)
|
| 907 |
|
|
XVECEXP (copy, i, k) = XVECEXP (x, i, k);
|
| 908 |
|
|
}
|
| 909 |
|
|
|
| 910 |
|
|
XVECEXP (copy, i, j) = t;
|
| 911 |
|
|
}
|
| 912 |
|
|
}
|
| 913 |
|
|
}
|
| 914 |
|
|
|
| 915 |
|
|
return copy;
|
| 916 |
|
|
}
|
| 917 |
|
|
|
| 918 |
|
|
/* Look up the rtl expression X in our tables and return the value it has.
|
| 919 |
|
|
If CREATE is zero, we return NULL if we don't know the value. Otherwise,
|
| 920 |
|
|
we create a new one if possible, using mode MODE if X doesn't have a mode
|
| 921 |
|
|
(i.e. because it's a constant). */
|
| 922 |
|
|
|
| 923 |
|
|
cselib_val *
|
| 924 |
|
|
cselib_lookup (rtx x, enum machine_mode mode, int create)
|
| 925 |
|
|
{
|
| 926 |
|
|
void **slot;
|
| 927 |
|
|
cselib_val *e;
|
| 928 |
|
|
unsigned int hashval;
|
| 929 |
|
|
|
| 930 |
|
|
if (GET_MODE (x) != VOIDmode)
|
| 931 |
|
|
mode = GET_MODE (x);
|
| 932 |
|
|
|
| 933 |
|
|
if (GET_CODE (x) == VALUE)
|
| 934 |
|
|
return CSELIB_VAL_PTR (x);
|
| 935 |
|
|
|
| 936 |
|
|
if (REG_P (x))
|
| 937 |
|
|
{
|
| 938 |
|
|
struct elt_list *l;
|
| 939 |
|
|
unsigned int i = REGNO (x);
|
| 940 |
|
|
|
| 941 |
|
|
l = REG_VALUES (i);
|
| 942 |
|
|
if (l && l->elt == NULL)
|
| 943 |
|
|
l = l->next;
|
| 944 |
|
|
for (; l; l = l->next)
|
| 945 |
|
|
if (mode == GET_MODE (l->elt->u.val_rtx))
|
| 946 |
|
|
return l->elt;
|
| 947 |
|
|
|
| 948 |
|
|
if (! create)
|
| 949 |
|
|
return 0;
|
| 950 |
|
|
|
| 951 |
|
|
if (i < FIRST_PSEUDO_REGISTER)
|
| 952 |
|
|
{
|
| 953 |
|
|
unsigned int n = hard_regno_nregs[i][mode];
|
| 954 |
|
|
|
| 955 |
|
|
if (n > max_value_regs)
|
| 956 |
|
|
max_value_regs = n;
|
| 957 |
|
|
}
|
| 958 |
|
|
|
| 959 |
|
|
e = new_cselib_val (++next_unknown_value, GET_MODE (x));
|
| 960 |
|
|
e->locs = new_elt_loc_list (e->locs, x);
|
| 961 |
|
|
if (REG_VALUES (i) == 0)
|
| 962 |
|
|
{
|
| 963 |
|
|
/* Maintain the invariant that the first entry of
|
| 964 |
|
|
REG_VALUES, if present, must be the value used to set the
|
| 965 |
|
|
register, or NULL. */
|
| 966 |
|
|
used_regs[n_used_regs++] = i;
|
| 967 |
|
|
REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
|
| 968 |
|
|
}
|
| 969 |
|
|
REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
|
| 970 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
|
| 971 |
|
|
*slot = e;
|
| 972 |
|
|
return e;
|
| 973 |
|
|
}
|
| 974 |
|
|
|
| 975 |
|
|
if (MEM_P (x))
|
| 976 |
|
|
return cselib_lookup_mem (x, create);
|
| 977 |
|
|
|
| 978 |
|
|
hashval = cselib_hash_rtx (x, create);
|
| 979 |
|
|
/* Can't even create if hashing is not possible. */
|
| 980 |
|
|
if (! hashval)
|
| 981 |
|
|
return 0;
|
| 982 |
|
|
|
| 983 |
|
|
slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
|
| 984 |
|
|
hashval, create ? INSERT : NO_INSERT);
|
| 985 |
|
|
if (slot == 0)
|
| 986 |
|
|
return 0;
|
| 987 |
|
|
|
| 988 |
|
|
e = (cselib_val *) *slot;
|
| 989 |
|
|
if (e)
|
| 990 |
|
|
return e;
|
| 991 |
|
|
|
| 992 |
|
|
e = new_cselib_val (hashval, mode);
|
| 993 |
|
|
|
| 994 |
|
|
/* We have to fill the slot before calling cselib_subst_to_values:
|
| 995 |
|
|
the hash table is inconsistent until we do so, and
|
| 996 |
|
|
cselib_subst_to_values will need to do lookups. */
|
| 997 |
|
|
*slot = (void *) e;
|
| 998 |
|
|
e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
|
| 999 |
|
|
return e;
|
| 1000 |
|
|
}
|
| 1001 |
|
|
|
| 1002 |
|
|
/* Invalidate any entries in reg_values that overlap REGNO. This is called
|
| 1003 |
|
|
if REGNO is changing. MODE is the mode of the assignment to REGNO, which
|
| 1004 |
|
|
is used to determine how many hard registers are being changed. If MODE
|
| 1005 |
|
|
is VOIDmode, then only REGNO is being changed; this is used when
|
| 1006 |
|
|
invalidating call clobbered registers across a call. */
|
| 1007 |
|
|
|
| 1008 |
|
|
static void
|
| 1009 |
|
|
cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
|
| 1010 |
|
|
{
|
| 1011 |
|
|
unsigned int endregno;
|
| 1012 |
|
|
unsigned int i;
|
| 1013 |
|
|
|
| 1014 |
|
|
/* If we see pseudos after reload, something is _wrong_. */
|
| 1015 |
|
|
gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
|
| 1016 |
|
|
|| reg_renumber[regno] < 0);
|
| 1017 |
|
|
|
| 1018 |
|
|
/* Determine the range of registers that must be invalidated. For
|
| 1019 |
|
|
pseudos, only REGNO is affected. For hard regs, we must take MODE
|
| 1020 |
|
|
into account, and we must also invalidate lower register numbers
|
| 1021 |
|
|
if they contain values that overlap REGNO. */
|
| 1022 |
|
|
if (regno < FIRST_PSEUDO_REGISTER)
|
| 1023 |
|
|
{
|
| 1024 |
|
|
gcc_assert (mode != VOIDmode);
|
| 1025 |
|
|
|
| 1026 |
|
|
if (regno < max_value_regs)
|
| 1027 |
|
|
i = 0;
|
| 1028 |
|
|
else
|
| 1029 |
|
|
i = regno - max_value_regs;
|
| 1030 |
|
|
|
| 1031 |
|
|
endregno = regno + hard_regno_nregs[regno][mode];
|
| 1032 |
|
|
}
|
| 1033 |
|
|
else
|
| 1034 |
|
|
{
|
| 1035 |
|
|
i = regno;
|
| 1036 |
|
|
endregno = regno + 1;
|
| 1037 |
|
|
}
|
| 1038 |
|
|
|
| 1039 |
|
|
for (; i < endregno; i++)
|
| 1040 |
|
|
{
|
| 1041 |
|
|
struct elt_list **l = ®_VALUES (i);
|
| 1042 |
|
|
|
| 1043 |
|
|
/* Go through all known values for this reg; if it overlaps the range
|
| 1044 |
|
|
we're invalidating, remove the value. */
|
| 1045 |
|
|
while (*l)
|
| 1046 |
|
|
{
|
| 1047 |
|
|
cselib_val *v = (*l)->elt;
|
| 1048 |
|
|
struct elt_loc_list **p;
|
| 1049 |
|
|
unsigned int this_last = i;
|
| 1050 |
|
|
|
| 1051 |
|
|
if (i < FIRST_PSEUDO_REGISTER && v != NULL)
|
| 1052 |
|
|
this_last += hard_regno_nregs[i][GET_MODE (v->u.val_rtx)] - 1;
|
| 1053 |
|
|
|
| 1054 |
|
|
if (this_last < regno || v == NULL)
|
| 1055 |
|
|
{
|
| 1056 |
|
|
l = &(*l)->next;
|
| 1057 |
|
|
continue;
|
| 1058 |
|
|
}
|
| 1059 |
|
|
|
| 1060 |
|
|
/* We have an overlap. */
|
| 1061 |
|
|
if (*l == REG_VALUES (i))
|
| 1062 |
|
|
{
|
| 1063 |
|
|
/* Maintain the invariant that the first entry of
|
| 1064 |
|
|
REG_VALUES, if present, must be the value used to set
|
| 1065 |
|
|
the register, or NULL. This is also nice because
|
| 1066 |
|
|
then we won't push the same regno onto user_regs
|
| 1067 |
|
|
multiple times. */
|
| 1068 |
|
|
(*l)->elt = NULL;
|
| 1069 |
|
|
l = &(*l)->next;
|
| 1070 |
|
|
}
|
| 1071 |
|
|
else
|
| 1072 |
|
|
unchain_one_elt_list (l);
|
| 1073 |
|
|
|
| 1074 |
|
|
/* Now, we clear the mapping from value to reg. It must exist, so
|
| 1075 |
|
|
this code will crash intentionally if it doesn't. */
|
| 1076 |
|
|
for (p = &v->locs; ; p = &(*p)->next)
|
| 1077 |
|
|
{
|
| 1078 |
|
|
rtx x = (*p)->loc;
|
| 1079 |
|
|
|
| 1080 |
|
|
if (REG_P (x) && REGNO (x) == i)
|
| 1081 |
|
|
{
|
| 1082 |
|
|
unchain_one_elt_loc_list (p);
|
| 1083 |
|
|
break;
|
| 1084 |
|
|
}
|
| 1085 |
|
|
}
|
| 1086 |
|
|
if (v->locs == 0)
|
| 1087 |
|
|
n_useless_values++;
|
| 1088 |
|
|
}
|
| 1089 |
|
|
}
|
| 1090 |
|
|
}
|
| 1091 |
|
|
|
| 1092 |
|
|
/* Return 1 if X has a value that can vary even between two
|
| 1093 |
|
|
executions of the program. 0 means X can be compared reliably
|
| 1094 |
|
|
against certain constants or near-constants. */
|
| 1095 |
|
|
|
| 1096 |
|
|
static int
|
| 1097 |
|
|
cselib_rtx_varies_p (rtx x ATTRIBUTE_UNUSED, int from_alias ATTRIBUTE_UNUSED)
|
| 1098 |
|
|
{
|
| 1099 |
|
|
/* We actually don't need to verify very hard. This is because
|
| 1100 |
|
|
if X has actually changed, we invalidate the memory anyway,
|
| 1101 |
|
|
so assume that all common memory addresses are
|
| 1102 |
|
|
invariant. */
|
| 1103 |
|
|
return 0;
|
| 1104 |
|
|
}
|
| 1105 |
|
|
|
| 1106 |
|
|
/* Invalidate any locations in the table which are changed because of a
|
| 1107 |
|
|
store to MEM_RTX. If this is called because of a non-const call
|
| 1108 |
|
|
instruction, MEM_RTX is (mem:BLK const0_rtx). */
|
| 1109 |
|
|
|
| 1110 |
|
|
static void
|
| 1111 |
|
|
cselib_invalidate_mem (rtx mem_rtx)
|
| 1112 |
|
|
{
|
| 1113 |
|
|
cselib_val **vp, *v, *next;
|
| 1114 |
|
|
int num_mems = 0;
|
| 1115 |
|
|
rtx mem_addr;
|
| 1116 |
|
|
|
| 1117 |
|
|
mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
|
| 1118 |
|
|
mem_rtx = canon_rtx (mem_rtx);
|
| 1119 |
|
|
|
| 1120 |
|
|
vp = &first_containing_mem;
|
| 1121 |
|
|
for (v = *vp; v != &dummy_val; v = next)
|
| 1122 |
|
|
{
|
| 1123 |
|
|
bool has_mem = false;
|
| 1124 |
|
|
struct elt_loc_list **p = &v->locs;
|
| 1125 |
|
|
int had_locs = v->locs != 0;
|
| 1126 |
|
|
|
| 1127 |
|
|
while (*p)
|
| 1128 |
|
|
{
|
| 1129 |
|
|
rtx x = (*p)->loc;
|
| 1130 |
|
|
cselib_val *addr;
|
| 1131 |
|
|
struct elt_list **mem_chain;
|
| 1132 |
|
|
|
| 1133 |
|
|
/* MEMs may occur in locations only at the top level; below
|
| 1134 |
|
|
that every MEM or REG is substituted by its VALUE. */
|
| 1135 |
|
|
if (!MEM_P (x))
|
| 1136 |
|
|
{
|
| 1137 |
|
|
p = &(*p)->next;
|
| 1138 |
|
|
continue;
|
| 1139 |
|
|
}
|
| 1140 |
|
|
if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
|
| 1141 |
|
|
&& ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
|
| 1142 |
|
|
x, cselib_rtx_varies_p))
|
| 1143 |
|
|
{
|
| 1144 |
|
|
has_mem = true;
|
| 1145 |
|
|
num_mems++;
|
| 1146 |
|
|
p = &(*p)->next;
|
| 1147 |
|
|
continue;
|
| 1148 |
|
|
}
|
| 1149 |
|
|
|
| 1150 |
|
|
/* This one overlaps. */
|
| 1151 |
|
|
/* We must have a mapping from this MEM's address to the
|
| 1152 |
|
|
value (E). Remove that, too. */
|
| 1153 |
|
|
addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
|
| 1154 |
|
|
mem_chain = &addr->addr_list;
|
| 1155 |
|
|
for (;;)
|
| 1156 |
|
|
{
|
| 1157 |
|
|
if ((*mem_chain)->elt == v)
|
| 1158 |
|
|
{
|
| 1159 |
|
|
unchain_one_elt_list (mem_chain);
|
| 1160 |
|
|
break;
|
| 1161 |
|
|
}
|
| 1162 |
|
|
|
| 1163 |
|
|
mem_chain = &(*mem_chain)->next;
|
| 1164 |
|
|
}
|
| 1165 |
|
|
|
| 1166 |
|
|
unchain_one_elt_loc_list (p);
|
| 1167 |
|
|
}
|
| 1168 |
|
|
|
| 1169 |
|
|
if (had_locs && v->locs == 0)
|
| 1170 |
|
|
n_useless_values++;
|
| 1171 |
|
|
|
| 1172 |
|
|
next = v->next_containing_mem;
|
| 1173 |
|
|
if (has_mem)
|
| 1174 |
|
|
{
|
| 1175 |
|
|
*vp = v;
|
| 1176 |
|
|
vp = &(*vp)->next_containing_mem;
|
| 1177 |
|
|
}
|
| 1178 |
|
|
else
|
| 1179 |
|
|
v->next_containing_mem = NULL;
|
| 1180 |
|
|
}
|
| 1181 |
|
|
*vp = &dummy_val;
|
| 1182 |
|
|
}
|
| 1183 |
|
|
|
| 1184 |
|
|
/* Invalidate DEST, which is being assigned to or clobbered. */
|
| 1185 |
|
|
|
| 1186 |
|
|
void
|
| 1187 |
|
|
cselib_invalidate_rtx (rtx dest)
|
| 1188 |
|
|
{
|
| 1189 |
|
|
while (GET_CODE (dest) == SUBREG
|
| 1190 |
|
|
|| GET_CODE (dest) == ZERO_EXTRACT
|
| 1191 |
|
|
|| GET_CODE (dest) == STRICT_LOW_PART)
|
| 1192 |
|
|
dest = XEXP (dest, 0);
|
| 1193 |
|
|
|
| 1194 |
|
|
if (REG_P (dest))
|
| 1195 |
|
|
cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
|
| 1196 |
|
|
else if (MEM_P (dest))
|
| 1197 |
|
|
cselib_invalidate_mem (dest);
|
| 1198 |
|
|
|
| 1199 |
|
|
/* Some machines don't define AUTO_INC_DEC, but they still use push
|
| 1200 |
|
|
instructions. We need to catch that case here in order to
|
| 1201 |
|
|
invalidate the stack pointer correctly. Note that invalidating
|
| 1202 |
|
|
the stack pointer is different from invalidating DEST. */
|
| 1203 |
|
|
if (push_operand (dest, GET_MODE (dest)))
|
| 1204 |
|
|
cselib_invalidate_rtx (stack_pointer_rtx);
|
| 1205 |
|
|
}
|
| 1206 |
|
|
|
| 1207 |
|
|
/* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
|
| 1208 |
|
|
|
| 1209 |
|
|
static void
|
| 1210 |
|
|
cselib_invalidate_rtx_note_stores (rtx dest, rtx ignore ATTRIBUTE_UNUSED,
|
| 1211 |
|
|
void *data ATTRIBUTE_UNUSED)
|
| 1212 |
|
|
{
|
| 1213 |
|
|
cselib_invalidate_rtx (dest);
|
| 1214 |
|
|
}
|
| 1215 |
|
|
|
| 1216 |
|
|
/* Record the result of a SET instruction. DEST is being set; the source
|
| 1217 |
|
|
contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
|
| 1218 |
|
|
describes its address. */
|
| 1219 |
|
|
|
| 1220 |
|
|
static void
|
| 1221 |
|
|
cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
|
| 1222 |
|
|
{
|
| 1223 |
|
|
int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
|
| 1224 |
|
|
|
| 1225 |
|
|
if (src_elt == 0 || side_effects_p (dest))
|
| 1226 |
|
|
return;
|
| 1227 |
|
|
|
| 1228 |
|
|
if (dreg >= 0)
|
| 1229 |
|
|
{
|
| 1230 |
|
|
if (dreg < FIRST_PSEUDO_REGISTER)
|
| 1231 |
|
|
{
|
| 1232 |
|
|
unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
|
| 1233 |
|
|
|
| 1234 |
|
|
if (n > max_value_regs)
|
| 1235 |
|
|
max_value_regs = n;
|
| 1236 |
|
|
}
|
| 1237 |
|
|
|
| 1238 |
|
|
if (REG_VALUES (dreg) == 0)
|
| 1239 |
|
|
{
|
| 1240 |
|
|
used_regs[n_used_regs++] = dreg;
|
| 1241 |
|
|
REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
|
| 1242 |
|
|
}
|
| 1243 |
|
|
else
|
| 1244 |
|
|
{
|
| 1245 |
|
|
/* The register should have been invalidated. */
|
| 1246 |
|
|
gcc_assert (REG_VALUES (dreg)->elt == 0);
|
| 1247 |
|
|
REG_VALUES (dreg)->elt = src_elt;
|
| 1248 |
|
|
}
|
| 1249 |
|
|
|
| 1250 |
|
|
if (src_elt->locs == 0)
|
| 1251 |
|
|
n_useless_values--;
|
| 1252 |
|
|
src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
|
| 1253 |
|
|
}
|
| 1254 |
|
|
else if (MEM_P (dest) && dest_addr_elt != 0
|
| 1255 |
|
|
&& cselib_record_memory)
|
| 1256 |
|
|
{
|
| 1257 |
|
|
if (src_elt->locs == 0)
|
| 1258 |
|
|
n_useless_values--;
|
| 1259 |
|
|
add_mem_for_addr (dest_addr_elt, src_elt, dest);
|
| 1260 |
|
|
}
|
| 1261 |
|
|
}
|
| 1262 |
|
|
|
| 1263 |
|
|
/* Describe a single set that is part of an insn. */
|
| 1264 |
|
|
struct set
|
| 1265 |
|
|
{
|
| 1266 |
|
|
rtx src;
|
| 1267 |
|
|
rtx dest;
|
| 1268 |
|
|
cselib_val *src_elt;
|
| 1269 |
|
|
cselib_val *dest_addr_elt;
|
| 1270 |
|
|
};
|
| 1271 |
|
|
|
| 1272 |
|
|
/* There is no good way to determine how many elements there can be
|
| 1273 |
|
|
in a PARALLEL. Since it's fairly cheap, use a really large number. */
|
| 1274 |
|
|
#define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
|
| 1275 |
|
|
|
| 1276 |
|
|
/* Record the effects of any sets in INSN. */
|
| 1277 |
|
|
static void
|
| 1278 |
|
|
cselib_record_sets (rtx insn)
|
| 1279 |
|
|
{
|
| 1280 |
|
|
int n_sets = 0;
|
| 1281 |
|
|
int i;
|
| 1282 |
|
|
struct set sets[MAX_SETS];
|
| 1283 |
|
|
rtx body = PATTERN (insn);
|
| 1284 |
|
|
rtx cond = 0;
|
| 1285 |
|
|
|
| 1286 |
|
|
body = PATTERN (insn);
|
| 1287 |
|
|
if (GET_CODE (body) == COND_EXEC)
|
| 1288 |
|
|
{
|
| 1289 |
|
|
cond = COND_EXEC_TEST (body);
|
| 1290 |
|
|
body = COND_EXEC_CODE (body);
|
| 1291 |
|
|
}
|
| 1292 |
|
|
|
| 1293 |
|
|
/* Find all sets. */
|
| 1294 |
|
|
if (GET_CODE (body) == SET)
|
| 1295 |
|
|
{
|
| 1296 |
|
|
sets[0].src = SET_SRC (body);
|
| 1297 |
|
|
sets[0].dest = SET_DEST (body);
|
| 1298 |
|
|
n_sets = 1;
|
| 1299 |
|
|
}
|
| 1300 |
|
|
else if (GET_CODE (body) == PARALLEL)
|
| 1301 |
|
|
{
|
| 1302 |
|
|
/* Look through the PARALLEL and record the values being
|
| 1303 |
|
|
set, if possible. Also handle any CLOBBERs. */
|
| 1304 |
|
|
for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
|
| 1305 |
|
|
{
|
| 1306 |
|
|
rtx x = XVECEXP (body, 0, i);
|
| 1307 |
|
|
|
| 1308 |
|
|
if (GET_CODE (x) == SET)
|
| 1309 |
|
|
{
|
| 1310 |
|
|
sets[n_sets].src = SET_SRC (x);
|
| 1311 |
|
|
sets[n_sets].dest = SET_DEST (x);
|
| 1312 |
|
|
n_sets++;
|
| 1313 |
|
|
}
|
| 1314 |
|
|
}
|
| 1315 |
|
|
}
|
| 1316 |
|
|
|
| 1317 |
|
|
/* Look up the values that are read. Do this before invalidating the
|
| 1318 |
|
|
locations that are written. */
|
| 1319 |
|
|
for (i = 0; i < n_sets; i++)
|
| 1320 |
|
|
{
|
| 1321 |
|
|
rtx dest = sets[i].dest;
|
| 1322 |
|
|
|
| 1323 |
|
|
/* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
|
| 1324 |
|
|
the low part after invalidating any knowledge about larger modes. */
|
| 1325 |
|
|
if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
|
| 1326 |
|
|
sets[i].dest = dest = XEXP (dest, 0);
|
| 1327 |
|
|
|
| 1328 |
|
|
/* We don't know how to record anything but REG or MEM. */
|
| 1329 |
|
|
if (REG_P (dest)
|
| 1330 |
|
|
|| (MEM_P (dest) && cselib_record_memory))
|
| 1331 |
|
|
{
|
| 1332 |
|
|
rtx src = sets[i].src;
|
| 1333 |
|
|
if (cond)
|
| 1334 |
|
|
src = gen_rtx_IF_THEN_ELSE (GET_MODE (src), cond, src, dest);
|
| 1335 |
|
|
sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
|
| 1336 |
|
|
if (MEM_P (dest))
|
| 1337 |
|
|
sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
|
| 1338 |
|
|
else
|
| 1339 |
|
|
sets[i].dest_addr_elt = 0;
|
| 1340 |
|
|
}
|
| 1341 |
|
|
}
|
| 1342 |
|
|
|
| 1343 |
|
|
/* Invalidate all locations written by this insn. Note that the elts we
|
| 1344 |
|
|
looked up in the previous loop aren't affected, just some of their
|
| 1345 |
|
|
locations may go away. */
|
| 1346 |
|
|
note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
|
| 1347 |
|
|
|
| 1348 |
|
|
/* If this is an asm, look for duplicate sets. This can happen when the
|
| 1349 |
|
|
user uses the same value as an output multiple times. This is valid
|
| 1350 |
|
|
if the outputs are not actually used thereafter. Treat this case as
|
| 1351 |
|
|
if the value isn't actually set. We do this by smashing the destination
|
| 1352 |
|
|
to pc_rtx, so that we won't record the value later. */
|
| 1353 |
|
|
if (n_sets >= 2 && asm_noperands (body) >= 0)
|
| 1354 |
|
|
{
|
| 1355 |
|
|
for (i = 0; i < n_sets; i++)
|
| 1356 |
|
|
{
|
| 1357 |
|
|
rtx dest = sets[i].dest;
|
| 1358 |
|
|
if (REG_P (dest) || MEM_P (dest))
|
| 1359 |
|
|
{
|
| 1360 |
|
|
int j;
|
| 1361 |
|
|
for (j = i + 1; j < n_sets; j++)
|
| 1362 |
|
|
if (rtx_equal_p (dest, sets[j].dest))
|
| 1363 |
|
|
{
|
| 1364 |
|
|
sets[i].dest = pc_rtx;
|
| 1365 |
|
|
sets[j].dest = pc_rtx;
|
| 1366 |
|
|
}
|
| 1367 |
|
|
}
|
| 1368 |
|
|
}
|
| 1369 |
|
|
}
|
| 1370 |
|
|
|
| 1371 |
|
|
/* Now enter the equivalences in our tables. */
|
| 1372 |
|
|
for (i = 0; i < n_sets; i++)
|
| 1373 |
|
|
{
|
| 1374 |
|
|
rtx dest = sets[i].dest;
|
| 1375 |
|
|
if (REG_P (dest)
|
| 1376 |
|
|
|| (MEM_P (dest) && cselib_record_memory))
|
| 1377 |
|
|
cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
|
| 1378 |
|
|
}
|
| 1379 |
|
|
}
|
| 1380 |
|
|
|
| 1381 |
|
|
/* Record the effects of INSN. */
|
| 1382 |
|
|
|
| 1383 |
|
|
void
|
| 1384 |
|
|
cselib_process_insn (rtx insn)
|
| 1385 |
|
|
{
|
| 1386 |
|
|
int i;
|
| 1387 |
|
|
rtx x;
|
| 1388 |
|
|
|
| 1389 |
|
|
if (find_reg_note (insn, REG_LIBCALL, NULL))
|
| 1390 |
|
|
cselib_current_insn_in_libcall = true;
|
| 1391 |
|
|
cselib_current_insn = insn;
|
| 1392 |
|
|
|
| 1393 |
|
|
/* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
|
| 1394 |
|
|
if (LABEL_P (insn)
|
| 1395 |
|
|
|| (CALL_P (insn)
|
| 1396 |
|
|
&& find_reg_note (insn, REG_SETJMP, NULL))
|
| 1397 |
|
|
|| (NONJUMP_INSN_P (insn)
|
| 1398 |
|
|
&& GET_CODE (PATTERN (insn)) == ASM_OPERANDS
|
| 1399 |
|
|
&& MEM_VOLATILE_P (PATTERN (insn))))
|
| 1400 |
|
|
{
|
| 1401 |
|
|
if (find_reg_note (insn, REG_RETVAL, NULL))
|
| 1402 |
|
|
cselib_current_insn_in_libcall = false;
|
| 1403 |
|
|
cselib_clear_table ();
|
| 1404 |
|
|
return;
|
| 1405 |
|
|
}
|
| 1406 |
|
|
|
| 1407 |
|
|
if (! INSN_P (insn))
|
| 1408 |
|
|
{
|
| 1409 |
|
|
if (find_reg_note (insn, REG_RETVAL, NULL))
|
| 1410 |
|
|
cselib_current_insn_in_libcall = false;
|
| 1411 |
|
|
cselib_current_insn = 0;
|
| 1412 |
|
|
return;
|
| 1413 |
|
|
}
|
| 1414 |
|
|
|
| 1415 |
|
|
/* If this is a call instruction, forget anything stored in a
|
| 1416 |
|
|
call clobbered register, or, if this is not a const call, in
|
| 1417 |
|
|
memory. */
|
| 1418 |
|
|
if (CALL_P (insn))
|
| 1419 |
|
|
{
|
| 1420 |
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
| 1421 |
|
|
if (call_used_regs[i]
|
| 1422 |
|
|
|| (REG_VALUES (i) && REG_VALUES (i)->elt
|
| 1423 |
|
|
&& HARD_REGNO_CALL_PART_CLOBBERED (i,
|
| 1424 |
|
|
GET_MODE (REG_VALUES (i)->elt->u.val_rtx))))
|
| 1425 |
|
|
cselib_invalidate_regno (i, reg_raw_mode[i]);
|
| 1426 |
|
|
|
| 1427 |
|
|
if (! CONST_OR_PURE_CALL_P (insn))
|
| 1428 |
|
|
cselib_invalidate_mem (callmem);
|
| 1429 |
|
|
}
|
| 1430 |
|
|
|
| 1431 |
|
|
cselib_record_sets (insn);
|
| 1432 |
|
|
|
| 1433 |
|
|
#ifdef AUTO_INC_DEC
|
| 1434 |
|
|
/* Clobber any registers which appear in REG_INC notes. We
|
| 1435 |
|
|
could keep track of the changes to their values, but it is
|
| 1436 |
|
|
unlikely to help. */
|
| 1437 |
|
|
for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
|
| 1438 |
|
|
if (REG_NOTE_KIND (x) == REG_INC)
|
| 1439 |
|
|
cselib_invalidate_rtx (XEXP (x, 0));
|
| 1440 |
|
|
#endif
|
| 1441 |
|
|
|
| 1442 |
|
|
/* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
|
| 1443 |
|
|
after we have processed the insn. */
|
| 1444 |
|
|
if (CALL_P (insn))
|
| 1445 |
|
|
for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
|
| 1446 |
|
|
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
| 1447 |
|
|
cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
|
| 1448 |
|
|
|
| 1449 |
|
|
if (find_reg_note (insn, REG_RETVAL, NULL))
|
| 1450 |
|
|
cselib_current_insn_in_libcall = false;
|
| 1451 |
|
|
cselib_current_insn = 0;
|
| 1452 |
|
|
|
| 1453 |
|
|
if (n_useless_values > MAX_USELESS_VALUES
|
| 1454 |
|
|
/* remove_useless_values is linear in the hash table size. Avoid
|
| 1455 |
|
|
quadratic behaviour for very large hashtables with very few
|
| 1456 |
|
|
useless elements. */
|
| 1457 |
|
|
&& (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
|
| 1458 |
|
|
remove_useless_values ();
|
| 1459 |
|
|
}
|
| 1460 |
|
|
|
| 1461 |
|
|
/* Initialize cselib for one pass. The caller must also call
|
| 1462 |
|
|
init_alias_analysis. */
|
| 1463 |
|
|
|
| 1464 |
|
|
void
|
| 1465 |
|
|
cselib_init (bool record_memory)
|
| 1466 |
|
|
{
|
| 1467 |
|
|
elt_list_pool = create_alloc_pool ("elt_list",
|
| 1468 |
|
|
sizeof (struct elt_list), 10);
|
| 1469 |
|
|
elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
|
| 1470 |
|
|
sizeof (struct elt_loc_list), 10);
|
| 1471 |
|
|
cselib_val_pool = create_alloc_pool ("cselib_val_list",
|
| 1472 |
|
|
sizeof (cselib_val), 10);
|
| 1473 |
|
|
value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
|
| 1474 |
|
|
cselib_record_memory = record_memory;
|
| 1475 |
|
|
/* This is only created once. */
|
| 1476 |
|
|
if (! callmem)
|
| 1477 |
|
|
callmem = gen_rtx_MEM (BLKmode, const0_rtx);
|
| 1478 |
|
|
|
| 1479 |
|
|
cselib_nregs = max_reg_num ();
|
| 1480 |
|
|
|
| 1481 |
|
|
/* We preserve reg_values to allow expensive clearing of the whole thing.
|
| 1482 |
|
|
Reallocate it however if it happens to be too large. */
|
| 1483 |
|
|
if (!reg_values || reg_values_size < cselib_nregs
|
| 1484 |
|
|
|| (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
|
| 1485 |
|
|
{
|
| 1486 |
|
|
if (reg_values)
|
| 1487 |
|
|
free (reg_values);
|
| 1488 |
|
|
/* Some space for newly emit instructions so we don't end up
|
| 1489 |
|
|
reallocating in between passes. */
|
| 1490 |
|
|
reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
|
| 1491 |
|
|
reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
|
| 1492 |
|
|
}
|
| 1493 |
|
|
used_regs = XNEWVEC (unsigned int, cselib_nregs);
|
| 1494 |
|
|
n_used_regs = 0;
|
| 1495 |
|
|
cselib_hash_table = htab_create (31, get_value_hash,
|
| 1496 |
|
|
entry_and_rtx_equal_p, NULL);
|
| 1497 |
|
|
cselib_current_insn_in_libcall = false;
|
| 1498 |
|
|
}
|
| 1499 |
|
|
|
| 1500 |
|
|
/* Called when the current user is done with cselib. */
|
| 1501 |
|
|
|
| 1502 |
|
|
void
|
| 1503 |
|
|
cselib_finish (void)
|
| 1504 |
|
|
{
|
| 1505 |
|
|
free_alloc_pool (elt_list_pool);
|
| 1506 |
|
|
free_alloc_pool (elt_loc_list_pool);
|
| 1507 |
|
|
free_alloc_pool (cselib_val_pool);
|
| 1508 |
|
|
free_alloc_pool (value_pool);
|
| 1509 |
|
|
cselib_clear_table ();
|
| 1510 |
|
|
htab_delete (cselib_hash_table);
|
| 1511 |
|
|
free (used_regs);
|
| 1512 |
|
|
used_regs = 0;
|
| 1513 |
|
|
cselib_hash_table = 0;
|
| 1514 |
|
|
n_useless_values = 0;
|
| 1515 |
|
|
next_unknown_value = 0;
|
| 1516 |
|
|
}
|
| 1517 |
|
|
|
| 1518 |
|
|
#include "gt-cselib.h"
|